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BACKGROUND: Hyperlipidemia is a highly heritable risk factor for coronary artery disease (CAD). While monogenic familial 
hypercholesterolemia associates with severely increased CAD risk, it remains less clear to what extent a high polygenic load 
of a large number of LDL (low-density lipoprotein) cholesterol (LDL-C) or triglyceride (TG)-increasing variants associates 
with increased CAD risk.

METHODS: We derived polygenic risk scores (PRSs) with ≈6M variants separately for LDL-C and TG with weights from 
a UK Biobank–based genome-wide association study with ≈324K samples. We evaluated the impact of polygenic 
hypercholesterolemia and hypertriglyceridemia to lipid levels in 27 039 individuals from the National FINRISK Study 
(FINRISK) cohort and to CAD risk in 135 638 individuals (13 753 CAD cases) from the FinnGen project (FinnGen).

RESULTS: In FINRISK, median LDL-C was 3.39 (95% CI, 3.38–3.40) mmol/L, and it ranged from 2.87 (95% CI, 2.82–2.94) to 
3.78 (95% CI, 3.71–3.83) mmol/L between the lowest and highest 5% of the LDL-C PRS distribution. Median TG was 1.19 
(95% CI, 1.18–1.20) mmol/L, ranging from 0.97 (95% CI, 0.94–1.00) to 1.55 (95% CI, 1.48–1.61) mmol/L with the TG 
PRS. In FinnGen, comparing the highest 5% of the PRS to the lowest 95%, CAD odds ratio was 1.36 (95% CI, 1.24–1.49) 
for the LDL-C PRS and 1.31 (95% CI, 1.19–1.43) for the TG PRS. These estimates were only slightly attenuated when 
adjusting for a CAD PRS (odds ratio, 1.26 [95% CI, 1.16–1.38] for LDL-C and 1.24 [95% CI, 1.13–1.36] for TG PRS).

CONCLUSIONS: The CAD risk associated with a high polygenic load for lipid-increasing variants was proportional to their impact 
on lipid levels and partially overlapping with a CAD PRS. In contrast with a PRS for CAD, the lipid PRSs point to known and 
directly modifiable risk factors providing additional guidance for clinical translation.
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Hypercholesterolemia, particularly high LDL (low-
density lipoprotein) cholesterol (LDL-C), is an 
established, heritable, and treatable risk factor for 

coronary artery disease (CAD).1,2 Additionally, accumulat-
ing evidence suggests that increased triglycerides (TGs; 
hypertriglyceridemia) are causally linked to CAD.3–5

Increased levels of both LDL-C and TGs result from 
a combination of genetic and nongenetic factors.6,7 

Genetic factors include rare highly penetrant variants 
and a long tail of common variants with smaller effect 
sizes. While pathogenic variants in the LDLR, PCSK9, 
and APOB genes cause familial hypercholesterolemia, 
it has also been suggested that similarly high LDL-C 
levels could result from a high polygenic burden of LDL-
C–increasing variants.8,9 Monogenic familial hypercho-
lesterolemia with an identified mutation associates with 
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a higher CAD risk than expected on the basis of a sin-
gle LDL-C measurement.10 While previous studies have 
linked a handful of common variants to both increased 
LDL-C and CAD risk, the contribution of an accumula-
tion of a large number of LDL-C–increasing alleles to 
CAD risk has remained unknown.11

Similarly to hypercholesterolemia, both polygenic bur-
den and highly penetrant variants contribute to hyper-
triglyceridemia.6 However, highly penetrant variants 
underlying hypertriglyceridemia are much fewer and 
rare (estimated population prevalence, 1:1 000 000).6 
On the contrary, many individuals with hypertriglyceri-
demia have a high polygenic burden of TG-increasing 
variants.6 Unlike LDL-C, it is unknown whether geneti-
cally increased TGs confer higher CAD risk than nonge-
netic hypertriglyceridemia. Genetics supporting a causal 
link between hypertriglyceridemia and CAD, and the 
evidence for beneficial therapeutic reducing of TGs to 
reduce cardiovascular disease risk, however, highlight 
the potential also for association between polygenic 
load of TG elevating alleles and CAD risk.3–5,12,13

In this cohort study of 27 039 individuals from the Finn-
ish National FINRISK Study (FINRISK) population cohort 
with lipid measurements, and 135 638 individuals including 
13 753 CAD cases from the FinnGen project (FinnGen), 
we evaluated the impact of high polygenic LDL-C and TG 
to CAD risk. We developed separate genome-wide poly-
genic risk scores (PRSs) for both LDL-C and TG to define 
polygenic hypercholesterolemia and hypertriglyceridemia. 
First, we tested to what extent PRSs for LDL-C and TG 
associate with measured lipid levels. Second, we tested to 
what degree polygenic hypercholesterolemia and polygenic 
hypertriglyceridemia associate with increased risk for CAD.

