
This is a self-archived – parallel published version of an original article. This 

version may differ from the original in pagination and typographic details. 

When using please cite the original. 

This is a post-peer-review, pre-copyedit version of an article published in 

Advances in Intelligent Systems and Computing 

Rauti S. (2021) Interface Diversification as a Software Security Mechanism – Benefits and 

Challenges. In: Rocha Á., Ferrás C., López-López P.C., Guarda T. (eds) Information 

Technology and Systems. ICITS 2021. Advances in Intelligent Systems and Computing, vol 

1330. Springer, Cham. https://doi.org/10.1007/978-3-030-68285-9_45 

The final authenticated version is available online at 

https://doi.org/10.1007/978-3-030-68285-9_45 

 

 

https://doi.org/10.1007/978-3-030-68285-9_45


Interface diversification as a software security
mechanism – benefits and challenges

Sampsa Rauti1

University of Turku, Finland
sjprau@utu.fi

Abstract. Interface diversification is a proactive approach to combat
malware. By uniquely diversifying critical interfaces on each computer,
the malicious executable code can be rendered useless. This paper dis-
cusses the advantages and challenges of interface diversification as a soft-
ware security mechanism in order the gauge its feasibility and also gives
some ideas for practical implementations. An analysis of strengths and
drawbacks related to this security scheme will hopefully facilitate its
adoption in practical systems.

Keywords: Diversification, obfuscation, interfaces, software security

1 Introduction

The malware authors rely on the known interfaces in operating systems, libraries
and languages. By exploiting the fact that these interfaces are similar in millions
of computers, they can launch massive large-scale attacks. The main idea of
interface diversification is to make interfaces used on each machine unique. After
diversification has been applied, the adversary does not know the ”language”
used in the system anymore. Any malicious program is considered foreign code
and it will malfunction in a diversified system, because it does not know how to
use the secret, diversified interfaces.

The approach is particularly useful against automated large scale attacks and
self-propagating malware. Malware cannot make use of the computer’s services
and is rendered useless. Interface diversification is a viable countermeasure when
malicious instructions are injected into an existing process (injection attacks) but
it also works when a piece of malware tries operate from an independent process
that well-known interfaces of the system.

The contributions of this paper are as follows. Based on our practical ex-
periences and literature on the topic, we discuss the benefits and challenges
pertaining to interface diversification. In this sense, this paper can be seen as a
review in which the key properties, advantages and drawbacks of the new proac-
tive software security approach are highlighted in order to gauge its feasibility.
Moreover, this work gives guidance and ideas for practical implementations of
interface diversification schemes in different modern application areas. There-
fore, the paper aims to discuss the most important characteristics of software
diversification on a general level without any fixed execution environment.



2 Sampsa Rauti

The rest of the paper is organized as follows. In Section 2, we first present
the general theoretical scheme used in interface diversification. The fundamental
basic properties of the approach are then discussed in Section 3. Sections 4, 5 and
6 then move on to describe performance factors, implementation issues and the
most important considerations related to deployment and usability of interface
diversification. Section 7 concludes the paper.

2 Interface diversification

Internal interface diversification aims to reduce the amount of knowledge an ad-
versary possesses about a particular execution environment [12]. In other words,
diversification modifies applications’ and operating systems’ internal interfaces
in order to make them difficult to predict for malware authors. Interface di-
versification often takes advantage of simple code obfuscation techniques like
renaming, but more complex obfuscation techniques can also be used.

The term interface should be interpreted broadly here. In this context, the
term does not only refer to traditional interfaces provided by software modules
and libraries. For example, command sets of different languages [5] and memory
addresses [14] should also been seen as diversifiable interfaces in order to prevent
malicious programs from exploiting them. For our purposes, an interface is any
collection of entry points that can be utilized by malware to abuse the critical
resources of a computer.

A practical example of interface diversification is diversifying a shell language
such as Bash in the Linux operating system. This diversification process follows
the general idea illustrated in Figure 1. We use a secret diversification key to
rename all tokens in the shell command language. This change naturally has
to be performed both for the interpreter (execution environment) and for the
scripts in the system (executable code). By using the secret unique key, the
modified interpreter can execute diversified scripts. Now the trusted scripts are
compatible with the system but malicious scripts or script fragments are not.
Script execution can be halted when erroneous commands are issued by malicious
code. Note that a unique key can (and usually should) be used for each separate
script or program.

