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The purpose of this study is to attempt to identify acute myocardial infarction with high frequency 

serial electrocardiogram. High-frequency ECG and serial ECG are both unique ECG analysing 

techniques. The idea in this study is to combine these two and see if changes between different ECGs 

from the same person can provide us some information, whether it being in the high-frequency or 

normal frequency range of the ECG.  

To answer the questions, an existing database which contained multiple ECGs for each person with 

high sampling frequency was used. 5 different machine learning models were trained and tested with 

this database. The results of the machine learning methods were good, producing the mean accuracy 

of 91.9%, while the best model was the Extra Trees machine learning model. It produced the accuracy 

of 97.9% when applying cross-validation to the database. 

After these results, high-frequency serial ECG could be stated to be relevant. However, having ECG 

measured regularly can be expensive and time consuming. Therefore, the possibility of using a 

wearable ECG device was also studied. With a device called SAFE, developed by the University of 

Turku, a new high-frequency serial ECG database was gathered. The already existing machine 

learning model trained with the previous data was applied to this database and produced a mean 

accuracy of 90%. The quality of the ECGs gathered with the device were also deemed to be viable.  

Both high-frequency ECG and serial ECG were found to be relevant methods. A wearable device 

could be used for AMI detection if the ECG is sufficient enough. Future studies could include 

increasing the dataset size of the wearable device, investigate other myocardial diseases and exploring 

the possibilities of high-frequency ECG further. 
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1 Introduction 

Acute myocardial infarction is one of the biggest health problems all over the world [1][2][3][4]. 

More commonly known as  heart attack, acute myocardial infarction can lead to sudden death or cause 

disabilities and structural damage to the heart muscle [1]. It can be detected with different techniques, 

but one of the basic detection methods for myocardial infarction is electrocardiogram (ECG) [5][6]. 

Over the years while the technologies have advanced, ECG has also increased its importance [5]. The 

most used type of ECG is the standard 12-lead ECG [7][8]. It includes 12 leads, 6 precordial leads, 3 

limb leads and 3 augmented leads from these limb leads [5]. While ECG is usually the key when 

detecting myocardial infarctions, it can be deceptive and has multiple flaws. The diagnostic accuracy 

from the ECG is low and the variability of interpretation is high [2]. The variability between patients 

can also be high [9] and can cause false predictions. Also, some changes cannot be found in the ECG, 

because the time period during the ECG recording is not usually long enough.  

One solution to overcome these problems is serial electrocardiogram (S-ECG). In short, in S-ECG 

we compare different ECG recordings from one individual with each other [7][9][10][11]. It has been 

noticed to perform better than the initial ECG, when detecting myocardial infarctions [2][12]. What 

makes S-ECG great is that, when comparing the ECGs of the same patient, we remove the possibility 

of variability between patients. The time interval between the different recordings can vary from 5 

minutes to even years [2][13][11]. This means that we get a more in-depth look into the clinical 

myocardial health of the patient [7] and the possible changes of the ECG are shown clearer than in 

the initial recording. These changes can be analysed visually or with different algorithms such as 

machine learning for example. However, the S-ECG based automatic algorithms are yet to be as 

practical as the single ECG algorithms [7]. Multiple different S-ECG features can reveal a possibility 

of a cardiac disease [10], especially with machine learning algorithms. Especially ST-segment 

changes have been used to detect acute myocardial infarctions [1][6]. With a single ECG recording, 

the changes in the ST-segment might not be found easily, but with S-ECG these changes can be 

detected easier [1]. 

Another method used in this thesis is high-frequency ECG (HF-ECG). It has been noticed to provide 

more in-depth look into the myocardial health of the patients [8][14]. This method focuses on the 

higher frequency ranges of the ECG, above 150 Hz [8][15][16].  The idea in this thesis is to combine 
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the HF-ECG methods with the S-ECG. This type of combination is almost unique, and similar studies 

could not be found. Only a few studies bearing similarities to ours could be found and they did provide 

evidence that a high-frequency serial ECG could be a viable option detecting myocardial infarction 

[17][18][19]. 

