
The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin OriginalityCheck service.

Ensuring system integrity and security on

limited environment systems

UNIVERSITY OF TURKU

Department of Computing

Master of Science in Technology Thesis

Security of Networked Systems

December 2021

Juho Jauhiainen

Supervisors:

Ville Leppänen

Juha Karunen

UNIVERSITY OF TURKU

Department of Computing

Juho Jauhiainen: Ensuring system integrity and security on limited environment systems

Master of Science in Technology Thesis, 77 p., 16 app. p.

Networked Systems Security

December 2021

Cyber security threats have rapidly developed in recent years and should also be

considered when building or implementing systems that traditionally have not been

connected to networks. More and more these systems are getting networked and

controlled remotely, which widens their attack surface and lays them open to cyber

threats. This means the systems should be able to detect and block malware threats

without letting the controls affect daily operations. File integrity monitoring and

protection could be one way to protect systems from emerging threats.

The use case for this study is a computer system, that controls medical device. This kind

of system does not necessarely have an internet connection and is not connected to a LAN

network by default. Ensuring integrity on the system is critical as if the system would be

infected by a malware, it could affect to the test results.

This thesis studies what are the feasible ways to ensure system integrity on limited

environment systems. Firstly these methods and tools are listed through a literature

review. All of the tools are studied how they protect the system integrity. The literature

review aims to select methods for further testing through a deductive reasoning. After

selecting methods for testing, their implementations are installed to the testing

environment. The methods are first tested for performance and then their detection and

blocking capability is tested against real life threats.

Finally, this thesis proposes a method which could be implemeted to the presented use

case. The proposal at the end is based on the conducted tests.

Keywords: file integrity monitoring, FIM, RIM, limited environment, IoT

Table of Contents

1 Introduction ... 1

1.1 Context.. 1

1.2 Goal of thesis .. 5

1.3 Research methods .. 5

1.4 Use case ... 5

1.5 Research questions and structure of the thesis ... 6

1.6 Limitations ... 8

2 Potential threats .. 11

2.1 Information stealers and Command and Control .. 11

2.2 Ransomware ... 12

2.3 Fileless malware ... 13

3 Methods for ensuring integrity .. 15

3.1 File integrity monitoring ... 15

3.1.1 Types of File Integrity Monitoring .. 15

3.1.2 File Integrity Tools for Microsoft Windows ... 16

3.1.3 Experimental File Integrity Tools ... 22

3.2 Memory integrity protection .. 23

3.2.1 Software Guard Extensions ... 23

3.2.2 Microsoft memory integrity and code integrity checking 24

3.3 Microsoft Windows features ... 24

3.3.1 Trusted Platform Module .. 24

3.3.2 Application whitelisting .. 26

3.3.3 Hardening .. 28

3.4 Summary .. 30

4 Configuring monitoring and measuring performance 32

4.1 Test environment ... 32

4.2 Monitoring method .. 33

4.3 Configuration ... 35

4.3.1 SolarWinds SEM ... 35

4.3.2 OSSEC .. 36

4.3.3 Snare FIM.. 42

4.3.4 AppLocker ... 45

4.4 Test results ... 48

5 Blocking and detection capabilities ... 52

5.1 Testing method ... 52

5.1.1 Remote Access Trojan (RAT): Quasar ... 52

5.1.2 Ransomware simulator: Fransom .. 53

5.1.3 Fileless malware: Chimera .. 55

5.2 Test results ... 55

5.2.1 Quasar RAT .. 55

5.2.2 Fransom ... 60

5.2.3 Chimera ... 62

5.3 Summary .. 64

6 Conclusion ... 66

6.1 Discussion ... 66

6.2 Future research .. 67

References .. 68

Appendix A: Performance test results .. 78

Appendix B: OSSEC configuration ... 84

Abbreviations and Acronyms

ACSS A posteriori computer security system

AD Active Directory

API Application Programming Interface

APT Advanced Persistent Threat

AV Anti-Virus software

BIOS Basic Input-Output System

C2 Command and Control

CPU Central Processing Unit

CIS Center for Internet Security

DLL Dynamic-link library

EDR Endpoint Detection and Response

EPC Enclave Page Cache

FIM File Integrity Monitoring

FIT File Integrity Tool

GPO Group Policy Object

HIDS Host Intrusion Detection System

HVCI Hypervisor-Protected Code Integrity

IOT Internet of Things

ISO Optical disc image

LGPO Local Group Policy Object

LOLBAS Living Off the Land Binaries, Scripts and Libraries

LTSB Long-term Servicing Branch

MBR Master Boot Record

OS Operating System

OVA Open Virtual Appliance

RAT Remote Access Trojan

RCE Remote Code Execution

PCR Platform Configuration Register

RIM Registry Integrity Monitoring

SGX Software Guard Extensions

TLS Transport Layer Security

TPM Trusted Platform Module

UAC User Account Control

VBS Virtualization-based Security

WMI Windows Management Interface

1 Introduction

Malicious programs (malware) are increasing vastly and getting better to hide from the

system. [1] At the same time, number of internet connected devices, or Internet of Things

(IoT), is going up [2]. The digitalization enables modern and efficient way to handle

business which is necessary for modern operations. Because of this, different industry

sectors are adapting automation and remote access in their processes which increases the

attack surface. Based on Zscaler report [3], number of IoT malware attacks rose 700% at

the beginning of COVID-19 pandemic. To protect IoT systems from malware, the

systems must have malware protection. This master’s thesis tries to find feasible way to

protect IoT systems against malware without consuming all of their limited resources.

1.1 Context

In addition to the rising volumes of attacks, the attackers are also getting more

sophisticated. Majority of attacks are opportunistic but there are targeted ones as well.

For example Advanced Persistent Threats (APTs) work until they get in to the networks

and then just lay down and observe before they are try to achieve their objectives [4]. The

objectives of APTs and opportunistic attackers can be anything from stealing information

to ransomware attack or affecting data integrity on the target system. Good example of

an attack that affected data integrity is a security incident that occurred in Oldsmar,

Florida, February 2021 [5]. An unknown attacker was able to alter the level of lye in water

purification process. Basically a water purification system was intruded and level of lye

was raised more than a hundredfold. The attack could potentially have affected infection

for lot of people living in the area of the water purification. In this case the incident was

detected by a human operator and the security mitigations were executed.

The modern way to install malware does not require the threat to be present on the file

system. The malware can for example be delivered to the system by exploiting a remote

code execution (RCE) vulnerability. If RCE vulnerability is exploited, attacker may load

malicious shellcode directly to the memory. This leaves no files on the disk and the

technique is called fileless malware [6]. Another way to deliver fileless malware would

 2

be using a malicious website or malicious document that includes a script that downloads

the malware and injects it directly to the system memory. It is good to understand that

malware either succeeds in execution or hiding, not both, which enables the defenders to

detect and block the malware execution if it is attempted [6].

Traditionally, to protect the system from malware, execution of the malicious program

must be prevented. The traditional anti-virus (AV) solutions are primarily based on

behaviour, malware signature, or known application detection, as shown in the Figure 1

[7]. These methods are efficient and fast in detecting known malware but extremely bad

in detecting new, modern malware. [1, 7] As the malware and attacker tools, techniques

and procedures are evolving, malware defences need to evolve too. Due to this reason,

lot of anti-virus software vendors have also shifted their focus from prevention to

detection [8]. These software are called endpoint detection and response (EDR) tools.

The tools have integrated incident response capabilities to provide threat hunting

capabilities and opportunity to block and detect malware. EDR also provides

investigation capability to humans monitoring the EDR management console [8]. To

detect anomalies in the monitored system, EDR may do behaviour monitoring to the

system and flag suspicious behaviour [7]. Example of suspicious behaviour could be

document editing software Microsoft Word executing Windows Command Prompt. This

behaviour is common for malicious macros that are embedded to a word document.

Fileless malware can achieve persistent on the system by adding malicious code to

registry keys, Windows Management Interface (WMI) or scheduled tasks. Traditional

anti-virus approach does not detect persistent mechanisms [7]. EDR also tracks down user

and system activity, which includes logging file changes and system API calls. By

logging file changes and API calls, the analyst monitoring the EDR can identify attacks

modifying system files and launch incident response process. [7] The problem with EDR

is that they provide high volume of false alarms and lack of capability to prevent new

malware without human analysing the alarms [4].

 3

Figure 1. Traditional anti-virus approaches [4]

As the EDR requires active monitoring, it is not suitable for all use cases. For example in

environments where IoT device manufacturer delivers a device and the customer does not

have any access to it, EDR agents cannot be installed on it and the customer will not get

any data out of the system. In these cases the manufacturer should ensure cyber security

resilience by implementing preinstalled controls. One of the ways to secure the system is

to monitor and ensure file system integrity. File system integrity means that the

configuration information, user data, executable programs and the operating system itself

is not altered or corrupted [9]. For example, the protected information can be a database

where the healthcare system loads it values for verifying blood results. If the reference

data is corrupted by malicious change, the outcome could be fatal. Operating systems

store their configuration to disk and load it to the memory on a start-up. The configuration

can be altered on the memory, which sets requirements for protecting the system memory

as well. The memory integrity can be established by isolating processes within containers

[10]. This way processes are not able to write other processes' memory blocks and affect

their integrity. This thesis tries to identify methods that establish integrity on the device.

These methods should include preventive controls and not require active monitoring.

Integrity can be monitored and ensured on multiple different layers. When verifying

integrity on an operating system, the verification can be done by verifying for example

Basic Input-Output System (BIOS) integrity, Master Boot Record (MBR), Operating

System (OS) loader or the OS image itself. As the goal of this thesis is to ensure OS

 4

security when it is running on an IoT system, the research focuses on the file system and

the memory integrity. File system integrity means that wholeness of the files stored on

the file system are being monitored and protected for malicious changes. This includes

also all operating system and software configuration files. Memory integrity means that

the process memory is isolated from other processes by using containers. Some of the

operating system configuration resides in the memory until the system is turned off.

File integrity monitoring (FIM) is a relatively old thing as McKosky et al. [11] have

already considered it as a solution for malicious programs in 1990. They have identified

need for a software that protects the computer from malware with own automatic-

countermeasures. McKosky et al. define a posteriori computer security system (ACSS)

that maintains a database of files and detects if there are changes. The operating model of

ACSS is similar to what is still used in the modern solutions [12]. Securing operating

systems for file integrity is not however easy [13]. For example Windows attack surface

is large and lot of different binaries get loaded and executed subsequently. Software also

gets updated and new software is installed which produces lot of changes on the file

system. As the system changes continually, ensuring the file system integrity is hard.

IoT systems are like any information technology (IT) systems [14]. They run on similar

components and do similar tasks. IoT systems have usually limited resources as the

assembly costs are kept as a minimum. Because the system is not the core product of the

entirety and the development of the system might take time, parts might be obsolete when

compared to the newest technology. The CPU can for example have limited processing

power, the system can run low on memory, the storage size can be limited, or all of these.

The systems are often also built to have long time support without need of hardware

upgrades. Example of this kind of system could be factory automation controllers. The

system plays critical part of the process in the example and cannot be easily replaced

because it would cause a long maintenance downtime. Securing such device with limited

resources can be challenging. The systems might have not been built with security by

design and the resources that security software needs might not be calculated when the

required hardware resources have been defined.

 5

1.2 Goal of thesis

Purpose of this thesis is to find feasible integrity assurance method for IoT system. On

the operating system level IoT systems are similar to regular IT systems - they are often

running the same operating systems as the IT systems are. Some of the systems run on

Linux or UNIX operating system, while the others use Windows. The target system of

this research is a Windows 10 IoT Enterprise 2015 LSTB operating system running on

x64 architecture. The Windows 10 is used in many IoT systems and majority of malware

is targeted against Windows machines [15]. Operating systems and the software running

on it require updates. In IoT systems the updates are often delivered only when new

features or significant fixes are pushed to the system. This means the updating frequency

is not as short as it is in regular IT systems. However, the system needs to be updated

which is why the chosen method needs to allow the operating system and the software to

be updated.

1.3 Research methods

The research is executed through empirical and literature research. First available

methods are researched from existing academic work and compared together. After the

available methods and their possible implementations are listed, the most feasible

methods are selected by deductive reasoning. The deductive process follows the research

questions.

Next the identified methods and their implementations are tested in practice through

empirical research. The tools are installed to the testing environment. In order to identify

feasible method for ensuring integrity in a limited environment system, performance of

the methods are tested by measuring how much resources they require from the system.

After measuring the performance, the tools are tested against real life threats. Purpose of

the second test is to identify which kind of threats the selected methods are able to detect

and block.

1.4 Use case

This master’s thesis is researching methods to ensure system integrity on Windows 10

2015 LTSB x64 system, as shown in the Figure 2. 64-bit system was chosen because the

modern software has wider support for 64-bit systems and the architecture does not limit

 6

amount of memory. In 32-bit systems CPU can only use 32 bit long memory addresses.

2³² bytes is equal to 4294967296 bytes, which is 4 GB. This is the reason why x86, or 32-

bit, processors can typically use only 4 GB of memory while the x64 systems can

theoretically use up to 16 EB, or 16 000 000 TB, of memory [16].

The researched methods should preferably work as a standalone local installation or

without continuous connection to a server. The target system is used in a local network

where necessarily is no direct internet access. The integrity monitoring method should

allow updates on the target system and software but still ensure no malicious changes are

made. Detecting malicious changes from genuine ones is one of the key functions. The

chosen method should not hinder the system performance.

Figure 2. Computer information of the target system

1.5 Research questions and structure of the thesis

Related academic work is often focused on a single solution or examining theoretical

models that could solve the issue instead of providing concrete solutions. This thesis

compares feasible methods through literature research and introduces methods that are

suitable for the use case. Limited environment systems are at a risk for similar threats as

workstations and servers. The systems might get infected for example by Remote Access

 7

Trojans (RATs) or a ransomware. Before researching the available integrity methods,

threats that could affect the target system are presented in the Chapter 2.

As introduced in the Section 1.1, file system integrity means that no malicious

modifications are allowed on system configuration and files, while the memory integrity

protection protects the running software from getting code injections on the runtime.

Available methods for protecting Windows 10 system and memory integrity are listed

and compared through deductive reasoning process. These methods are introduced in the

Chapter 3. The literature research for available methods defines the Research Question

RQ1.

RQ1: What are available methods for ensuring file system integrity in Windows 10 while

allowing controlled updating of the software?

After identifying feasible methods for the use case, performance of the feasible methods

is compared running them on a simulated IoT system. IoT systems do not usually have

extra resources for running other software than the one they are built for. Because there

are no resources on hold, the chosen method for ensuring integrity must use low resource

on the system. The methods can use some of the resources but they should not have impact

on system performance. This research answers the Research Question RQ2. Chosen

methods from the Chapter 3 are tested on the limited resource reference system and the

outcome of the study is presented in the Chapter 4. The RQ2 explores performance

impacts of the feasible methods.

RQ2: How do the feasible methods effect the system performance?

