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ABSTRACT

Modern technologies allow for the collection of large biological datasets that can be
utilised for diverse health-related applications. However, to extract useful informa-
tion from such data, computational methods are needed. The field that develops and
explores methods to analyse biological data is called bioinformatics. In this thesis I
evaluate different bioinformatic methods and introduce novel ones related to process-
ing gene expression data. Gene expression data reflects how active different genes
are in a set of measured biological samples. These samples can be for example blood
from human individuals, tissue samples from tumours and the corresponding healthy
tissue, or brain samples from mice with different neural diseases. This thesis covers
two topics, pathway analysis and deconvolution, related to downstream analysis of
gene expression data. Notably, this summary does not repeat in detail the same points
made in the original publications, but aims to provide a comprehensive overview of
the current knowledge of the two wider topics. The original publications focus on
comparing and evaluating the available methods as well as presenting new ones that
cover some previously untouched features.

While the terms ’pathway analysis’ and ’deconvolution’ have been used with al-
ternative definitions in other fields, in the context of this thesis, pathway analysis
refers to estimating the activity of pathways, i.e. interaction networks body uses
to react to different signals, based on given gene expression data and structural in-
formation of the relevant pathways. I focus on different types of analysis methods
and their varying goals, requirements, and underlying statistical approaches. In ad-
dition, the strengths and weaknesses of the concept of pathway analysis are briefly
discussed. The first two original publications I and II empirically compare different
types of pathway methods and introduce a novel one. In the paper I, the tested meth-
ods are evaluated from different perspectives, and in the paper II, a novel method is
introduced and its performance demonstrated against alternative tools.

Many biological samples contain a variety of cell types and here, deconvolution
means computationally extracting cell type composition or cell type specific expres-
sion from bulk samples. The deconvolution sections of this thesis also focus on
a general overview of the topic and the available computational methodology. As
deconvolution is challenging, I discuss the factors affecting its accuracy as well as
alternative wet lab approaches to obtain cell type specific information. The first orig-
inal publication about deconvolution (publication III) introduces a novel method and
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evaluates it against the other available tools. The second (publication IV) focuses on
identifying cell type specific differences between sample groups, which is a particu-
larly difficult task.
KEYWORDS: bioinformatics, transcriptomics, pathway analysis, deconvolution
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TIIVISTELMÄ

Moderni teknologia mahdollistaa laajojen biologisten data-aineistojen keräämisen,
joita voidaan hyödyntää lukuisin tavoin terveyden ja hyvinvoinnin edistämis-
eksi. Suurten datojen hyödyntäminen edellyttää kuitenkin laskennallisia työkaluja.
Bioinformatiikka on tieteenala, joka testaa ja kehittää erilaisia laskennallisia
menetelmiä käsitellä biologista dataa. Tässä väitöskirjassa tutkin, testaan ja esit-
telen uusia bioinformatiikan menetelmiä, joilla voidaan analysoida dataa, joka
kuvaa geenien ilmentymistä, eli ekspressiota. Biologiset näytteet, joiden geeni-
expressiota tutkitaan voivat olla esimerkiksi verinäytteitä ihmisyksilöistä, kudosnäyt-
teitä syöpäkasvaimesta ja vastaavasta terveestä kudoksesta tai aivonäytteitä hiiristä,
joilla on erilaisia neurologisia sairauksia. Tämän väitöskirjan kaksi pääaihetta ovat
reittianalyysi ja dekonvoluutio, jotka ovat laskennallisia tapoja jatkoanalysoida mi-
tattua geenien ilmentymistä. Alkuperäisjulkaisut ovat liitteenä johdannon jälkeen,
eikä niiden sisältöä käydä johdannossa läpi yksityiskohtaisesti, vaan siinä esitellään
reittianalyysia ja dekonvoluutiota laajemmin ja pyritän antamaan niistä kattava
yleiskatsaus tämanhetkisen tiedon valossa. Alkuperäisjulkaisuissa menetelmiä tes-
tataan ja vertaillaan eri tilanteissa, ja esitellään uusia menetelmiä jotka täydentävät
havaitsemiani puutteita menetelmätarjonnassa.

Termeille ’reittianalyysi’ ja ’dekonvoluutio’ on useita tulkintoja alasta riip-
puen, mutta tämän väitöskirjan yhteydessä reittianalyysi tarkoittaa kehon sisäisten
vuorovaikutusreittien aktiivisuuden arviointia hyödyntäen geenien mitattua ekspres-
siota ja reittien rakenteita. Väitöskirjan johdannon reittianalyysia käsittelevän osan
painopiste on tilastollisissa menetelmissä sekä niiden eroissa, toimintaperiaatteissa
ja -edellytyksissä. Lisäksi reittianalyysin konseptin heikkouksia ja vahvuuksia es-
itellään lyhyesti. Väitöskirjan kaksi ensimmäistä alkuperäisjulkaisua I ja II liit-
tyvät reittianalyysiin, ensimmäisessä testataan erilaisia reittimenetelmiä empiirisesti
ja arvioidaan millaisissa tilanteissa erityyppiset menetelmät toimivat hyvin. Toisessa
taas esitellään uusi reittianalyysimenetelmä, demonstroidaan sen toimivuutta ja ver-
rataan sitä vaihtoehtoisiin menetelmiin.

Monet biologiset näytteet sisätävät erilaisia soluja ja tämän väitöskirjan kon-
tekstissa dekonvoluutio tarkoittaa eri solutyyppien määrien tai solutyyppikohtaisen
geenien ilmentymisen arviointia laskennallisin keinoin. Myös tämän väitöskirjan
dekonvoluutiota käsittelevissä luvuissa keskitytään yleiskatsaukseen aiheesta ja si-
ihen kehitetyistä laskennallisista menetelmistä. Dekonvoluutio on vaativa analyysi,
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joten sen onnistumiseen vaikuttavia tekijöitä ja vaihtoehtoisia tapoja saada solu-
tyyppikohtaista tietoa näytteistä esitellään myös. Dekonvoluutioon liittyvissä alku-
peräisjulkaisuissa 1) esitellään uusi menetelmä ja verrataan sitä muihin olemas-
saoleviin työkaluihin eri tilanteissa (julkaisu III), ja 2) tarkastellaan miten hyvin eri
menetelmät tunnistavat solutyyppikohtaisia eroja näyteryhmien välillä (julkaisu IV).

ASIASANAT: bioinformatiikka, transkriptomiikka, reittianalyysi, dekonvoluutio
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1 Introduction

1.1 General introduction
Modern technology enables the collection of very broad biological data. While such
datasets hold considerable potential for great new discoveries, without suitable com-
putational tools to analyse them, they are just collections of data. Bioinformatics
aims to answer that need by providing tools to extract knowledge from such datasets,
or to make predictions from them with black box approaches. Typical goals of bioin-
formatic applications include, but are not limited to, predicting the onset of a disease,
identifying subtypes of a disease, predicting the likely response to a particular treat-
ment, and learning how different molecules function and interact. These goals can
serve multiple purposes, and for example identifying different subtypes of a disease
can be utilised for either selecting the correct treatment for an individual with the
disease, learning more about the disease and its mechanisms, or preparing for phe-
nomena (e.g. strong symptoms, secondary disease, or long recovery time) related to
the particular subtype. Thus, the underlying motivations are humane: better quality
of life and expansion of human knowledge.

This thesis is about computational methods to extract information from large
gene expression datasets. The two main topics, whose methodology I study, are
pathway analysis and computational deconvolution. Pathway analysis is among the
standard approaches to analyse gene expression data and it aims to estimate activi-
ties (or differences in them) of known biological pathways. Deconvolution aims to
extract information regarding individual cell types that have contributed RNA to the
measured samples. Both analysis types can be applied to all the scenarios introduced
in the previous paragraph. The focus of this thesis is on comparing the available
methods, introducing new ones that provide answers to the observed needs, and eval-
uating which features affect the performance of the methods and how accurate the
results can be expected to be.

1.2 Goals and publications
The overall goal of this thesis is to assist researchers applying bioinformatic tools by
a) providing new accurate and robust methods with a simple user interface, and b)
comparing and evaluating the available methods so that the researchers can choose a
method best suited for their particular dataset, and estimate how accurate the results
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can be expected to be. The two analysis types covered here are pathway analysis and
deconvolution. The detailed research questions are listed below:

Goal 1 Evaluate how accurate the current state-of-the-art pathway methods are, com-
pare the methods that utilise pathway structures to those that do not, and in-
vestigate when the methods perform well and when not.

Goal 2 Develop a robust pathway method that utilises pathway structures and provides
deregulation scores for all samples separately.

Goal 3 Test different expression deconvolution methods to estimate cell type specific
expression profiles from bulk data.

Goal 4 Develop an expression deconvolution method that is robust against outliers.

Goal 5 Compare different methods to estimate cell type specific differentially ex-
pressed genes from bulk data containing several cell types, and investigate
when the methods perform well and when not.

In publication I, we evaluated different pathway methods and particularly com-
pared the approaches using pathway structures to those not using them (Goal 1). We
observed that if the data contains large changes between the sample groups (cancer
data was used as an example in the paper), methods using pathway structure at a
rough level, namely SPIA [1] and Cepa [2], detected the same pathways from differ-
ent datasets. In cases where the differences between the sample groups were subtle
(type 1 diabetes (T1D) represented this case in the paper), none of the tested meth-
ods performed well. In publication II, we introduced and demonstrated the novel
pathway method PASI, which provides sample specific pathway scores and performs
reasonably well even with challenging data that contain only subtle changes (Goal 2).
PASI was evaluated together with the two alternative tools and also the effect of some
practical aspects, like sample size and uncertainty in pathway structure, were inves-
tigated. In publication III, we compared different expression deconvolution methods
to estimate cell type specific gene expression profiles (csGEPs) from bulk data (Goal
3) and introduced the novel method Rodeo (Goal 4). In the comparison, Rodeo was
particularly robust against outliers in the data. However, in cases of small sample
size and heterogeneous sample donors, we observed that none of the tested methods
performed well. Another key observation was that supervised methods outperformed
the unsupervised ones. Finally, in publication IV, we tested different methods to iden-
tify cell type specific differentially expressed genes (csDEGs) from bulk data (Goal
5). We observed that methods designed for this task outperformed the general model
and deconvolution methods designed to estimate csGEPs. Another important ob-
servation was that methods designed for methylation data also performed well with
RNAseq data, assuming that their input requirements can be met. Besides comparing
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the tested methods using simple gold standard data, we tested which aspects of the
data affected the obtained accuracy. The most important observations were that 1)
csDEGs from rare cell types cannot be reliably estimated from bulk data with any
of the tested computational approaches, and 2) individual heterogeneity has a great
impact on the accuracy of the estimated csDEGs. In the paper, we also explained
how the end-user can evaluate the underlying individual heterogeneity of the bulk
data.

1.3 Organisation of the thesis
This thesis consists of the summary part and the original publications attached at the
end. The summary part is organised into five chapters: Introduction (this), Back-
ground, Pathway analysis, Deconvolution, and Discussion, followed by references.
In the background section, the basics of study design, measuring gene expression,
and typical downstream analyses are presented to give context for pathway analy-
sis and deconvolution. The topic chapters for pathway analysis and computational
deconvolution start with a topic-specific introduction covering key terminology and
definitions, as well as some closely related themes. Different goals, input require-
ments, approach subtypes, and other relevant aspects of the topic are then discussed
in the middle part. These general sections are followed by sections about avail-
able computational methods, and finally, the topics are briefly summarised. In the
Discussion chapter, the general conclusions are presented together with challenges,
limitations, impact, and further research related to this dissertation.

3



2 Background

2.1 Study settings and data types

Biological data has an enormous amount of health-related applications and the tech-
niques to obtain it have improved drastically over the past few decades. As the
quantity and size of available biological data grows with increasingly accurate and
affordable technologies, the more important the computational approaches to analyse
it become. The growth of sample size has led to the possibility of using sophisticated
statistical approaches to extract information from the data. Different biological sam-
ples to be analysed can be taken from the donor individuals, and blood from human
individuals is the most common, though not the only, sample type in this thesis. In
most experiments the sample type to measure is selected based on the expected rel-
evance to the condition of interest, but sometimes practical aspects drive the sample
type selection. For example, it is very difficult to take tissue samples from certain
organs (e.g. pancreas) without harming the sample donor, which often leads into
utilising other tissues or species other than human. Another example is studies aim-
ing to identify predictors or markers that can be used in large scale screening. As
the intended application of the results demands large scale sample extraction, the se-
lected method should be easy and cost efficient, which favours samples like urine or
blood. As individuals are heterogeneous, samples from many donors are needed for
statistical conclusions about the condition of interest. The sources of heterogeneity
can include known factors that can be controlled, such as age, gender, and ethnicity,
but also those that are hard to regulate without considerable effort as well as un-
known ones. It is a common study setting to compare individuals with the condition
of interest to those without it. In such a setting of two sample groups, the samples
from individuals with the condition are called case samples and the samples from
individuals without the condition are called control or reference samples. The issue
of known sources of individual variation can be controlled with paired or matched
samples, which means that for every case sample there is a control sample from an
individual with the same age, gender, etc. Also more than two sample groups can be
compared, which is common in studies involving e.g. multiple subtypes of a disease
or different treatments to a condition.

Proteins are folded amino acid chains that perform a wide range of tasks in a
body. They are constructed in protein synthesis (Figure 1), in which the sections of
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DNA corresponding to the protein (genes) are coded into a messenger RNA strand,
which is used as the instruction to build a chain of amino acids that will then fold
into a 3D structure characteristic of that protein. RNA strands are also called tran-
scripts. Protein synthesis and its regulation is a complex process and it contains far
more steps and molecules than described here. A gene is said to be expressed if RNA
is prepared based on it. Studies of the presence of different genes, RNA, and pro-
teins are called genomics, transcriptomics, and proteomics, respectively. These, and
other omics, are used to study molecular changes in a body under different circum-
stances. Other omics include, but are not limited to epigenomics, metabolomics, and
lipidomics. The focus of this thesis is on transcriptomics, i.e. gene expression, and
here the term RNA always refers to messenger RNA despite the existence of other
types of RNA.

