
Abstract—The Thick Control Flow (TCF) model packs together self-
similar computations to simplify parallel programming and to elimi-
nate redundant usage of associated software and hardware resources.
While there are processor architectures supporting native execution
of programs written for the model, none of them support concurrent
memory access that can speed up execution of many algorithms by a
logarithmic factor. In this paper, we propose an architectural solution
implementing concurrent memory access for TCF-aware processors.
The solution is based on bounded size step caches and two-phase
structure of the TCF-aware processors. Step caches capture and hold
the references made during the on-going step of an execution that
are independent by the definition of TCF execution and therefore
avoid coherence problems. The 2-phase structure reduces some con-
current accesses to a frontend operation followed by broadcast in the
spreading network. According to our evaluation, a concurrent mem-
ory access-aware B-backend unit TCF processor executes certain al-
gorithms up to B times faster than the baseline TCF processor.

      Keywords—parallel computing; processor architecture; program-
ming model; TCF; concurrent memory access

I. INTRODUCTION

The standard programming model of current multicore proces-
sors provides a set of computational threads that execute indi-
vidual code asynchronously and independently of each other. In
the case of interdependencies, threads need to communicate with
each other using messages or shared memory. The lack of syn-
chrony implies that execution of threads needs to be orchestrated
by explicit synchronization constructs, e.g., barriers, locks and
atomic operations, to guarantee that critical operations are car-
ried out in the right order. Since the cost of using these con-
structs in terms of time and hardware resources is high, it is clear
that many sophisticated and efficient primitives of parallel com-
putation are ruled impractical. These include concurrent mem-
ory access that lets a number of processors read and write a
memory location concurrently, and execution of fine-grained
parallel algorithms in general. Furthermore, since most compu-
tational problems contain a lot of parallelism, the number of
needed threads can be much higher than that supported by cur-
rent and future hardware. While software based threading sys-
tems support more threads than the hardware, in practice, the
number of software threads is limited to few hundreds per
processor core. Consequently, if there are frequent interthread
dependencies, the performance of the system can degrade sig-
nificantly if the thread count exceeds the number of hardware
threads. To compensate this, a programmer is forced to emulate
high parallelism with the few available hardware threads by

using blocking, looping or repetition. This kind of architecture-
driven ambiguity of the state of computation and lack of native
parallel computing capabilities tend to make programming error-
prone, complex and cause the processor hardware to do redun-
dant computation, e.g., by repeating base address computations
and allocating registers containing replicated values for the
threads. A promising way to eliminate these model-related prob-
lems is the thick control flow (TCF) programming model [1,2]
packing user adjustable number of threads following the same
control flow into a single entity and guaranteeing synchronous
execution independently of the number of computational ele-
ments. The TPA chip multiprocessor architecture [3] can execute
programs making use of the TCF model natively. While the ar-
chitecture succeeds in supporting the unbounded parallelism of
the model, it cannot support concurrent memory access that can
speed up many algorithms by a logarithmic factor [4].
     Supporting concurrent memory access as a primitive of par-
allel computation is meaningful only for the class of architec-
tures that supports synchronous execution of threads, e.g.,
so-called Emulated Shared Memory (ESM) architectures that
use multithreading to hide the (distributed) shared memory sys-
tem access and provide low-cost synchronization mechanisms
[5,6]. The convention for deciding which of the threads perform-
ing a concurrent write succeeds, is traditionally either ARBI-
TRARY or PRIORITY, by which  the thread with the lowest
identifier succeeds [7].
     Previous attempts to support concurrent memory access and
multioperations in ESM architectures include:

• Combining networks. ESM machines that utilize light-weight
interleaved multithreading along with low-cost synchroniza-
tion to emulate an ideal shared memory [5]. The main idea is
to reduce the needed bandwidth by combining the references
targeted to the same location in the network. Requires sorting
of memory requests prior to injection that decreases the speed
of this solution for all memory accesses.

• Streamlined combining networks. This operates like [5] but
manages to reduce the number of routing phases from six used
in [5] to five and reducing the number of memory modules [6].
Unfortunately, also this requires the same sorting phase as the
non-streamlined combining networks.