Some studies suggest that a yearly ECG with serial measurement could be useful to detect heart 

failure and myocardial infarctions [13]. However, we believe that even a weekly measurement would 

be highly beneficial, but the trouble going to the hospital to get your ECG measured is not worth it. 

That is why in this study we use a small and wearable device called “SAFE” to measure ECG.  The 

possibility of measuring ECG at home regularly or when feeling chest pain, could save multiple lives. 

These kinds of wearable ECG devices could also monitor ECG continuously and alarm the patient 

when the signal shows signs of disease [20]. Technologies have only been advancing over the past 

centuries [5] and it’s only a matter of time when continuously measuring wearable ECG will become 

a trend. Interest in self-monitoring health has been increasing in the recent years, and these kinds of 

solutions have already been used to detect atrial fibrillation successfully [21]. These results are sort 

of irrelevant for myocardial infarctions but prove that heart’s irregularities can be detected with 

wearable device.  

In this thesis, we will develop a method to detect acute myocardial infarctions with serial 

electrocardiography. We try to classify between a healthy subject and a subject suffering from 

myocardial infarction with 5 different machine learning methods. To create the features to input for 

the machine learning methods, we will extract features from two ECG recordings from the same 

patient. After this, the features for S-ECG will be calculated. For the data we will be using an existing 

database as well as creating our own with the wearable SAFE device. 

The thesis is structured as follows: first chapter will introduce the problem in hand and explain the 

reasoning behind this thesis. Second chapter will go through the literature including general 

information and theories, and also the work done before. Chapter 3 presents the database used in this 

study. Chapter 4 goes through our signal processing and what do we extract from the signal. Chapter 

5 goes through the feature extraction and selection process. Chapter 6 introduces the SAFE device 

and data that was gathered with it. Chapter 7 goes through the results. Chapter 8 explains the results 

briefly and concludes the thesis. 
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1.1 Research questions 
 

In this thesis we have two research questions. Research question 1: Can serial electrocardiogram 

detect acute myocardial infarction? This will be answered by creating machine learning models based 

on an existing database. Research question 2: Can a wearable ECG device be used for detecting acute 

myocardial infarction with serial electrocardiogram? This will be answered by using the created 

machine learning model to classify the data gathered with our own wearable ECG device. Answers 

for these questions can be found in chapter 8. 
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2 Literature 

2.1 Electrocardiography  

The 12-lead electrocardiogram measurement is one the most essential parts of medical care 

[5][7][8][22]. Different heart diseases, like acute myocardial infarction, are a significant cause of 

death all over the world [1][2][4]. These diseases can possibly be diagnosed with ECG and then 

treated accordingly.  ECG is a vital part when detecting acute myocardial infarction [6]. ECG, or also 

abbreviated to EKG [22], measures the electrical activity of the heart. Furthermore, ECG signal is the 

myocardial electrical activity on the body surface [23]. For every individual, ECG is a fairly periodic 

signal [23]. The basic 12-lead ECG consists of six precordial leads V1-V6, three limb leads I-III and 

three augmented limb leads aVR, aVL and aVF [5]. Normally, ECG is measured with bandwidth of 

0.05 to 150 Hz with adults [5]. This can be extended to 250 Hz with children. ECG consists of many 

easily distinguishable characteristics, such as the P-wave, QRS-complex and T-wave [5][22][23]. It 

is important to detect these peaks since their timings and other features might be an indicator of bad 

health [23]. Figure 1 represents a typical ECG recording.  