DNA

RNA

Protein

Transcription

Translation

Figure 1. In protein synthesis genetic information (DNA) is first copied into an RNA strand in the
nucleus. Then the RNA is transported into a ribosome, where it is used as instructions to construct
an amino acid chain. Finally the produced amino acid chain folds into a 3D structure (protein).

2.2 Two approaches to measure gene expression
High-throughput gene expression data is one answer to the need for large scale data
to do statistical analysis on multiple genes and samples. High-throughput means that
the measuring device measures/analyses multiple features (genes associated with
the RNA) from multiple samples at once. Gene expression data consists of nu-
meric values reflecting the amount of RNA originating from different genes, i.e.
describing how actively the genes are read for protein synthesis. There are two main
high-throughput techniques to obtain gene expression data, microarrays and RNA
sequencing (RNAseq). The rough idea of microarrays is to build a chip, whose parts
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bind to only certain RNA (or artificial single stranded DNA constructed from it) and
use it to estimate to what extent different RNA fragments are present in a sample.
As the name suggests, in RNAseq the RNA strands present in samples are sequenced
and mapped to the corresponding genes. Microarrays are an older technique than
RNAseq, and while most of the new data is from RNAseq, a considerable proportion
of publicly available data is still from microarray studies. RNAseq has some ad-
vantages over microarray experiments including 1) lower background noise enabling
more accurate detections including those from low-expression transcripts, and 2)
the possibility to detect new transcripts as sequences are not dependent on reference
genomes built into the technology [3; 4; 5]. The lower noise level of RNAseq leads to
higher number of observed altered expression levels as detections of low abundance
transcripts are possible, and more dynamic coverage, i.e. a wider range of measured
expression values [4]. Additionally, the possibility to detect transcripts that are not
part of the pre-defined reference genome enables the differentiation of biologically
critical isoforms and the identification of genetic variants [3; 4; 5]. Both microarrays
and RNAseq include several experimental and computational steps to form the final
estimates of gene expression levels.

2.3 Downstream analysis of gene expression data
There are many ways to further analyse the obtained high-throughput gene expres-
sion data. The simplest approaches aim to identify genes whose expression level
reflects some property of the samples. These can be genes that are differentially ex-
pressed (DE) between sample groups, or genes that correlate with a sample property
like disease severity. Detecting differentially expressed genes (DEGs) is a popular
approach whenever the study includes sample groups and many methods have been
developed to do it [6; 7; 8; 9; 10; 11]. If the sample size is too small to provide sta-
tistical power for an actual DE test, a simple fold change between the sample groups
is typically reported.

Besides evaluating each gene separately, their combinations can be utilised for
more sophisticated analyses. Different model fitting approaches, machine learning
methods, and analyses of gene groups are common examples of such analyses. The
gene groups can be pathways (reaction and regulation networks that a body uses
to transport information or to react to changing situations), gene neighbourhoods
(closely located co-expressed genes), or merely sets of genes associated with the
same biological functions and conditions in the literature. Many gene group anal-
yses can be utilised to generate new features, which can contain valuable insight
themselves and/or be used for further basic analyses like differential expression.
These features can have diverse interpretations, such as a score predicting/estimating
something (time to diagnosis, survival time, sensitivity to side effects...), activity of a
pathway or other biological process, or some property of the measured tissue sample
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itself. Two examples of such tissue properties are the purity of a tumour sample and
the cell type composition (deconvolution) if the sample contains RNA from different
types of cells. In most of the analyses of either measured genes or some generated
features, statistical significance of the findings is reported as p-values or as false
discovery rates (FDR) if the multiple test correction is required.
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3 Pathway analysis

3.1 Introduction to pathway analysis
3.1.1 Basic terminology and definitions in pathway analysis

In the context of pathway analysis, the terms pathway, network, and gene set are
related and here I describe their differences. As the name suggests, gene sets are lists
of genes associated with the same function. Gene sets are very general and they don’t
include any topological information about how the genes are related to each other.
However, in practice the identification of gene sets that are enriched with DEGs is
usually referred to as a form of pathway analysis [12], despite the slight inaccuracy.
The difference between a network and a pathway is more vague as they both con-
tain interactions between biological units, and there is no exact definition available.
However, pathways are usually rather well known and validated in literature and
often contain detailed information about their interaction mechanisms, whereas the
support for network structure can be much lighter, like large-scale screening [13].
Many pathway methods ignore plenty of the sophisticated information about path-
ways and they could also be called network analysis methods. Here I systematically
use the term ’pathway’ instead of ’network’ or ’gene set’ despite the level and con-
fidence of structural information, as is often the case in the literature when different
approaches are discussed from a wider perspective [12; 14; 15].

Pathways consist of nodes (also called units or sometimes vertices) and interac-
tions (arcs, links, or edges) between them. The network structure of these pathway
components is called pathway topology or pathway structure. The nodes can be for
example genes, transcripts, proteins, protein complexes, chemical compounds, or
even other pathways. If they are some kind of gene products, they are usually an-
notated by the genes encoding them. Interactions are typically either reactions or
inhibiting or activating relations. The level of available details about nodes and in-
teractions vary based on the source of the pathway information (see Section 3.1.3)
and different pathway methods can also either dismiss or require certain information.
Especially for interactions, the level of available details varies a lot between sources.
In the simplest form they are just undirected links between nodes, but they can also
contain detailed information such as regulatory mechanisms.

In this thesis I focus on computationally estimating behaviour of whole pathways
based on high-throughput transcriptomic data, but also briefly introduce several re-
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Figure 2. Part of Interferon signaling pathway as an example of a pathway. The structure is
simplified from the representation in IPA database. Activating interactions are usually marked with
arrows and inhibiting ones with bar-headed lines.

lated topics, such as the analysis of subpathways [16; 17] and multi-omic pathway
analysis. An important subtype of pathway analysis not introduced in this thesis is
genome wide association studies which often focus on single nucleotide polymor-
phisms [18; 19; 20; 21]. Rather than gene expression levels, they focus on investi-
gating pathway-level differences in the genome itself, which are of interest especially
in cancer studies [13].

3.1.2 Branches of pathway analysis

Pathway analysis is a wide topic with multiple different branches that include, but
are not limited to

1. coarse estimation of pathway activity utilizing high-throughput data,

2. detailed mechanistic modelling of a single pathway,
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3. study of pathway structures.

Of these branches, the estimation of pathway activities based on high-throughput
data is the one covered in this thesis, and the other two are only briefly introduced
here. However, a strict classification of different types of pathway analysis is not
meaningful as different branches often overlap. For example, a study of pathway
structures can include mechanistic modelling [22], and an unknown molecule alter-
ing a pathway can be considered as a change in either pathway activity or structure
[23].

In coarse pathway analysis, pathway activities or differences in them are esti-
mated for a wide range of pathways based on high-throughput input data using dif-
ferent computational methods. While this approach is less detailed and accurate than
mechanistic modelling, it provides insight to the bigger picture as multiple differ-
ent pathways related to different biological processes are analysed at once. Coarse
statistical analysis is also more straightforward for the end user than mechanistic
modelling as the analysis is well automated and there is no need for estimating dif-
ferent parameters or concentrations. Strengths and weaknesses of this branch are
introduced in Sections 3.2.1 and 3.1.4, respectively.

While approaches based on high-throughput data typically cover plenty of path-
ways on a very general level, mechanistic modelling focuses on one pathway in de-
tail. In mechanistic modelling each interaction of the pathway, such as transportation
over a membrane, binding with other molecules, or activation by dephosphorylation,
is modelled using known or estimated concentrations of present molecules and reac-
tion rate parameters. This leads to a set of differential equations that may or may not
be analytically solvable, depending on the reactions involved in the model. Typical
objectives of mechanistic modelling include investigating why a pathway behaves
unexpectedly under a certain condition, studying quick phenomena difficult to cap-
ture with high-throughput means, and supporting hypotheses of regulatory mecha-
nisms. If the pathway under consideration is large and/or contains complex regula-
tion structures, mechanistic models can become computationally very heavy as the
size of the set of differential equations increases. However, there are implementa-
tions, like cupSODA [24], to tackle this issue. Practical benefits and challenges of
mechanistic modelling are introduced in summary paper [25]. Mechanistic models
are sometimes called kinetic models in the literature.

The study of pathway structures covers topics such as the identification of pre-
viously unknown pathway structures, the completion of the already known ones
through the discovery of new interactions or nodes, and the gathering of additional
information of for example regulatory mechanisms of interactions [26]. This branch
includes a wide range of studies from detailed wet lab research into molecular inter-
actions (e.g. [27]) to automated computational methods to infer the most likely inter-
actions from high-throughput omic data (e.g. [28]). As pathway structures may vary
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according to biological condition [29], studying pathway structures under different
circumstances is common. Cancer signalling is among the most studied examples of
this [30; 31].

3.1.3 Availability of known pathway structures

Pathway analysis requires information about the pathways which can be found from
databases collecting it. There are plenty of heterogeneous databases for pathway
structures and network interactions and Table 1 lists some of the most commonly
used. Meta database pathguide.org [32] introduces hundreds of available pathway
databases and there are also multiple studies introducing, summarising, and compar-
ing them [32; 33; 34; 35; 36]. Pathway databases are sometimes called knowledge
bases in the literature. Besides databases for structural information, there is also a
wide range of other types of assets available, such as visualisation tools, but they are
out of the scope of this thesis.

Table 1. Several available pathway/network structure databases

Name Comment Reference
Biocarta [37]
BioGRID [38]
DAVID Collects data from other databases [39; 40]
Ingenuity Commercial
IntAct includes also MINT [41] interactions [42]
KEGG [43]
NDEx Includes also the content of a discontinued NCI-PID [44] [45]
NetPath Focus on immune and cancer signaling pathways [35]
MetaCyc [46]
Omnipath Several resources merged into one enormous network [17]
PANTRHER [47]
Pathway Commons Collects data from other databases [48]
Pathway Studio Commercial
Reactome [49; 50]
WikiPathways [51]

Each of the databases have their own features and scopes and, therefore, the
choice of pathway database is important [52]. Common differences between pathway
databases are related to criteria for inclusion and how the data is collected, stored,
maintained, and accessed. Criteria for inclusion can concern either whole pathways
or their parts. For example, a database might be specialised to certain species or
pathway types, like signalling or metabolic pathways. Parts of pathways to include
can be selected based on e.g. interaction type and accept only for example protein-
protein interaction. Further details of more technical differences include

• collection: Pathways can be manually curated from literature, extracted from
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other available databases using some selection criteria, or computationally in-
ferred from data.

• storage: The available databases differ from each other based on what they
store (e.g. directions and mechanisms of regulation interactions available) and
how they store it. There are a few commonly used standard languages, such as
SBGN [53] and BioPAX [54], to encode the pathway information, as well as
several comparisons and summaries about them [55; 56].

• maintenance: Some pathway databases are updated frequently, even weekly
in the case of KEGG, whereas others are unmaintained making them obsolete
while still accessible.

• access: The accessing of pathway information either by manually browsing for
it online, or computationally via API can be implemented differently. There
are also different criteria for access (none, registration, or pay-wall).

Due to the numerous differences between databases, the same pathway might be
annotated slightly differently. In this thesis, KEGG is selected as the primary source
of pathway structures as it provides pathways in directed format (i.e. the direction of
a regulatory relationship is indicated), it is frequently maintained and updated, and
it allows a user to easily access its content via API. The KEGG pathway database
started as a database for metabolism pathways and, while nowadays including a wide
range of other pathways, still includes an especially large subset of them.

3.1.4 Challenges in pathway analysis

Pathway analysis encounters difficulties from multiple sources. These can be related
to the pathway methods and their usage, to the limitations of the available input data,
to the pathways and databases annotating them, or to the very concept of pathway
analysis. Here I introduce several pathway, database, and input data related chal-
lenges. Difficulties related to pathway methods and their validation are discussed in
Section 3.3 together with other methodology related topics. In the literature, chal-
lenges in pathway analysis and especially the weaknesses of different types of meth-
ods are often discussed in review studies [36; 12; 34; 57], and Kelder et al. present
wider context for pathway analysis and its usage [58].

One of the main issues with pathway analysis is that many of the known pathways
are tissue specific so it is questionable how reliably changes in their activity can be
detected from other measured tissues. For example, the pathway ’Salivary secretion’
(KEGG id hsa04970) is located in the salivary glands. Can its activity be detected
from blood samples? While blood transports many molecular products, the RNA to
construct those molecules (i.e. the measured part) is not necessarily visible in it. It
is straightforward to leave out pathways whose parts are not expressed in the input
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data, but unfortunately the situation is usually not that simple as many of the genes
in an unrelated pathway are expressed in the measured tissue, they simply play a
different role in it. In small pathways these alternative roles of genes in the measured
tissue may result in false positive findings. Larger pathways are more resistant to this
issue as it is unlikely that all/most of their genes would a) have another role in the
measured tissue, and b) those roles would be systematically up or down regulated.
Instead, if the behaviour of a big pathway is altered, but the change is not visible
in the measured tissue, it will go unnoticed. However, this is a minor issue as the
conclusion that the pathway is not differentially expressed in the measured tissue is
still true. The researcher interpreting the results should bear in mind that this does
not indicate that the pathway could not be altered in the tissue it is located. To our
knowledge, none of the existing pathway methods process any filtering of pathways
that cannot be detected reliably from the measured tissue and there is not much public
discussion about the topic either. However, some methods generally exclude very
small pathways from the analysis due to their overlap with bigger pathways and
statistical instability. Reimand et al. summarise different issues related to very large
or very small pathways in their study [57].