In a similar fashion, we can diversify the system call numbers of an operating
system [6]. System calls are a mechanism that provides programs with an access
to computer’s essential resources through operating system’s kernel [22]. For in-
stance, in Linux we can replace a few hundred original system call numbers with
new ones [17]. Secret diversification is then propagated to the trusted binaries
in the system: the system call numbers have to be accordingly modified in all
trusted libraries and programs that make use of system calls. Other examples of
interface diversification include diversifying instructions in a machine language
command set, altering keywords in the JavaScript language or renaming the SQL
commands.



Interface diversification as a software security mechanism 3

Fig. 1. The general idea of internal interface diversification.

3 Basic properties

This section presents some typical characteristics of interface diversification.
Most of these properties can also be seen as advantages. When applying di-
versification, the malicious code does not have to be known beforehand. Also,
diversification does not exclude other security measures but works in combina-
tion with them. Diversification can also be utilized in various application areas
and fares well against a multitude of attacks.

Proactiveness. Without a doubt, one of the greatest properties of interface
diversification is that it is a proactive countermeasure. The exact threat that
is being defended against does not have to be known beforehand like e.g. in
fingerprint-based malware detection approaches. This is because diversification
does not aim to detect the malicious program. Instead, malware is allowed into
the system but is not able to consume any resources or use services.

More and more malware is continuously being churned out. According to
AVTest [4], hundreds of thousands of new pieces of malware are released into
the wild every day. It is therefore hard for traditional malware prevention ap-
proaches to keep up with the current development. Novel proactive approaches
are needed. This still does not mean the traditional defence mechanisms are use-
less. They can be used together with interface diversification and other proactive
countermeasures. This brings us to the next desirable property of diversification:



4 Sampsa Rauti

orthogonality.

Orthogonality. In many cases, interface diversification can be used in combi-
nation with other security measures. For example, if we want to first diversify
the executable code and then encrypt it (for example, in order to safely store it
when it is not being executed), this is perfectly possible. There is also nothing
preventing antivirus programs from functioning in a diversified system, as long
as the antivirus program itself is compatible with the diversified system. An
antivirus program could still check downloaded programs or updates when they
arrive into the system – and in some scenarios, it could even cooperate with the
diversification engine.

Another example could be integrating an anomaly detection system with a
diversification scheme. This is very possible by employing “fake original” inter-
faces [16]; for instance, when we diversify the mapping of system call numbers,
we can still leave the old original system call interface there as a bait. With
this dual interface approach, we can detect and log all the processes that invoke
the original system calls – this behaviour is always suspicious in the schemes in
which the whole system should be completely diversified and the trusted pro-
grams only use the diversified interfaces!

Wide applicability. As we already saw in Section 2, interface diversification
can be applied at several software layers and in multiple different execution
environments. It can therefore be seen as a global scheme that covers all the
important software layers and key interfaces of a computer system (see also
[15]). What makes interface diversification unique as a security mechanism is the
fact that it is easily applicable in so many different application areas. Interface
diversification may not always be as perfect and effective as some environment
specific security measures, but the idea can readily be applied almost anywhere.

Another issue that has to do with wide applicability of interface diversifica-
tion is its capability to prevent or mitigate a broad range of different attacks. In
many contexts, interface diversification (or instruction set randomization) has
been advocated as a security measure against injection attacks specifically [5].
However, we believe its application area is even wider in this sense as well: it is
a good method not only against injection attacks but also against the cases in
which a malicious binary executable has somehow been slipped into the system.
Of course, this is not to say that interface diversification is a silver bullet that
works against any exploit. For example, many software design flaws and logic
bugs are beyond the help of diversification.

Additional security. Interface diversification makes many insecure systems
more secure. For example, in the pieces of software for Internet of Things de-
vices, security and privacy have not yet received the attention they truly deserve
[3]. These devices also often do not receive regular security updates. To relieve
this problem, interface diversification can patch up the security of insecure em-



Interface diversification as a software security mechanism 5

bedded systems at least to some extent.

Local and distributed diversification. Depending on the execution environ-
ment which the diversification is being applied to, diversification can be either
local or distributed. For instance, when we modify the system call numbers, this
only changes things on one computer. On the other hand, when we diversify the
language interface of JavaScript on some web page, the client machines have
to be able to interpret this new language. One way is to share the diversifica-
tion key to the client in the HTTP header [2]. However, the adversary might
be able to learn the key in a simple scheme like this. Such distributed and pub-
lic diversification schemes are therefore quite challenging. Note that diversifying
the language interface of SQL, although often distributed, is not public in the
same sense, because the client programs that require the knowledge about the
diversified language are usually known beforehand. Therefore, not all distributed
schemes are equally challenging.