• Active memories. Implements limited and partial concurrent
memory access [8]. This supports concurrent memory access
for a limited number of special memory locations. Compared
to the previous attempts, this solution, however, eliminates the
need for sorting.
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• Step caches. This solution implements full concurrent memory
access for all memory locations [9]. The idea is to filter out
everything except the first reference to each location per step
and thus reduce memory traffic. The limited associativity of
the step cache requires resending a reference if it has been
wiped out from the step cache due to set overflow. Also this
solution eliminates the need for sorting prior to injection of
references to the network.

Except for the active memories, none of these can be used to
provide concurrent memory access for TCF-aware processors.
This is because they rely on fixed size buffers in which the size
is proportional to the number of threads per processor, while for
TCF processing the number of fibers per processor is not
bounded. The active memory solution could work but it provides
only a very limited amount of active memory locations for each
memory module and therefore it cannot be considered a general
solution to the concurrent memory access problem.
     In this paper, we propose an architectural solution imple-
menting concurrent memory access for TCF-aware processors.
The solution is based on bounded size step caches and two-phase
structure of the TCF-aware processors. Step caches capture and
hold the references made during the on-going step of an execu-
tion that are independent by the definition of TCF execution and
therefore avoid coherence problems. The 2-phase structure re-
duces some concurrent accesses to a frontend operation followed
by a broadcast in the spreading network. According to our eval-
uation, a concurrent memory access-aware B-backend unit TCF
processor executes certain algorithms up to B times faster than
the baseline TCF processor. In Section 2, we describe the TCF
model and TPA architecture, Section 3 proposes support for con-
current memory access in TCF-aware architectures, Section 4
evaluates the proposed solutions with simulations in TPA, and
Section 5 draws conclusions and outlines future work.

II. TCF MODEL AND TPA ARCHITECTURE

The Thick Control Flow model joins threads following the same
control flow into entities called thick control flows (TCF) [1, 2]
(see Figure 1). The components of a TCF are called fibers to

distinguish them from threads having their own control. The
number of fibers in a TCF is called the thickness of the flow.
The model allows TCFs to change their thickness during exe-
cution with no upper bound. Execution of a TCF happens in
steps during which each fiber executes an instruction in parallel
with the other fibers in the TCF. The model guarantees synchro-
nous operation of steps so that the shared memory references
generated by the previous step are guaranteed to complete before
the current step starts and their results are available for all the
fibers during the current step but no updates in the current step
are visible to other fibers in the step.
     The unbounded parallelism of TCFs is a challenge to proces-
sor design due to fixed hardware resources. The key technique
is to assign an arbitrarily large set of fibers to processing ele-
ments for cost-efficient synchronous execution of computational
steps (see Figure 1).These challenges are addressed by the Thick
Control Flow Processor Architecture (TPA) [3]. It uses a two-
level structure with frontend and backend units. Fibers are exe-
cuted dynamically on the backend pipeline. The backend units
have a special replicated register block scheme connected to an
external overflow mechanism. Standard ESM implementation
techniques are used for streamlined shared memory multiproces-
sor execution. These include multifibering (a TCF-aware variant
of multithreading) to hide the latency of shared memory ac-
cesses, low-cost wave-based synchronization, and low-level par-
allelism exploitation to maximize utilization of the functional
units. A TPA processor consists of F frontend units (or cores)
and B backend units, F≤B, connected together via a work
spreading network (see Figure 2). The frontend units are con-
nected to a non-uniform memory access (NUMA) style memory
system for low-latency access to locality-aware memory and the
backend units are connected to distributed shared memory sys-
tem modules via a small number of parallel mesh networks.