Another challenge is that results of protein-protein interactions are not visible at
the transcriptomic level. For example, if protein A destroys protein B, RNA expres-
sion level of protein B remains unaffected. However, in the pathway analysis process
this may falsely look like interaction 𝐴 ­ 𝐵 is inactive. Analysing proteomic data
or combining it with transcriptomic data avoids this issue. While some pathway
databases, such as KEGG, provide detailed information about the interaction level
(protein-protein in this example), many pathway methods do not utilise it. Selection
of interaction types to use is not obvious as it means balancing between using only
interactions (and nodes) whose activity can be reliably estimated from the data, and
on the other hand, not wasting a vast amount of structural information. Another issue
related to transcriptomic data is its static nature; as transcriptomic data reflects the
amount of RNA present at the moment of extracting it, it is unlikely to capture quick
and dynamic processes. This issue is not limited to pathway analysis, but is present
in all analyses using transcriptomic data.

Pathways and databases providing them can also include some caveats besides
the obvious issues related to unknown, altered, or erroneous pathway structures. As
mentioned before, the structure of a pathway can vary from database to another. One
explanation for this is related to difficulties in defining limits of a pathway [52]. As
even the most downstream nodes tend to further regulate some other molecules, it
is non-trivial to define where the pathway ends. If ambiguity in pathway limits is a
problem, one approach to tackle this is to define huge meta pathways, such as Omni-
path [17], and then focus on subpathway analysis. Another reason for differences in
pathway structures between databases is that the pathways need to be collected from
diverse original studies discovering them, which can be tedious work and, due to
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major differences between the original studies, involve subjective decision making.
Besides pathway structures depending on the database, the annotation coverage could
also be improved. Despite the wide selection of known pathways, only a minority
of commonly measured genes (or expression associated with them) are annotated in
any given pathway [48].

3.2 Objectives and approaches in pathway analysis
3.2.1 Motivation and goals

Pathway analysis has several advantages compared to investigating individual genes.
Most of these are related to three main benefits:

1. Robustness, as pathways consist of multiple nodes, they are more robust
against random variation than single genes [59]. As pathways summarise big-
ger functional units, they can also be detected even if different parts of them
would be altered in different samples, making the gene-level observations too
unsystematic to be identified as interesting findings.

2. Reduction of data, if thousands of genes are identified as DE or otherwise
interesting, it is hard to interpret such a high number of findings. Pathway
analysis reduces the amount of findings to a more understandable scale. This
is particularly important in cancer studies as they often involve drastic changes
in gene expression [13].

3. Insight into the underlying phenomena, as pathways reflect biological pro-
cesses, the detected pathways can hint what is going on in the samples in the
bigger picture, better than individual genes.

In addition, pathway analysis allows for combining different omics [60], which is
discussed separately in subsection 3.2.3. Challenges and weaknesses of pathway
analysis were discussed separately in Section 3.1.4

Typical goals of pathway analysis are related to detecting differences between
samples or sample groups, or identifying the underlying biological processes. The
simplest example is the identification of pathways behaving differently between case
and control samples and then further investigating the potential causes and sources of
those differences, based on which pathways are altered in case samples. If samples
are analysed separately rather than in case and control groups, their pathway scores
can be used to classify or cluster samples. In the case of classification, identifying
pathways that tell the sample groups apart can provide interesting insight into the
classes (such as different subtypes of breast cancer [61]). On the other hand, such
subtypes of a condition could be identified from clustered samples. Another typi-
cal application is detecting pathways whose altered activity could predict something
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(e.g. cancer relapse, severe disease symptoms, drug resistance, or development of
a disease). In practice this means comparing samples from donors who will get the
condition of interest in the future to those from donors who won’t.

3.2.2 Different interpretations of the output values

A pathway method typically provides either a list of DE pathways or, more com-
monly, pathway scores possibly with their significance levels. These scores can be
provided for each sample separately (sample-level analysis) or for sample groups
(group-level analysis). In group-level pathway analysis the aim is to investigate
which pathways have differing activity between tested sample groups, whereas in
sample-level analysis the estimated pathway values are obtained for each tested sam-
ple. Typically, group-level pathway analysis tools require a gene expression matrix
and group labels as input and they return an output value for each pathway. The
input for sample-level analysis is similar to group-level except group information is
not always required. However, the typical output is a matrix of pathways and sam-
ples. Group-level methods are far more common, but nowadays multiple sample-
level pathway methods are also available [61; 62; 63; 64; 65; 66]. Sample-level
analysis can be preferred in several cases, if for example the study does not include
sample groups, the condition is known to have high individual heterogeneity, or there
are sample subgroups that would go unnoticed if the samples are somehow pooled.
On the other hand, group-level analysis results are more straightforward to interpret
as they do not necessarily require any further downstream analysis. When construct-
ing the group-level scores the underlying gene expression needs to be summarised
either before the pathway analysis, in which case the input can be for example a
list of DEGs, or during it. Ackermann et al. provide a summary of different early
approaches to construct group-level scores [67].

The output values can represent two different properties, deregulation or activity.
Deregulation scores (e.g. [61; 1]) reflect the normality of the pathway behaviour
and they usually require control samples to define the normal level. Besides the
method-specific deregulation scores, some measure of statistical significance, such
as p-value or FDR, is usually returned so that a user can evaluate which pathways’
behaviour is significantly altered in case samples. As the name suggests, an activity
score describes how active the pathway is. Usually, activity scores are calculated
by summarising scaled expression values of pathway nodes [68; 59]. The methods
differ from each other by the summary and scaling techniques used. The problem
with these types of approaches is that they assume all genes in the pathway to be
highly expressed when the pathway is active, which is not the case with different
inhibiting structures present in many pathways. In our own pathway method PASI
(publication II), this pitfall of activity score is avoided by estimating if each node
should be highly or lowly expressed when the pathway is active, and the measured
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values are multiplied by +1 or -1 accordingly. Also some other methods utilising
pathway structure, for example SPIA [1], overcome the issue. Both score types can
be used in sample-level and group-level pathway analysis. In general, deregulation
scores are more common than activity scores.

Besides analysis of whole pathways, methods for subpathway analysis have also
been developed [69; 70; 71; 72; 73]. There are several biological questions to mo-
tivate subpathway analysis. In cases where a disease or other biological condition
alters some part of a pathway, the downstream pathway will also be altered. With
subpathway analysis it can be identified which part of a pathway is associated with
the initiation of the disease and which are just progressions of that [74]. Another ex-
ample is analysis of large pathways, where the sizes of the pathways make it harder
to do biologically accurate interpretations from whole-pathway results. This issue is
common with metabolic pathways [75].

3.2.3 Special input data types: multi-omics and single cell

Despite transcriptomic data being on the focus of this thesis, each omic has its own
strengths. For example, as proteins are the actual functional units in a body, their
amount and activities can reveal more to-the-point information of ongoing processes
than gene expression. Due to reasons like destruction of ready proteins and their post-
translational modification, gene expression levels do not indicate ready protein levels
as well as one might expect [76; 77; 78]. On the other hand, proteomic data is harder
to measure, especially for small proteins. Combining different levels of omic data
has provided interesting insight [79; 80; 81], though it is experimentally demanding.
While integrating multiple omics has several advances, most of them are related to
the potential to identify and understand causality relationships behind the biological
condition of interest instead of only correlations [82]. This is especially beneficial in
studies involving complex and heterogeneous phenomena like cancer [83] or toxicol-
ogy [84]. There are several databases providing multi-omic data, such as The Cancer
Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI), and Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC).

Pathway analysis naturally fits into integrative multi-omic analyses [60] as the
interactions in a pathway can cross different omics (e.g. proteins might regulate tran-
scriptomes). Despite that, there are only limited selection of pathway methods easily
allowing combining different omics, as pointed out by Yan et al. [60]. However,
some methodology is already available. For example, PARADIGM [85] is among
the first multi-omic pathway methods and it is based on Bayesian approach, Ac-
tivePathways [86] is a recent method with finalised implementation, and MOSClip
[87] combines different omics for pathway and survival analysis by utilising pathway
topology. Some of the approaches (e.g. PARADIGM) utilise the detailed pathway
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information and associate different omics with the corresponding details of the path-
way structure, whereas some approaches (e.g. ActivePathways) map each omic to
the same pathway genes so that each gene in a pathway has multiple values that
can be further processed in different manners. Review by Subramanian et al. [88]
summarises several aspect, including pathway analysis, of integrating different omic
data.

While multi-omic approaches combine several omics, possibly including tran-
scriptomics, there is also an interesting special case of transcriptomic data that should
be introduced separately. In single cell RNA sequencing data (sc-RNAseq) RNA
is extracted and measured from each cell separately, which results into very large
datasets. It has been shown that cell populations are heterogeneous [89; 90] so fairly
many cells are needed to get an overview of the cell population. Minimum of 50
cells per cell type has been suggested in the literature [91], but the heterogeneity of
the tissue (i.e. number of cell types present) and presence of rare cell types affects
the required cell count. This combined with the need of many individuals to make
statistical conclusions about biological conditions causes the total number of cells to
analyse to be very high. However, if the focus of a study is to compare cell popu-
lations to each other rather than biological conditions (e.g. case vs control samples
study setting), the number of sample donors is usually lower. The most important
difference to bulk RNAseq is that one cell does not express nearly as many genes
as all the cells present in a sample combined. Therefore, in sc-RNAseq data there
is considerable amount of zeros. As sc-RNAseq has become a popular experiment,
number and size of publicly available datasets are growing rapidly [92].

There are several pathway methods designed for sc-RNAseq, such as PAGODA
[93] which builds on SCDE [94] error model for single cell data, AUCell which is
part of SCENIC R package [95] and provides activity scores, iDEA [96] which does
simultaneous DE analysis and pathway analysis, UCell [97] which is a computa-
tionally light method based on Mann-Whitney U statistic, and function addModule-
Score [98] from a popular sc-RNAseq tool kit Seurat [99]. Notably, none of these
approaches utilise pathway topology. In addition, pathway methods providing dereg-
ulation scores based on for example input list of DEGs can be used similarly with
sc-RNAseq data, but it is up to the user to define the input. It can be more chal-
lenging than with bulk RNAseq data including straightforward case vs control study
setting as the definition of the sample groups does not follow immediately from the
study design. As the average number of cells analysed per dataset is increasing [92],
practical aspects related to implementation and running time are becoming more and
more important.
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3.3 Pathway methods
Table 2 includes several available pathway methods with implementation freely avail-
able at the time of writing (January 2020). Therefore, several methods have been ex-
cluded due to reasons like lack of implementation, implementation no longer avail-
able (broken links etc.), or the software is commercial or otherwise limited access.
Also methods for subpathway analysis and those for other omic data than transcrip-
tomics have been excluded. Many of the pathway methods listed in Table 2 are
implemented in R packages graphite [100] and ToPASeq [101] in addition to
their original implementation.

Table 2. List of several available pathway methods for transcriptomic data

Name Speciality Reference
ABP For longitudinal analysis, uses GSVA for basic pathway analysis [102]
ACST Based on consistent subpathways [103]
ActivePathways Multi-omic method [86]
BPA Bayesian networks [104]
CAMERA Adjusts gene set test statistics with inter gene correlations [105]
Cepa Nodes are weighted based on pathway topology [2]
CERNO Fast ranking-based approach for gene sets [106]
Clipper Analyses also subpathways [107]
DART Prunes pathways in order to reduce noise [108]
DAVID Modified Fisher’s exact test, multiple pathway databases [109; 40]
EasyGO Supports Affymetrix GeneChips of farm animals [110]
EGSEA Ensemble method for gene set analysis [111]
EnrichNet Combines analysis and visualisation [112]
GANPA Uses GSEA, but adds topology based weights [113]
GGEA Evaluates consistency of pathway nodes [114]
GLOBALTEST Evaluates significance of a gene set and focuses on visualisation [115]
GOMiner Enrichment of GO terms based on DEGs [116]
GOstat Provides sorted list of GO terms enriched with DEGs [117]
GSA Modified version of GSEA [118]
GSEA Utilises Kolmogorov-Smirnov-like rank statistic [119]
GSVA Utilises Kolmogorov-Smirnov-like rank statistic [120]
iPANDA Identifies biomarker pathways using co-expression and gene importance [121]
iPAS Sample-specific deregulation scores designed for cancer studies [64]
mitch Multi-contrast gene set enrichment [122]
NEA Evaluates the number of functional links between DEGs and gene sets [123]
NetGen GO term combination-based functional enrichment analysis [124]
NetGSA Models gene expression as a function of other genes in the network [125; 126]
PADOG Weights genes unique to the pathway [127]
PAGODA Designed for single-cell data [93]
PARADIGM Models pathways as factor graphs [85]
PASI Provides sample-specific deregulation or activity scores [62]
Pathifier Sample-specific scores based on principal component analysis [61]
PathNet Utilises connectivity information within and between pathways [128]
PathOlogist Calculates consistency and activity for each interaction [129]
Pathway-express Updated and maintained in R package ROntoTools [130] [131]
PerPAS Sample-specific pathway scores based on topology-weighted nodes [132]
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PWEA Utilises topology and gene–gene correlations [133]
pypath Developed together with pathway resource Omnipath [17]
SAM-GS Gene set expansion of SAM analysis for single genes [134]
Singscore Sample-specific scores that are stable on small data [135]
SPIA Scores calculated utilising p-values and pathway topology [1]
ssGSEA Sample-level version of GSEA [66]
TAPPA Identifies phenotype-associated pathways utilising pathway topology [136]
TBScore Nodes are weighted based on number of significant down-stream nodes [137]
TopoGSA Focuses on topology and visualisation [138]

3.3.1 Generations of pathway methods

The first pathway methods were published soon after microarray analyses became
popular at early 2000 [139; 140; 141; 142]. While pathway methods are diverse and
can be classified using multiple criteria, there are three main generations of methods,
where newer generation attempts to address the issues of the previous one. However,
within-generation variation of the methods is high especially in the second and the
third generation. Reviews [12; 36] introduce the three generations of pathway meth-
ods together with their most outstanding limitations and [67; 143] provide a thorough
reviews of the first two generations. In this summary, I utilise the terminology used
in [12].