4 Performance

Performance is an important factor in any system. Together with security and
resilience, it is also one of the most important quality attributes pursued in di-
versification schemes. The performance losses incurred as a result of interface
diversification are quite modest in most cases [11, 18], but performance depends
on many design decisions made when outlining a diversification scheme. We will
delve into these issues in this section.

Runtime performance. Usually, interface diversification does not have sig-
nificant effects on runtime performance. For example, simply renaming library
functions or changing the mapping of system call numbers has no effect on exe-
cution time whatsoever [17]. Then again, if we want a more flexible scheme where
the system call numbers can be different for separate processes, the diversified
system calls have to be decoded at runtime, which leads to somewhat degraded
performance [13].

An important implication of modest performance loss is good energy ef-
ficiency. In the era of Internet of Things devices, tablet computers and smart-
phones, and given the importance of cloud computing today, this is an important
consideration in any diversification scheme [9]. Running antivirus programs on
energy efficient devices and taking up a huge proportion of available processor
cycles and energy for this is often not an option. On energy efficient devices,
interface diversification is therefore a viable choice for a security scheme.

Time taken to diversify. The time loss caused by diversification can also oc-
cur before runtime, if the diversification takes place before the program’s loading
and execution phases. Static diversification that does not change at runtime falls
into this category. The only waiting time is when the binaries or the program
code are being diversified, so there is no additional delay at runtime. Still, if the



6 Sampsa Rauti

whole system is often re-diversified, time spent to diversify it becomes important,
even if the diversification does not happen at runtime. For example, diversifica-
tion performed on each system start-up would cause an additional delay.

Dynamic diversification. One important idea related to diversification is that
it does not need to be static but the diversification of a program can continuously
change [7, 19]. This improves security, but degrades performance and possibly
even makes the whole system unavailable for some time.

While a complete system probably cannot be re-diversified continuously, it
might be good to run the diversification process regularly. To beef up security
and retain good performance, some parts of the system can have quicker diversi-
fication cycles than others; for example certain critical files and libraries can be
re-diversified more often. The frequency of re-diversification also depends on the
inconvenience caused to the users of the system. However, as the cloud-based
environments become more popular, changing to a differently diversified copy of
the same system should be easy by utilizing several virtual machines. Uniquely
diversified copies of the same system could be readily available.

5 Other implementation issues

Along with performance, there are other important key considerations when de-
signing a diversification framework. These include the question of key storage
model and placement of the diversification engine.

Key management and the diversification engine. A diversification tool and
a secret key are essential parts of any diversification scheme, but where should
they be stored? The simplest option is to have the diversification engine running
as a local process (probably in the kernel space so that the user space processes
cannot disrupt it) and also store the key locally (e.g. using the in-kernel key
management utilities available in Linux). If the whole system is diversified, this
should be relatively safe, since malware cannot get access to the key storage
easily.

An app store on a dedicated server is likely to provide even more security,
as the keys and the diversification engine would not be needed locally at all and
could not be compromised that easily. Note that diversification keys cannot be
deduced from diversified interfaces; the key is not a part of the diversified pro-
gram code or scripts. That being said, regular re-diversification is still a good
idea. In general, the app store based approach seems like an enticing idea, espe-
cially for closed ecosystems (such as Apple’s ecosystem and app store).

Algorithms and token space. What kind of function or algorithm should be
used for diversification? There are several choices in the literature. The XOR
function has been utilized in many schemes because of its simplicity and effec-
tiveness [5]. Again, this is one trade-off point between performance and security.



Interface diversification as a software security mechanism 7

Other simple and popular diversification functions are appending something
to the end of original tokens [15] and using simple hash functions to create diver-
sified tokens. Of course, sometimes the keyword space is fixed (like in the case
of 32-bit system call numbers in Linux). In many cases, the token length can be
changed, but excessively long diversified tokens result to the loss of disk space
which can be a real issue in embedded devices. Somewhat more complex diver-
sification functions that depend on the location and order of the (in addition to
the original token itself) are recommended, as we shall see next.

Granularity of diversification. An issue strongly related with the diversifica-
tion function is the granularity of diversification. In other words, do we use the
same diversification key for the whole system (e.g. for all the applications and
script files) or do we provide a key specific to each application? The latter in-
creases security of the scheme, but leads to a larger performance loss and causes
issues with shared libraries.

Inside one file (or application), we can still continue diversifying parts of the
code with different keys. For example, the line number or previous tokens could
affect the diversification of a specific token in the code. For example, the token
SELECT that is a first token in an SQL query might be diversified differently
as the exact same token occurring later in the same query [20]. Obviously, finer
granularity leads to a more complex diversification process. However, it also
makes it more challenging for the adversary to inject his or her own malicious
code fragments into the diversified code.