 

Figure 1. ECG from STAFF III database. Signal represents patient 71 ECG from lead II. 
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The most distinguishable and important part of the ECG is the QRS-complex and especially the R-

peak. The QRS-complex represents the depolarization of the ventricles [5][22]. This refers to the 

moment where the heart pumps blood from the myocardt to the rest of the body and lungs. R-peak 

also contains the repolarization of the atria, but it can’t be further detected due to the much higher 

amplitude of the depolarization of the ventricles [5]. QRS-complex consists of three parts, Q-peak, 

R-peak, and S-peak. The Q-peak is the dipping point before the initial R-peak. In figure 1 we can see 

it very clearly, but sometimes it is harder to spot. The R-peak is the highest point of the QRS-complex. 

Detecting the QRS-complex and the R-peaks especially is a vital part of processing and analysing the 

ECG [24]. Every QRS-complex represents ventricular beat and with the rate of those beats, we can 

calculate the heart rate of the patient. Real-time R-peak detection is important for patients with heart 

diseases [24], so that the changes happening in the signals can be seen as soon as possible. One point 

to notice is that the R-peak is always positive [23], while the other peaks can be negative.  After the 

QRS-complex has reached its R-peak, it starts to come back down again. It then produces another 

dip, similar to the Q-peak. This lowest point is called the S-peak or the S-wave. 

Before the QRS-complex we can see a small peak in the ECG. This is called the P-peak or the P-

wave. P-wave represents the moment of atrial depolarization [5][22]. By myocardial definition, it 

means the moment where the blood is pumped from the atria to the ventricles. Changes in the P-wave 

can tell different things. Since the P-wave represents the myocardial electrical activity of the atria, it 

can be studied to detect diseases concerning the myocardial atria. One example of this kind of disease 

is atrial fibrillation, which is commonly detected from the P-wave [25]. In atrial fibrillation, the P-

wave is usually absent. The duration, height and variability of the P-waves can be predictors of atrial 

fibrillation [25]. The PR-segment, segment between P-wave and R-peak, can also reveal some 

abnormalities in the atrial myocardia [22]. 

After the QRS-complex there is another peak called the T-peak or the T-wave. This represents the 

repolarization of the ventricles [5][22]. This happens because after the depolarization of the 

ventricles, the ventricles relax, which produces a signal strong enough to be seen in the ECG [22]. As 

it was with P-wave, changes in the T-wave can be a sign of myocardial disease. One of the most 

common myocardial diseases which takes advantage of T-wave detection is acute myocardial 

ischemia. When prolonged, myocardial ischemia can lead to myocardial infarction, which is one of 

the biggest reasons of death in the world [1][2][4]. By monitoring the changes in the ST-segment, 

which is the segment between the S-peak and the T-wave, we can detect ischemia. It is one of the 

basic approaches to detect ischemia [6][15][14]. The altitude, length and variability of the segment 

can be signs of ischemia. ST-elevation is shown in figure 2. 
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Figure 2. ST-elevation. From STAFF III database, recording 44c lead V5. Every figure represents average waveform of the certain 

timeperiod. 

 

All these events are initiated by the sinoatrial node (SA node), also called the pacemaker of the heart 

[22][26]. These regular events can be predicted because the SA node creates electrophysiological 

events in the myocardia, which can be seen in the ECG [22]. Heart’s job is to pump blood regularly 

to the rest of the body and SA node helps with that by sending action potentials to the atria, causing 

the depolarization of the atria, P-wave, to happen [22]. It then fires electric signals to the 

atrioventricular node (AV node), which then causes the depolarization of the ventricles. This produces 

the electrical activity of the heart which can then be measured with the device called 

electrocardiograph [22]. A simple definition of how ECG device works is that it measures the electric 

difference between two points in the body. These differences are measured with electrodes placed on 

the skin of the patient [27]. A typical ECG device has an amplifier, which amplifies the low-amplitude 

signals from the electrodes [27].  After the amplification the signal goes through low-pass-, high-

pass- and notch-filters to reduce the possible noise [27]. Low-pass- and high-pass-filters usually filter 

between 0.5 – 150 Hz, while the notch-filter tries to get rid of any possible powerline noise within 

the range of 50-60 Hz. After the filtering, the signal is then converted from analog to digital [27]. 