Methods for over representation analysis (ORA) represent the first generation of
pathway methods. They mostly have similar working principle: investigate if path-
ways (from databases) include more differentially expressed genes than expected
by random. The methods differ from each other by details like definition of differ-
entially expressed genes and how they access and store the gene sets representing
pathways, but the underlying tests are similar. Typically the tests are based on hyper-
geometric, chi-square, or binomial distribution. However, other hypotheses such as
so called ’self-contained null-hypothesis’, which assumes that a pathway contains no
differentially expressed genes can also be tested. For example Garcia-Compos, Ack-
ermann, and Maciejewski discuss different null-hypotheses in their review studies
[36; 67; 144]. Early ORA approaches can be utilised only for group-level analysis.

As the first generation methods classify genes into two binary categories (DE
or not), the level of differential expression is ignored and slightly, but systemati-
cally, altered pathways are likely to go unnoticed. The second generation of func-
tional class scoring (FCS) methods aims to address these problems. First, a statistic
value, like fold change or t-statistic, is assigned to each gene. Then these values can
be scaled/transformed to increase robustness or to assure that both up- and down-
regulated genes get to contribute. Finally, these gene-level values are summarised
into pathway values, whose significance is then calculated. The first FCS methods
were published in 2003 [145; 146].

The third generation of pathway methods utilises pathway topology. In its sim-
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plest forms, the approach is otherwise very similar to FCS, but when summarising
gene-level values into the pathway scores, different genes are weighted based on
some topological value, like number of nodes connected to the gene or number of
paths going through it. Other approaches include calculating values also for inter-
actions and considering them as pathway units as well, nodes inheriting expression
from other nodes according to the interactions, and utilising the whole pathway struc-
ture at once as in Bayesian graphs (though they are more commonly utilised when
the goal is the identify pathway structures [147; 148; 149]). The first statements
about pathway topology methods were published already in 2004 [150], but the first
implementation came in 2007 [131]. The main issue with pathway topology methods
is that the pathway topology is not always known and there has been statements that
it could also change due to factors like age or disease [29].

3.3.2 Working principles of pathway methods

All pathway methods need to somehow access pathway information, map the mea-
sured input values into the pathways, and then summarise them into pathway scores.
Many methods also somehow process the input data before and/or after it has been
mapped into the pathways. How and which of these steps are done varies between
and within method generations. Different steps of pathway analysis have been sum-
marised also in the literature [36; 151].

Accessing pathways Pathway information, whether it includes pathway structures
or not, can be obtained as an input from a user, as built-in knowledge, or by
automatically connecting to some online pathway database via API. Especially
in the last case when potentially very detailed information is available, the
selected pathway method extracts only the level of information it utilises. For
example, KEGG database includes interaction type ’indirect effect’, and some
methods might utilise only direct interactions, whereas others could utilise all
of them.

Preprocessing the input data Common examples of data processing are scaling
the data so that different genes and samples are comparable with each other,
summarising samples within sample group in case of group-level analysis, ex-
tracting DEGs or calculating fold changes in case of FCS method, and filtering
out lowly expressed genes (i.e. unreliable measurements).

Mapping input data to pathways Measured gene expression are mapped to the
pathway nodes according to the gene ids associated with input transcriptomics
and pathway nodes associated with gene products. If a pathway includes plenty
of nodes not related to gene products (e.g. chemical compounds), or otherwise
not measured, the final pathway scores are likely to be unreliable. This is a

20



Pathway analysis

challenge for all available pathway methods and some of them (e.g. PASI in
original publication II) filter out pathways with too few measured nodes.

Processing values mapped to the pathways Pathway associated values can be
further processed by for example weighting them according to some pathway
topology related criteria [2], calculating values for interactions using node val-
ues [62], or updating the node values based on their neighbour nodes [1].

Calculating pathways scores The final pathway scores can be either values de-
scribing activity or deregulation (see Section 3.2.2) or simple statistical met-
ric describing significance (p-value or FDR). The latter is common especially
with ORA and FCS methods (see Section 3.3.1). To obtain activity or dereg-
ulation scores, the possibly processed values mapped into the pathway need
to be somehow summarised. The simplest way to do it is to calculate their
mean [85]. On the other hand, for example Pathifier [61] uses a very sophisti-
cated pathway deregulation score defined as distance to control samples along
principal curve in multidimesional space set by pathway nodes.

Notably, some methods (especially early ORA and FCS methods) might require
some steps like processing of the input data, but instead of doing it internally, it
is defined as a criteria for input data so that a user needs to do it before applying the
method.

3.3.3 Evaluation of available methods

As pathway activity can not be directly measured, validating pathway analysis re-
sults is difficult. Several approaches have been proposed and utilised and they all
have their own strengths and weaknesses. The commonly used strategies to validate
pathway analysis results include

• Simulated data

• Knockout genes

• Literature review

• Target pathways

• Sampling the input data

• Similar datasets

• Sample classification

• Number of detections from real data as compared to dummy data
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When simulating data to create a gold standard, measurements from selected genes
are intentionally altered so that it is known that certain pathways including those
genes should be detected [15]. The issue with simulated data is that assumptions
of the person creating it affect the data and an end user can never be sure how a
method would perform with real biological data. Another approach is to disable a
gene all together (so called knockout gene), which causes pathways containing the
gene to become altered. While this is among the better approaches, knockouts usu-
ally affect the expression of multiple other genes generating more real yet unknown
pathway detections. Another issue with knockout approaches is that they are usu-
ally limited to animal models due to ethical reasons. While some gene knockdown
approaches and modern techniques, like increasingly popular CRISPR method, have
been applied on humans, the ethical aspects [152] heavily limit the sample sizes in
such studies. Literature review as a validation strategy means investigating if the
detected pathways are known to be relevant for the biological condition present in
the data [132; 61]. The main weakness of this strategy is that the wide literature
can link nearly all pathways to all biological conditions if the citations are selected
to support the detections. A more reliable version of this approach is to investigate
if a pathway directly related to the condition (i.e. target pathway), is among the
top detections [131]. However, this is possible only when the condition is strongly
associated with some pathway and the pathway is relevant (also) for the measured
tissue. For example, it is not clear how well the Type I diabetes mellitus -pathway
(KEGG id hsa04940), which is located in pancreas, can be detected from PBMC
samples from T1D patients and healthy controls. Instead of defining the correct de-
tections based on the literature, they can also be extracted ad hoc from the input data.
This means sampling the data multiple times and stating that a good method detects
the same pathways from the sample subsets [153]. However, this is possible only
with large datasets containing very similar samples without further subgroups than
the main ones in group-level analysis. Another strategy utilising reproducibility is
to investigate if the same pathways are detected from similar datasets from separate
studies. In this case the results are expected to differ more than with sampling the
same data and it can be hard to define how similar results should be expected. This
issue can be relived by utilising many similar yet separate datasets making the test
more robust against one low quality or otherwise outlier dataset [132]. However, it
can be difficult to find multiple similar yet different datasets, especially if the biolog-
ical condition, sample preprocessing, or measurement technique is rare. In case of
a sample-specific method, it can also be investigated if the samples can be classified
biologically meaningfully (disease subtypes, survival time, case vs control) based
on the obtained pathway scores [154; 132; 61]. Besides sample-specific pathway
scores, also known sample groups are required. Finally, one option is to investigate
whether a method finds more significant detections from real data than from dummy
data without any real signal. For group-level methods this dummy data can be for
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example randomly assigned DEGs [1]. Despite the lack of perfect validation, rea-
sonably convincing evidence can be obtained by combining several approaches, such
as knockout genes or target pathways and data sampling.

Besides the accuracy of the results, several other aspects related to the usability
of the tested method are often evaluated. Typical topics to test include for exam-
ple sensitivity to sample size, computational requirements such as running time and
memory usage, effect of noise in input data, and false positive findings. These fea-
tures are easier to evaluate than the correctness of the actual results. For evaluation
purposes the input data can be modified by for example reducing sample size, adding
noise, or mixing sample labels. Also different aspects of the pathways and their ef-
fect on the results can be tested. Typically this means evaluating how the method
handles pathways of exceptional size or structure and does the utilisation of pathway
topology improve the results.

Despite the challenges in validation, different pathway methods have been evalu-
ated. There are several studies reviewing and comparing available pathway methods
in theoretical level [34; 33; 155; 143; 156; 157]. Besides direct comparison of the
available methods, also their ranking metrics have been evaluated [158]. Our pub-
lication I [159] includes empirical comparison of state-of-the-art methods covering
also third generation tools utilising pathway structures. The study focuses on meth-
ods providing a list of pathways that behave differently between two sample groups.
In the original publication I, we validated the tested methods by investigating if they
find systematically similar pathways from similar data sets. Similar metric has been
recently utilised by another study [106]. In order to prevent methods that claim all
pathways as differentially expressed in all datasets appearing as optimal methods,
we tested how prone the methods are to detect false positive findings. This was
done by mixing case and control labels randomly multiple times; a good pathway
method should not detect many pathways as significantly different between the arti-
ficial sample groups (false positive findings). About the same time another similar
empirical comparison was published [160] and later on more [154; 15; 14; 161]. The
comparisons use different evaluation criteria and their conclusions are not entirely
uniform, but majority of them state that methods utilising pathway topology slightly
outperform ORA and FCS approaches. Earlier empirical comparisons evaluated only
generation one (ORA) and two (FCS) methods [162; 163; 164].

3.4 Summary of pathway analysis
Pathway analysis is a regular step in studies utilising transcriptomic data and usually
it aims to estimate pathway scores for wider set of pathways representing different
biological processes. Its main benefits are robustness, data reduction, and insight to
underlying biological phenomena, but it has also weaknesses. For example, results
for tissue specific pathways can be difficult to interpret and effect of all interactions
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(e.g. protein-protein interactions) is not visible in transcriptomic data, which can
cause false conclusions in pathway analysis utilising pathway topology. On the other
hand, methods not using pathway topology are often overly simplistic and they have
been outperformed by topology methods in the literature (e.g. original publication
I). There are many publicly available methods to do pathway analysis and they are
very diverse. Some methods aim to estimate pathway activity and some its deregula-
tion as compared to normal sample and the scores can be calculated to either sample
groups or individual samples separately. Pathway method PASI (original publication
II) utilises pathway structure and provides both score options, activity and deregu-
lation, for sample specific pathway scores. When developing and introducing new
methodology, special attention should be paid on validating it as usually true gold
standards are not available.
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4 Deconvolution

4.1 Introduction to deconvolution
If gene expression data is measured from heterogeneous tissue containing several
types of cells, it can cause some difficulties. Diversity in samples’ cell type compo-
sitions and cell type specific expression generate variability in the bulk expression,
which can mask changes in one cell type. Analysis of single genes and bigger net-
works like pathways are both vulnerable to this noise from mixture of cell types. To
address the issues caused by heterogeneous tissues, different cell types need to be
separated either experimentally or computationally.

4.1.1 Different approaches to obtain cell type specific gene ex-
pression data

There are three main approaches to obtain cell type specific data. The first one is pu-
rified cell populations, which means that the experimental design includes purifying
the samples so that they include only certain type of cells. More detailed experi-
mental approach is single-cell analysis in which expression levels of different genes
are measured separately for each cell. The third way is deconvolution, which means
computationally extracting cell type specific information from samples originally
containing different types of cells. Unlike the other two approaches related to ex-
perimental design, deconvolution is a computational approach applied on bulk data.
All of these approaches have their own strengths and weaknesses briefly introduced
below. Difficulties to analyse rare cell populations is one weakness common for all
of them.

The main issues with purified cell populations are that the researcher needs to
decide beforehand which cell types to look for, and not all the subtle cell types can
be separated. On a positive side, the results are more robust as compared to single-
cell data and do not have the uncertainty of computational estimates related to de-
convolution. Common methods to isolate cell populations to extract the cell type
frequencies include fluorescence-activated cell sorting (FACS) and laser-capture mi-
crodissection. The selection of isolation method of cell types can drastically affect
the outcome [165]. Besides purified cell populations, this type of data can be called
sorted or enriched cells.

While single-cell data provides the most detailed information among these three
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approaches, the number of analysed cells should be high as the cell populations have
been shown to be very heterogeneous [89; 90]. This demand of high number of cells
often financially limits the number of biological replicates, which limits the biologi-
cal conclusions as individuals are known to be heterogeneous as well [166; 167]. In
addition, single-cell analysis is not easy to do for all cell types as some cells tend
to either die during the processing or stick to other cells so that their separation for
analysis is difficult [168]. Also for example fibrous and minute tissues are difficult
to dissociate into single cells [169].

The main drawback of deconvolution is that it is likely to provide less accurate
results as compared to experimental design based approaches. On a positive side,
computational methods are free of charge (excluding commercial methods) and they
can be applied on old data. The possibility to computationally extract cell type spe-
cific information from old data without re-doing the experiment in cell type specific
manner (purified cell populations or single-cell) is especially valuable if the study
of interest is difficult to reproduce. The source of difficulty can be for example long
follow-up time of longitudinal data, rare disease, or samples that are technically chal-
lenging to extract.

4.1.2 Formal definition

First of all, it is important to notice that the term deconvolution used in the context
of extracting cell type specific signal from bulk gene expression is not related to the
generally used mathematical definition of convolution (𝑓 * 𝑔)(𝑡) =

∫︀∞
−∞ 𝑓(𝜏)𝑔(𝑡 −

𝜏) 𝑑𝜏 . Here the underlying model is almost always either directly or some modified
version of

𝐸 = 𝑆 · 𝐶, (1)

where matrix 𝐸 is a bulk expression matrix with samples as columns and genes as
rows, 𝑆 is a matrix describing how strongly pure cell types (columns) express the
genes (rows), and 𝐶 is a cell type proportion matrix (i.e. columns of 𝐶 sum into 1)
that indicate proportions of cell types (rows) in samples (columns). Therefore, total
expression of gene 𝑔 in sample 𝑛 is a linear combination of expression levels from
different cell types 𝑡 weighted by their corresponding proportions: 𝐸𝑔𝑛 =

∑︀
𝑡∈𝑇 𝑆𝑔𝑡 ·

𝐶𝑡𝑛, where 𝑇 is the set of all present cell types. Cell type proportions are also
called cell type fractions or compositions in the literature and sometimes term cell
population is used instead of cell type.