If a feasible method does not have significant effect on the system performance, its

security aspect should be verified as well. The chosen method should protect the system

against modern threats, including the fileless malware discussed in the Section 1.1. The

virtual system running the feasible protection method is infected with several threats and

observed if the method is capable defending the system. Before testing if the method is

capable to detect and block modern threats, the threats have to be identified. Chapter 2

 8

focuses on identifying threats that could target limited environment systems. After the

threats are identified, the target system is infected with the identified threats. The empiric

research process and its results will be presented in the Chapter 5. The research answers

to Research Question RQ3.

RQ3: Can the chosen method detect and block modern threats?

The goal of the thesis is to make as cyber resilient Windows 10 2015 LTSB system as

possible, without sacrificing too much performance. The identified threats against the

system are presented in the Chapter 2. The researched methods and their implementations

are presented in the Chapter 3. The performance issues are considered in the Chapter 4

and the capability to defend against threats are researched in the Chapter 5. Chapter 6 is

a conclusion chapter which also summarizes the research.

1.6 Limitations

Perfect security does not exist and there is no one solution to solve all of our cyber security

problems [17]. The chosen method will not protect the system from all threats. Building

cyber security defense is a constant race between defenders and attackers. When the

defenders build new defense mechanisms, the attackers will adapt and find their way

around the mechanisms. When the attackers develop new attack vectors, the defenders

need to evolve their defense mechanisms. One of the ways to defend against threats is to

build defense with defense-in-depth approach [18]. Defense-in-depth means that multiple

security controls are implemented on different layers of the system or the network, these

defenses could for example be security policies, perimeter security controls, network

security controls, endpoint security controls, application security controls and data

security controls [19]. The solution for protecting the system integrity will only be part

of the endpoint security controls, where it defends the system from malicious changes.

The core idea is to ensure defense even though one control fails to defend against the

current threat. The core idea of the defense-in-depth is presented in the Figure 3. As the

tests are executed on a virtualized device, the results may vary in a real environment.

However the software performance and security capabilities should be similar in both

environments.

 9

Figure 3. The Fan™ illustrating technology and process defense in depth architectural

pictorial view. [20]

The target system is Windows x64 operating system. There are many other architectures

than x64 and operating systems than Windows that are used in the critical infrastructure

systems. These operating systems and architectures were intentionally left out from this

thesis. The research does not consider Linux or UNIX based operating systems or ARM,

MIPS and other than x64/x86 architectures.

Intrusions usually follow a process called the cyber kill chain [21]. The intruders start the

attack with reconnaissance. The goal is to detect the system and identify weaknesses,

which can be used to compromise the system. After deciding the attack vector, the

attacker prepares payload which they will then deliver to the system. The payload will

get executed and installed on the system after delivery. The attack might continue to the

post-exploitation phase where the attacker starts to move laterally and work towards their

ultimate goal. The ultimate goal can for example be cyber espionage, altering system data

or ransomware attack. The thesis researches integrity assurance which will affect mainly

on exploitation and post-exploitation phases of the process. The intrusion part is not

 10

covered in this thesis and the goal is not to find attack vectors or vulnerabilities to exploit

the system.

The outcome of the research cover the whole operating system integrity by including

memory integrity in the research. Files that are not accessible while the operating system

is running are not in the scope. Some of the integrity protection methods are built for

cloud base IoT systems. As this thesis processes only IoT devices running on bare metal,

some of the solutions are out of scope. In the use case, the system is a standalone system

and client-server architecture is not suitable for it. This sets certain limitations for

available solutions and the products that require client-server architecture cannot be

implemented. The system integrity can also be verified when the operating system is

booting up by reviewing all images from Basic Input-Output System (BIOS) to operating

system. This thesis focuses on running operating system so the BIOS and boot sector

malware is not in scope.

 11

2 Potential threats

Before evaluating feasible methods for system integrity, it is reasonable to identify

potential threats that can threaten the system. This chapter identifies several potential

threats and how they may affect the system integrity.

2.1 Information stealers and Command and Control

Information stealers are type of malware that are intended to collect information from the

target system, allow attackers to connect the target system remotely, and to download

more payloads from the attacker’s infrastructure [22]. The information stealers can be

also categorized as downloaders, droppers, Trojans, Remote Access Trojans (RATs), and

keyloggers [23]. Downloaders and droppers are type of malware, that deliver another

binary to the target system and their only target is to execute it. Trojan is basically a

synonym for information stealer as its actions can include deleting, blocking, modifying,

and copying data. [24] Keylogger is a type of software, which records users’ keyboard

and mouse activity, and reports them to the attacker. Keylogging is efficient way to

achieve plaintext credentials from the target system. There are multiple different

information stealers publicly available but based on Poston [25], the most common ones

in 2019 were FlawedAmmyy, Quasar, PhoneSpector, AndroRAT, and Havex.

The information stealers try to establish persistence on the target system by using multiple

methods. For example information stealer Emotet can create random services, load

custom DLLs, and add registry values for auto-start, which makes it hard to be fully

removed from an infected system [22]. Common sequences of information stealer

infection are leakage of confidential information, like passwords, and violated user

privacy. [23] This means that information stealers mainly focus on affecting data

confidentiality instead of integrity. However, the persistence methods affect system

integrity as well and because of this information stealers can be considered as part of the

potential threats in the thesis use case.

To maintain persistence and to operate more easily, attackers tend to deliver command

and control (C2) tools using the RATs. [25] C2 establishes the attacker to move laterally

in the target organization, exfiltrate information, and for example to launch ransomware

 12

attack more efficiently. Basically the target system has a beacon or an agent running,

which contacts to the C2 server in the internet. The attacker can then establish a

connection from the C2 channel and achieve shell connection to the target system. The

common C2 frameworks are Metasploit and Cobalt Strike [26]. Finnish information

security company F-Secure has released open source C2 framework called Custom

Command and Control (C3) [27]. The tool allows safely red and purple teams to perform

and demonstrate C2 capabilities.

2.2 Ransomware

Ransomware is a malicious software, which intends to lock the target machine either by

altering system login, or by encrypting data [28, 29]. After successfully locking the

system, ransomware demands ransom from the victim to unlock the system [29]. Based

on Šulc [30], ransomware also steals sensitive information from the target systems to

press the victim to pay the ransom. The threat groups behind ransomware attacks say that

if the victim does not pay, the sensitive data will be leaked to the public or the data will

be sold on Darknet to the highest bitter. This way the threat group receives payment from

the attack and the victim will suffer from the leak of the sensitive information.

Typically ransomware encrypts files on the system, which causes lot of file system

operations [31]. The ransomware iterates target file types by their extensions and then

encrypts the files either partly or fully. Full encryption takes more time, which is why

many ransomware has changed to partial encryption [32]. Encrypting files affects

significantly system integrity and availability, while stealing the information violates

system confidentiality. However, ransomware is big threat for system integrity if it is

allowed to execute in the target system. Ransomware may also delete some backups from

the target system. On Windows system, ransomware often calls vssadmin.exe to delete

Windows volume shadow copies [33]. Also deleting the backups causes lot of file system

operations and affects the system integrity by deleting good copies of affected files.

Finnish information security company Fraktal has created a tool for testing ransomware

protection. The tool is called Fransom and the term comes from Fraktal’s Ransomware

Emulator [34]. The tool can be used to emulate common ransomware functions for testing

 13

different endpoint protection tools, like endpoint detection and response (EDR). The tool

is not designed to be destructive but running it on a production system is not

recommended due the potential issues it might still cause for the target system. Based on

the description on GitHub, the tool seems to be good for controlled testing if malware

execution is prevented by the integrity protection methods.

2.3 Fileless malware

Fileless malware uses trusted and legitimate processes for execution [35]. These

processes can for example be executed from Windows built-in internal binaries, which

are called Living off the Land Binaries and Scripts (LOLBAS) in cyber security terms.

The core idea of fileless malware is that they do not download malicious binaries or write

them on the disk [35]. Example of fileless malware execution could be a spear phishing

office document, which has embedded malicious macros that creates malicious WMI

object. This WMI object then executes the malicious payload, which is often written in

PowerShell and which injects the malware directly to system memory [7].

Fileless malware can be divided into four categories: code injection, script-based attacks,

living of the land attacks, and fileless persistence [7]. Code injection can be established

through several different techniques. Shellcode injection means that malicious code is

injected to the legitimate process. In buffer overflow remote code execution (RCE)

vulnerabilities, shellcodes can be used to execute commands on the target system or to

establish more responsive connection from the system to the attacker [36]. DLL injections

are type of attacks where attacker replaces path of the legitimate DLL file with their own

that contains malicious code [7]. Reflective DLL injection is similar to shellcode

injection: instead of writing shellcode into the process memory, loaded legitimate DLL

will be replaced with attacker’s malicious version [37]. In process hollowing, attacker

creates a process and suspends it. Before continuing the process execution, attacker

replaces memory section of the process with their malicious code. From process list

perspective, hollowed process looks like the originally loaded legitimate binary is running

[7].

 14

If fileless malware uses MSHTA, Wscript, PowerShell, or any other scripting engine to

inject the malicious payload directly to memory, the technique is called script-based

attack [7]. Script-based attacks often start from malware spam email messages, where

malicious office documents or other files containing malicious scripts are attached to the

message and delivered to victim. When the victim is lured to open and execute the

document, malicious script will execute and load the payload directly to memory. After

this the original carrier file can be destroyed by the malware leaving no trace of execution

for the victim. [7]

LOLBAS are Windows binaries, scripts, and libraries that can be used for malicious

purposes [38, 39]. LOLBAS is wider term for LOLBins, which refers only to Windows

binaries, which can be used for malicious purposes [35]. To be called a LOLBAS,

Windows binary, script, or library must fulfil LOLBAS criteria [39]. Based on LOLBAS

project criteria, the binary, the script or the library, which is categorized as LOLBAS,

must either be able to execute code, compile code, do file operations, establish

persistence, bypass Windows User Account Control (UAC), steal credentials, dump

process memory, spy users, evade or modify logs, or do DLL side-loading/hijacking [39].

List of available LOLBAS’ is long. For example regsvr32.exe can be used to execute

local or remote SCP scripts, and msbuild.exe can be used to build and execute C# projects

[38].

Malware that is directly execute to the memory, must maintain its configuration somehow

on the system to survive system reboot. Persistence mechanisms for fileless malware are

similar to regular malware but instead of loading the malware from file system, the

malware configuration is stored to the persistence mechanism [7]. Malware can store its

configuration for example to Windows registry, scheduled tasks, or WMI services. These

persistence methods effect on system integrity by adding malicious code to legitimate

configuration files. When the malware is executed and persistent on the memory, the

attacker may execute their actions and affect system integrity.

 15

3 Methods for ensuring integrity

This chapter introduces different methods identified through literature research and

compares their capabilities against each other.

3.1 File integrity monitoring

One way detect changes in the file system is to monitor and ensure operating system and

software integrity. File Integrity Monitoring (FIM) is a term for monitoring file integrity

on a file system. FIM tools do not necessarily have capability to protect the system from

integrity changes. Based on Peddoju et al. [13] FIM tools are also referred as file integrity

tools (FITs).

3.1.1 Types of File Integrity Monitoring

3.1.1.1 Periodic File Integrity Monitoring

Periodic File Integrity Monitoring (PFIM) tools compare attributes of the files existing in

the file system to previous snapshot. The attributes are compared to previously generated

database or snapshot of the file system. Based on Jin et al., these attributes can for

example be cryptographic hash of the file, owner of the file, file content and file

timestamps [40]. PFIM checks the system periodically and does not monitor system

integrity in real time. Periodical check could for example done in the system startup. Jin

et al. argue that hardware level PFIM checks, like Trusted Platform Module (TPM), are

hard to bypass for an attacker [40].

3.1.1.2 Real-time File Integrity Monitoring

Based on Jin et al., [40] Real-time File Integrity Monitoring (RFIM) based tools intercept

operating system API calls and protect the system real-time by blocking calls that would

harm the system integrity. RFIM requires kernel level access on the system. This access

is permitted by installing kernel module on the system. Using kernel modules allows

attackers to bypass the integrity monitoring by using kernel rootkits. Most commonly

kernel rootkits are kernel modules as well and because they have the same level of access

to the system, Li et al. [40] argue that attacker can hide the kernel module from RFIM

and stay stealthy.

 16

3.1.2 File Integrity Tools for Microsoft Windows

File Integrity Tools (FITs) are special software made for integrity monitoring. Purpose of

the software is to detect any file changes on the file system and prevent malicious

activities. FITs can also be used to detect file access and trigger alerts for it [13]. Based

on Peddoju et al. [13] FITs are not perfect for ensuring security as they have delay in

detection, are complex to deploy, require lot of maintenance and lack information about

the scope of the attack and overall visibility to the system.

Peddoju et al. [13] also argue that the FITs can have challenges in compatibility,

scalability and securing storage of the database. The use case in this thesis considers only

Windows systems the compatibility issues will not be a problem for the scope of the

research. Also scalability will not be a problem in single system implementations.

Ensuring availability, integrity and security of the database is however something that

should be addressed. If an attacker has access to database the FIT is using, they may set

the policies so that their own tools can be executed in the environment.

Peddoju et al. [13] have divided FITs in three different operating categories: tools that

run in the user mode of the operating system, tools that run in the kernel layer of the

operating system, and tools that run on hypervisor level of the monitored operating

system. It is good to understand that tools running in user mode are not capable to monitor

software running with higher privileges. This also affects to software’s capability to

monitor operating system events. User mode tools are illustrated with the Figure 4 and

kernel mode tools with the Figure 5. FITs running in user mode cannot do RFIM as they

are not able to hook API commands and exam the operations real-time [13]. API hooking

in user mode is limited and to achieve real-time monitoring, software must be running in

kernel mode. The third option, a tool that is running on hypervisor, is not suitable for the

use case of this research as the target systems are IoT devices running the operating

system directly on the hardware.

 17

Figure 4. FIT running in user mode [12]

Figure 5. FIT running in kernel mode [12]

3.1.2.1 Tripwire

The Kaczmarek et al. study [42] suggests Tripwire as one solution for a user space file

monitoring. Tripwire is a company that sells a software for monitoring changes on a

system. If a file changes, it will make an alert. The software is monitoring file metadata

 18

and permissions in addition to monitoring file content changes [42]. The commercial tool

Tripwire is available for various Windows, Linux and UNIX versions.

Tripwire has also open-source version, which has been updated last time in March 2019

[43]. Based on the GitHub repository [43], the tool was originally maintained by the

company. The version has native support for POSIX systems but Windows users can run

it using Cygwin. Cygwin is GNU toolkit for Windows that ports many GNU tools to

Windows environment [44]. When the Tripwire binary is running under Cygwin, the tool

cannot monitor Windows registry or other Windows specific attributes [45]. The open-

source version of Tripwire has support for local installation but due the limitations on

monitoring Windows attributes, the solution is not suitable for the use case.

The commercial Tripwire FIM works in a client-server manner. The FIM console and the

user face is hosted on another server where the monitored system calls back using an

agent. [45] The model is presented in the Figure 6. This reference architecture model is

not preferred for the use case as the method should support standalone installation.