Time
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Figure 1. A thick control flow, change of thickness from 16 to 11 and
execution as steps. A step of execution in a TCF-aware processor. The
machinery assignings T=16 fibers for execution in P=4 processors and
guarantees synchronicity between the steps.
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     Execution of a TPA instruction happens in three front end and
three backend phases:

For each active frontend do
F1. Select the next TCF from the TCF buffer if requested.
F2. Fetch an instruction pointed by the PC of the TCF.
F3. Execute the subinstructions in the functional units specified

by the instruction. If the instruction contains a backend part,
select operands and send them along with the instruction to
the backends assigned to the frontend via the work spreading
network. Ask for a TCF switch if requested by the subinstruc-
tion.

For each backend do
B1. If the backend is not occupied, fetch the next TCF from the

spreading network and determine the fibers to be executed
in the backend.

B2. Generate the fibers of the TCF to be pipelined according to the
assignment determined in the phase B1.

B3. For each fiber:
B3.1 Select the operands from the received frontend data and

replicated register block.
B3.2 Execute the backend subinstructions.
B3.3 Write back the replicated register block and send the op-

tional reply data back to the frontend via the return channel
built into the spreading network.

After all active TCFs of a frontend have been in execution for a
single instruction, TPA issues a special synchronization TCF of
thickness one per backend that sends and receives a synchro-
nization to/from the shared memory system.

III. CONCURRENT MEMORY ACCESS

Depending on the targeted concurrent memory access model and
architectural realization of TCF-model, there are alternative
schemes: For example, if only a single PRIORITY mode con-
current memory access per a TCF is allowed, the frontend can
easily and cost-efficiently take care of the concurrent access as-
suming the frontend has access to the shared memory system of
the backends. On the other hand, if there is a high number of

ARBITRARY mode accesses in parallel, it is preferable for the
backend units to take care of them. Architecturally speaking, the
key challenge of concurrent memory access in a TCF-aware
processor is to avoid explosion of resource usage as storage
needed by the existing solutions relying on step cache and reply
buffer entry per thread would need to scale up without bounds
[8, 9] (see Figure 3/left). Our solution is to exploit the possibility
to change the thicknesses of the TCFs, apply bounded size step
caches and reply buffers as well as the mechanism returning data
from backends to the frontend to support thick concurrent mem-
ory access operations.
     We first look at the cases in which all the fibers of a TCF are
participating to the same concurrent memory access, or only one
concurrent access per TCF is allowed. In the case of read, we
can use the frontend to fetch the value from the shared memory
so that it is available to all the backends via the work spreading
network (see Figure 3/right). In its turn, a concurrent write can
be handled by just setting the thickness to one for a single in-
struction and performing just a single write. This applies to both
ARBITRARY and PRIORITY modes. Alternatively, if a copy
of the value is in the frontend, it can take care of the write. There
are three obvious ways to implement this kind of a frontend ac-
cess technique to the shared memory system: a dedicated fron-
tend port to the shared memory, sharing of the memory port with
a backend unit, and commanding one of the backends to perform
the access and in the case of read, sending the received value to
the frontend via the return channel mechanism of the TPA [3].
For this paper, we use the backend variant since a dedicated port
needs potentially substantial modifications to the interconnec-
tion network and its topology. The second possibility is quite
close to the third one but requires a separate FIFO with explicit
synchronization messages for orchestrating the access to the
steps of execution. There are two optimizations within the back-
end variant: the frontend makes a request to execute the shared
memory reference in the backend that has the shortest route to
the memory module containing the memory location or the
backend passes the reply to the frontend as soon as it arrives.
These techniques save time by exploiting the locality of the
shared memory or bypassing the rest of the pipeline.

Figure 3. Concurrent in the baseline system (with no step caches), concurrent write with step caches and concurrent read with a the fronend.