4.2 Objectives and requirements of deconvolution
Deconvolution can aim either to detect cell type proportions 𝐶 or to extract cell type
specific expression profiles 𝑆. Here these two approaches are called composition and
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expression deconvolution, respectively (Figure 3). For composition deconvolution
there are more methods available than for expression deconvolution, but in original
publication III, we address this issue by introducing a novel robust method for ex-
pression deconvolution and evaluating it together with the other available methods.
Methods that aim to infer both 𝐶 and 𝑆 are called complete deconvolution methods,
whereas composition and expression deconvolution methods are partial deconvolu-
tion. Composition deconvolution includes also several methods that aim to estimate
cell type abundances [170; 171] instead of cell type proportions. In these cases, pre-
dicted values are comparable over samples, but not over cell types. There is a public
debate about pros and cons of cell type proportions and abundances [172; 173]. An-
other related goal is to estimate a score describing for example the purity of tumour
samples (e.g. [174]). Detecting cell type specific DE genes (csDEGs) is a goal re-
lated to expression deconvolution and different types of methods for it are empirically
compared in original publication IV.
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Figure 3. Overview of composition and expression deconvolution in a toy example of three cell
types (cells notated with light blue squares, dark blue circles and black squares)

There are some special cases that contain deconvolving only two, or at most
few, cell types. The most common example is cancer studies where the goal is to
separate cancer cells from healthy tissue. Different characteristics of deconvolution
in cancer research are discussed in more detail in Section 4.4.4. Another application
for methods focusing on only two cell types is single cell doublets. In single cell
techniques each cell is extracted into its own droplet or well, but errors happen in
this process resulting into droplets/wells containing two or more cells. Originally
these droplets/wells containing two or more cells, called doublets or multiplets, were
just identified and excluded from the data, but recently approaches to identify and
deconvolve them into usable single cell data have been proposed [175].
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4.2.1 Signature matrix and marker genes

Most composition deconvolution methods require a signature matrix or a list of
marker genes as an input (see Table 4). Some methods utilising such input offer
a built-in version of it for some commonly analysed tissues like blood, or construct
it internally. A signature matrix includes cell types assumed to be present in the
bulk data as columns and signature genes as rows. The values are genes’ expression
levels in purified cell types. Signature genes should be stable over samples and tell
the cell types apart from each other. The number of utilised signature genes is often
(e.g. [176; 177; 178; 179; 180]) defined by minimising a condition number [181],
which is formally defined as the product of the norm of the (signature) matrix and
the norm of its inverse. The condition number reflects models’ sensitivity to noise,
so low number is associated with robust performance [182]. Typically this leads into
several hundreds or thousands of signature genes [183; 169]. Genes that are exclu-
sively expressed by only one cell type are called marker genes. Instead of expression
values, a list of marker genes includes only names of genes that are enriched in cell
types. The difference between marker genes and signature genes is vague, but marker
genes are often more exclusive. However, also signature genes with big difference
between the expression in the most expressing and in the second most expressing
cell types have been reported to be favourable [184]. Notably, in other contexts than
deconvolution, term ’gene signature’ is usually used slightly differently, but it still
typically characterises some phenomenon (rather than cell type). Here I call the bulk
data to be deconvolved target data and the cell type specific data used to construct
signature/markers source data.

A list of marker genes is easier to produce than a signature matrix, but it includes
some caveats as well. The main issue with marker genes is that not all, especially
closely related, cell types have clear transcriptomic markers [185], which often lim-
its marker-based approaches to coarse cell types. Another issue is that the overlaps
between markers from different studies or marker databases is often low [186] indi-
cating that robust markers valid in most datasets are hard to find even for coarse cell
types. Also, lowly expressed markers detected from RNAseq data (either single-cell
or bulk from purified cell populations) might be unreliable if the target data to be de-
convolved is old microarray data with higher noise level. Several studies [187; 188]
have pointed out that marker candidates with medium to high expression are more
robust than those with low or very high expression. Notably, surface markers that are
used to separate cell populations from each other in cell sorting can not be directly
used as marker genes for computational deconvolution as they are not necessarily
expressed in RNA level [189].

Construction of signature matrix is a demanding yet important step in decon-
volution [178] as it requires purified cell populations from samples similar to the
target bulk data to be deconvolved. Vallania et al. demonstrated that the selection
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of a signature matrix has even bigger impact on final results than the selection of
the deconvolution method [190] and Cobos et al. stated that composition deconvo-
lution methods utilising a signature matrix outperform those utilising marker genes
[184]. In the same study they showed that technical, such as microarray platform, and
biological, such as disease state, biases in signature significantly affect the deconvo-
lution accuracy. Also other studies have reported similar observations. For example,
signatures constructed using healthy samples are not necessarily accurate for cancer
samples [191; 190], different normalisations yield different results [185], signature
constructed using samples from adult donors causes bias when the data to be de-
convolved is from babies [192], and the same immune cell types can have different
expression profiles in different tissues [193; 194]. Furthermore, as cells interact with
each other, the expression profile of a cell type can be affected by the other present
cell types [98], making the matter more complicated. This phenomenon is an issue
mainly for tissues involving very diverse cell types, like skin [195]. All this em-
phasises that the signature should be constructed with care and utilising source data
similar to the target data to be deconvolved, if possible. As a signature matrix should
represent all samples as well as possible, the selected signature genes should be sta-
ble over samples. In other words, a pure cell population should express a signature
gene with similar intensity in all the samples. Therefore, an ideal signature matrix is
a subset of 𝑆 from model (1) including all its columns (cell types) and robust, stable,
and cell type separating subset of its rows (genes).

Approaches to obtain a signature matrix or a marker gene list

There are three ways to get a signature matrix or a marker gene list:

• Using readily available one

• Using a computational method to construct one from source data

• Manually constructing one from source data

The last one is widely used and while the strategies vary from researcher to another,
the process usually includes at least two main steps. The first one is some kind of
identification of genes that are mostly expressed by one cell type, and the second one
is about filtering out those genes that are not stable within samples of the same cell
type. However, the process can be a lot more complicated [196].

There are ready signature matrices and marker gene lists publicly available.
The signature matrices are usually constructed and published with a deconvolution
method [171; 197; 178; 196], which makes the methods easy to use for those partic-
ular cell types. In many cases the built-in signature can also be extracted and used
with other methods, if wanted. Typically this built-in information is for different
cell types expected to be present in peripheral blood mononuclear cells (PBMC). For
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target data from other tissues, those can not be used but the user needs to provide a
signature matrix or marker gene list relevant to the tissue, similarly as with the de-
convolution methods not providing built-in signature/markers. For marker genes, be-
sides deconvolution methods providing them, there are also databases not related to
deconvolution. These online resources include CellMarker [198], PanglaoDB [199],
Blood Atlas [200] (included in The Human Protein Atlas [201]), and CTen [202].
Also few methods aiming to classify single cells, such as Garnett [203], SCINA
[204], and DigitalCellSorter [205], contain cell type markers that can be utilised for
deconvolution purposes.

While the most common approaches to get a signature matrix or marker gene list
are to use readily available ones or to manually construct them from suitable source
data, there are also few computational methods to do the task. Several composition
deconvolution methods using a single cell data to internally construct a signature ma-
trix allow the user to extract the constructed signature. Utilising this feature, meth-
ods like DWLS [179], SCDC [206], and BSEQ-sc [207] can be used to construct a
signature matrix from single-cell data. Similarly CIBERSORTx [208] allows con-
structing the signature from either single cell data or bulk data from purified cell
populations. Also methods to augment new cell types to an existing signature ma-
trix have been published [209]. Some examples of methods to identify marker genes
are Nano-dissection [210], which identifies genes with cell type specific expression,
CellMapper [211], which searches for genes with similar expression pattern than
given marker(s), and CellCODE [189], which is a deconvolution method.

Source data

Using single-cell data as source data has its own up and down sides as compared to
bulk analysis of purified cell populations, which are more similar to the bulk target
data. The challenges with single-cell data include 1) number of rare cells being too
small to pool them for a reasonably reliable expression profiles, 2) sequencing depth
affects the distribution of counts and it is different from that of a (target) bulk data,
and 3) as single-cell studies often include only few donors, lack of individual hetero-
geneity can become a problem. However, not all cell types can be purified for the
bulk approach either, and the same lack of donor individuals is often present in those
studies as well. In addition, if the coming sc-RNAseq datasets are large as compared
to the currently available ones, some of these issues could be relieved. Chen et al.
have recently evaluated several challenges related to constructing a signature from
single-cell data and they conclude that bulk-analysis based signatures are more re-
liable than single-cell based ones [193]. Also Lambrechts et al. argue that biases
in sc-RNAseq may cause differences between cell types’ expression profiles in bulk
and single cell data [168]. However, single cell data has also several benefits, such
as possibility to identify cell populations without distinct surface markers and pos-
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sibility to identify and exclude cell subpopulations not expected to be present in the
target data.

Notably, when a researcher is constructing a marker list from single cell data,
they should be cautious of how the cells have been identified. In case the cell types
of single cells have been defined based on only RNA expression markers (i.e. no
additional surface protein markers or full expression profiles utilized), there is a risk
of circular logic in using the data for deconvolution as this automatically leads to
detecting the markers used in identification. However, currently the clustering-based
cell type identification approaches are dominating the field so the issue is present
mainly in old datasets. While surface protein markers are not perfectly reliable either,
utilising also them adds to the confidence in the cell type identification [212].

There are several attempts to collect suitable source data into one database.
Among them, the previously mentioned GEO and ArrayExpress are the widest and
besides suitable source data, they also contain plenty of bulk datasets from mixture
tissues. However, there are also more specialised databases available, especially for
single-cell data, as summarised in Table 3. Besides online databases, several R pack-
ages also contain collected source datasets, namely deconvolution related R package
CellMix [213] has some suitable source data and SingleR [214] provides access to
several databases listed in Table 3 despite its main focus being at classifying single
cells.

Table 3. Potential databases to search for source data. Databases marked with * require
registration or request before access to the data, and those marked with ** provide links to other
databases instead of actually hosting the data.

Name Description Reference
10x single-cell data created with 10x platform
ArrayExpress general [215]
BLUEPRINT* human data, main focus on epigenomics [216]
DICE sorted human immune cells [217]
GEO general [218; 219]
Human Cell Atlas single-cell data from human [220]
ImmGen mouse data [221]
JingleBells single-cell data [222]
PHANTOM5 mammal data [223; 224]
Recount2 general [225]
SCPortalen** single-cell data [226]
scRNASeqDB** single-cell data from human [227]
Single Cell Portal* single-cell data
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4.2.2 Input for expression deconvolution methods

Complete deconvolution methods mainly utilise input similar to composition decon-
volution methods, but expression deconvolution methods have generally different
requirements. Most of them expect cell type proportion matrix 𝐶 as an input. Some-
times it can be readily available, for example if FACS analysis has been done for the
bulk samples to be deconvolved. However, that is an exception and most of the time
it needs to be estimated, potentially with composition deconvolution. As estimates
are never absolutely accurate, it is important that expression deconvolution methods
tolerate some noise in 𝐶. In publication III, we demonstrated that most tested ex-
pression deconvolution methods endure minor noise in input reasonably well. On
the other hand, in the same paper we showed that the number of samples in the input
data has a considerable effect on the accuracy of the results, which is not the case for
all composition deconvolution methods [188; 228].

4.3 Variation and validation in deconvolution

4.3.1 Sources of differences between bulk samples

In the basic deconvolution model 𝐸 = 𝑆 · 𝐶 the only source of variation between
samples is the different cell type compositions in matrix 𝐶. However, this is not the
whole truth as cell types can also behave differently meaning that expression pro-
file of pure cell type 𝑥 might be different in sample 𝑖 and sample 𝑗, which leads to
individual differences in matrix 𝑆. Unfortunately estimating 𝑆 (expression decon-
volution) is difficult as shown in publication III, and estimating sample-specific 𝑆 is
even harder as discussed below. The source of differences in bulk expression (𝐶, 𝑆,
or both) varies from gene, condition, tissue, and study to another. T1D is an inter-
esting example of uncertain source of variation as there is an open debate if the beta
cells are fully absent from T1D patients’ pancreas (𝐶 is altered) or if the beta cells
are there to some extent, but they have lost their insulin production functionality (also
𝑆 is altered) [229; 230; 231]. As beta cells are identified mainly by their insulin pro-
duction, they can not be detected in composition deconvolution in either case as the
signature matrix is invalid for the case samples. However, the issue can be avoided
if the possible living, but dysfunctional beta cells would be systematically mistaken
for one other cell type, say alpha cells. In this case, the case samples would have
higher proportion of alpha cells as compared to controls without T1D. On the other
hand, if the dysfunctional beta cells would be mistaken for several different cells or
would go totally unnoticed, it would be impossible to distinguish the situation from
dead beta cells.
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Personalised 𝑆

Estimating 𝑆 for each sample separately is a very demanding task and not many
methods claim to do it. However, while our leave-one-out based attempts to develop
a deconvolution method that estimates personalised 𝑆 were not sufficiently accurate
to our satisfaction, there are few other tools to obtain related goals. The closest
one is CIBERSORTx [208] as it includes an option to estimate personalised 𝑆, but
the size of the bulk data (number of genes and samples) is limited and analysing
a typical modern dataset with the available online implementation would require
requesting for more computational resources. DeMix [232] is another related tool,
it provides personalised expression profiles for two cell types, tumor and healthy
tissue. Unfortunately the link to the code has expired, so it is unsure if the method
is available in practice. ISOpure [233] is an available method close to DeMix, it
purifies expression of tumor samples from the effect of healthy tissue.