Figure 6. Tripwire FIM architecture

 19

3.1.2.2 SolarWinds Security Event Manager (SEM)

SolarWinds Security Event Manager (SEM) is a tool for threat detection, automatic

analysis and response of cyber incidents, and compliance. [46] The tool has features like

log forwarding, memory event monitoring, and USB detection and prevention. One of the

features is RFIM. The vendor promises that their tool is capable to report about advanced

attacks by monitoring file integrity on the target system. The vendor claims that the tool

has enhanced capability to reduce amount of false positives by filtering file changes that

are not related to malicious or suspicious activity. SEM agents can be installed on AIX,

HP UX, Linux, Mac OS X, Solaris and Windows operating systems (Figure 7).

Figure 7. Supported operating systems for SEM agents

Like Tripwire, the SolarWinds requires a management server (Figure 8). The target

system should have SEM agent running which then reports monitored information to the

 20

server. This reference architecture model is not preferred for the use case of this study as

the method should support standalone installation.

Figure 8. SolarWinds SEM reference architecture [47]

3.1.2.3 Qualys FIM

Qualys FIM is a cloud application made for file integrity monitoring. It has capability to

monitor files, directories, and Windows registry. [48] The tool is doing the monitoring in

real time so it is categorized as RFIM. The monitoring tool uses server-client architecture

model but the server is hosted in Qualys’ cloud. This reference architecture model is not

preferred for the use case of this study as the method should support standalone

installation.

3.1.2.4 Trustwave Endpoint Protection

Trustwave Endpoint Protection is a cloud-based anti-malware, policy enforcement,

integrity monitoring, and compliance tool. [49] The tool is capable to monitor files,

directories, registry keys, and registry values of the target system. Access to the

monitoring console is in the cloud so the monitored system should have an internet

 21

connection. This reference architecture model is not preferred for the use case of this

study as the method should support standalone installation.

3.1.2.5 OSSEC

Based on OSSEC documentation [50], OSSEC is an open source HIDS which supports

Linux, UNIX and Windows based systems. On Windows systems, OSSEC monitors files

and registry settings for changes and also stores a forensic copy of the data. Forensic copy

means that the system can be investigated for malicious changes later on in a reliable way.

OSSEC has other features in addition to FIM. OSSEC monitors system logs, detects

malware and rootkits, does automated active response actions, and can be used for system

inventory.

File integrity monitoring module of OSSEC is called syscheck. [51] By default, the

module compares SHA1 and MD5 checksums of files and registry keys on the monitored

system to known good and alerts for mismatches. The module can also check changes in

file size, ownership, group ownership, and permissions. The scanning is periodically so

the OSSEC FIM works as a PFIM. The default interval for the scanning is one hour but

the time interval is admin configurable.

Based on Bray et al [51], OSSEC supports multiple different installation types: local

installation, agent installation, and server installation. The local installation is used for

protecting and securing single host. The agent installation is for protecting multiple hosts

that report to a single centralized OSSEC server. The server installation is for aggregating

information from multiple syslog services and OSSEC agent installations. Bray et al.

argue that the local installation is also recommended to use when the servers are not able

to connect networks where OSSEC servers are hosted. OSSEC up-to-date documentation

however provide information only about agent/server installation. Bray et al. book is from

2008 so it seems the information on it is obsolete and OSSEC has abandoned local

installation for single systems. The local installation would have been suitable for the use

case but it is not available anymore. The current OSSEC reference architecture is

presented in the Figure 9. OSSEC uses similar architecture as Tripwire and would not be

preferred for the use case of this study.

 22

Figure 9. OSSEC reference architecture [52]

3.1.2.6 Snare File Integrity Monitoring

Snare FIM is a tool that provides file integrity monitoring. [53] Snare also provides bunch

of other tools that they refer as File Activity Monitoring (FAM), Registry Integrity

Monitoring (RIM) and Registry Activity Monitoring (RAM). The tool will generate text

based logs from the systems the agent is installed to and then analyse the logs in the server

to detect integrity changes [13]. The tool supports Windows, Linux, OSX and Solaris

operating systems [53]. Based on Snare documentation [53], FAM compliments the FIM

as it will also log the file details like how many times the file was changed and which

user has been editing it. The tool has also capability to monitor Windows registry changes.

The tool uses server-client architecture which is not ideal for the use case.

3.1.3 Experimental File Integrity Tools

3.1.3.1 Provenance-based integrity protection SPIF

Provenance-based integrity protection SPIF system is attempt to ensure Windows’s

integrity. The SPIF intercepts WinAPI system calls which means it works on a kernel

level of the system. The core idea of SPIF is to sandbox all running processes and to

detect if the process is untrusted or benign [54]. SPIF also uses concept of shadowing

instead of always denying untrusted processes. Shadowing means that SPIF is limiting

 23

the executed process to write data to specific locations. SPIF is experimental and there

was no implementations found during the research.

3.1.3.2 BinInt

Software project BinInt seeks to ensure all binaries on the Windows system are intact

[14]. The BinInt project has it downsides as it does not monitor other files than binaries

for integrity. The tool does not monitor configuration files, Windows registry keys, or

Windows registry values. Lack of visibility in other than binary files might enable

attacker opportunities that could go undetected. For example, an attacker could edit

configuration files before executing a software to execute malicious code or the system

or simply just use shell scripts. BinInt is in beta and no released versions are available.

3.1.3.3 Integrity Checking and Restoring (ICAR) System

Implementing integrity monitoring and enforcement in runtime is a challenge [42].

Kaczmarek et al. [42] have investigated this issue and developed concept and architecture

of Integrity Checking and Restoring (ICAR) System. Their core idea in their theoretical

concept is to extend the file integrity checking to automatic restores if the file content has

been changed. Based on Kaczmarek et al, options to ensure file integrity are comparing

file fingerprint to generated database periodically on both, user and kernel user space.

ICAR is experimental and there was no implementations found during the research.

3.2 Memory integrity protection

3.2.1 Software Guard Extensions

Intel is providing a Software Guard Extensions (SGX) for providing system’s integrity

and confidentiality. The SGX enables support for enclaves. When an application is

executed with SGX, its memory is placed inside of enclave page cache (EPC). The EPC

is not accessible for other processes, even if they are running with higher privileges.

Basically this protects the data in memory from processes running on higher protection

rings of the operating system [55].

 24

As the SGX is memory only protection for process integrity, it is focusing more on the

kernel level threats. The SGX is good for protecting the software if it is executed on a

system that is owned and maintained by an untrusted party [56]. The SGX defends the

system from low level operations and could improve security against vulnerability

exploitation, like the RCE described in introduction.

Artaunov et al. [56] have described The Secure Linux Containers with Intel SGX project

SCONE that uses the Intel SGX technology on Docker containers. As described in the

project, SGX is great for protecting containers but it might not protect the whole operating

system and by that would not be suitable for the use case.

3.2.2 Microsoft memory integrity and code integrity checking

Microsoft Windows has a built-in memory protection capability which is also referred as

Hypervisor-Protected Code Integrity (HVCI) in Microsoft documentation. The feature is

part of core isolation [58]. The memory integrity prevents attacks from injecting code to

high-event processes. When the HVCI is enabled, kernel memory can be marked as

executable only through Code Integrity checking [59]. This protects the system similarly

to SGX by defending high-event processes from code injection.

3.3 Microsoft Windows features

3.3.1 Trusted Platform Module

Trusted Platform Module (TPM) is a microcontroller which helps to assure integrity of a

system and to secure cryptographic keys, for example the ones used for decrypting an

encrypted disk. Similarly to SGX, TPM focuses on low level operations and only allows

trusted code to be executed on the system.

TPM creates a chain-of-trust. In the chain-of-trust, TPM is the only self-trusted

component and it trusts the next level of the trust chain, if the cryptographic hash matches

the one stored into it. TPM uses cryptographic functions to calculate hashes of next levels

of the chain and it stores the hash-value to TPM storage called Platform Configuration

 25

Register (PCR). First the TPM ensures Basic Input-Output System (BIOS) matches the

stored record, than it moves to Master Boot Record (MBR), then OS loader and OS, and

finally the application runtime libraries [60]. Chain-of-trust can be used to prevent OS

running any other libraries than the ones accepted in PCR.

Microsoft Defender System Guard uses TPM to ensure Windows 10 integrity from UEFI

to Windows Sign-In. The Defender System Guard relies on three integrity protection

modules: secure boot, secure platform boot, and secure driver and defenses startup

[Figure 10]. These modules include the TPM defenses and ensure the system integrity.

Microsoft Defender System Guard works only with TPM 2.0, which might not be

implemented in low resource systems [60]. Because of this, TPM will not be suitable

directly for the use case. TPM however improves system overall security why it should

be enabled, if TPM is available.

Figure 10. Microsoft Windows Defender System Guard. [60]

The TPM can also be used for malicious purposes like cloaking malware [61]. Dunn et

al. argue [61] that malware can be encrypted with a key, which is stored to TPM and can

be used by a specific malware loader. This way the decrypted malware payload can be

seen on the system on a software level.

 26

3.3.2 Application whitelisting

One way to avoid execution of malicious binaries is to use application whitelisting.

Application whitelisting is a term for whitelisting applications that can be executed on

the system. Typically anti-virus software work opposite way as they use database for

known bad software and prevent execution if fingerprint of the software matches the

database. In application whitelisting, all binaries that are allowed to run on the system are

listed on the application whitelist [62]. The application whitelist can also be a list of

components related to binaries and include configuration files, libraries and so on [63].

Application whitelisting is generally adopted method to ensure the software that is being

executed on the system, is good. For example Apple iPhone allows execution only for

applications that are downloaded from Apple AppStore [62]. Romana et al. [62] argument

that with application whitelisting, Windows operating system can perform well and be

updated without setting the integrity and security on risk.

Application whitelisting can be established for multiple different file attributes [62].

Some of these attributes are filename, file path, file size, digital signature or publisher

and cryptographic hash. Application whitelisting does not have to rely only one attribute

but can be combination of several attributes. Application can for example be allowed to

execute if its file size, file path and publisher match for the rule. Some of the attributes

can be relied more than others. For example cryptographic hashes that have been

calculated with strong algorithms, like SHA256 or SHA512, can be considered strong

indicators of known good. Downside of the cryptographic hashes is that if the software is

updated, the hash is changed and has to be recalculated and added to the application

whitelist. Relying only on cryptographic hashes can impair system performance.

Whitelisting can also be achieved for application resources. Monitoring can be leveraged

from binaries to their resources like libraries, macros, scripts and configuration files.

Pareek et al. argument that application whitelisting could potentially address the zero-day

threats along with other malware related threats. The argument bases on the fact that

application whitelisting does not allow anything else to be executed than trusted binaries

 27

[64]. This argument is potentially dangerous as for example buffer-overflow

vulnerabilities allow the attacker to write their own code to already loaded binary. This

means the application whitelisting cannot protect the system from the buffer-overflow

vulnerabilities, like RCE, as the execution permission is only checked when the binary is

executed [65].

3.3.2.1 AppLocker

Microsoft provides AppLocker software for whitelisting in Windows systems.

AppLocker allows organization to implement application control policies [66]. Based on

AppLocker documentation [66], it can be used to define rules that allow executing

applications from specific publisher or applications with specific product name.

AppLocker also allows rules that allow files with specific file name, file version, file path

or file hash to be executed. AppLocker is available for Windows 10, Windows 11, and

Windows Server 2016 and above.

Microsoft recommends to test AppLocker security policies before implementing them to

production [67]. As the AppLocker only allows listed programs to run, it can cause

disturbances by blocking production software from executing. This however should not

be a problem if the policies are well tested before enabling them. The AppLocker is also

fully closed source and Microsoft does not have any plans developing any extensions to

AppLocker [67]. AppLocker runs on Windows with highest possible privileges but still

has a potential for misuse. If attacker gains administrator privileges to the system, they

can configure local group policy and either disable group policy objects (GPOs) or edit

them to allow malicious software to be executed on the target system. However

AppLocker should block any not allowed software to be executed on the system so it is

less likely that the attacker could gain administrator level access to the system. In addition

to blocking software, AppLocker is capable to block VBScript, Jscript, .bat and

PowerShell scripts [67]. The AppLocker is not capable to block for example Perl scripts

and office document macros or software running in POSIX subsystems.

Based on literature review, AppLocker is suitable for the use case. The software should

not require much from the system performance and should only allow trusted software to

be executed.

 28

3.3.3 Hardening

3.3.3.1 Microsoft approach

Microsoft has released their own approach for Windows 10 IoT hardening [68]. They

have divided the security hardening to five parts: device protection, threat resistance, data

protection in motion, cloud security, and response.

Device protection consists from four different core components. The system integrity is

being taken care of by using TPM. Microsoft uses TPM for managing cryptographic keys,

device authentication and for integrity by different security measurements. Microsoft is

also providing Windows Device Health Attestation service. The Device Health

Attestation means a Windows server that receives logs from IoT device’s boot process

and analyzes them for malicious or unknown events. The Device Health Attestation

requires internet connection from the IoT device. Third component is secure boot. Secure

boot checks signature of software that is executed during the startup, and verifies if all of

them are provided by trusted manufacturers. If software is not trusted, secure boot will

prevent it running. The last component for device protection is BitLocker. BitLocker is a

Windows’s built in disk encryption system so it will protect the data at rest.

The threat resistance consists from two core Windows components: Windows Defender

Firewall and Windows Defender. Windows Defender Firewall is Microsoft’s firewall that

can be used to limit the attack surface of IoT devices. Based on Microsoft best practices,

the firewall default configuration for outbound traffic is ‘allow’ and should be configured

to default ‘deny’ in high security environments [69]. Microsoft Defender for Endpoint is

an anti-virus software that helps detecting and preventing post-breach detection and

response.

Microsoft suggests TLS-based encryption for protecting data in transit [68]. Windows 10

IoT supports TLS 1.2 protocol, which Microsoft urges to use in encrypted connections.

For cloud IoT appliances, Microsoft suggests using Windows Azure tools. If the

implemented security controls fail and intrusion is made, Microsoft offers tools for

 29

responding the incident. Tools provided for Windows 10 Enterprise are device

management and device recovery. Device management can be used to monitor all IoT

devices from one management. Device recovery allows systems to be isolated and

reimaged without letting the security incident spread to other devices.

3.3.3.2 Center for Internet Security benchmark and controls

Center for Internet Security (CIS) is a nonprofit organization that provides security best

practices [70]. The organization is known for CIS Controls and CIS Benchmarks releases.

CIS Controls is a list of actions organizations should implement to protect themselves

from cyber incidents. CIS Benchmarks is a set of best practices that should be used to

configure systems. CIS Benchmarks has been released for multiple different operating

systems and devices. CIS has not released specific benchmark for standalone Windows

10 IoT installations but the Windows 10 Enterprise benchmark [71] can be applied on

specific parts for the use case. The whole benchmark document is 1254 pages long and is

written for Active Directory (AD) joined systems.