METHODS
Because of the sensitive nature of the data collected for 
this study, requests to access the data set from qualified 
researchers trained in human subject confidentiality proto-
cols may be submitted through the Finnish Biobanks’ FinnBB 
portal (https://finbb.fi/) for FinnGen at https://www.ukbio-
bank.ac.uk/researchers/ for the UK Biobank (UKBB) and at 
https://www.thl.fi/biobank/researchers for the GeneRISK 
study (GeneRISK) and FINRISK.

The Coordinating Ethics Committee of the Helsinki and 
Uusimaa Hospital District approved the FinnGen project 
(No. HUS/990/2017), the GeneRISK study, and the 2007 
and 2012 FINRISK surveys. Earlier FINRISK surveys were 
approved by various ethics committees.14 The North West 
Multi-Centre Research Ethics Committee approved the UKBB 
study. Written informed consent was obtained from all par-
ticipants except the 1992 FINRISK survey, for which verbal 
informed consent was obtained as required by legislation and 
ethics committees at the time.

The full Methods are available as the Data Supplement.

Nonstandard Abbreviations and Acronyms

CAD coronary artery disease
HDL high-density lipoprotein
LDL low-density lipoprotein
LDL-C low-density lipoprotein cholesterol
OR odds ratio
PRS polygenic risk score
TG triglyceride

Table 1. Clinical and Metabolic Characteristics of Individuals

Characteristics

FINRISK FinnGen

n Mean±SD n Mean±SD

n (men/women) 27 039 (12 884/14 155)  135 638 (59 252/76 386)  

CAD, n (%) 2750 (10.2%)  13 753 (10.1%)  

Lipid-lowering medication usage, n (%) 1658 (6.1%)  42 193 (31.1%)  

Smoking, n (%) 6739 (25%)  19 690 (22.1%)  

Age,* y 27 039 48.9±13.5 135 638 60.6±16.5

BMI, kg/m2 26 941 26.8±4.69 95 528 27.2±5.6

Total cholesterol, mmol/L 27 024 5.49±1.08   

LDL-C, mmol/L 26 568 3.47±1.01   

Triglyceride, mmol/L 27 024 1.47±1.00   

HDL-C, mmol/L 27 024 1.44±0.381   

Apolipoprotein B, g/L 22 464 0.965±0.248   

Non–HDL-C, mmol/L 27 024 4.05±1.10   

Remnant-C, mmol/L 26 568 0.630±0.340   

LDL-C was calculated using the Friedewald formula; the effect of lipid-lowering therapy in those using medication at the time of lipid measurement 
was adjusted for by dividing LDL-C by 0.7 as utilized previously.10 FinnGen lacks lipid measurements and lipid-lowering medication usage information. 
BMI indicates body mass index; CAD, coronary artery disease; FinnGen, The FinnGen project; FINRISK, The National FINRISK Study; HDL-C, high-
density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; and Remnant-C, remnant cholesterol.

*Age at recruitment for FINRISK and age at end of follow-up for FinnGen.
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RESULTS
Polygenic Hyperlipidemias and Lipid Levels
We tested the association between PRSs for LDL-C 
and TG derived from a genome-wide association study 
of lipid measurements in the UKBB and lipid levels in 
the Finnish FINRISK study. FINRISK comprises 27 039 
individuals randomly drawn from the Finnish population 
(Table 1). Median LDL-C was 3.39 (95% CI, 3.38–3.40) 
mmol/L and TG, 1.19 (95% CI, 1.18–1.20) mmol/L in 
the whole cohort with slightly lower values in the more 
recent collections (Figure I in the Data Supplement).