After this the signal can be displayed and analysed. Because of this, ECG can be defined as a series 

of electrophysiological events and technological processes to unravel those events [5]. Usually after 

the acquisition of ECG, it is processed further. Filtering out noise from different sources is important. 

Due to noise caused by muscle contraction and other artefacts ECG can be further filtered to 0.5 to 

40 Hz range [28][29]. The low cut-off frequency of 0.5 Hz can be explained by physiology of the 
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heart. Normal heart rate is over 40 beats per minute (bpm), which means that the heart is beating at 

least once every 1.5 seconds [29]. This is 0.67 Hz, which makes it impossible to have any ECG 

features existing under 0.67 Hz [29]. The high cut-off frequency is explained by cutting off the noise 

generated by the muscles and electrical noise of 50-60 Hz. 

The importance of ECG has been rising for the past few centuries [5]. Detection of acute myocardial 

ischemia is more reliable than ever and ECG is a vital part of that [5]. However, even though the 

technology to measure ECG [5] and the algorithms to analyse it have advanced in the recent years, 

the interpretative variability is high and the diagnostic accuracy is relatively low [2]. Also the 

intervariability between the patients’ ECG signals has to be taken into account when diagnosing the 

ECG [9]. 

2.1.1 Serial electrocardiography  

As established, the standard 12-lead ECG is an important tool in diagnosing patients with myocardial 

diseases, but the diagnostic accuracy is not the highest [2]. A solution for this could be serial 

electrocardiography. Serial electrocardiography (serial ECG, S-ECG) refers to the method of 

comparing two different ECGs from the same patient to each other [9][10][7]. This method has the 

potential to e.g. increase the detection rate of acute myocardial infarction for example [2]. Initial ECG 

can vary a lot between patients in normal population and that can cause some difficulties in 

interpreting ECGs correctly [9]. Especially machine learning methods can have difficulties 

interpreting these ECG signals from different patients. This means that variability between patients 

should be disposed of and focus more on the intraindividual variability [9]. This misinterpretation 

can be bypassed by comparing different ECGs from the same patient between each other. The first 

ECG creates sort of an anchor, to which the second ECG will then be compared. The comparison 

between these two or more ECGs from the same individual is called serial electrocardiography 

[7][10]. This method has shown promising results and features extracted from the serial ECG have 

been noticed to reveal changes in the clinical cardiac status of the patient [10]. When comparing 

standard 12-lead S-ECG to the initial 12-lead ECG where the predictions and the detection of 

myocardial diseases are made with only one ECG recording from the patient, S-ECG was noticed to 

be performing better at detecting acute myocardial infarction [12]. Aim of the serial ECG is to show 

the possible changes in the ECG signals [7]. These changes can be a sign of myocardial disease or 

pathologies, especially if the change is noticeable. When detecting these changes, usually a visual 

assessment by the doctors is done for the two ECGs to find possible differences [7]. However, there 

are some algorithms that calculate the differences and make the analysis based on the calculated 
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differences [2][7]. Even some commercial solutions support serial ECG analysis by comparing the 

initial ECG recording to one done previously [7].  In this study, the comparison will be done both 

visually and with algorithms calculating the differences in the features of ECGs.  

One way to compare the serial ECGs is to monitor the changes of the main features of ECG between 

the different ECGs. One of these features is the ST-segment. As stated before, ST-segment changes 

are an approved way to detect myocardial ischemia [6][15][14]. The ST-segments elevation, length 

and deviation can all be monitored between the different ECG recordings. It is easier to detect these 

ST-segment changes when comparing to a previous recording, since the differences might be clearer 

than with initial ECG. It is helpful to have a previous ECG recording when detecting acute myocardial 

infarctions [1]. The volume of ST-segment change can be extracted from S-ECG and then analysed 

[11]. In some algorithms, if the computer calculates the change to be drastic enough, then it will alarm 

the person measuring the ECG and will then be further analysed by a doctor [11]. The ST-

segmentation is based on the S-wave and T-wave detection algorithms, so there might be some 

miscalculations. This is why some suggest that all 12-leads should be used to get the best possible 

result and to eliminate the possible distorted segments from some leads [11]. Comparing the features 

of S-ECGs is beneficial since the ECGs are taken at different times. The patient is the same and the 

equipment should be the same which means that in a perfect world the only variability factor is the 

electrical activity of the heart of the patient.  