The benchmark recommends Windows logging feature Audit System Integrity is set to

Success and Failure. The feature does enable different logging events for Microsoft which

help identifying security incidents related to system integrity changes. As this is logging

module, it does not block or prevent any malicious changes on the system. CIS benchmark

also recommends turning on virtualization-based security (VBS). The setting enables

kernel mode memory protections, which are part of the Code Integrity. The protection

disallows code to be marked as executable on kernel mode and protects the system from

for example code injection. The option requires CPU virtualization feature (Intel VT-X

or AMD-V) which might not be available for the use case.

CIS Controls [72] and CIS Benchmarks [71] recommend using Windows Defender

Exploit Guard (WDEG). WDEG is a Windows specific capability which was released in

Windows 10 Fall Creators Update [73]. The capability allows integrity checks on system

startup, run time, and after run time [74]. The startup protection aims to validate boot

sequence and that no malicious firmware or software are loaded during the startup. The

system protection on runtime aims to protect Windows kernel. The highest privilege level

 30

on Windows systems is SYSTEM and if an attacker gains access to SYSTEM level

account, the game is lost [74].

Figure 11. Virtualization-based security (VBS) with WDEG [74]

3.4 Summary

Considering the use case defined in the Chapter 1, suitable methods for ensuring the

system integrity are researched File Integrity Tools (FITs), application whitelisting and

Microsoft recommendations for memory protection and system hardening. Because

layered protection is recommended for better security, using a FIT, application

whitelisting and memory integrity protection at the same time would be the best from

security perspective. Due the limited resources in the use case, doing layered security for

integrity protection might not be an option. The performance testing will research which

of the feasible methods can be stacked for layered defense.

The Table 1 presents the methods that were presented in the literature review. From file

integrity tools Tripwire, SolarWinds, OSSEC, and Snare were picked to be tested in the

performance test. However, Tripwire did not provide license for testing and was left out

from the comparison. AppLocker will be also tested separately. Hardening best practices,

including enabling SGX, memory integrity and TPM, depend on the hardware the system

 31

is running. Ideally all of them would be enabled but limited resource systems do not

necessarily have Intel processors for SGX, or TPM modules. Qualys, and Trustwave FIM

products required connection from the monitored system to their cloud. The use case

system cannot have continuous connection to cloud which makes these two options not

feasible for the use case. SPIF, BinInt and ICAR are experimental methods that did not

have released implementations at the time of this research.

Method Feasible Feasible with considerations Not feasible

FIT: Tripwire*
 ●

FIT: SolarWinds SEM
 ●

FIT: Qualys FIM
 ●

FIT: Trustwave EP
 ●

FIT: OSSEC
 ●

FIT: Snare FIM ●

FIT: SPIF** ●

FIT: BinInt** ●

FIT: ICAR** ●

SGX ●

Microsoft memory integrity ●

TPM ●

Hardening best practices ●

AppLocker ●

Table 1. Integrity protection methods summary.

* = Tripwire did not answer enquiries for testing license.

** = The method is theoretical and there is no production releases of the projected

solution yet.

 32

4 Configuring monitoring and measuring performance

This chapter describes how performance testing was completed and what the outcome of

it was. Testing environment is presented in the Section 4.1 and monitoring method in

Section 4.2. Configurations for tested integrity monitoring tools are introduced in the

Section 4.3. Finally the performance testing results are presented in the Section 4.4.

4.1 Test environment

Figure 12. Test environment topology

Testing was completed in a virtualized network. VMWare Workstation 16 Pro was used

as a hypervisor software and Windows 10 IoT Enterprise LTSB 2015 was installed as a

virtual machine on the hypervisor. The Windows 10 IoT machine was connected to the

virtualized network, which did not have internet access. The network did not have

internet access to avoid unwanted changes to the target system during the testing.

If the tested file integrity method required a server, it was installed on the same

hypervisor. As shown in the Figure 13, the testing machine had similar configuration as

the reference device but the system is running virtually. The Windows 10 IoT system

had the target test system software component running to ensure the testing

environment would have equivalent load to the use case. The tested file integrity

method was installed to the Windows 10 IoT.

 33

Figure 13. Windows 10 IoT Enterprise LTSB 2015 system in the test environment

4.2 Monitoring method

Microsoft Performance Monitor, or PerfMon, is a software, which is built in to Windows

systems [75]. The tool is created for real time performance monitoring but it has

capabilities to record performance data of the whole system or just from specific

processes. The tool can for example monitor memory usage, disk usage, and CPU usage.

In this thesis, we use Performance Counter set from Data Collector Sets of the PerfMon

tool. The tool captures performance data at a custom time interval, which is user

configurable.

In this research, PerfMon Data Collector Set is configured using Create manually mode

and just to collect data logs about software performance, as shown in the Figure 12. Then

the process of the tested integrity tool is chosen as a counter using PerfMon counter list.

Last the data format is changed from the DataCollector01 Properties to comma separated

format, so that it can be more easily compared and visualized later in this chapter.

 34

Figure 14. PerfMon Data Collector Set-configuration

PerfMon records total of 28 different performance attributes from running process. As

we are comparing the CPU, memory and disk I/O usage, the ones that are used in this

research are processor time, virtual bytes, working set, IO read bytes/sec, and IO write

bytes/sec. The processor time means the percentage of time that the specific process has

individually reserved from the CPU [76]. Working set is a measurement for how much

the process requires physical memory from the system while the virtual bytes measure

how much virtual address space the process requires from the computer [77]. Virtual

bytes can be more than the actual physical memory is because it also includes the file

that may have been paged out, or data that is shared among other processes, like shared

DLLs [78]. IO read and write measures how much data in bytes the process is writing to

the disk. The measurement interval is set to 15 seconds and the performance

measurement recorded for 10 minutes.

 35

4.3 Configuration

4.3.1 SolarWinds SEM

As presented in the Chapter 3, SolarWinds SEM uses server-client architecture. In this

test case SolarWinds SEM virtual appliance was implemented to the virtual network and

agent installed on the monitored system. The agent connected to the SEM server. The

SEM server console is presented in the Figure 15. SolarWinds SEM server is delivered

as an OVA (Open Virtual Appliance) format and most of the hypervisors support

importing it directly.

Figure 15. SolarWinds SEM server console

The SolarWinds SEM default agent configuration did not have File Integrity Monitoring

(FIM) enabled, as shown in the Figure 16. The SEM configuration had to be enabled from

the SEM web console before it started to record file integrity monitoring. The tool also

has separate options for file and directory monitoring, and registry monitoring. The tool

allows directory, file, and registry black- and whitelisting. By default, the tool monitors

specific Windows paths and for example auto runs locations the Windows registry.

 36

Figure 16. Windows FIM File and Directory, and Registry are disabled by default

SolarWinds SEM agent is installed as a service and the service calls SWLEMAgent.exe

binary. The SWLEMAgent.exe binary launches Java process, which is the actual agent

software. These two processes are presented in the Figure 17. The Java process was set

to monitoring target in the PerfMon.

Figure 17. SWLEMAgent.exe launching Java

4.3.2 OSSEC

OSSEC uses the same architecture as SolarWinds SEM. OSSEC virtual appliance was

installed to the test network and then agent deployed to the test machine. As shown in the

Figure 18, the virtual appliance is a CentOS 7 server, which runs the OSSEC server

software. OSSEC is delivered as an OVA format and most of the hypervisors support

importing it directly.

 37

Figure 18. OSSEC appliance version

Before installing agents on the monitored system, the agent have to be added to the

OSSEC server. OSSEC server ships with a manage_clients tool, which can be used to

generate configuration for the agent. The tool requires name of the new agent, IP

address of the monitored system, and ID number for the new agent. After providing

these information to the system, agent key, which is used for authentication, can be

extracted from the OSSEC server console. This process is presented in the Figure 19.

 38

Figure 19. OSSEC agent configuration

OSSEC website has agents for supported operating systems, which can be downloaded

from there. After installing the agent on the target system, the agent needs to be

configured using OSSEC Agent Manager-software. The configuration requires IP

address of the OSSEC server and authentication key, which was previously extracted

from the OSSEC server agent configuration. After successfully providing the key, the

OSSEC Agent Manager confirms that the configuration was stored successfully, as

shown in the Figure 20.

 39

Figure 20. Agent installed on the target system

The OSSEC starts OSSEC HIDS [OssecSvc] service with SYSTEM privileges. The

service starts ossec-agent.exe process, which is used to monitor the server and report

findings back to the OSSEC server. The process information is presented in the Figure

21. The ossec-agent.exe process was set to monitoring target in the PerfMon.

Figure 21. OssecSvc running on the target system

After the agent is successfully configured, it connects back to the OSSEC server using

port 1514/UDP. The connection can be verified from the OSSEC server using internal

binary agent_control, as shown in the Figure 22.

 40

Figure 22. Verifying successful connection

By default, the OSSEC installation does not enable active response for the agent. Active

response is a feature in OSSEC, which allows defense actions [79]. These actions are

for example pre-configured scripts on the target system. The OSSEC documentation

gives an example of null routing all Windows connectivity when an event, that is set to

trigger an alert occurs.

The OSSEC project uses Kibana for visualization. The Kibana is an open frontend

application that uses Elastic Stack, or ELK. It can be used for data visualization and

doing searches for a large mass of data. [80] The OSSEC portal is presented in the

Figure 23.

Figure 23. OSSEC uses Kibana for visualization

The results presented in the Appendix A revealed that OSSEC did not require almost at

all CPU time on the monitored system. The low amount of CPU usage on OSSEC agent

suggests it did not run any checks during the test period. The OSSEC documentation

 41

suggests that the checks are executed every six hours by default. Taking a look to

OSSEC’s configuration files, the syscheck runs on agent startup and every 20 hours. Due

to long default syscheck interval. OSSEC was configured to run the syscheck every 60

seconds. The OSSEC default configuration monitors multiple locations on Windows file

system and registry. These locations include for example the default auto run keys. The

configuration is presented in the Appendix B.

For some reason, OSSEC syscheck kept getting disabled during the tests. After restarting

the service, the OSSEC agent logs were filled with errors. The errors are presented in the

Figure 24.

2021/12/06 00:24:39 ossec-agent: Starting syscheckd thread.

2021/12/06 00:24:39 ossec-agent(1756): ERROR: Duplicated

directory given: 'C:\Windows/regedit.exe'.

2021/12/06 00:24:39 ossec-agent(1756): ERROR: Duplicated

directory given: 'C:\Windows/system.ini'.

[-- log rows removed --]

2021/12/06 00:24:39 ossec-agent(1756): ERROR: Duplicated

directory given: 'HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

NT\CurrentVersion\Winlogon'.

2021/12/06 00:24:39 ossec-agent(1756): ERROR: Duplicated

directory given: 'HKEY_LOCAL_MACHINE\Software\Microsoft\Active

Setup\Installed Components'.

2021/12/06 00:24:39 ossec-syscheckd: WARN: Syscheck disabled.

Figure 24. OSSEC logs showing that Syscheck is disabled

Based on the error, the configured syscheck monitors are for some reason duplicated and

the check process stops working. This means that the tool is not capable to detect any

changes on the system. OSSEC GitHub repository has an open issue for this error, but

there is no developers’ comments or fix suggestions how to solve it [81]. As the tool is

not able to do reliable file integrity monitoring, the tests were not continued with the tool.

 42

4.3.3 Snare FIM

Snare FIM is delivered as an ISO (Optical disc image) image which means, it can be

installed on virtual machine, physical machine, or to the cloud. The ISO image does not

support VMWare easy installation which should be noticed during the installation. After

installation the appliance pauses to the login screen, as shown in the Figure 25.

Figure 25. Snare FIM server console

After installing the appliance, web console becomes available. The whole tool can be

configured through the web console. The web console has a dashboard view, which is

presented in the Figure 26.

 43

Figure 26. Snare dashboard

The Snare agent has to be downloaded from their webpage. After installing the Snare

agent to the test machine, it needed to be configured to connect back to the Snare server.

Snare server has Snare Agent Management (SAM) component running. It is good to

note that SAM in Windows system refers to Security Account Manager which contains

user account information of the system. After connecting the Snare Agent to the Snare

Server, it became visible in the Snare Agent Management, as shown in the Figure 27.

Figure 27. Snare Agent connected to Snare Agent Management

Snare does not have templates for file integrity monitoring (FIM) nor registry integrity

monitoring (RIM). The monitoring files and paths have to be configured manually

during the implementation. RIM and FIM monitoring works in PFIM manner. Both

were enabled with one hour periodic checks, as shown in the Figure 28.

 44

Figure 28. RIM enabled with hourly schedule

Similarly to SolarWinds, Snare creates service on the monitored machine. The service

executes SnareCore.exe, which is the agent software installed on the system. This

process was set as the performance monitoring target. The Snare service is presented in

the Figure 29.

Figure 29. Snare local service

 45

4.3.4 AppLocker

Figure 30. Local Group Policy settings for AppLocker

AppLocker is included in Windows Enterprise editions and does not require additional

software to be installed. AppLocker is configured through Group Policies (GPO). As the

target system is not domain joined, the local configuration for it is called Local Group

Policy (LGPO). The LGPO can be edited through Windows Local Group Policy Editor,

as presented in the Figure 30. AppLocker allows different execution rules for executables,

Windows installers, scripts, and packaged apps. In this test scenario, executable rules are

used. By default, AppLocker adds three executable rules which of two allow all users to

execute software from Program Files and Windows Folder while the third allows

BUILTIN\Administrators group to execute software from any location. The used rule set

is presented in the Figure 31.

 46

Figure 31. Enabled AppLocker rules.

After configuring the LGPO to allow needed software, the AppLocker needs to be

enabled. AppLocker can run either in Audit only –mode, where the execution is logged

to the Windows event logs, or in Enforce rules –mode, where non-allowed software

execution gets blocked.

The AppLocker will start on the target system when Application Identity –service is

started. The LGPO configuration does not automatically start the service, which means it

needs to be started manually on the first time. The Application Identity –service is

presented in the Figure 32.

Figure 32. Application Identity –service

The Application Identity –service uses svchost.exe for the monitoring. Svchost.exe is a

generic host process on Microsoft Windows systems. The purpose of the process is to run

internal processes. On the test system, the process id (PID) of the svchost.exe instance

that the Application Identity uses was 84 during the tests. As shown in the Figure 33,

multiple other Windows services use the same process. This means that the monitored

data of the AppLocker is not comparable to other measurements as Windows is running

multiple different tasks with the same process. Performance Monitor does not show by

 47

default the PID of the monitored process. To be able to identify which of the running,

PID was needed to identify correct svchost instance. PID can be enabled on Performance

Monitor by adding 32-bit DWORD registry entry with decimal value of 2 to

HKLM\SYSTEM\CurrentControlSet\Services\PerfProc\Performance. After adding the

change and restarting Performance Monitor, PID appeared to monitor data.