Cell type specific differentially expressed genes

A relaxed version of estimating a personalised 𝑆 is to identify cell type specific
DEGs (csDEGs), namely genes that are differentially expressed between two sample
groups within one cell type. They may or may not be detectable from mixed bulk
data, and if the cell type composition is different between sample groups, they get
easily masked in the bulk data by genes that are strongly expressed by the cell type
enriched in one sample group.

There are several expression deconvolution methods that allow cell type specific
DE analysis [234; 235; 189; 207; 236; 237; 238; 239], and with a bit more effort, all
expression deconvolution methods can be used for the task as follows:

Step 1 Split the bulk data 𝐸 and cell type proportions 𝐶 according to the sample
groups and detect 𝑆 for both groups separately

Step 2 Randomly split the samples into two groups of sizes equal to the real sample
groups and estimate 𝑆 for these random groups

Step 3 Repeat step 2 many times

Step 4 Calculate the differences in 𝑆 between real sample groups (from step 1) and
use the detected 𝑆 from randomised sample groups to estimate the significance
levels of the observed differences.

However, due to step 3, this unsophisticated approach is expected to be slow unless
the utilised deconvolution method is especially fast. As demonstrated in publica-
tion IV, despite being computationally time consuming, the label sampling step 3 is
important for the accuracy of the estimated csDEGs.
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In the original publication IV, we compared nine approaches to detect csDEGs
based on three inputs: a bulk expression matrix 𝐸, a cell type proportion matrix 𝐶,
and a vector indicating sample groups. The tested methods involved four tools de-
signed for the task (TOAST [239], csSAM [235], LRCDE [234], and CARseq [240]),
two designed for similar task in methylation data (CellDMC [241] and TCA [242]),
two expression deconvolution methods with accurate performance in publication III
(Rodeo [243] and qprog [244]), and one general model without any focus on decon-
volution (DESeq2 [245]). The results show that cell type proportion and individual
heterogeneity in csGEPs are important factors defining how accurate estimates for
csDEGs can be achieved. Among the tested methods, those designed for detecting
cell type specific differences (either in gene expression or methylation) had the most
accurate performance. In the paper, we also provide practical instructions how the
end user can evaluate the level of individual heterogeneity and the possible presence
of outlier samples.

4.3.2 Present cell types

When constructing the signature matrix or marker list, a researcher should decide
which cell types to look for. The first decision is about defining which cell types are
assumed to be present in the samples. The other task is drawing the line between
cell types, which is ambiguous, and usually the researcher just needs to decide how
detailed cell types they wants to use. For example, in PBMC T cells are present, but
it is up to decision if they are considered as one group, or as two biggest subgroups
CD4+ and CD8+ T cells, or possibly as dozen of small subgroups such as regulatory,
naive, mature, memory, and activated cells. Aiming to detect fine subpopulations
is called deep deconvolution [246]. Utilising smaller cell subpopulations provides
more detailed picture of what is going on in the samples and are therefore clinically
more interesting. Also, if a cell population is very heterogeneous due to different
rates of clearly different subpopulations in different samples, finding a robust sig-
nature/markers for the superpopulation is difficult and using more stable subpopula-
tions instead could be beneficial for the deconvolution accuracy. However, usually
subpopulations resemble each other so the heterogeneity of superpopulation over the
samples is not a big issue. Instead, closely related cell types are hard to distinguish
from each other and especially finding multiple strong marker genes for each of
them can be an issue. Notably, cell types with similar expression profiles are called
collinear and collinearity is a known major difficulty for deconvolution as frequently
stated in the literature [247; 172; 248; 178]. Another practical drawback with de-
tailed subpopulations is that they are always more rare than their superpopulations
and proportions of rare cell populations are harder to estimate than those of more
dominating cell types [246; 244; 177; 178]. In fact, ability to detect also rare cell
populations have become one measure to compare different deconvolution methods
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[249]. Also the expression profiles of rare cell types are harder to estimate with ex-
pression deconvolution than those of abundant cells, as demonstrated in the original
publication III.

4.3.3 Validation of deconvolution methods

Typically validation of bioinformatics tools is difficult and deconvolution is not an
exception. For validation purposes, a bulk data together with its cell type proportions
and/or expression levels of purified cell types should be known. There are several
ways to simulate such situation and four commonly used ones are described below
and summarised in Figure 4. Validation approaches 1-3 were used in publication III.

The first way is to not use real expression data, but simulate it computationally.
This approach is very controlled and no unknown factors are present. Controllability
makes it straightforward to draw the conclusions and avoids limitations like low
number of biological replicates often present in measured data. On the negative
side, it does not directly answer how well the tested method would perform with real
data with all sort of uncertainty. Although, simulating some noise and bias into the
data improves the realism.

The synthetic data becomes more realistic if it is constructed by combining mea-
sured expression levels from purified cell populations. While this approach is a step
towards a more realistic situation, it still contains perfect linear relationship as de-
scribed in model (1), which might not be the case with real data. Either single-cell
data or data from purified cell populations can be used to construct an artificial bulk
data with this approach. When using validation approaches two and three from Fig-
ure 4, it is important that the combined pure cell types are from different donors as
otherwise the constructed bulk data does not contain individual heterogeneity of 𝑆
present in a real bulk data. In the original publication IV, we tried to overcome this
issue (and the insufficiently low number of sample donors present in publicly avail-
able data containing expression from pure cell populations) by generating samples
following the same distribution as the measured samples. Thus, for artificial sample
𝑘, gene 𝑖, and cell type 𝑗 we extracted an expression level from normal distribution
with mean and standard deviation over measured samples for the given gene and cell
type.

The third way is to combine purified cells in known proportions and then take
the bulk measurements from the known mixture. This approach is very good, but
in some of the most frequently used validation datasets the mixed cells are from
totally different parts of a body. For example, there is a mixture containing rat’s liver,
brain, and lung tissue (GEO accession id GSE19830, also available in R package
CellMix [213]). However, this type of datasets do not reflect real tissue data where
the present cell types can be rather similar to each other. On a positive side, when the
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Figure 4. Four ways to obtain validation data for deconvolution methods. For the sake of simple
visualisation, only two cell types (dark and light blue) and one bulk sample are included in the
figure.
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mixed cells are from different tissues, purity of cell types is guaranteed as they do not
naturally appear together. Another variant of this approach is to combine RNA from
different types of cells in known proportions instead of combining whole cells. From
validation perspective the main difference between combining cells and combining
RNA is that the proportion of cell types with low overall expression (like neutrophils
[250; 251]) tends to get underestimated if cells are combined. Combining directly
RNA avoids this issue, but it is not obvious if this factor should be present in the
validation data or not. This challenge is further discussed in section 4.3.5. While
mixing cells/RNA is closer to realistic data than mixing expression values (first two
options), neither of these approaches contain unknown expression sources that are
expected in real tissue data unless minor amounts of cells/RNA/data of other cell
types is added to the bulk mixture as noise.

The most realistic approach in theory is to take a tissue sample, analyse part of
it as a bulk mixture, and use the rest to extract proportions and/or expression profiles
of purified cell populations. There are several techniques to obtain gold standard for
cell type proportions from the remaining sample, such as FACS [252], DNA copy
numbers [253], or DNA methylation [254]. This way bulk samples are realistic and
known cell type proportions/expressions are from the same samples. The measured
cell type proportions should be very close to those in the part of samples reserved
for bulk analyses, if the cell types are quite uniformly distributed over the tissue
samples. This is true for tissues like blood, but the assumption does not hold in
case of for example solid tumours, where the extracted part for bulk analysis might
contain different proportion of healthy tissue than the part left for defining the gold
standard. In those cases, approach 3 might be a better choice.

4.3.4 Example of practical issues with validation

All validation approaches require data with known cell type proportions or expres-
sions, but the public resources are limited. One suitable data set is by Linsley et al.
[255] (GEO access GSE60424). It includes RNAseq from whole blood and from
purified cell populations of neutrophils, monocytes, B cells, CD4+ T cells, CD8+ T
cells, and NK cells from the same samples. Also cell counts (that can be converted
to cell type proportions) of purified cell populations are provided, which makes the
data a good validation set for many types of deconvolution methods. Based on model
assumption (1), it should be possible to some extent reconstruct the bulk whole blood
samples by combining the expression profiles of purified cell populations in the
known proportions. However, when comparing correlations between reconstructed
(𝐶 · 𝑆, where also 𝑆 is measured for each sample) and measured bulk samples, the
same sample donor was not among the most dominating patterns (Figure 5).

If a method does not perform well with such validation data when measured
whole blood samples are used as 𝐸, it is hard to say if it is due to
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Figure 5. Pearson correlations of measured bulk samples (rows) and reconstructed bulk samples
(columns) in (A) log and (B) original scale data. Importantly, logarithmic transformation has been
done after reconstructing the bulk samples. Ideally a reconstructed bulk sample should correlate
better with the corresponding measured bulk sample, i.e the diagonal should have higher
correlation values than the the rest of the figure.

1. poor method

2. impure cell populations, technical noise, or other issue with the data processing

3. noise from rare unidentified cells

4. cell counts ignoring significant amount of cells causing inaccurate 𝐶

5. assumption of underlying model (1) not holding or

6. phenomena related to normalisation or other data processing currently not un-
derstood.

4.3.5 Factors affecting the linear model assumption

The previous example leads us to issues with the assumed underlying model (1).
Currently there is no consensus about the effect of normalisation on preserving the
linear relationship (1), yet its importance has been highlighted in several studies
[256; 257; 188]. Especially for microarray data, conflicting statements about the
best normalisation and background correction have been made [256; 232; 258; 259;
260]. For RNAseq data transcript per million (TPM) normalisation has been stated
to be the best normalisation from deconvolution perspective [261] and study [185]
introduces an entirely new normalisation developed specifically for deconvolution
purposes. The same study also addresses the issue of different overall expression
between cell types (see the last paragraph of this subsection).
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Besides normalisation, also log transformation can affect the linearity assump-
tion (1). As compared to normalisation questions, the available literature is more
in line about the effect of log transformation, and most studies state that original
scale preserves the linearity better than log transformation in case of both microarray
[262; 238; 187; 249] and RNAseq data [263; 261; 184]. However, there are several
studies whose conclusions challenge the superiority of original scale [264; 237; 188].
Notably, multiple studies supporting the usage of original scale still suggest that the
normalisation of data can be done on log scale as long as it is returned back to orig-
inal scale before deconvolution [265; 266; 252]. Impact of both normalisation and
log transformation have been thoroughly investigated at [261] and reviews [249; 184]
provide a nice and up-to-date summary of the discussion about both topics.

The linear combination naturally does not hold if the input and conclusions are
made on different levels; it is important to not confuse cell counts and RNA. Bulk
transcriptomic data is measured by investigating the total RNA present in the sam-
ples and signature matrices are also built on measuring RNA. However, cell type
proportion matrix 𝐶 (input for expression deconvolution or validation of composi-
tion deconvolution) is often defined based on cell counts. This is an issue as not
all cell types express equally much. For example, neutrophils have low overall ex-
pression as compared to leukocytes [185]. Therefore, if a sample contains 60% neu-
trophils and 40% leukocytes (simplified example), only 20% of its total RNA might
be from neutrophils and 80% from leukocytes. Due to this phenomenon, the pro-
portions of cell types with low overall expression tend to be underestimated. There
are two approaches to avoid the issue. Either all inputs should be about RNA rather
than cell counts, and also the deconvolution results should be interpreted in the level
of RNA. The other option is to use methods that consider the variation in total ex-
pression rate of cell types. There are some such composition deconvolution methods
[267; 197] and one complete method [268], but they require background information
that is laborious to obtain, which makes utilising these features difficult. Zaitsev et
al. demonstrate the issues related to different cell sizes and total RNA contents and
suggest possible solutions utilising ERCC spike-ins (i.e. artificial transcripts added
to the sample in known quantity) in experimental level [267].

4.4 Deconvolution methods
Here I discuss several methodology related topics, such as different statistical ap-
proaches often utilised in deconvolution methods, methods without input require-
ments, the available studies reviewing and comparing deconvolution methods, and
deconvolution methods for certain type of data. Table 4 lists available methods to
deconvolve transcriptomic data and provides references for further reading.
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Table 4. List of several available deconvolution methods. Column ’Type’ indicates the goal of the
method. It has following options: estimate cell type proportions or abundances (composition), cell
type specific expression profiles (expression), or cell type specific differentially expressed genes
(csDEG). Term ’complete’ indicates both composition and expression deconvolution
simultaneously. If multiple options are listed exclusively (or), the type of the output depends on the
given input. The main input besides the bulk expression to be deconvolved (column ’Input’) can be
either marker gene list (M), cell type proportion matrix (C), signature matrix (S), single cell RNAseq
data (sc-RNAseq), any type of source data to construct signature (source), number of cell types
(#T), or none. Notably, many of the listed methods contain built-in signatures matrices/marker lists
making the user input optional for those tissue types. An asterisk after the programming language
of the implementation indicates that the code can no longer be accessed due to broken link or
some other issue. Many of the listed methods provide some additional information and have some
special features and/or requirements not listed here.