     The case of having multiple concurrent reads per TCF is
more challenging since we cannot make requests for reading
them with the frontend based on compile time knowledge and
because there may not be register space for holding the neces-
sary amount of values in the frontend. Our approach is to use
backends for accessing the data and consider this just as a spe-
cific memory pattern that is accelerated with a help of bounded
size step cache (see Figure 3/center). Let us call this the backend
access technique. Since the thickness can be arbitrarily high, it
is possible that the cache line or reply buffer entry containing
the accessed value gets overwritten while there are references
to the same location still coming by the remaining fibers. In that
case, a new step cache entry allocation is made when the first
new reference is executed. If the reply buffer entry for a certain
concurrent access is in danger of being overwritten, then the step
cache line referring to that needs to be updated with a new reply
buffer entry early enough to prevent overwriting. The case of
multiple concurrent writes operates similarly, but there are no
reply buffer allocation that would retire along with the step
cache line update.
     The efficiency principle of a B-backend unit TCF-processor
executing a TCF with thickness T containing multiple simulta-
neous concurrent accesses is that the system works efficiently
as long as the accesses per location are limited close to T/B
which is the minimum execution time of a step of execution.
Otherwise the number of fibers participating a concurrent access
will slow down the execution time of the corresponding step.

IV. EVALUATION

To show that concurrent memory access-aware TCF processors
meet the expectations, we evaluated the performance with the
proposed technique and discuss implementation issues.

A. Performance

In order to determine the performance of the proposed tech-
nique, we measured the execution time of six kernel benchmarks
representing different usage schemes of concurrent memory ac-
cess (see Table 1). We used different problem size N and/or dif-
ferent data set in the baseline TCF-aware architecture (denoted
TCF baseline), in a TCF architecture including the techniques
of Section III (denoted TCF CRCW). For reference purposes,

we also measured the performance of configurable ESM
REPLICA architecture [10] (denoted CESM) with the same
benchmarks. REPLICA applies the fixed threading scheme (Tp
threads per processor) and employing the step cache technique
representing the best known concurrent memory access-aware
architecture with the same set of benchmarks. For the summary
of the measured architectures, see Table 2.
     The benchmarks were executed in clock accurate simulators
modeling the architecture down to low-level details [3]. To elim-
inate the effect of compilers and make comparisons fair, all the
benchmarks were written in assembler. We optimized the bench-
marks by hand for the backend access technique so that the per-
formance is limited only by the memory bandwidth and
inter-thread/fiber synchronization. The amount of memory was
set large enough for holding all the data needed in all the tests.
     The results of the simulations are shown as execution times
in clock cycles and speedup w.r.t. baseline TCF. We show results
also as a function of problem size N except for the mread and
mwrite benchmarks where the performance is shown as a func-
tion of references per concurrent access (see Figure 4). From
these results we can make the following observations:
• The proposed step cache technique speeds up the concurrent
accesses of the benchmarks exceptionally well so that the per-
formance becomes optimal with respect to the available mem-
ory bandwidth independently of N if we ignore the
synchronization overhead of (N/B+1)/(N/B), where N is the
problem size and B is the number of backend units. In practice,
the overhead drops from 0.78% down to 0.024% as N grows
from 2048 to 65536.

• Compared to the baseline TCF solution, the proposed new so-
lution gives speedup approaching B per concurrent memory
access. This is because in the baseline, B backend units are si-
multaneously trying to access a single-ported memory module
containing the target location.

• In the case of multiple concurrent memory accesses the mread
and mwrite benchmarks interestingly show how the perform-
ance changes in the baseline but stays intact as we go from ex-
clusive memory access gradually to fully concurrent access.

• The proposed technique is faster than CESM with step caches
in all benchmarks mainly because while it can embed the loop-
ing costs needed to map the software threads to actual hard-
ware threads, this is not possible for loop initializations, which

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Processor                                                    CESM [10] (The best known CRCW)           TCF baseline [3] (Baseline)                       TCF CRCW (This proposal)
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Processing units                                          16 NUMA/16 Parallel                                    1 frontend/16 backend                                1 frontend/16 backend 
Threads per processor core                         128                                                               Unbounded                                                 Unbounded
TCFs per frontend                                        -                                                                   128                                                              128
Number of functional units                          3 NUMA/9 Parallel                                        5 frontend/9 backend                                  5 frontend/9 backend
Step cache size/type/replacement policy     128/4-way set associative/random               -/-/-                                                             128/4-way set associative/random
Interconnect                                                4x4 mesh                                                     4x4 mesh                                                    4x4 mesh
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Table 2.  Tested processors.