Figure 33. Services that use the same svchost.exe process than AppLocker

 48

4.4 Test results

The test results had lot of variation between each tool, as shown in the Table 2. The raw

test data is presented in the Appendix A. These results present the load the tool adds to

the idle system. First row of the Table 2 presents used Processor Time (%). The maximum

amount of Processor Time could theoretically be 100%. If a process used 100% off the

CPU time, then other processes could not function as the CPU would be too busy to

operate any other instructions than the ones coming from the tested process. The second

row presents amount of Virtual Bytes the software is using. As introduced in the Section

4.2, Virtual Bytes presents the whole amount of memory the process uses. Virtual Bytes

includes paged out files. The Working Set was introduced in the Section 4.2 as well.

Working Set presents the amount of memory the process uses from the actual physical

memory available. The highest amount of the available physical memory depends on the

system. In this testing scenario, the virtual machine had 4GB of RAM, which is the

maximum value of Working Set in our test scenario. Disc read and write presents the

amount of data the software is either writing or reading from the disk. For all the items in

the table, the highest number is the worst.

Average SolarWinds SEM Snare FIM Applocker¹

Processor time (%) 0,58 0,90 0,68

Virtual bytes (MB) 1785,99 91,38 2097368,24

Working set (MB) 191,92 25,84 33,74

Disk read (bytes / sec) 0 32945,47 472,56

Disk write (bytes / sec) 65,14 0 563,52

Table 2. Test results compared

¹ = Test data not comparable. The monitored process is shared among multiple

Windows services.

Based on the results from the Performance Monitor, Snare and SolarWinds require almost

the equal amount of CPU time. Snare FIM processor usage was the highest of the tested

tools, which could be problematic in a limited environment. However, the average of

Snare FIM CPU usage was under 1% of the CPU capability. AppLocker data is not

 49

comparable as the same svchost instance was used by other services as well. The average

percentage of CPU time on that svchost instance is however lower than in Snare FIM.

The Processor Time is presented in the Figure 34.

Figure 34. Processor time used

SolarWinds SEM used by far the most of memory, as shown in the Figure 35. Working

set of the SolarWinds was almost 200 MB, while Snare FIM used around 26 MB. The

AppLocker was not compared in memory usage as it used large amount of virtual bytes

and was not comparable to other tools. The amount of virtual bytes used by svchost

instance is likely explained by the number of services that use the process. The amount

of SolarWinds SEM is requiring memory might be a problem in a limited environment

system. The continuous need for 200 MB of memory is not a problem if there is 8 GB

of RAM but if the number is lower, like 2GB or 4GB, the system might start to perform

poorly while the SolarWinds SEM agent is running.

Solarwinds SEM Snare FIM Applocker¹

Processor time (%) 0,58 0,90 0,68

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

%

Processor time (%)

 50

Figure 35. Memory usage of each FIM tool

Disk usage on SolarWinds SEM and AppLocker was very limited. Snare FIM had disk

read operations clearly more than other tools. The difference between different tools is

visualized in Figure 36.

Figure 36. Disc operations

Based on the performance results, none of the tools use too much resources for the use

case and by that do not affect the system performance. The SolarWinds SEM use lot of

virtual bytes but as presented earlier this chapter, virtual bytes include the working set

Solarwinds SEM Snare FIM

Virtual bytes (MB) 1785,99 3,82

Working set (MB) 191,92 25,84

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

1800,00

2000,00

M
B

Memory usage

Solarwinds
SEM

Snare FIM Applocker¹

Disk read (bytes / sec) 0,00 32945,47 472,56

Disk write (bytes / sec) 65,14 0,00 563,52

0,00

5000,00

10000,00

15000,00

20000,00

25000,00

30000,00

35000,00

A
k

se
li

n
 o

ts
ik

k
o

Disc Operations

 51

and also other memory-mapped files, like shared DLLs. Based on the working set,

SolarWinds SEM is the most resources hungry application. CPU and disk I/O wise the

Snare FIM used the most resources. The CPU usage is not significantly more than the

other FIM tools use and all the tools can be considered using low CPU resources when

running on background.

Snare promises on their website that their agent uses less than 5% CPU and less than 20

MB memory [53]. This however was not the case in the testing as the Snare FIM Agent

used average of 25.84 MB of memory. CPU usage was lower than the maximum they

promised. SolarWinds does not provide information how much CPU and memory their

agent uses on the target system but they recommend that the system should have at least

512 MB of RAM. As the recommendation is relatively small, the tool can be considered

as low resource system friendly. SolarWinds however used almost 200 MB of memory

during the tests, which is relatively a lot considering the system was on idle and only

FIM and RIM rules were configured.

Of course, the amount of memory and CPU are related to the number of implemented

monitoring rules on all FIM tools. This also applies to AppLocker. If lot of different

rules are implemented to AppLocker, the tool will use more resource on the target

system.

 52

5 Blocking and detection capabilities

5.1 Testing method

The testing for malware detection and blocking capabilities is executed with malware

types that are presented in the Chapter 2 of this master’s thesis. The first executed

malware was Quasar RAT, which connects back to its command and control server in the

same network. The second malware was ransomware simulator Fransom. The third tested

malware was a PowerShell command that downloads malicious reverse shell script and

executes it in memory only.

For blocking and detection capabilities, tool configuration was set to monitor the paths

the malware would use. This way it was possible to detect if the tool had capability to

detect and block the malware.

5.1.1 Remote Access Trojan (RAT): Quasar

Figure 37. Quasar RAT listening port 4782/TCP

Quasar is an open-source Remote Access Trojan (RAT). The GitHub page describes the

software as a light-weight remote administration tool [82]. The tool has a C2 server

component that runs on a Windows system. As shown in the Figure 37, the C2 server was

 53

installed to the testing network, defined with IP address 172.16.42.250 and set to listen

port 4782/TCP, which is the default port of the Quasar RAT. After installing the C2 server

component, agent software was generated with the server and installed manually to the

test machine from an USB drive. The test environment topology is presented in the Figure

38.

Figure 38. Test environment topology for Quasar RAT

5.1.2 Ransomware simulator: Fransom

Figure 39. Ransomware simulator Fransom

 54

Fransom is an open-source ransomware simulator project by Fraktal. The GitHub

repository includes solution file (.sln) for the project, which can be then build using

Microsoft Visual Studio, as shown in the Figure 39. [34] After building the solution file,

executable file can be executed on Windows systems. The Fransom executable prints help

if no arguments are given to the software. The help shows available arguments, as shown

in the Figure 40. Ransomware simulator Fransom is deployed to the systems from an

USB drive. The deployment is presented more closely in the Section 5.2.2.

Figure 40. Compiling Fransom project on Visual Studio

 55

5.1.3 Fileless malware: Chimera

Figure 41. Chimera obfuscation tool on Kali Linux

To bypass Microsoft’s own security controls, the malware must be obfuscated. For

obfuscating the payload, open-source tool Chimera was used [83]. The tool obfuscates

any given PowerShell commands and makes them undetectable by common anti-virus

projects. For fileless malware testing, Kali Linux was installed to the test network. The

Kali Linux was used to generate the fileless malware payload and as a C2 server for the

fileless malware. Generation of the malicious payload is presented in the Figure 41. The

generated payload is staged PowerShell. The first layer downloads malicious script from

the C2 server and then executes it in the memory. The execution does not write any files

to the disk and all operations are executed in the memory. The malicious script opens

reverse shell connection to the C2 server using port 4444/TCP. The C2 server was set to

listen the port using nc (netcat). Execution of the malware is presented more closely in

the Section 5.2.3.

5.2 Test results

5.2.1 Quasar RAT

The malware was delivered to the system via USB flash drive. Immediately after

connecting the USB device to the testing host, Windows Defender detected the malware

and quarantined it, as shown in the Figure 42.

 56

Figure 42: Windows Defender detecting the malware

Figure 43: Windows Defender turned off through LGPO

To ensure that only the FIM products are tested, Windows Defender antivirus was

turned off for the testing. Real-time protection, cloud-based protection, and sample

submission was turned off from the settings. Windows Defender was also turned off

using LGPO, as shown in the Figure 43. After turning the Windows Defender off, the

malware as able to execute and connect back to the C2 server. The connection appears

in the C2 console as presented in the Figure 44.

 57

Figure 44. Test server connecting back to C2

To test how good the FIM product detects and defends against the threat, the same actions

were executed on the target system against all FIM products. First shell access was

opened and command whoami /all executed on the system. Then file explorer was opened

and new Quasar RAT executable was dropped to the current users AppData folder. After

dropping the executable, new auto run key was set so that the executable would be started

automatically during the next login.

5.2.1.1 SolarWinds SEM

SolarWinds SEM registry integrity monitor was configured to monitor auto run locations

at HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run and

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run. The monitor was set to

watch any writes or changes in the given registry paths. Deletes and reads were not

monitored. The SolarWinds SEM was also set to monitor C-drive for any changes on

binary or script files.

After the USB flash drive was connected to the system, SolarWinds SEM raised an event

to the monitoring console. The shell connection was not detected but when the Quasar

RAT executable was dropped to the user AppData folder, multiple events appeared to the

monitoring console. These events are presented in the Figure 45. The SolarWinds SEM

also detected creation of the auto run persistence and reported it to the monitoring

console. None of the actions were blocked even though the Windows Active Response

 58

with default configuration was enabled in the SolarWinds SEM node connections. The

lack of response actions is likely due the limited configuration applied to the installation.

Figure 45. SolarWinds detecting Quasar RAT file writes

5.2.1.2 Snare FIM

In this test scenario, Snare FIM was configured to monitor exe and txt files from C:\ drive.

By default, Snare does not do any integrity monitoring so configuring the monitored paths

was necessary. In ideal implementation all necessary file and directory paths would be

configured to ensure that no malicious files get installed without a notice. Alerts from the

FIM were set to critical priority to detect any malicious changes on the disk. As the Snare

FIM works in PFIM method, the schedule for scanning was set to ten minutes.

Snare RIM was also configured to monitor two auto run locations:

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run and

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run. The HKLM stores auto

runs for Local System while the HKCU stores auto runs for current user. After setting up

the monitoring, malware was launched from USB flash drive. The malware opened

connection to the C2 server and was manually operated from there as described in the

Section 5.2.1.1.

 59

Snare FIM managed to detect file creation for malicious file and also the auto run key

creation for the default user on the target system. The results are presented in the Figure

46 and Figure 47. However, monitoring did not detect the process creation, execution of

the whoami command nor execution of the original file from USB drive. This is likely

due the lack of configuration and could be fixed by adding monitoring rules for directories

and files. However, Snare FIM does not have capability to block malicious software.

Based on Snare website, the Snare FIM is for security monitoring and compliance, not

blocking malicious activities.

Figure 46: Snare FIM detecting file creation

Figure 47. Snare FIM detecting new auto run key

5.2.1.3 AppLocker

Before doing the Quasar RAT detection testing, AppLocker rules were generated from

the clean installation. This means that all the executables that were present on the system

during the rule generation, are allowed to run.

The USB flash drive was plugged into the machine, and the Quasar RAT was attempted

to be executed. AppLocker blocked the execution as the Quasar RAT executable is not

whitelisted executable or signed by whitelisted publisher. The AppLocker alert window

is presented in the Figure 48.

 60

Figure 48. AppLocker blocking the Quasar RAT

5.2.2 Fransom

Fransom was delivered to the system with a USB flash drive. The console executable was

executed as an administrator. Ransomware needs access to files that only administrator

can access, which is why ransomware attacks usually do not start before the attacker has

gained administrator level access to target networks. Fransom was executed with

userregkey and scheduled-task parameters, which create persistence on the system.

Parameter delete-eventlogs deletes event logs and parameter delete-shadow-copies

deletes Windows Volume Shadow Copies, which is Windows internal method for taking

backups. The last parameters enumerate-user-profile and encrypt-user-profile enumerate

files and directories under the current user and then encrypt them. The chosen parameters

try to emulate typical ransomware attack, where persistence is first made, then logs and

backups deleted, and lastly the system is encrypted. The chosen parameters are presented

in the Figure 49 and execution of Fransom is presented in the Figure 50.

E:\Fransom.exe --scheduled-task --userregkey --delete-eventlogs

--delete-shadow-copies --enumerate-shadow-copies --enumerate-

user-profile --encrypt-user-profile

Figure 49. Fransom was executed with multiple parameters

 61

Figure 50. Fransom actions executed on the test environment

5.2.2.1 SolarWinds SEM

When the Fransom was executed on the target system, SolarWinds SEM was able to

detect creation of the registry key persistence and Windows event log removal, as shown

in the Figure 51. Lack of visibility to other activities like shadow copy deletion and

scheduled task creation was likely due the lack of configuration. The RIM was configured

to monitor only specific auto run locations and the FIM was configured to monitor only

specific file types on the disk.

Figure 51. SolarWinds detecting cleared logs and persistence

5.2.2.2 Snare FIM

In this use case, Snare was not able to detect anything else than the created registry key

persistence. Registry key detection is presented in the Figure 52. This likely due the lack

 62

of configuration. As presented in the Section 5.2.1.3, Snare was set to monitor C-drive

for .exe and .txt changes. Based on the Snare FIM monitoring, Fransom did not change

any .exe or .txt files on the file system. The lack of visibility is likely a configuration

problem and the tool should be configured properly to monitor desired locations on the

disk and the registry. Once again, the tool does not have ability to block ransomware but

it should be able to detect it.

Figure 52. Snare detecting created auto run event

5.2.2.3 AppLocker

After the USB flash drive was connected to the target system, command shell was opened

and Fransom.exe executed from the flash drive. AppLocker blocked the execution as the

Fransom.exe was not whitelisted. Output of Fransom execution attempt is presented in

the Figure 53.

Figure 53. Fransom blocked by AppLocker

5.2.3 Chimera

As presented in the Section 5.1.3, penetration testing tool Chimera was used to create

PowerShell payloads for fileless malware testing. In this scenario, malicious command is

executed using command line. The command executes WMIC, which creates new hidden

PowerShell process that downloads payload from the C2 server. The downloaded payload

is not stored to the disk and the PowerShell process executes it straight after download in

memory. The executed command is presented in the Figure 54.

wmic process call create "powershell -exec bypass -windowstyle

hidden -enc

 63

KABOAGUAdwAtAE8AYgBqAGUAYwB0ACAATgBlAHQALgBXAGUAYgBDAGwAaQBlAG4A

dAApAC4AUAByAG8AeAB5AC4AQwByAGUAZABlAG4AdABpAGEAbABzAD0AWwBOAGUA

dAAuAEMAcgBlAGQAZQBuAHQAaQBhAGwAQwBhAGMAaABlAF0AOgA6AEQAZQBmAGEA

dQBsAHQATgBlAHQAdwBvAHIAawBDAHIAZQBkAGUAbgB0AGkAYQBsAHMAOwBpAHcA

cgAoACcAaAB0AHQAcAA6AC8ALwAxADcAMgAuADEANgAuADQAMgAuADIANQA0AC8A

YwBoAGkAbQBlAHIAYQAuAHAAcwAxACcAKQB8AGkAZQB4AA=="

Figure 54. The executed malicious command that downloads and executes the payload

After getting reverse shell to the target system, whoami command was executed using

the reverse shell. Then hacked.txt file was created on the desktop of the default user to

generate file integrity changes on the system. The command executed through the

reverse shell are presented in the Figure 55.