Name Type Input excl. bulk Implementation Reference
ABIS composition none online [185]
ADAPTS complete source R [209]
BayICE composition S R [269]
Bisque composition sc-RNAseq R [270]
BRETIGEA composition M R [271]
BSEQ-sc composition and csDEG sc-RNAseq R [207]
CAM composition none Java-R [252]
CARseq csDEG C R [240]
CDSeq complete #T Matlab, Octave, R [268]
CellCODE composition and csDEG S R [189]
CellPred composition S online [272]
CellR complete sc-RNAseq R [273]
CIBERSORT composition S online [178]
CIBERSORTx complete S or source online [208]
Clarke et al. composition S R* [257]
collapseRows composition S R [274]
COMPMIX csDEG unknown R* [236]
contamDE tumor purity none R [275]
csSAM expression and csDEG C R [235]
DCQ composition S R, Java, and online [276]
Deblender complete M Matlab [228]
DECODER complete #T Matlab [277]
Decon-cell composition none R and online [278]
Deconf complete M R [188]
DeconRNASeq composition S R [177]
DECONVOLUTE composition S Java* [279]
deconvSeq composition S R [169]
DeMix complete S or none R* [232]
DeMixT complete partial S R [280]
DSA expression M R [263]
Dsection expression and csDEG C R and online [237]
dtangle composition S R [281]
DWLS composition S or sc-RNAseq R [179]
DynamicDA composition none Matlab [282]
Enumerarteblood composition S R [283]
EPIC composition S R [197]
ESTIMATE tumour purity S R [174]
FARDEEP composition S R [284]
GEDIT composition S online [285]
ImmuCC composition none online [259; 286]
ImmQuant composition M Java-R [287]
ImSig composition none R [196]
ISOpure complete none R [233]
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LinDeconSeq composition S R [180]
LinSeed composition none R [267]
LRCDE expression and csDEG C R [234]
lsfit composition S R [288]
MCP-counter composition M R [171]
MMAD composition or expression S or C Matlab [260]
MuSiC composition sc-RNAseq R [248]
MySort composition S R [176]
PERT composition S Octave [289]
PSEA expression and csDEG M R [238]
qprog composition S R [244]
quanTIseq composition none docker image [290]
RAD complete #T Python [291]
Reinartz-Finkernagel purified cancer S Python [292]
Rodeo expression C R [243]
SCDC composition sc-RNAseq R [206]
semi-CAM composition M R [293]
SMC composition #T Matlab [294]
SPEC composition M R [295]
ssNMF complete M R [296]
TEMT expression C Python [297]
TIMER composition none R and online [254]
TOAST csDEG C R [239]
UNDO complete none R [298]
VoCAL composition S R [183]
xCell composition none R and online [170]

4.4.1 Working principles of deconvolution methods

While technical aspects about machine learning and optimisation are out of the scope
of this introduction, here I briefly introduce several techniques that are utilised in
different deconvolution methods. More comprehensive reviews are available by Mo-
hammadi et al. [299] and Avila Cobos et al. [249]. Here I follow the classification
into the regression and probabilistic models used in [299].

Different regression approaches are common among deconvolution methods. In
linear regression, a dependent variable (e.g. bulk gene expression) is modelled as a
linear function of explanatory variables (e.g. cell type proportions in composition
deconvolution or csGEPs of pure cell types in expression deconvolution) and the aim
is to define the coefficients for the linear equation so that the linear curve fits the
observed data as well as possible. These types of methods are very heterogeneous
and they differ from each other in data preprocessing, how the objective function
to be optimised is defined, by the possible additional constrains in the optimisation
problem, and by the final implementation of how to solve the selected optimisation
problem. The objective functions can be for example ordinary least squares with or
without regularisation term such as elastic net. It is a commonly used regularisa-
tion in machine learning and it has been utilised also in the context of deconvolution
[276]. Common additional constrains include non-negativity of coefficients [289]
and sum-to-one constrain [244], which forces the coefficient to represent cell type
proportions. However, these features can be enforced also after the optimisation
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problem has been solved [288]. Support vector regression is a subtype of regression
where small deviation from the regression line is not penalised at all in the optimi-
sation problem. This robustness is favourable in deconvolution problems [182; 178]
due to the heterogeneous and erroneous nature of biological data.

Another major group of methods is probabilistic models. Two examples are
Bayesian models (e.g. DSection, COMPMIX) and latent dirichlet allocation mod-
els (e.g. CDSeq, ISOpure, ISOLATE). In Bayesian models a likelihood function is
maximised, but the form of the function is dependent on used parameters, hyper-
parameters, and definitions of a priori and a posteriori functions. Latent dirichlet
allocation is mainly applied in natural language processing and it assumes few un-
observed background elements (e.g. cell types in deconvolution or topics in natural
language processing) to explain similarities among observations (e.g. bulk expres-
sion in deconvolution or written text in natural language processing).

Besides sophisticated modelling, the cell types proportions and especially abun-
dances can be estimated by using simple marker-based approaches [171; 260]. In this
type of methods, the expression levels of different marker genes are somehow sum-
marised within cell type, and these summary values are then interpreted to reflect the
over-samples variation of that cell type. Different filtering, clustering, scaling, and
identification of new markers can be done prior to summarising the markers repre-
senting the same cell type.

One important subgroup of such marker-based methods is unsupervised decon-
volution methods (e.g. CAM, LinSeed) aiming to first identify gene clusters with
high internal correlation (or other measure of similar behaviour) over samples from
the bulk data. These gene clusters are then interpreted to represent marker genes of
different cell types. Then a simplex with marker clusters as vertices is created and
used to further estimate cell type abundances/proportions and/or cell type specific
expression profiles in the bulk samples. However, the methods utilising such strat-
egy are very heterogeneous and differ from each other by aspects like normalisation
of the data and selection criteria for marker genes.

4.4.2 Unsupervised and semi-supervised methods

Some methods do not require any input from a user besides the bulk expression data
to be deconvolved [267; 188]. These type of methods are called reference free or un-
supervised methods. Methods that use built-in signature matrix or marker gene list,
or pre-trained machine learning model are not considered as reference free despite
appearing as such for the end-user. This type of methods are typically easy to use
due to their minimal input requirements, but interpreting the output can be challeng-
ing as different extracted output profiles are not directly linked to cell types. Due to
the lack of preliminary information, unsupervised methods might detect some other
source of variation than cell type composition [296]. As shown in the original pub-
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lication III for expression deconvolution and in several other studies [296; 293] for
composition deconvolution, unsupervised methods are less accurate than supervised
methods especially when the bulk data contains related cell types. However, despite
their limitations, unsupervised methods can be useful for studying poorly known and
very diverse cell populations like tumour subclones [300].

As the name suggests, semi-supervised methods require some cell type specific
input, but it does not need to cover all the present cell types. Notably, the term semi-
supervised has been used vaguely in the literature and some studies [296; 184] ad-
dress composition methods utilising a marker gene list instead of a signature matrix
as semi-supervised. There is one recent semi-supervised method semi-CAM [293]
that allows markers for any number of cell types present in the data. The other avail-
able semi-supervised methods are more restricted in a sense that they allow missing
input for only one cell type. This can mean either utilising a signature matrix that
covers all but one of the present cell types (e.g. ISOLATE [301], DeMix [232],
and DeMixT [280]) or providing cell type proportion also for unknown content (e.g.
EPIC [197] and BayICE [269]).

4.4.3 Comparisons and reviews of available deconvolution meth-
ods

Several theoretical comparisons and reviews of different deconvolution methods are
available [302; 246; 303; 299; 249], introducing different algorithms and methods
together with their scopes and required inputs. Empirical comparisons are more rare
and most of them are related to validating new methods [178], including our com-
parison of expression deconvolution methods in publication III. However, recently
few empirical third-party comparisons of composition deconvolution methods have
been published [304; 184]. Additionally, study [303] includes a brief comparison of
tumour purity estimates besides the theoretical review. For expression deconvolution
methods there is no third party empirical comparison available at the time of writ-
ing, and our publication III introducing Rodeo and evaluating it together with similar
methods is the only recent study involving empirical comparison. In publication IV
deconvolution methods to detect csDEGs are evaluated from practical point of view,
but it is not third-party comparison either as our own method Rodeo from publica-
tion III is one of the tested methods, and also the evaluated aspect is more specialised
than general expression deconvolution. Due to expression deconvolution being less
studied than composition deconvolution, the conclusions and summary statements
about it have less support and narrower scope.

All the evaluation studies suffer from the limitations of the available test data.
The main underlying issue is that as many cell types need to be analysed separately,
the number of biological replicates is typically low. While the small sample size
is an issue for especially expression deconvolution, as demonstrated in publication
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III, also many composition methods and particularly unsupervised ones have been
shown to benefit from larger sample size as well [188; 294; 246; 232]. Low number
of sample donors does not always lead to low sample size in the test data, if multiple
mixtures of cells/RNA are made from the material from the same few donors. For
example, in the dataset GSE19830 (briefly introduced in section 4.3.3) the samples
are constructed by combining different types of cells from one donor in known pro-
portions. However, this approach suffers from the lack of individual heterogeneity
and provides too easy test data. In the original publication III, we demonstrated the
issues related to over-simplistic test data. Difficulties to obtain accurate results from
data with low sample size and low number of donors causing too simple test data
highlight the need for large and realistic dataset containing purified cell populations
from many sample donors. An ideal empirical comparison would 1) be carried out
by a third-party not affiliated with any of the tested methods, 2) utilise such realistic
validation data (preferably multiple unrelated datasets with different characteristics),
3) following validation approaches 3 and 4 in Section 4.3.3, and 4) test wide set of
state-of-the-art methods for both composition and expression deconvolution.

4.4.4 Deconvolution methods for cancer studies

Cell type proportions have been associated with several important cancer related
questions like prognosis, survival, and response to treatment in the literature [305;
306; 307; 308], so the wide range of deconvolution methods developed and demon-
strated specifically for cancer studies is not unexpected. When deconvolving bulk
data from cancer tissue, the goal is typically to separate at least cancer tissue, healthy
tissue, and immune cells. Weather different types of immune cells are treated sepa-
rately or not varies from study and method to another. Cancer studies have several
aspects that make them particularly challenging for deconvolution. The two main
obstacles requiring special attention are 1) heterogeneity of tumours and 2) altered
immune cells (see also Section 4.3.1). Both issues have been at least somehow ad-
dressed by the available methods. The heterogeneity of tumour tissues makes it very
difficult to construct even remotely reliable signature expression profile suitable for
all samples in the study, whereas the issue of altered immune cells is less tricky, but
requires attention regardless. It has been shown that expression profiles of immune
cells measured from healthy individuals do not correspond to those measured from
cancer patients [190]. Therefore, it is important to use data from cancer patients sim-
ilar to the sample donors of the study when constructing the input signature/markers.
Public resources like The Cancer Genome Atlas TCGA are important assets for this.

Many expression and composition deconvolution methods have been developed
to asses cancer research [275; 236; 228; 232; 280; 197; 174; 233; 302; 298; 284].
Due to the difficulties related to defining typical expression profile for tumour, semi-
supervised methods allowing some unknown source of RNA are well suited for de-
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convolution in cancer studies. Also, some models, such as the one implemented
in EPIC, assume that the input data includes many heavily varying genes, which is
characteristic for cancer data. Besides classical composition (e.g. [197; 286]) and
expression (e.g. [263]) cancer deconvolution methods, there are also several ambi-
tious complete deconvolution methods designed for cancer studies [298; 232; 280;
228; 233; 291] and relaxed versions of composition and expression deconvolution
methods. As an example of a sophisticated complete method designed for cancer
studies, ISOpure [233] takes the complete deconvolution as far as attempts to esti-
mate personalised cancer profiles. Relaxed composition deconvolution methods aim
to estimate the purity level of tumour samples [275; 174] and relaxed expression
methods aim to purify the tumour tissue expression from the effect of other compo-
nents like immune cells [292]. Some methods developed for cancer studies assume
only limited number of cell types (like two for tumour and healthy tissue, or also a
third one for immune cells), which makes them unsuited for other studies contain-
ing more cell types. However, exceptions without any limitations and wider built-in
signature/markers, like quanTIseq (10 cell types) and TIMER (6 immune cell types),
exist.

4.4.5 Deconvolution methods for DNA methylation data

Several deconvolution methods have been developed also for other data types than
transcriptomics. Among those, DNA methylation data has the widest selection of
methods implemented. DNA methylation means that a methyl group is added into a
cytosine, which is one of the four bases in DNA, and it is one type of epigenomics.
Methylation can either activate or inactivate genes [309] and, as different type of
cells have different functions, it is not surprising that they can have distinct methy-
lation profiles as well. Most methods to deconvolve methylation data correspond to
composition deconvolution of transcriptomic data, and they aim to estimate cell type
composition of bulk samples. Also, similar to the methods for transcriptomic data,
there are unsupervised and supervised methods, and the supervised ones are likely
to outperform the unsupervised ones [310]. The supervised methods typically utilise
reference cell type specific DNA methylation profiles (csDMP) of present cell types,
similar to a signature matrix.

Deconvolution methods for methylation data have been reviewed [195; 311] and
compared empirically [312; 313] by a third party. Table 5 summarises some of the
available methods. The summary does not include more general implementations
for matrix decomposition, like SVA [314], ISVA [315], and RUV [316] despite them
being utilised in DNA methylation deconvolution as unsupervised methods. Differ-
ences between methods for transcriptomic and methylation data are not dramatic.
For example, R package MethylCIBERSORT includes functions related to process-
ing the methylation data, but the actual deconvolution is done with the same on-
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Table 5. Summary of several available deconvolution methods for DNA methylation data. Notably,
while EPISCORE and TCA do not require cell type specific DNA methylation profiles as input,
EPISCORE expects single cell RNAseq data (i.e. it combines transcriptomic and methylation
data), and TCA expects cell type proportions.

Name Type csDMP as input Citation
BCheterogeneity composition yes [317]
eDEC complete both options [318]
EpiDISH complete yes [319; 241]
EPISCORE composition no [320]
FaST-LMM-EWASher composition no [321]
HIRE complete no [322]
Houseman’s CP composition yes [323]
MeDeCom complete both options [324]
MethylCIBERSORT composition yes [325; 326]
MethylResolver composition yes [327]
ReFACTOR composition no [328]
RefFreeEWAS complete no [329; 310]
TCA expression no [242]

line tool CIBERSORT used for transcriptomic data. Another example is deconvolu-
tion method TOAST, which has been initially developed and validated for both data
types. Also, approaches like quadratic programming are utilised in both applica-
tions [311; 299]. In the original publication IV, we show that for estimating csDEGs
methods designed for methylation data had performance equal to those designed for
transcriptomics. In their study [325], Chakravarthy et al. show that cell type propor-
tion estimates obtained from methylation data are more accurate than those obtained
from transcriptomic data of the same samples, likely due to the lower noise level of
methylation data. Notably, in the literature of deconvolution methods for other data
types than transcriptomics, terms reference-based and reference free are commonly
used instead of supervised and unsupervised.