S-ECG can be done with the same exact equipment as the normal ECG, with electrocardiographic 

machine [11], so this method can improve the accuracy at a very low cost [2]. One thing to note is 

that there can be some variability between ECG devices, so the different ECG recordings have to be 

recorded with the same or at least similar equipment. The previous ECGs, or just one baseline ECG 

from the patient, need to be saved into a specific patients database where they can later be used as a 

comparison for the new ECG and to produce the S-ECG. This helps organizing the data and makes 

the comparison process much easier.  

The rate of measuring the ECGs varies a lot. It is up to the clinician to determine the rate of the 

measurements [11]. If the situation needs it, then the individual ECGs can be recorded within minutes 

apart from each other [2][11], but if time is not a concern, the ECGs can be measured with a longer 

period between the recordings [11]. One study has found that even really long interval times can give 

decent results [13]. This study had the mean interval time of 3.8 years between the recordings. 

However, they suggested that a yearly ECG recording would be a more reliable solution [13]. There 

does not seem to be an optimal rate at which to acquire the different ECG recordings [6]. However, 
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most S-ECG solutions have been found to be working in spite of which rate of measurements has 

been taken. From a few minutes to a few years, S-ECG seem to be improving the performance of 

detecting myocardial diseases compared to the initial ECG [2][12][11]. In some cases, if the diagnosis 

from the initial ECG is ambiguous, S-ECG could be a useful tool [6].  Even though the S-ECG seems 

to be a promising way to improve diagnosis of myocardial diseases [10], it’s real value is yet to be 

determined [12]. There have not been enough studies yet to determine if S-ECG is a relevant way to 

detect and monitor myocardial diseases, but it shows great promise and is  proven to be a viable option 

in some studies [2]. 

2.1.2 High-frequency electrocardiography 

The standard 12-lead ECG usually has a bandwidth of 0.5 Hz to 150 Hz [5]. This is usually even 

further filtered to 0.5-25 Hz for example, when processing the signal. This does get all the required 

information from the ECG recording, but higher frequencies can give information too. The changes 

of the health of the heart usually can be found in the electrical activity of the heart, but sometimes 

they can’t be seen in the normal frequency range of ECG [8]. Therefore, we need to study the high-

frequency electrocardiogram (HF-ECG). Some studies have already found, that the HF-ECG 

measurements can provide a deeper look into the pathological state of the patient [8][14].  

One way to study the HF-ECG is to extract the high frequency part of QRS-complex (HF-QRS) 

[8][15][14]. The main parts of HF-ECG can be found in the HF-QRS. This is because the HF-ECG 

has a significantly lower amplitude compared to the standard ECG [15]. This can be seen in figures 

3 and 4. 
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Figure 3. HF-ECG compared to the standard ECG from STAFF III. 

 

Figure 4. The same ECG and HF-ECG amplified by a factor of 20 and shifted downward -1. 