The PRSs consisted of 6 million markers and explained 
5.4% (adjusted r2) of variation in LDL-C and 5.1% in TG. In 

FINRISK, median LDL-C was 2.87 (95% CI, 2.82–2.94) 
mmol/L in the lowest and 3.78 (95% CI, 3.71–3.83) 
mmol/L in the highest 5% of the LDL-C PRS distribution 
(Figure 1A). Similarly, median TG was 0.97 (95% CI, 0.94–
1.00) mmol/L in the lowest and 1.55 (95% CI, 1.48–1.61) 
mmol/L in the highest 5% of the TG PRS distribution 
(Figure 1B). The increases in LDL-C and TG levels were 
similar in all FINRISK subcollections (Figure II in the Data 
Supplement). The correlation between the LDL-C PRS and 
the TG PRS was low (r=0.15). Subsequently, the cross-trait 
pleiotropy between the LDL-C and TG PRSs was small as 
the LDL-C PRS explained 0.7% (adjusted r2) of TG levels 
and the TG PRS 0.3% of LDL-C levels (Figure III in the 

A

B

Figure 1. Median lipid  levels 
across the distributions of 
the lipid polygenic risk scores 
(PRSs) in the National FINRISK 
Study (FINRISK) cohort.
Numbers of individuals in the PRS 
bins are reported. Vertical lines 
represent 95% CIs.
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Data Supplement). All in all, the LDL-C and TG PRSs had a 
clear impact on their respective lipid levels.

Polygenic Hyperlipidemias and CAD Risk
To assess how polygenic hyperlipidemia associates with 
CAD risk, we analyzed 135 638 individuals including 13 
753 registry-based CAD cases from the Finnish FinnGen 
project (Table 1). FinnGen is an aggregation of Finnish 
prospective epidemiological and disease-based cohorts 
and hospital biobank samples and, therefore, includes the 
FINRISK participants. Polygenic hypercholesterolemia 
associated with increased CAD risk. Compared with the 
remainder of the population, individuals with the LDL-C 
PRS in the highest 10% had 1.4-fold increased CAD risk 
(odds ratio [OR], 1.41 [95% CI, 1.32–1.50]), and indi-
viduals in the highest 5% also had 1.4-fold increased risk 
(OR, 1.36 [95% CI, 1.24–1.49]; Figure 2A). CAD preva-
lence was 52% higher (12.5% versus 8.2%) between 
the highest and the lowest 5% of the LDL-C PRS distri-
bution (Figure 3A). OR for CAD per SD unit increase of 
the LDL-C PRS was 1.17 (95% CI, 1.15–1.20; Table 2).

For polygenic hypertriglyceridemia, compared with 
the remainder of the population, individuals with the TG 
PRS in the highest 10% had 1.3-fold increased CAD 
risk, and individuals in the highest 5% also 1.3-fold (OR, 
1.31 [95% CI, 1.19–1.43]) increased CAD risk (OR, 1.31 
[95% CI, 1.22–1.40]; Figure 2B). CAD prevalence was 
36% higher (11.8% versus 8.7%) between the high-
est and the lowest 5% of the TG PRS distribution (Fig-
ure 3B). OR for CAD per SD unit increase of the TG PRS 
was 1.12 (95% CI, 1.09–1.14; Table 2).

We tested whether the lipid PRSs improve CAD risk 
prediction beyond a similarly derived CAD PRS. Compar-
ing the highest 5% to the remainder of the population, the 
effects of the lipid PRSs on CAD risk were attenuated only 
modestly when adjusted for the CAD PRS (LDL-C PRS OR, 
1.26 [95% CI, 1.16–1.38] and TG PRS OR, 1.24 [95% CI, 
1.13–1.36]; Figure 4). The area under the receiver operat-
ing characteristic curve of a model with the lipid and CAD 
PRSs was high (0.879; Table 2). It was, however, similar to 
a model with only the CAD PRS (0.879; Table 2).

DISCUSSION
By developing genome-wide PRSs for LDL-C and TG, 
we evaluated the impact of high genetic risk for these 
established and causal risk factors of CAD. We showed 
that high polygenic burden for both LDL-C or TG asso-
ciated with considerably increased LDL-C and TG 
levels, respectively. Similarly, polygenic hypercholester-
olemia and triglyceridemia associated with significantly 
increased CAD risk. Furthermore, PRSs for LDL-C and 
TG were partially overlapping with a PRS for CAD.