4.5 Deconvolution summary
Computational deconvolution is an affordable approach to obtain cell type specific
information also from old datasets. Composition deconvolution aims to detect dif-
ferent cell types’ proportions or abundances in bulk samples and in expression de-
convolution their pure expression profiles are estimated. Methods doing both tasks
simultaneously are called complete methods. In contrast to the rather well studied
composition deconvolution, for expression deconvolution there are fewer methods
and summary studies available. However, in this thesis I have addressed this gap by
developing a new method to estimate cell type specific gene expression profiles from
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bulk data and thoroughly evaluating it with the other available similar tools (pub-
lication III), and by empirically comparing different methods to estimate csDEGs
(publication IV), which is a task related to expression deconvolution.

Typically composition and expression deconvolution methods require a signature
matrix and a cell type proportion matrix, respectively, as an input. Also other inputs
are possible and unsupervised methods have been developed as well, but they have
been shown to provide less accurate results than supervised methods. Constructing
a signature matrix is a demanding yet crucial step in composition deconvolution and
it should be built using preferably purified bulk csGEPs as close to the target data to
be deconvolved as possible. On the other hand, individual heterogeneity of csGEPs
causes issues particularly for expression deconvolution, whereas both types of partial
deconvolution struggle with rare cell types, collinear cell types, and small sample
size.
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5 Discussion

5.1 Challenges
Here I discuss the general issues related to developing and applying the bioinfor-
matics methods that I discovered over the course of this dissertation. The scientific
challenges specific to pathway analysis and deconvolution have been introduced in
the corresponding parts of this thesis.

One of the major practical issues in method development is to get researchers
without a computational background to use the most suitable, possibly new, tool in-
stead of the one they are already familiar with. This requires as a minimum easy
installation, intuitive usage, and clear documentation and instructions. A graphical
user interface could also increase attractiveness of a method. While these require-
ments sound reasonable, they are not always granted. During the empirical compar-
ison of pathway methods (original publication I), I had to exclude around half of the
originally planned methods as I was unable to use them due to reasons like missing
documentation, expired links to software, no-longer-available dependences, and bugs
in the source code. On a positive note, pathway analysis is a commonly used step
in diverse biological studies involving transcriptomic data (and several other data
types as well), so pathway analysis methods, though sometimes suboptimal ones, are
regularly used by researchers.

While the issue with pathway analysis is about using the most suitable rather than
familiar methods, deconvolution still struggles with becoming widely utilized. The
literature about deconvolution consists mainly of method-oriented articles, pure ap-
plication studies that only use deconvolution to investigate a biological phenomenon
are more rare and often contain a co-author who has been involved in deconvolution
method development. This indicates that deconvolution methods either 1) are not
widely known among the target users, 2) do not solve an interesting issue, 3) provide
too inaccurate results for practical purposes, or 4) are too difficult to use.

5.2 Limitations of this thesis
Besides obvious limitations related to leaving some related topics out of this thesis,
there are several other drawbacks as well. First of all, no new gene expression data
has been introduced, but all the projects have been built on publicly available data.
Deconvolution projects III and IV especially would have benefited from well known
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in-house data with RNAseq bulk samples and purified cell population expressions
from the same samples (validation approach 4 in Figure 4). As mentioned before,
the publicly available cell type specific data contain too few sample donors for ex-
pression deconvolution, which is also an issue.

The second major drawback of this thesis is the lack of graphical user interfaces
for the developed methods. While the current implementations come with clear user
manuals, they still require the end user to import their data into an R session. This
can be a deal breaker for the potential users not comfortable with any level of pro-
gramming.

5.3 Impact and applications
In this thesis work I have compared different computational methods from a practical
perspective and developed robust new tools. The main target audience of these stud-
ies are researchers who analyse gene expression data but are not method oriented. I
aimed to provide them assistance with selecting a suitable method for their purposes
and offer novel tools that are easy to use and provide accurate results with realistic
noisy data. Our studies also reveal how accurate the results can be expected to be
with different study settings, which is an important yet often overlooked step of test
design. In the original publication IV in particular, we also give practical instructions
on how the end user can evaluate the accuracy of their findings.

Other method developers may also benefit from our work as they can further
build on it. Different validation strategies and semi-simulated datasets with gold
standards available can be especially valuable for them. Factors affecting the tested
methods’ performance are of interest for researchers both developing/comparing
methods and those simply choosing which one to apply.

All the articles related to this thesis are open access and the developed software
are published under GPL-2 licence. These decisions towards open science allow
everyone to utilise our work free of charge. This also includes researchers beyond
academia.

5.4 Further research on pathway analysis and decon-
volution

Currently our R package PASI (available at https://github.com/elolab)
includes the basic pathway analysis tool (original publication II). In the future, I aim
to add tools for pathway analysis of sc-RNAseq data and longitudinal data. Other
planned upgrades are the utilisation of pathway databases other than KEGG and the
possibility to use proteomic data as complementary to gene expression data. The lat-
ter is especially interesting as KEGG pathways include information about interaction
types such as protein-protein interaction (for example modification and binding) or
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gene expression interaction (interaction between transcription factor and gene prod-
uct).

Our next planned deconvolution work is related to generating a signature ma-
trix to be used as an input for composition deconvolution. While there are already
a few tools to generate it, none of them utilise the target data to be deconvolved,
inclusion of which I believe considerably improves the final deconvolution results.
Also, it would be interesting to test if sophisticated expression deconvolution meth-
ods designed for cancer studies could be used for more general purposes. The main
obstacle to this would be that cancer-focused methods typically expect only two cell
types (’tumour’ and ’healthy’), which is not the case for most of the tissues. This can
be overcome by estimating an expression profile for one cell type 𝑡 at a time and us-
ing all the other cell types as another group. As tumours are more heterogeneous than
healthy tissue, it is intuitive to set one cell type 𝑡 (probably the most abundant one) as
’healthy’ and all the other cells in various proportions as ’tumour’. One advantage of
using this approach is that using a mixture of different cells as one heterogeneous cell
group (’tumour’) allows for unknown content in the cell mix. After all, real tissue
samples always include some unidentified cells, making the assumption that present
cell types would all be known unrealistic. Among cancer oriented methods, there are
several attempts to obtain personalised or ’cleaned’ results for one cell type. Ideally,
if it would be possible to obtain very accurate personalised estimates for the most
abundant cell type, an iterative algorithm could be used to obtain personalised 𝑆:

1. Estimate personalised expression profiles for the most abundant cell type 𝑡

2. Subtract it from bulk matrix 𝐸 and re-scale 𝐶 without the cell type 𝑡

3. Iterate from step 1 for the new most abundant cell type.

With this approach, each cell type would be the most abundant one (i.e. the easiest
one to analyse) at time, eventually providing accurate personalised results for all cell
types.

5.5 Conclusions
In this thesis I have evaluated and developed methods to conduct pathway analysis
and expression deconvolution. The main goal was to help other researchers applying
bioinformatic tools by providing new robust and accurate methods and assisting with
selecting a suitable method from those available. Pathway analysis and deconvolu-
tion have been introduced in this summary part of the thesis, and specific aspects
have been studied in more detail in the original publications I-IV. Our results show
that group-level pathway methods utilising pathway structure outperform those not
using it, but all the available methods struggle with data containing only minor dif-
ferences between the sample groups. We also introduced a new pathway method
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PASI, which provides sample-level pathway scores. PASI also performs reasonably
well with challenging data containing only minor differences between the sample
groups and it has favourable performance compared to the other available methods
for similar analyses.

Deconvolution is a difficult type of analysis and in publication III we have evalu-
ated expression deconvolution methods. All of the evaluated methods were sensitive
to sample size and, similar to composition deconvolution, rare cell types were harder
to analyse than abundant ones. In this thesis, we also introduced Rodeo, which is a
robust expression deconvolution method designed to tolerate outlier samples in the
data. It together with two methods originally implemented for composition deconvo-
lution, namely cs-qprog and cs-lsfit, had the most accurate performance among the
tested methods. For detecting csDEGs, methods designed for the purpose are more
accurate than general models or expression deconvolution methods. Methods de-
signed to identify cell type specific differential methylation can also be used as their
performance is comparable to that of methods’ designed for gene expression data.
According to our results, identifying csGEPs and identifying csDEGs are both diffi-
cult tasks and the user attempting to do these should consider if sufficiently accurate
results can be obtained from their particular data. Besides the previously mentioned
sample size and cell type abundance, residuals (see publication IV) can also be used
to evaluate how challenging the data is to analyse.
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Lazar, Janne Lehtiö, and Yudi Pawitan. Network enrichment analysis: extension of gene-set
enrichment analysis to gene networks. BMC bioinformatics, 13(1):226, 2012.

[124] Duanchen Sun, Yinliang Liu, Xiang-Sun Zhang, and Ling-Yun Wu. Netgen: a novel network-
based probabilistic generative model for gene set functional enrichment analysis. BMC systems
biology, 11(4):75, 2017.

58



LIST OF REFERENCES

[125] Ali Shojaie and George Michailidis. Analysis of gene sets based on the underlying regulatory
network. Journal of Computational Biology, 16(3):407–426, 2009.

[126] Ali Shojaie and George Michailidis. Network enrichment analysis in complex experiments.
Statistical applications in genetics and molecular biology, 9(1), 2010.

[127] Adi Laurentiu Tarca, Sorin Draghici, Gaurav Bhatti, and Roberto Romero. Down-weighting
overlapping genes improves gene set analysis. BMC bioinformatics, 13(1):136, 2012.

[128] Bhaskar Dutta, Anders Wallqvist, and Jaques Reifman. Pathnet: a tool for pathway analysis
using topological information. Source code for biology and medicine, 7(1):10, 2012.

[129] Sharon I Greenblum, Sol Efroni, Carl F Schaefer, and Ken H Buetow. The pathologist: an
automated tool for pathway-centric analysis. BMC bioinformatics, 12(1):133, 2011.

[130] Sahar Ansari, Calin Voichita, Michele Donato, Rebecca Tagett, and Sorin Draghici. A novel
pathway analysis approach based on the unexplained disregulation of genes. Proceedings of the
IEEE, 105(3):482–495, 2016.

[131] Sorin Draghici, Purvesh Khatri, Adi Laurentiu Tarca, Kashyap Amin, Arina Done, Calin
Voichita, Constantin Georgescu, and Roberto Romero. A systems biology approach for path-
way level analysis. Genome research, 17(10):1537–1545, 2007.

[132] Chengyu Liu, Rainer Lehtonen, and Sampsa Hautaniemi. Perpas: topology-based single sample
pathway analysis method. IEEE/ACM transactions on computational biology and bioinformat-
ics, 15(3):1022–1027, 2017.

[133] Jui-Hung Hung, Troy W Whitfield, Tun-Hsiang Yang, Zhenjun Hu, Zhiping Weng, and Charles
DeLisi. Identification of functional modules that correlate with phenotypic difference: the influ-
ence of network topology. Genome biology, 11(2):R23, 2010.

[134] Irina Dinu, John D Potter, Thomas Mueller, Qi Liu, Adeniyi J Adewale, Gian S Jhangri, Gunilla
Einecke, Konrad S Famulski, Philip Halloran, and Yutaka Yasui. Improving gene set analysis of
microarray data by sam-gs. BMC bioinformatics, 8(1):242, 2007.

[135] Momeneh Foroutan, Dharmesh D Bhuva, Ruqian Lyu, Kristy Horan, Joseph Cursons, and
Melissa J Davis. Single sample scoring of molecular phenotypes. BMC bioinformatics, 19
(1):404, 2018.

[136] Shouguo Gao and Xujing Wang. Tappa: topological analysis of pathway phenotype association.
Bioinformatics, 23(22):3100–3102, 2007.

[137] Maysson Al-Haj Ibrahim, Sabah Jassim, Michael Anthony Cawthorne, and Kenneth Langlands.
A topology-based score for pathway enrichment. Journal of Computational Biology, 19(5):563–
573, 2012.

[138] Enrico Glaab, Anaı̈s Baudot, Natalio Krasnogor, and Alfonso Valencia. Topogsa: network topo-
logical gene set analysis. Bioinformatics, 26(9):1271–1272, 2010.

[139] Mark D Robinson, Jörg Grigull, Naveed Mohammad, and Timothy R Hughes. Funspec: a web-
based cluster interpreter for yeast. BMC bioinformatics, 3(1):35, 2002.

[140] Kam D Dahlquist, Nathan Salomonis, Karen Vranizan, Steven C Lawlor, and Bruce R Conklin.
Genmapp, a new tool for viewing and analyzing microarray data on biological pathways. Nature
genetics, 31(1):19, 2002.

[141] Purvesh Khatri, Sorin Draghici, G Charles Ostermeier, and Stephen A Krawetz. Profiling gene
expression using onto-express. Genomics, 79(2):266–270, 2002.

[142] Cristian I Castillo-Davis and Daniel L Hartl. Genemerge—post-genomic analysis, data mining,
and hypothesis testing. Bioinformatics, 19(7):891–892, 2003.

[143] Dougu Nam and Seon-Young Kim. Gene-set approach for expression pattern analysis. Briefings
in bioinformatics, 9(3):189–197, 2008.

[144] Henryk Maciejewski. Gene set analysis methods: statistical models and methodological differ-
ences. Briefings in bioinformatics, 15(4):504–518, 2014.

[145] Lu Tian, Steven A Greenberg, Sek Won Kong, Josiah Altschuler, Isaac S Kohane, and Peter J
Park. Discovering statistically significant pathways in expression profiling studies. Proceedings
of the National Academy of Sciences, 102(38):13544–13549, 2005.

59



Maria Jaakkola

[146] Vamsi K Mootha, Cecilia M Lindgren, Karl-Fredrik Eriksson, Aravind Subramanian, Smita Si-
hag, Joseph Lehar, Pere Puigserver, Emma Carlsson, Martin Ridderstråle, Esa Laurila, et al.
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