The extent of diversification. The target of diversification does not always
need to be a complete system. Instead, we can only diversify some of the pro-
grams. Proxy-based diversification schemes (such as [13]) allow some applica-
tions to continue functioning without being diversified. We have usually advo-
cated diversification of the whole system because of better security provided by
this scheme [17]. After all, the programs outside of diversification can proba-
bly somehow be compromised and an adversary may be able to circumvent a
diversification proxy. However, an advantage of proxy-based scheme is that the
programs that are allowed to function normally without diversification suffer no
performance penalties.

A completely different question related to the extent of diversification is what
parts of an interface or an instruction set should be diversified. For example,
leaving some less important keywords of an interpreted script language (such as
Bash) undiversified might provide better readability of scripts while still securing
the language by partial diversification. Usually, though, diversifying the complete
set of commands is the best bet when we require decent security.

6 Usability and deployment issues

While diversification is an effective and promising technique to counter malware,
it still comes with several challenges related to usability and deployment. These



8 Sampsa Rauti

issues include enforcing transparency to users and developers, handling shared
libraries and managing updates received by the system.

Transparency to users. A fundamental goal in any diversification scheme is
that uniquely diversified copies of the same program should still behave in an
identical way after diversification [8, 10]. Only some modest performance loss is
acceptable. Other than that, the user should not notice anything out of ordinary
when using a diversified program.

However, this is not the reality in all practical schemes. From time to time,
the diversified interfaces pose some challenges for users. If a user wants to write
a shell script in a diversified system, we would probably have to provide the user
with an interface that allows writing scripts in their undiversified original form
so that he or she could easily accomplish this task. The problem is that this user
interface could also become a vulnerable spot targeted by malware. Most users,
however, do not need to fiddle with internal interfaces that are targets of di-
versification. Also, the configurations of many systems (such as some embedded
systems with limited set of applications and functionality) are quite stable and
rarely need this kind of changes. Therefore, the applicability of diversification
also strongly depends on the needs of the user and how the system is used.

Transparency to developers. Ideally, diversification does not affect the soft-
ware development process. This is often the case; we have shown previously that
the vast majority of binary executables [17] and interpretable scripts [15] are
quite easy to diversify automatically without human intervention after the code
has been written. The developer usually does not need to be concerned with
diversification.

However, there are some cases that may require the developer to step in. For
example, when a PHP script dynamically generates an SQL query at runtime,
it is quite hard to statically diversify the query in the source code with an auto-
matic tool. In these cases, the programmer can perform the diversification with
the help of a tool that diversifies the required tokens for him or her. This makes
the adoption of diversification easier and more pleasant. Dynamically created
Bash scripts in Linux constitute a similar problem. In this case, though, we can
argue that this kind of programming practice (executables creating shell scripts
dynamically) should be avoided anyway and the programs could be rewritten
not to use dynamically generated scripts.

Shared libraries. When each (dynamically linked) executable or shell script
has its own unique diversification key, shared libraries become a problem. One
solution is to create new versions of these libraries for each executable (time and
space is lost but better security is gained). This solution is probably better than
e.g. using undiversified libraries. Libraries can be diversified for each program or
script before or during execution. In any case, diversification of shared libraries
only has to be performed once (for each re-diversification cycle).



Interface diversification as a software security mechanism 9

Updates. Software updates are a challenge for diversified systems. Each ar-
riving patch has to be accordingly diversified in order to be compatible with the
respective software and if the whole program is updated, it has to be compatible
with the interfaces it depends on. Therefore, the same update issued by a soft-
ware vendor does not readily fit the diversified systems, but has to be diversified
either on an app store server or on the user’s machine, depending on where the
diversification engine (and the secret key used for diversification) is located. Of
course, an arrival of a large update could be a good opportunity to re-diversify
the whole system.

7 Conclusions

We have covered several considerations that developers and users of any inter-
face diversification scheme have to take into account. As a malware prevention
approach, interface diversification poses some challenges, but still shows a lot
of promise because of several desirable properties such as proactiveness and low
performance penalties. Diversifying internal interfaces of the system is an espe-
cially fitting protection mechanism for securing growing number of Internet of
Things devices, which often have poor security and require security mechanisms
that are not resource intensive (e.g. in terms of computational power).

The future work in the area involves implementing and experimenting with
practical diversification schemes. More work is also needed to solve challenges of
interface diversification. For instance, improving transparency to developers and
solutions handle the updates are important topics. Finally, diversification has
lots of potential when used in combination with other security measures such
as anomaly detection systems [1] and machine learning [21]. These possibilities
should be further explored and tested with proof-of-concept implementations.