Polygenic hypercholesterolemia, in our study, con-
veyed 0.41 mmol/L higher LDL-C levels and 36% higher 

A

B

Figure 2. Odds ratios (ORs) for coronary artery disease (CAD) 
across the lipid  polygenic risk score (PRS) distributions in 
the FinnGen project (FinnGen).
Total numbers of individuals in PRS bins are reported. ORs were 
estimated using logistic regression adjusted for age, sex, first 10 
principal components, and genotyping batch. PRS bins were compared 
with the remainder of the population. Error bars represent 95% CIs.
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CAD risk in the highest 5% of the LDL-C PRS compared 
with the remainder of the population. This is considerably 
lower than the previous estimates of the effects of high-
impact LDLR familial hypercholesterolemia mutation 
on LDL-C levels (2–3 mmol/L) and CAD risk (2.6- to 
3.7-fold).10,15,16 Going further from the highest 5% to the 
highest 1% of the LDL-C PRS conveyed still only 0.55 
mmol/L higher LDL-C levels compared with the remain-
der of the population (Figure IV in the Data Supplement). 
While the established high-impact LDLR familial hyper-
cholesterolemia mutations directly disrupt LDL receptor 
function causing lifelong high LDL-C levels, the effect 
sizes of the individual variants contributing to polygenic 
hypercholesterolemia are small, and they likely increase 
LDL-C via multiple indirect biological pathways. Whereas 

monogenic familial hypercholesterolemia is a severe 
disease with high CAD risk, polygenic hypercholesterol-
emia, as captured by the current PRSs, seems to have a 
smaller effect on LDL-C levels and CAD risk. The degree 
of benefit of lipid-lowering therapies in individuals with 
polygenic hypercholesterolemia has, therefore, remained 
largely unknown.

In our study, both LDL-C and TG PRSs associated 
with CAD risk also when adjusted for a CAD PRS. The 
key difference between intermediate biomarker PRSs 
(such as the lipid PRSs) and disease end point PRSs 
(such as a CAD PRS) is that biomarker PRSs have a 
more direct mechanism and effect on clinical outcomes. 
The CAD PRS was based on a case-control setting of 
individuals with or without a CAD diagnosis with a risk 

A

B

Figure 3. Coronary artery disease 
(CAD) prevalence across the 
lipid polygenic risk score (PRS) 
distributions in the FinnGen 
project (FinnGen).
Numbers of CAD cases in PRS bins 
are reported.
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of misclassifications and correlates little with known risk 
factors, complicating its interpretation and clinical impli-
cations.17 As the genome remains constant throughout 
life, unlike measured individual lipid values, PRSs are 
independent of age, medical conditions, medication 
usage, diet, fasting state, and other constantly changing 
confounding factors.

Our study has several limitations. First, as FINRISK 
participants fasted for a minimum of 4 hours before 
measuring lipid profiles, our association estimates may 
have been attenuated particularly between the TG PRS 
and TG levels. The association between the TG PRS and 
CAD risk, however, remains unaffected by this. Second, 
because the Friedewald formula is invalid for individuals 

with TG >4.52 mmol/L, 456 (1.7%) FINRISK samples 
were excluded from LDL-C analyses.18 Third, some 
variants included in the lipid PRSs are not specific to 
their primary lipids and have residual effects on others. 
Excepting a negative association between the TG PRSs 
and HDL (high-density lipoprotein) cholesterol, however, 
the PRSs had only minor associations with other than 
their primary lipids (Figure III in the Data Supplement). 
Fourth, our weights for the lipid PRSs came from the UK 
population and were tested in the Finnish population; our 
results may have limited accuracy in other ethnicities. 
Replication and validation in other cohorts with lipid mea-
surements and populations is warranted in the future.

In summary, the CAD risk associated with a high poly-
genic load for LDL-C or TG -increasing genetic variants 
was proportional to their impact on lipid levels. In contrast 
with a PRS for CAD, the lipid PRSs point to a known and 
directly modifiable risk factor enabling more straightfor-
ward clinical translation. As PRSs can also be measured 
at any point in life, they provide powerful tools for pri-
oritizing individuals for blood lipid panel screening and 
subsequent evidence-based intervention.
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