 

Figure 3 demonstrates the difference in voltages in the different frequency ranges. HF-ECG has much 

lower amplitude and in figure 4 we can see that the only distinguishable features of the HF-ECG are 

the QRS-complex peaks. The HF-ECG in figure 3 has been amplified by a factor of 20 and has been 

filtered with high-pass filter of 150 Hz. Normal ECG is in the mV range, while the HF-ECG can be 

even in the µV range for some patients. Because the QRS-complex is the only clearly visible feature, 

most studies focus on the HF-QRS [8][15][14][16]. There is no established method to extract the HF-

QRS, but most use signal averaging and bandpass filters [15]. These filters usually range from 150 to 
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250 Hz [8][15][16] and these are the frequency ranges where the HF-ECG studies have mainly been 

focusing. There have been some studies with lower frequencies as well, starting from 80 Hz, like 

myocardial infarction studies [28], but the most common bandwidth used is 150-250 Hz [8]. One way 

to study the HF-QRS is to compute the root-mean-square (RMS) from the signal [8][28]. Another 

method is to examine the shape of the HF-QRS [8][28]. The duration of the QRS is usually determined 

from the regular ECG and is then HF-QRS can be extracted from the HF-ECG [16]. If the patient is 

suffering from acute myocardial ischemia, from this HF-QRS envelope we can sometimes extract the 

reduced amplitude zone (RAZ) seen in the figure 5 [8][28]. 

 

Figure 5. HF-QRS and RAZ qualification. Source: Principles of Biomedical instrumentation [28] 

High frequency ST-segments can show some signs of ischemia or other myocardial diseases as well 

[28].  Ventricular late potentials (VLPs) that happen after the QRS-complex, can be seen in the HF-

ECG. Some studies regarding to the P-wave of HF-ECG has also been made. K. Yodogawa et al. [30] 

found in 2012 that with high-frequency P-wave averaged signal, the difference between patients with 

and without atrial fibrillation can be seen from the HF-ECG. They filtered the signal between 40-300 

Hz and averaged the ECG based on the P-wave. This shows that the HF-ECG has potential outside 

the HF-QRS.  

The first published studies on HF-ECG was in the 1960s [15] and in 1980s first relevant results started 

to show up [8]. In 1980s  multiple papers on HF-ECG was published, focusing mainly on HF-QRS 

[8]. Even though this was the case, HF-ECG has only recently gained popularity and commercial 

availability e.g. for diagnosing myocardial ischemia for example [15]. One reason for this could be 

because the physiological reasons for the HF-ECG are still unknown [14][16][28]. There are several 

theories trying to explain the changes in the HF-ECG and HF-QRS.  Some believe that the HF-ECG 

demonstrates the conduction velocity and the fragmentation of the depolarization wave in the 

myocardium [16][28]. More physiological studies need to be done to determine the real physiological 

reasons for HF-ECG and changes in it [14]. Even though the physiological reasons for HF-ECG are 

unknown, the results cannot be disputed. Multiple studies have noticed the HF-ECG to be a relevant 

way to detect myocardial diseases [8][15][14][16][30]. Some studies even found out that the HF-ECG 

is more viable than the current methods [14]. One reason for the late bloom could also be that the HF 
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content has been found to be almost impossible to analyse manually [15]. Some studies have noticed 

that with leading edge technology, HF-ECG can provide a more detailed diagnostic [8]. With modern 

methods and machine learning, HF-ECG could be much more relevant than ever before. 

The HF-ECG has been detected to have a high variability between the patients [14]. In my own studies 

I also noticed that the HF-ECG had much lower amplitude for some patients than others. This 

validates the type of study we want to execute. If the intervariability is high, the results from the 

straight up comparison can be distorted. Intraindividual variability might tell us more. Some studies 

have shown that for example the coronary artery occlusion can be detected easier with HF-ECG than 

the standard ECG [14]. These occlusions can lead to myocardial ischemia. One thing to note is that 

the normal ECG seems to be better at detecting the location of the occlusion, than the HF-ECG [14]. 

One reason for the detection was that the HF-QRS increased during the occlusion for some patients 

[14]. These results seem to support the fact that HF-ECG can be useful, especially for patients 

suffering from ischemic heart disease [16] and coronary occlusions [14]. 

2.2 Acute myocardial infarction 

Acute myocardial infarction (AMI) is one of the main reasons of death all over the world [1][4][2]. 