We believe diversification should be seen as a global scheme covering all
important layers of the system. This way, its effectiveness as a countermeasure
against malware can be maximized. At the same time, orthogonal use with other
security measures is still needed. After all, the adversary’s imagination can al-
ways surpass our expectations: they may exploit implementation details that
nobody has thought to diversify.

References

1. Ahde, H., Rauti, S., Leppanen, V.: A survey on the use of data points in ids
research. In: International Conference on Soft Computing and Pattern Recognition,
Springer (2018) 329–337

2. Athanasopoulos, E., Krithinakis, A., Markatos, E.P.: An architecture for enforcing
javascript randomization in web2.0 applications. In: International Conference on
Information Security, Springer (2010) 203–209

3. Atlam, H.F., Alenezi, A., Alassafi, M.O., Alshdadi, A.A., Wills, G.B.: Security,
cybercrime and digital forensics for iot. In: Principles of Internet of Things (IoT)
Ecosystem: Insight Paradigm. Springer (2020) 551–577



10 Sampsa Rauti

4. AVTest: Malware statistics. https://www.av-test.org/en/statistics/malware/ Ac-
cessed: 2020-13-09.

5. Boyd, S.W., Kc, G.S., Locasto, M.E., Keromytis, A.D., Prevelakis, V.: On the
general applicability of instruction-set randomization. IEEE Transactions on De-
pendable and Secure Computing 7(3) (2008) 255–270

6. Chew, M., Song, D.: Mitigating buffer overflows by operating system randomiza-
tion. Technical Report CMU-CS-02-197, Carnegie Mellon University, Pittsburgh,
USA (2002)

7. Collberg, C., Martin, S., Myers, J., Nagra, J.: Distributed application tamper
detection via continuous software updates. In: Proceedings of the 28th Annual
Computer Security Applications Conference. (2012) 319–328

8. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions (1997)

9. Hosseinzadeh, S., Rauti, S., Hyrynsalmi, S., Leppänen, V.: Security in the internet
of things through obfuscation and diversification. In: 2015 International Conference
on Computing, Communication and Security (ICCCS), IEEE (2015) 1–5

10. Hosseinzadeh, S., Rauti, S., Laurén, S., Mäkelä, J.M., Holvitie, J., Hyrynsalmi,
S., Leppänen, V.: Diversification and obfuscation techniques for software security:
A systematic literature review. Information and Software Technology 104 (2018)
72–93

11. Larsen, P., Brunthaler, S., Franz, M.: Security through diversity: Are we there
yet? IEEE Security & Privacy 12(2) (2013) 28–35

12. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: Sok: Automated software
diversity. In: 2014 IEEE Symposium on Security and Privacy, IEEE (2014) 276–
291

13. Liang, Z., Liang, B., Li, L.: A system call randomization based method for coun-
tering code injection attacks. In: International Conference on Networks Security,
Wireless Communications and Trusted Computing, NSWCTC. (2009) 584–587

14. Marco-Gisbert, H., Ripoll Ripoll, I.: Address space layout randomization next
generation. Applied Sciences 9(14) (2019) 2928

15. Portokalidis, G., Keromytis, A.D.: Global isr: Toward a comprehensive defense
against unauthorized code execution. In: Moving target defense. Springer (2011)
49–76

16. Rauti, S.: Towards cyber attribution by deception. In: International Conference
on Hybrid Intelligent Systems, Springer (2019) 419–428

17. Rauti, S., Laurén, S., Hosseinzadeh, S., Mäkelä, J.M., Hyrynsalmi, S., Leppänen,
V.: Diversification of system calls in linux binaries. In: International Conference
on Trusted Systems, Springer (2014) 15–35

18. Rauti, S., Laurén, S., Mäki, P., Uitto, J., Laato, S., Leppänen, V.: Internal interface
diversification as a method against malware. Journal of Cyber Security Technology
(2020) 1–26

19. Rauti, S., Leppänen, V.: Internal interface diversification with multiple fake inter-
faces. In: Proceedings of the 10th International Conference on Security of Infor-
mation and Networks. (2017) 245–250

20. Rauti, S., Teuhola, J., Leppänen, V.: Diversifying sql to prevent injection attacks.
In: 2015 IEEE Trustcom/BigDataSE/ISPA. Volume 1., IEEE (2015) 344–351

21. Shaukat, K., Luo, S., Varadharajan, V., Hameed, I.A., Chen, S., Liu, D., Li, J.: Per-
formance comparison and current challenges of using machine learning techniques
in cybersecurity. Energies 13(10) (2020) 2509

22. Tanenbaum, A.S., Bos, H.: Modern operating systems. Pearson (2015)