Figure 55. Text file hacked.txt written on the desktop of the default user

5.2.3.1 SolarWinds SEM

SolarWinds SEM was not able to detect anything during the fileless malware execution.

The FIM was not configured to monitor text files which likely caused the lack of visibility

to file creation. The malware did not write anything to registry, which is the reason that

the RIM did not monitor detect any registry changes on the target system.

 64

5.2.3.2 Snare FIM

On the fileless malware testing, Snare FIM did not detect anything. FIM and RIM

configuration was exactly the same as in the Section 5.2.2.3 testing but for some unknown

reason, creation of the hacked.txt text file was not detected on the system. The lack of

visibility was likely due the lack of configuration.

5.2.3.3 AppLocker

The payload was executed using non-elevated shell on the machine. After executing the

payload, reverse shell was opened and access gained to the system. AppLocker did not

block the execution nor the command executed through the shell.

5.3 Summary

Based on the detection and blocking tests, none of the tools were able to block or detect

all the threats. The test results are presented in the Table 3. AppLocker stood out in its

capability in blocking and detecting threats. Both commercial FIM tools, SolarWinds

SEM and Snare FIM, were able to detect the changes they were configured to monitor.

None of the tools were able to detect or block fileless malware. This means that the file

integrity monitoring tools and whitelisting tools are incapable to detect malware that does

not write anything to disk or Windows registry with used configuration. The tested tools

had lot of configuration capabilities, which were not researched and configured in this

thesis. These tools might have capabilities to detect and even block fileless malware for

example by preventing users from running and executing PowerShell scripts.

 SOLARWINDS

SEM

SNARE FIM APPLOCKER

RAT Detected Detected Blocked

RANSOMWARE Detected Detected Blocked

FILELESS N/A N/A N/A

Table 3. Detection and block matrix

None of the tools worked perfectly without additional configuration. The best detection

and blocking result comes after configuring the tool to match the monitored system and

 65

applications it is running. In these tests, lack of configuration leaded to lesser visibility

and for example most of the ransomware activities were missed.

Based on these test results, AppLocker would be the most suitable choice for the use of

the use case described in the Section 1.2. The tool stood out in the malware blocking

tests and it was the only tool tested, which is available as a standalone product. The tool

however requires configuration so that it will not block updates on the target software or

operating system. This configuration is not included in this master’s thesis.

In this thesis, security of limited environment system was attempted to be improved

through ensuring the file system integrity. Literature review and empiric testing resulted

one candidate for this usage.

 66

6 Conclusion

The literature review identified multiple options for ensuring file system integrity. The

list of the methods and tools are presented in the Section 3. In this thesis the research

focused on the file integrity monitoring and application whitelisting approaches. File

integrity monitoring implementations SolarWinds and Snare were tested in the lab

environment along with the application whitelisting tool AppLocker. Based on the

research results, the Windows built-in implementation of application whitelisting was the

most efficient way to protect the system from getting infected by malware. However, the

protection must be well maintained and configured to ensure it allows necessary binaries

on the system to run and to be updated.

The tested implementations did not significantly affect the system performance. All of

the tools ran on relatively low load. However the commercial tools used some computer

resources more than the built-in feature. The load of the tools may of course rise when

the tools are configured and for example new monitored files and directories are added to

the tools. Based on the testing results, the affection of the integrity tool was low on the

target system.

None of the chosen methods was able to block or detect fileless malware. When the

fileless payload was executed, it did not store any configuration to file system or

Windows registry. As the malware payload was only in memory, the selected tools did

not have visibility to it and were not able to detect or block it.

6.1 Discussion

Based on the literature review, endpoint protection tools are moving from standalone

installations to server-agent infrastructure. For limited environment systems, like hospital

instruments, server-agent infrastructure might be a hard option to implement. Hospitals

often have limited budget on information security and purchasing an EDR, an EPP, or an

FIM solution and installing on limited environment systems might be out of the scope.

The hospital instruments might not also have internet connectivity, which excludes

possibility to use cloud based solutions. The information security cannot also be only on

 67

instrument manufacturer’s responsibility. Price of the medical instrument would go up if

security solutions that require expensive licenses would be built-in to the systems.

Options for ensuring file system integrity varied. Academic work presented tools that

were only described in theoretical level but no real life implementations were made.

Ideally this master’s thesis researched for a tool that would have protected the system

from malicious intensions by protecting the system integrity. The same tool would have

detected and reported any changes on the file system integrity. This kind of tool was not

identified through the academic review but AppLocker was really close to the original

goal.

6.2 Future research

The testing also indicated that all of the integrity tools require a lot of configuration before

they are useful. This configuration was not part of the work and all tests were executed

using either default or generated configuration. It would be interesting to see how well

limited environment systems can be protected using file integrity monitoring tools while

they are properly configured.

In this thesis, Windows memory integrity was appropriately omitted from the testing.

Methods and implementations that were researched were not able to protect the system

against fileless malware. It would be interesting to see if there are methods and

implementations that can protect standalone system from getting affected by in-memory

malware.

 68

References

[1] Aslan, Ö. A., & Samet, R. (2020). A comprehensive review on malware detection

approaches. IEEE Access, 8, 6249-6271.

[2] IoT Analytics. (2020). Internet of Things (IoT) and non-IoT active device connections

worldwide from 2010 to 2025 (in billions) [Graph]. In Statista. Retrieved 22nd of May,

2021, from https://www.statista.com/statistics/1101442/iot-number-of-connected-

devices-worldwide/

[3] Zscaler. (2021). IoT in the Enterprise: Empty Office Edition: What happens when

employees abandon their smart devices at work? Retrieved 18th of September, 2021, from

https://www.zscaler.com/resources/industry-reports/threatlabz-iot-in-the-enterprise.pdf

[4] Hassan, W. U., Bates, A., & Marino, D. (2020, May). Tactical provenance analysis

for endpoint detection and response systems. In 2020 IEEE Symposium on Security and

Privacy (SP) (pp. 1172-1189). IEEE.

[5] Greenberg, A. (2021). A Hacker Tried to Poison a Florida City's Water Supply,

Officials Say. Wired magazine. Retrieved 23rd of May from

https://www.wired.com/story/oldsmar-florida-water-utility-hack/

[6] Tancio, B. (2019). Hunting for Ghosts in Fileless Attacks. Reading room, SANS

Institute. Retrieved 23rd of May, 2021, from https://www.sans.org/reading-

room/whitepapers/malicious/hunting-ghosts-fileless-attacks-38960

[7] Pareek, H., Romana, S., & Eswari, P. R. L. (2012). Application whitelisting:

approaches and challenges. International Journal of Computer Science, Engineering and

Information Technology (IJCSEIT), 2(5), 13-18.

[8] Liggett, T. (2018). Evolution of endpoint detection and response platforms (Doctoral

dissertation, Utica College).

https://www.zscaler.com/resources/industry-reports/threatlabz-iot-in-the-enterprise.pdf
https://www.wired.com/story/oldsmar-florida-water-utility-hack/
https://www.sans.org/reading-room/whitepapers/malicious/hunting-ghosts-fileless-attacks-38960
https://www.sans.org/reading-room/whitepapers/malicious/hunting-ghosts-fileless-attacks-38960

 69

[9] Gene H. Kim and Eugene H. Spafford. 1994. The design and implementation of

tripwire: a file system integrity checker. In Proceedings of the 2nd ACM Conference on

Computer and communications security (CCS '94). Association for Computing

Machinery, New York, NY, USA, 18–29. DOI:https://doi.org/10.1145/191177.191183

[10] Dorsemaine, B., Gaulier, J., Wary, J., Kehir, N., Urien, P. (2015) "Internet of Things:

A Definition & Taxonomy," 2015 9th International Conference on Next Generation

Mobile Applications, Services and Technologies, 2015, pp. 72-77, doi:

10.1109/NGMAST.2015.71.

[11] McKosky, R. A., & Shiva, S. G. (1990). A file integrity checking system to detect

and recover from program modification attacks in multi-user computer systems.

Computers & Security, 9(5), 431-446.

[12] Peddoju, S. K., Upadhyay, H., & Lagos, L. (2020). File integrity monitoring tools:

Issues, challenges, and solutions. Concurrency and Computation: Practice and

Experience, 32(22), e5825.

[13] Wu, Y., & Yap, R. (2011). Towards a Binary Integrity System for Windows. In

Proceedings of the 6th ACM Symposium on Information, Computer and

Communications Security (pp. 503–507). Association for Computing Machinery.

[14] Dorsemaine, B., Gaulier, J., Wary, J., Kehir, N., Urien, P. (2015) "Internet of Things:

A Definition & Taxonomy," 2015 9th International Conference on Next Generation

Mobile Applications, Services and Technologies, 2015, pp. 72-77, doi:

10.1109/NGMAST.2015.71.

[15] AV-TEST. (2020). Operating systems most affected by malware as of 1st quarter

2020 [Graph]. In Statista. Retrieved 24th of May, 2021, from

https://www.statista.com/statistics/680943/malware-os-distribution/

https://www.statista.com/statistics/680943/malware-os-distribution/

 70

[16] Madden, B. (2004). The 4GB Windows Memory Limit: What does it really mean?

Retrieved 10th of November, 2021, from https://www.brianmadden.com/opinion/The-

4GB-Windows-Memory-Limit-What-does-it-really-mean/

[17] Al-Hamami, A. H., & Al-Saadoon, G. M. W. (2015). Security Concepts,

Developments, and Future Trends. In Handbook of Research on Threat Detection and

Countermeasures in Network Security (pp. 1-16). IGI Global.

[18] Abdelghani, T. (2019). Implementation of Defense in Depth Strategy to Secure

Industrial Control System in Critical Infrastructures. American Journal of Artificial

Intelligence, 3(2), 17-22.

[19] Stouffer, K., Pillitteri, V., Lightman, S., Abrams, M., & Hahn, A. (2015). Guide to

Industrial Control Systems (ICS) Security Supervisory Control and Data Acquisition

(SCADA) systems Distributed Control Systems (DCS) and other control system

configurations such as Programmable Logic Controllers (PLC) Special Publication 800-

82. Gaithersburg, MD: US Dept. of Commerce, National Institute of Standards and

Technology.

[20] ResearchGate. (2010). Improving Enterprise Security through Cybersecurity

architecture Views - Scientific Figure on ResearchGate. Retrieived 14th of December,

2021, from https://www.researchgate.net/figure/The-Fan-illustrating-technology-and-

process-defense-in-depth-architectural-pictorial_fig1_278676540

[21] Khan, M., Siddiqui, S., Ferens, K. (2018). A Cognitive and Concurrent Cyber Kill

Chain Model. Computer and Network Security Essentials, edited by Kevin Daimi,

Springer International Publishing, 2018, pp. 585–602. Springer Link, doi:10.1007/978-3-

319-58424-9_34.

[22] Kuraku, S., & Kalla, D. (2020). Emotet Malware—A Banking Credentials Stealer.

Iosr J. Comput. Eng, 22, 31-41.

https://www.brianmadden.com/opinion/The-4GB-Windows-Memory-Limit-What-does-it-really-mean/
https://www.brianmadden.com/opinion/The-4GB-Windows-Memory-Limit-What-does-it-really-mean/
https://www.researchgate.net/figure/The-Fan-illustrating-technology-and-process-defense-in-depth-architectural-pictorial_fig1_278676540
https://www.researchgate.net/figure/The-Fan-illustrating-technology-and-process-defense-in-depth-architectural-pictorial_fig1_278676540

 71

[23] Malwarebytes Labs. (2016). Info stealers. Retrieved 18th of October from

https://blog.malwarebytes.com/threats/info-stealers/

[24] Kaspersky. (2021). What is a Trojan horse and what damage can it do? Retrieved

18th of October from https://www.kaspersky.com/resource-center/threats/trojans

[25] Poston, H. (2019). Top five remote access Trojans. Retrieved 18th of October from

https://resources.infosecinstitute.com/topic/top-5-remote-access-trojans/

[26] Grimmick, R. (2021). What is C2? Command and Control Infrastructure

Explained. Retrieved 18th of October from https://www.varonis.com/blog/what-is-c2/

[27] F-Secure Labs. (2019). C3 - Custom Command and Control. Retrieved on 18th of

October from https://labs.f-secure.com/tools/c3/

[28] O'Gorman, G., & McDonald, G. (2012). Ransomware: A growing menace.

Arizona, AZ, USA: Symantec Corporation.

[29] Kok, S. H., Abdullah, A., & Jhanjhi, N. Z. (2020). Early detection of crypto-

ransomware using pre-encryption detection algorithm. Journal of King Saud University-

Computer and Information Sciences.

[30] Šulc, V. (2021) CURRENT RANSOMWARE TRENDS. International Days of

Science, 31.

[31] Stiawan, D., Daely, S. M., Heryanto, A., Afifah, N., Idris, M. Y., & Budiarto, R.

(2021). Ransomware Detection Based On Opcode Behavior Using K-Nearest Neighbors

Algorithm. Information Technology and Control, 50(3), 495-506.

[32] Hampton, N., Baig, Z., & Zeadally, S. (2018). Ransomware behavioural analysis

on windows platforms. Journal of information security and applications, 40, 44-51.

[33] Wyke, J., & Ajjan, A. (2015). The current state of ransomware. SOPHOS. A

SophosLabs Technical Paper.

[34] Fraktal. (2021). Fransom - Fraktal's Ransomware Emulator. Retrieved 11th of

October from https://github.com/fraktalcyber/Fransom

https://blog.malwarebytes.com/threats/info-stealers/
https://www.kaspersky.com/resource-center/threats/trojans
https://resources.infosecinstitute.com/topic/top-5-remote-access-trojans/
https://www.varonis.com/blog/what-is-c2/
https://labs.f-secure.com/tools/c3/
https://github.com/fraktalcyber/Fransom

 72

[35] Kumar, S. (2020). An emerging threat Fileless malware: a survey and research

challenges. Cybersecurity, 3(1), 1-12.

[36] Mason, J., Small, S., Monrose, F., & MacManus, G. (2009, November). English

shellcode. In Proceedings of the 16th ACM conference on Computer and

communications security (pp. 524-533).

[37] Fewer, S. (2008). Reflective DLL injection.

[38] Ongun, T., Stokes, J. W., Or, J. B., Tian, K., Tajaddodianfar, F., Neil, J. & Platt, J.

C. (2021, October). Living-Off-The-Land Command Detection Using Active Learning.

In 24th International Symposium on Research in Attacks, Intrusions and Defenses (pp.

442-455).

[39] LOLBAS. (2021). Living off the Land Binaries and Scripts (and also Libraries)

project. Retrieved 10th of October from https://lolbas-project.github.io/

[40] Jin, H., Xiang, G., Zou, D., Zhao, F., Li, M., & Yu, C. (2010). A guest-transparent

file integrity monitoring method in virtualization environment. Computers &

Mathematics with Applications, 60(2), 256-266.