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark    Description
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
block              A parallel program that copies an array of 2048..65536 integers into another in the shared memory (tests exclusive parallel memory access)
spread           A parallel program that spreads the value of first element to rest of the elements of an array of 2048..65536 integers (tests a single concurrent read access)
cwrite            A parallel program that performs concurrent write of a set of 2048..65536 values (tests a single concurrent write accesses)
mread            A parallel program that performs 1..65536 concurrent reads from an array of 65536 values(tests multiple concurrent read accesses per TCF)
mwrite           A parallel program that performs 1..65536 concurrent writes to an array of 65536 values (tests multiple concurrent write accesses per TCF)
max               A parallel program that finds a maximum of an array of 64..256 integers by comparing all elements to each other (tests multiple concurrent accesses) [13]
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Table 1.  Test programs for the proposed TCF-aware architecture.



take at least Tp cycles in CESM, where Tp is the number of
threads per processor.

     In order to see the practical difference between the fronend
and backend access techniques, we implemented the spread
benchmark also with the frontend. For that, we measured the ex-

ecution time as a function of N and compared it to the backend
access technique (see Figure 5). The results indicate speedups
ranging from 55% to 98% and we conclude that for this kind of
functionalities, the frontend technique can speed up functional-
ities containing single concurrent reads considerably.

Figure 4. The execution time in the tested processors and speedup with respect to baseline TPA as the function of problem size N for the benchmark programs.
In the mread and mwrite benchmarks, the x-axsis denotes the references per concurrent access.
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     The limitations of the step cache technique resemble those
of caching in general. While step caches do not suffer from co-
herence problem, periodic access patterns interfering with the
replacement policy can cause a high number of cache misses
and therefore invalidate the gains of the proposed concurrent
memory access technique.

B. Implementation considerations

Implementing the proposed technique in TPA does not require
major modifications to the baseline architecure. One needs to
add a bounded size step cache that works with the existing
bounded size reply buffer-aware allocation policy for each back-
end, return channel mechanism and frontend access to the shared
memory that can be also used for many other purposes.
     We estimated the complexity the proposed technique by
using our detailed analytical performance-silicon area-power
consumption (PAP) model that breaks the processor to compo-
nents down to gate estimates, adopts the parallel signal propa-
gation model on silicon [11], and uses estimates given by ITRS
roadmaps for realistic values of certain silicon process parame-
ters [12]. According to it a 64-bit, 16-backend TPA with 10 back-
end functional units running at 1.5 GHz and containing 72.9 MB
on-chip memory, implemented with an 11 nm silicon technology
would occupy 18.93 mm2 and consume 76.38 W without step
caches. Adding a generous 1024-line step cache to each backend
would only increase the silicon area by 0.29% and power con-
sumption by 0.20% (see Figure 5). Note that with these param-
eters the memory system is estimated to occupy 85.1% of the
total chip area and consume 66.0% of the overall power.

V. CONCLUSIONS

We have described an architectural solution to realize concurrent
memory access for TCF-aware processors. The solution is based
on bounded size step caches and a 2-phase structure of the TCF-
aware processors. Step caches capture and hold the references
made during the current step of execution that are independent
by the definition TCF execution and therefore avoid coherence
problems. If there is only a single concurrent operation per TCF,
the active frontend unit can perform TCF-level accesses cost-
efficiently. According to the evaluation, the concurrent memory
access-aware B-backend unit TPA executes certain algorithms
up to B times faster that the baseline TPA. Employing the fron-
tend in the case of single concurrent memory access can further
speed up execution. The cost of the proposed technique in sili-
con area and power consumption is estimated to be very small.

     In the future we aim to further study and develop TCF-aware
computing hardware and methodology. This includes an FPGA
proof of concept implementation and studying the possibility to
realize multi(prefix)operations on TCF-aware architectures.
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Figure 5. The differences in execution time of the spread benchmark implemented with the backend only access technique and frontend access technique (left),
the silicon area (middle) and power consumption estimates (right) for 11 nm silicon process.
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