[41] Li, Y. G., Chung, Y. C., Hwang, K., & Li, Y. (2020). Virtual Wall: Filtering Rootkit

Attacks To Protect Linux Kernel Functions. IEEE Transactions on Computers.

[42] Kaczmarek, J., & Wrobel, M. (2008, May). Modern approaches to file system

integrity checking. In 2008 1st International Conference on Information Technology (pp.

1-4). IEEE.

[43] Tripwire. (2018). Open Source Tripwire. Retrieved 18th of September 2021, from

https://github.com/Tripwire/tripwire-open-source

[44] Racine, J. (2000). The Cygwin tools: a GNU toolkit for Windows.

https://lolbas-project.github.io/
https://github.com/Tripwire/tripwire-open-source

 73

[45] Meltzer, D. (2019). Security Reference Architecture. A Practical Guide to

Implementing Foundational Controls. Retrieved 15th of August, 2021, from

https://www.tripwire.com/-

/media/tripwiredotcom/files/book/tripwire_prescriptive_guide__security_reference_arc

hitecture_0619.pdf

[46] SolarWinds. (2019). Datasheet: Security Event Manager (formerly Log & Event

Manager). Retrieved on 16th of August, 2021, from

https://static.carahsoft.com/concrete/files/7115/7315/1922/sem_datasheet.pdf

[47] SolarWinds. (2021). Security Event Manager Overview. Retrieved on 16th of

August, 2021, from

https://documentation.solarwinds.com/en/success_center/sem/content/admin_guide/1.0-

understanding_sem/sem-component-overview.htm

[48] Qualys Inc. (2020). File Integrity Monitoring: Getting Started Guide, Version 3.1.

Retrieved on 21st of August, 2021, from https://www.qualys.com/docs/qualys-fim-

getting-started-guide.pdf

[49] Trustwave. (2018). Trustwave Service Description, Trustwave Endpoint Protection

Suite. Retrieved on 8th of December, 2021, from

https://www.trustwave.com/media/17381/trustwave_non-managed_endpoint-protection-

suite.pdf

[50] Shinn, S., Parriot, D., & Lisliak, D. (2021). Host Intrusion Detection for Everyone,

OSSEC website. Retrieved on 21st of June, 2021, from https://www.ossec.net/about/

[51] Bray, R., Cid, D., & Hay, A. (2008). OSSEC host-based intrusion detection guide.

Syngress.

[52] Shinn, S., Parriot, D., & Lisliak, D. (2021). OSSEC Architecture. Retrieved on 22nd

of June, 2021, from https://www.ossec.net/docs/docs/manual/ossec-architecture.html

https://www.tripwire.com/-/media/tripwiredotcom/files/book/tripwire_prescriptive_guide__security_reference_architecture_0619.pdf
https://www.tripwire.com/-/media/tripwiredotcom/files/book/tripwire_prescriptive_guide__security_reference_architecture_0619.pdf
https://www.tripwire.com/-/media/tripwiredotcom/files/book/tripwire_prescriptive_guide__security_reference_architecture_0619.pdf
https://static.carahsoft.com/concrete/files/7115/7315/1922/sem_datasheet.pdf
https://documentation.solarwinds.com/en/success_center/sem/content/sem_documentation.htm
https://documentation.solarwinds.com/en/success_center/sem/content/admin_guide/1.0-understanding_sem/sem-component-overview.htm
https://documentation.solarwinds.com/en/success_center/sem/content/admin_guide/1.0-understanding_sem/sem-component-overview.htm
https://www.qualys.com/docs/qualys-fim-getting-started-guide.pdf
https://www.qualys.com/docs/qualys-fim-getting-started-guide.pdf
https://www.trustwave.com/media/17381/trustwave_non-managed_endpoint-protection-suite.pdf
https://www.trustwave.com/media/17381/trustwave_non-managed_endpoint-protection-suite.pdf
https://www.ossec.net/about/
https://www.ossec.net/docs/docs/manual/ossec-architecture.html

 74

[53] Snare Solutions. (2020). How Snare helps with FIM, FAM, RIM and RAM.

Retrieved on 19th of September 2021, from https://www.snaresolutions.com/wp-

content/uploads/2020/03/FIM-with-Snare-1.pdf

[54] Sze, W., & Sekar, R. (2015). Provenance-Based Integrity Protection for Windows.

In Proceedings of the 31st Annual Computer Security Applications Conference (pp. 211–

220). Association for Computing Machinery.

[55] Costan, V., Devadas, S. (2016). Intel SGX Explained.

[56] Metula, E. (2010). Managed code rootkits: hooking into runtime environments.

Elsevier.

[57] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., ... & Fetzer,

C. (2016). {SCONE}: Secure linux containers with intel {SGX}. In 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16) (pp. 689-

703).

[58] Microsoft. (2021). Device protection in Windows Security, Security, Windows 10.

Retrieved on 23rd of May, 2021, from https://support.microsoft.com/en-

us/windows/device-protection-in-windows-security-afa11526-de57-b1c5-599f-

3a4c6a61c5e2

[59] Microsoft. (2021). Hypervisor-Protected Code Integrity (HVCI). Retrieved on 19th

of August, 2021, from https://docs.microsoft.com/en-us/windows-

hardware/drivers/bringup/device-guard-and-credential-guard

[60] Microsoft Defender ATP Team. (2017). Hardening the system and maintaining

integrity with Windows Defender System Guard. Retrieved on 24th of May, 2021, from

https://www.microsoft.com/security/blog/2017/10/23/hardening-the-system-and-

maintaining-integrity-with-windows-defender-system-guard/

https://www.snaresolutions.com/wp-content/uploads/2020/03/FIM-with-Snare-1.pdf
https://www.snaresolutions.com/wp-content/uploads/2020/03/FIM-with-Snare-1.pdf
https://support.microsoft.com/en-us/windows/device-protection-in-windows-security-afa11526-de57-b1c5-599f-3a4c6a61c5e2
https://support.microsoft.com/en-us/windows/device-protection-in-windows-security-afa11526-de57-b1c5-599f-3a4c6a61c5e2
https://support.microsoft.com/en-us/windows/device-protection-in-windows-security-afa11526-de57-b1c5-599f-3a4c6a61c5e2
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/device-guard-and-credential-guard
https://www.microsoft.com/security/blog/2017/10/23/hardening-the-system-and-maintaining-integrity-with-windows-defender-system-guard/
https://www.microsoft.com/security/blog/2017/10/23/hardening-the-system-and-maintaining-integrity-with-windows-defender-system-guard/

 75

[61] Hofmann, A., Hoffman, O., Water, B., Witchel, E. (2011). Cloaking Malware with

the Trusted Platform Module. In SEC 2011 Proceedings of the 20th USENIX conference

on Security.

[62] Romana, S., Jha, A., Reddy, J., Pareek, H., & Eswari, L. (2015). Practical

Application Whitelisting, Journal of Information Assurance & Security, Vol. 10, p. 53-

60.

[63] Sedgewick, A., Souppaya, M. P., Scarfone, K., & Feldman, L. (2015). Stopping

Malware and Unauthorized Software through Application Whitelisting.

[64] Pareek, H., Romana, S., & Eswari, P. R. L. (2012). Application whitelisting:

approaches and challenges. International Journal of Computer Science, Engineering and

Information Technology (IJCSEIT), 2(5), 13-18.

[65] Ruwase, O., Lam, M. (2004). A Practical Dynamic Buffer Overflow Detector. In

NDSS (Vol. 2004, pp. 159-169).

[66] Microsoft. (2017). AppLocker. Retrieved on 19th of September, 2021, from

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-

defender-application-control/applocker/applocker-overview

[67] Microsoft. (2017). Security considerations for AppLocker. Retrieved on 19th of

September, 2021, from https://docs.microsoft.com/en-us/windows/security/threat-

protection/windows-defender-application-control/applocker/security-considerations-for-

applocker

[68] Microsoft (2021). Security, IoT Device Features, Windows 10 IoT Enterprise,

Microsoft Docs. Retrieved on 24th of May, 2021, from https://docs.microsoft.com/en-

us/windows/iot/iot-enterprise/os-features/security

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/security-considerations-for-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/security-considerations-for-applocker
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/security-considerations-for-applocker
https://docs.microsoft.com/en-us/windows/iot/iot-enterprise/os-features/security
https://docs.microsoft.com/en-us/windows/iot/iot-enterprise/os-features/security

 76

[69] Lamos, R., Meadows, P., Shahan, R. (2021). Security best practices for Internet of

Things (IoT), Microsoft Docs. Retrieved on 24th of May, 2021, from

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-best-practices

[70] Center for Internet Security. (2021). About us. Retrieved on 19th of September, 2021,

from https://www.cisecurity.org/about-us/

[71] Center for Internet Security. (2021). CIS Microsoft Windows 10 Enterprise (Release

21H1 or older) Benchmark. Retrieved on 19th of September, 2021, from

https://learn.cisecurity.org/l/799323/2021-07-16/6xdmk

[72] Center for Internet Security. (2021). CIS Controls Version 8. Retrieved on 19th of

September, 2021, from https://learn.cisecurity.org/l/799323/2021-05-18/47qgs

[73] Microsoft Defender ATP Team. (2017). Windows Defender Exploit Guard: Reduce

the attack surface against next-generation malware. Retrieved on 19th of September, 2021,

from https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-

guard-reduce-the-attack-surface-against-next-generation-malware/

[74] Microsoft Defender ATP Team. (2017). Hardening the system and maintaining

integrity with Windows Defender System Guard. Retrieved on 19th of September, 2021,

from https://www.microsoft.com/security/blog/2017/10/23/hardening-the-system-and-

maintaining-integrity-with-windows-defender-system-guard/

[75] Marcho, C. (2019). Windows Performance Monitor Overview. Retrieved 11th of

November, 2021, from https://techcommunity.microsoft.com/t5/ask-the-performance-

team/windows-performance-monitor-overview/ba-p/375481

[76] Tarra, H. (2012). Understanding Processor (% Processor Time) and Process

(%Processor Time). Retrieved on 14th of Nov from

https://social.technet.microsoft.com/wiki/contents/articles/12984.understanding-

processor-processor-time-and-process-processor-time.aspx

https://docs.microsoft.com/en-us/azure/iot-fundamentals/iot-security-best-practices
https://www.cisecurity.org/about-us/
https://learn.cisecurity.org/l/799323/2021-07-16/6xdmk
https://learn.cisecurity.org/l/799323/2021-05-18/47qgs
https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://www.microsoft.com/security/blog/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://www.microsoft.com/security/blog/2017/10/23/hardening-the-system-and-maintaining-integrity-with-windows-defender-system-guard/
https://www.microsoft.com/security/blog/2017/10/23/hardening-the-system-and-maintaining-integrity-with-windows-defender-system-guard/
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://techcommunity.microsoft.com/t5/ask-the-performance-team/windows-performance-monitor-overview/ba-p/375481
https://social.technet.microsoft.com/wiki/contents/articles/12984.understanding-processor-processor-time-and-process-processor-time.aspx
https://social.technet.microsoft.com/wiki/contents/articles/12984.understanding-processor-processor-time-and-process-processor-time.aspx

 77

[77] Microsoft. (2021). Process Working Set. Retrieved on 14th of Nov from

https://docs.microsoft.com/en-us/windows/win32/procthread/process-working-set

[78] Marshal, D. (2020). Using Performance Monitor to Find a User-Mode Memory

Leak. Retrieved on 14th of Nov from https://docs.microsoft.com/en-us/windows-

hardware/drivers/debugger/using-performance-monitor-to-find-a-user-mode-memory-

leak

[79] OSSEC. (2021). Windows: Active Response Configuration. Retrieved on 19th of

November 2021 from https://www.ossec.net/docs/docs/manual/ar/ar-windows.html

[80] Elastic. (2021). What is Kibana? Retrieved on 19th of November 2021 from

https://www.elastic.co/what-is/kibana

[81] OSSEC. (2019). Issue 1719: syscheckd: WARN: Syscheck disabled. Retrieved on

8th of December 2021 from https://github.com/ossec/ossec-hids/issues/1719

[82] Quasar. (2021). Free, Open-Source Remote Administration Tool for Windows,

Quasar. Retrieved on 27th of November 2021 from https://github.com/quasar/Quasar

[83] Chimera. (2020). PowerShell obfuscation script. Retrieved on 29th of November

2021 from https://github.com/tokyoneon/Chimera

https://docs.microsoft.com/en-us/windows/win32/procthread/process-working-set
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/using-performance-monitor-to-find-a-user-mode-memory-leak
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/using-performance-monitor-to-find-a-user-mode-memory-leak
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/using-performance-monitor-to-find-a-user-mode-memory-leak
https://www.ossec.net/docs/docs/manual/ar/ar-windows.html
https://www.elastic.co/what-is/kibana
https://github.com/ossec/ossec-hids/issues/1719
https://github.com/quasar/Quasar
https://github.com/tokyoneon/Chimera

 78

Appendix A: Performance test results

Time

\\TESTING\Proc
ess(ossec-
agent)\%
Processor Time

\\TESTING\Proc
ess(SnareCore)
\% Processor
Time

\\TESTING\Process
(javaw)\%
Processor Time

\\TESTING\Process(
svchost_84)\%
Processor Time

0 0 0,833053 0,208536424 0,624911

15 0 0,520663 0,729076854 0,416576

30 0 1,353998 0,520775826 0,938321

45 0 1,145515 0,31246656 0

60
0.10419804486
589759 0,833826 0,520771556 0,624877

75 0 1,041634 0,312453778 0,937436

90 0 0,104148 0,417048138 0,416591

105 0 0,312446 0,833252491 0

120
0.10405916106
618596 0,312452 1,45817968 0,520777

135 0 0,625561 0,520759576 0,417033

150 0 0,41657 0,208293201 0,520746

165 0 0,416592 0,416597114 0

180 0 0,624933 0,833259084 0,416595

195 0 0,833187 0,937349549 8,644646

210 0 0,729027 0,625615297 2,082815

225 0 0,625544 0,416623049 0

240 0 0,416558 0,104158276 0,833236

255 0 0,624886 0,208308443 0,728993

270 0 1,458031 0,416610646 0,520763

285 0 1,457965 0,312434916 0

300 0 0,938007 0,833204031 0,728996

315 0 0,312466 0,937278371 0,417052

330 0 0,624871 0,72989102 0,624876

345 0 0,520736 1,041581132 0

360 0 0,312776 1,457508957 0,416587

375 0 0,729005 0,312445114 0,520737

390 0 1,353676 0,4166303 0,416603

405 0 1,041314 0,521291705 0

420 0 1,459627 0,312462313 0,833177

435 0 1,14555 0,312466579 0,937134

450 0 0,624922 0,312462227 0,937257

465 0 0,520761 0,208312738 0

480 0 1,770416 0,416627073 0,624699

495 0 1,459566 0,937393112 0,312369

510 0 0,833126 0,729074035 0,521292

525 0 1,562161 1,041558442 0

 79

540 0 1,041554 0,729861524 0,416591

555
0.10424112540
760447 0,104149 0,208307614 0,729066

570
0.10407906193
251726 1,041507 1,041553866 0,520749

585
0.10421779383
196475 2,814951 0,624890503 0,104153

600
0.10413728537
297154 1,873809 0,312464798 0,312443

Average 0 0,896867 0,579264291 0,683368

Time

\\TESTING\Proc
ess(ossec-
agent)\Virtual
Bytes

\\TESTING\Proc
ess(SnareCore)
\Virtual Bytes

\\TESTING\Process
(javaw)\Virtual
Bytes

\\TESTING\Process(
svchost_84)\Virtual
Bytes

0 34562048 96899072 1872744448 2,2E+12

15 34562048 96899072 1872744448 2,2E+12

30 34562048 96899072 1872744448 2,2E+12

45 34562048 96899072 1872744448 2,2E+12

60 34562048 96899072 1872744448 2,2E+12

75 34562048 96899072 1872744448 2,2E+12

90 34562048 95842304 1872744448 2,2E+12

105 34562048 95842304 1872744448 2,2E+12

120 34562048 95842304 1872744448 2,2E+12

135 34562048 95842304 1872744448 2,2E+12

150 34562048 94785536 1872744448 2,2E+12

165 34562048 94785536 1872744448 2,2E+12

180 34562048 94785536 1872744448 2,2E+12

195 34562048 94785536 1872744448 2,2E+12

210 34562048 94785536 1872744448 2,2E+12

225 34562048 94785536 1872744448 2,2E+12

240 34562048 94785536 1872744448 2,2E+12

255 34562048 94785536 1872744448 2,2E+12

270 34562048 94785536 1872744448 2,2E+12

285 34562048 94785536 1872744448 2,2E+12

300 34562048 94785536 1872744448 2,2E+12

315 34562048 96899072 1872744448 2,2E+12

330 34562048 96899072 1872744448 2,2E+12

345 34562048 96899072 1872744448 2,2E+12

360 34562048 96899072 1872744448 2,2E+12

375 34562048 96899072 1872744448 2,2E+12

390 34562048 96899072 1872744448 2,2E+12

405 34562048 96899072 1872744448 2,2E+12

420 34562048 94785536 1872744448 2,2E+12

 80

435 34562048 94785536 1872744448 2,2E+12

450 34562048 94785536 1872744448 2,2E+12

465 34562048 94785536 1872744448 2,2E+12

480 34562048 94785536 1872744448 2,2E+12

495 34562048 94785536 1872744448 2,2E+12

510 34562048 94785536 1872744448 2,2E+12

525 34562048 94785536 1872744448 2,2E+12

540 34562048 96899072 1872744448 2,2E+12

555 34562048 96899072 1872744448 2,2E+12

570 34562048 96899072 1872744448 2,2E+12

585 34562048 96899072 1872744448 2,2E+12

600 34562048 96899072 1872744448 2,2E+12

Average 34562048 95816529 1872744448 2,2E+12

Time

\\TESTING\Proc
ess(ossec-
agent)\Working
Set

\\TESTING\Proc
ess(SnareCore)
\Working Set

\\TESTING\Process
(javaw)\Working
Set

\\TESTING\Process(
svchost_84)\Workin
g Set

0 6635520 27058176 200720384 36446208

15 6635520 27058176 200720384 36397056

30 6635520 27058176 200720384 36421632

45 6635520 27058176 200720384 36274176

60 6635520 27058176 200720384 34607104

75 6635520 27058176 200720384 34578432

90 6635520 27041792 200720384 34603008

105 6639616 27041792 200720384 34455552

120 6639616 27041792 200728576 34594816

135 6639616 27041792 200728576 34611200

150 6639616 27025408 200728576 34557952

165 6639616 27025408 201007104 34410496

180 6639616 27025408 201007104 34574336

195 6639616 27025408 201007104 38031360

210 6639616 27025408 201007104 38215680

225 6639616 27025408 201007104 38006784

240 6639616 27025408 201011200 38109184

255 6639616 27025408 201011200 37912576

270 6639616 27025408 201011200 37818368

285 6639616 27025408 201048064 37216256

300 6639616 27127808 201048064 37289984

315 6348800 27160576 201048064 34877440

330 6348800 27160576 201048064 34873344

345 6348800 27160576 201048064 34709504

360 6348800 27160576 201142272 34795520

375 6348800 27160576 201142272 34578432

 81

390 6348800 27160576 201142272 34598912

405 6348800 27160576 201142272 34484224

420 6430720 27127808 201142272 34611200

435 6430720 27127808 201142272 34586624

450 6430720 27127808 201170944 34590720

465 6430720 27127808 201199616 34439168

480 6430720 27127808 201281536 34578432

495 6430720 27127808 201334784 34615296

510 6430720 27127808 201404416 34668544

525 6434816 27127808 202153984 34553856

540 6434816 27160576 202444800 34586624

555 6434816 27160576 202563584 34582528

570 6434816 27160576 202739712 34553856

585 6434816 27160576 203059200 34082816

600 6434816 27160576 203456512 34222080

Average 6523629,268 27093841 201241974,6 35383446

Time

\\TESTING\Process(
ossec-agent)\IO
Read Bytes/sec

\\TESTING\Proce
ss(SnareCore)\IO
Read Bytes/sec

\\TESTING\Process(j
avaw)\IO Read
Bytes/sec

\\TESTING\P
rocess(svch
ost_84)\IO
Read
Bytes/sec

0 0 32975,42693 0 26,12981

15 0 32989,49535 0 26,12769

30 0 32995,6414 0 26,15619

45 0 32990,95946 0 0

60 0 33020,15302 0 26,12841

75 0 32998,22369 0 26,13134

90 0 32994,28219 0 26,12858

105 0 32994,03778 0 0

120 0 32995,1552 0 26,1305

135 0 33029,44321 0 26,1563

150 0 32992,45153 0 26,1289

165 0 32994,13514 0 0

180 0 32996,26607 0 26,12895

195 0 32994,38022 0 10401,04

210 0 32993,70462 0 8216,05

225 0 33028,71905 0 0

240 0 32991,24687 0 26,13036

255 0 32994,18151 0 26,12705

270 0 32992,41311 0 26,12991

285 0 32991,94356 0 0

300 0 33017,80873 0 26,1272

 82

315 0 32997,04512 0 26,1575

330 0 32992,90586 0 26,12799

345 0 32993,90398 0 0

360 0 33029,36621 0 26,12837

375 0 32991,05814 0 26,12847

390 0 32989,83306 0 26,12931

405 0 32988,37765 0 0

420 19996.38894223225 33029,41666 0 26,12808

435 0 32991,82833 0 26,12246

450 0 32996,1104 0 26,12761

465 0 32995,32345 0 0

480 0 32990,73431 0 26,12059

495 0 33029,29187 0 26,12263

510 0 32992,53365 0 26,15629

525 0 32992,0727 0 0

540 0 32996,34358 0 26,12857

555 0 31894,7782 0 26,1297

570 0 32994,78691 0 26,12914

585 0 33028,74162 0 0

600 0 31879,60791 0 26,12857

Average 0 32945,46654 0 472,5589

Time

\\TESTING\Process(osse
c-agent)\IO Write
Bytes/sec

\\TESTING
\Process(S
nareCore)\
IO Write
Bytes/sec

\\TESTING\Pr
ocess(javaw)\
IO Write
Bytes/sec

\\TESTING\Process(sv
chost_84)\IO Write
Bytes/sec

0 0 0 232,4958638 41,32777

15 0 0 0 41,32441

30 0 0 11,53202811 41,36949

45 0 0 0 0

60 0 0 232,2403252 7139,722

75 0 0 0 41,33019

90 0 0 11,54398109 41,32581

105 0.93391977286806083 0 0 0

120 0 0 232,3069051 41,32885

135 0 0 0 41,36966

150 0.4666954810250924 0 11,53119748 41,32633

165 0 0 0 0

180 0 0 232,3104496 41,3264

195 0 0 0 8325,097

210 0 0 11,54467875 41,32286

225 0 0 0 6105,916

240 0 0 232,2477808 41,32863

 83

255 0 0 0 41,3234

270 0 0 11,46516045 41,32792

285 0 0 0 0

300 0 0 232,2971207 41,32363

315 0 0 0 41,37156

330 0 0 11,54478154 41,32488

345 0 0 0 0

360 0 0 232,1988011 41,32549

375 0 0 0 41,32563

390 0 0 11,53191652 41,32697

405 0 0 0 0

420 8.137832580400076 0 232,30427 41,32503

435 0 0 0 41,31613

450 0 0 11,46537428 41,32429

465 0 0 0 0

480 0 0 232,24399 41,31318

495 0 0 0 41,31641

510 0 0 11,53173409 376,4637

525 0 0 0 0

540 0 0 232,5482243 41,32579

555 0 0 0 41,32759

570 0 0 11,5320427 41,3267

585 0 0 0 0

600 0 0 232,3068957 41,32581

Average 0 0 65,13959808 563,5227

 84

Appendix B: OSSEC configuration

 <!-- OSSEC-HIDS Win32 Agent Configuration.

 - This file is composed of 3 main sections:

 - - Client config - Settings to connect to the OSSEC server

 - - Localfile - Files/Event logs to monitor

 - - syscheck - System file/Registry entries to monitor

 -->

<!-- READ ME FIRST. If you are configuring OSSEC-HIDS for the

first time,

 - try to use the "Manage_Agent" tool. Go to Control Panel-

>OSSEC Agent

 - to execute it.

 -

 - First, add a server-ip entry with the real IP of your

server.

 - Second, and optionally, change the settings of the files

you want

 - to monitor. Look at our Manual and FAQ for more

information.

 - Third, start the Agent and enjoy.

 -

 - Example of server-ip:

 - <client> <server-ip>1.2.3.4</server-ip> </client>

 -->

<ossec_config>

 <!-- One entry for each file/Event log to monitor. -->

 <localfile>

 <location>Application</location>

 85

 <log_format>eventlog</log_format>

 </localfile>

 <localfile>

 <location>Security</location>

 <log_format>eventlog</log_format>

 </localfile>

 <localfile>

 <location>System</location>

 <log_format>eventlog</log_format>

 </localfile>

 <localfile>

 <location>Windows PowerShell</location>

 <log_format>eventlog</log_format>

 </localfile>

 <!-- Rootcheck - Policy monitor config -->

 <rootcheck>

 <windows_audit>./shared/win_audit_rcl.txt</windows_audit>

<windows_apps>./shared/win_applications_rcl.txt</windows_apps>

<windows_malware>./shared/win_malware_rcl.txt</windows_malware>

 </rootcheck>

 <!-- Syscheck - Integrity Checking config. -->

 <syscheck>

 <!-- Default frequency, every 20 hours. It doesn't need to

be higher

 86

 - on most systems and one a day should be enough.

 -->

 <frequency>60</frequency>

 <!-- By default it is disabled. In the Install you must

choose

 - to enable it.

 -->

 <disabled>no</disabled>

 <!-- Default files to be monitored - system32 only. -->

 <directories check_all="yes">%WINDIR%/win.ini</directories>

 <directories

check_all="yes">%WINDIR%/system.ini</directories>

 <directories check_all="yes">C:\autoexec.bat</directories>

 <directories check_all="yes">C:\config.sys</directories>

 <directories check_all="yes">C:\boot.ini</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/at.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/attrib.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/cacls.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/cmd.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/drivers/etc</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/eventcreate.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/ftp.exe</directories>

 87

 <directories

check_all="yes">%WINDIR%/SysNative/lsass.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/net.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/net1.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/netsh.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/reg.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/regedt32.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/regsvr32.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/runas.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/sc.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/schtasks.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/sethc.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/subst.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/wbem/WMIC.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/WindowsPowerShell\v1.0\powers

hell.exe</directories>

 <directories

check_all="yes">%WINDIR%/SysNative/winrm.vbs</directories>

 88

 <directories

check_all="yes">%WINDIR%/System32/CONFIG.NT</directories>

 <directories

check_all="yes">%WINDIR%/System32/AUTOEXEC.NT</directories>

 <directories

check_all="yes">%WINDIR%/System32/at.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/attrib.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/cacls.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/debug.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/drwatson.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/drwtsn32.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/edlin.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/eventcreate.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/eventtriggers.exe</directories

>

 <directories

check_all="yes">%WINDIR%/System32/ftp.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/net.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/net1.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/netsh.exe</directories>

 89

 <directories

check_all="yes">%WINDIR%/System32/rcp.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/reg.exe</directories>

 <directories

check_all="yes">%WINDIR%/regedit.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/regedt32.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/regsvr32.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/rexec.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/rsh.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/runas.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/sc.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/subst.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/telnet.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/tftp.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/tlntsvr.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/drivers/etc</directories>

 <directories

check_all="yes">%WINDIR%/System32/wbem/WMIC.exe</directories>

 90

 <directories

check_all="yes">%WINDIR%/System32/WindowsPowerShell\v1.0\powersh

ell.exe</directories>

 <directories

check_all="yes">%WINDIR%/System32/winrm.vbs</directories>

 <directories check_all="yes"

realtime="yes">%PROGRAMDATA%/Microsoft/Windows/Start

Menu/Programs/Startup</directories>

 <ignore

type="sregex">.log$|.htm$|.jpg$|.png$|.chm$|.pnf$|.evtx$</ignore

>

 <!-- Windows registry entries to monitor. -->

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\batfile</w

indows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\cmdfile</w

indows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\comfile</w

indows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\exefile</w

indows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\piffile</w

indows_registry>

 91

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\AllFilesys

temObjects</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Directory<

/windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Folder</wi

ndows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Classes\Protocols<

/windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Policies</windows_

registry>

<windows_registry>HKEY_LOCAL_MACHINE\Security</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Internet

Explorer</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Se

rvices</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Co

ntrol\Session Manager\KnownDLLs</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\System\CurrentControlSet\Co

ntrol\SecurePipeServers\winreg</windows_registry>

 92

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\

CurrentVersion\Run</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\

CurrentVersion\RunOnce</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\

CurrentVersion\RunOnceEx</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\

CurrentVersion\URL</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\

CurrentVersion\Policies</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

NT\CurrentVersion\Windows</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Windows

NT\CurrentVersion\Winlogon</windows_registry>

<windows_registry>HKEY_LOCAL_MACHINE\Software\Microsoft\Active

Setup\Installed Components</windows_registry>

 <!-- Windows registry entries to ignore. -->

<registry_ignore>HKEY_LOCAL_MACHINE\Security\Policy\Secrets</reg

istry_ignore>

 93

<registry_ignore>HKEY_LOCAL_MACHINE\Security\SAM\Domains\Account

\Users</registry_ignore>

 <registry_ignore type="sregex">\Enum$</registry_ignore>

 </syscheck>

 <active-response>

 <disabled>yes</disabled>

 </active-response>

</ossec_config>

<!-- END of Default Configuration. -->

 <ossec_config>

 <client>

 <server-ip>172.16.42.200</server-ip>

 </client>

 </ossec_config>