AMI is more commonly known as a heart attack [1][31]. Usually AMI is detected in more developed 

countries, but nowadays it is also causing havoc in developing countries [4]. This is mostly due to 

unhealthy lifestyles. Over the last centuries, we have learned more and more about AMI and come 

up with new ways of treatment which have improved the rate of survival from the AMI [31]. Also 

the accuracy of AMI detection has risen over the years [1]. AMI can be defined in multiple different 

ways, depending on the field of study [1]. AMI refers to the cell death of cardiac myocytes caused by 

ischemia [1]. Ischemia on the other hand is caused by imbalance between supply and demand [1]. If 

the heart does not receive enough oxygenated blood for example, it will start to go to hypoperfusion. 

If this hypoperfusion is then prolonged, it will lead to ischemia which will then lead to the infarction 

when prolonged [31]. Simply defined, AMI is caused by decrease of blood flow to the heart causing 

to the cardiac cells to die [1][31]. AMI may also be the first sign of coronary artery disease [1]. 

One way to prevent AMI is by detecting myocardial ischemia. Ischemia can lead into structural 

damage to the cardiac muscle, rhythm disturbances and even to sudden cardiac death [8]. These are 

all factors when trying to predict AMI. It could be the first sign of coronary artery disease and could 

repeat itself [1]. Ischemia can be identified from the ECG recording of a patient [1]. Usually, also 

patient’s myocardial history and lifestyle choices can be a factor when detecting AMI [1].  Detecting 
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AMI and ischemia from the ECG is not easy. Analysing the changes in the ST-segment is known to 

be a relevant method to detect ischemia [15]. The changes in the amplitude of the ST-segment are 

usually used to detect AMI and ischemia. AMIs which have these changes in the ECG are called the 

ST-elevation myocardial infarctions (STEMI) [4][31]. These kind of ischemic elevations could be 

the first signs of STEMI [5]. In STEMI, the ST-segments elevation rises drastically. This can be seen 

clearly in figures 2 and 6.  

 

Figure 6. ST-elevation during AMI. The figure consists of average waveforms calculated every 30 seconds. Signal is from STAFF III 

database, recording 015c and lead II. Patient suffers from AMI. 

 

Figure 6 demonstrates the changes in ST-elevation during AMI. The patient has been diagnosed to 

have an ischemia between 128-433 seconds [32]. In figure 6 we can clearly see the ST-elevation rise 

during the ischemia and then return to normal level of elevation after it. It has been estimated that 

over 3 million people every year suffer from STEMI [4]. Another huge problem is non-ST-elevation 

myocardial infarction (NSTEMI), which has been estimated to happen with over 4 million people 

every year [4]. In NSTEMI, the ST-elevation does not happen and it’s harder to detect from the ECG 

[31].  

ST-segments elevation is not the only sign of AMI in ECG. The PR-segment, QRS-complex and the 

T-waves can also show signs of AMI [1]. The R-peaks amplitude and changes in it, could be a sign 
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of AMI [1]. The width of the QRS-complex, especially if the segment between R- and S-peaks widen, 

could be a sign of AMI [1]. This is usually in correlation with ST-segments elevation. Also the spatial 

angle between QRS-complex and T-wave can detect ischemia [10]. If the T-wave appears inverted, 

it might be a sign of AMI [1][6], especially if ST-segments deviation shows signs of it [6]. The 

amplitude changes of PQ-segment can also be used to detect AMI [33].  

After the AMI has happened, the ECG records may appear abnormal [13]. This is not always the case, 

and the ECG could be normal as well. Abnormalities in the ECG can occur, because the AMI has 

caused structural damage to the myocardial muscle [8]. These problems can further lead into rhythm 

disturbances and other problems which can lead to cardiac death [8]. Rhythm disturbances are caused 

by corrupted conduction factors and increased action potentials in the areas where the AMI has 

happened [13]. These changes can lead to abnormal electrical activity in the heart [13]. Most deaths 

with patients who have suffered STEMI or NSTEMI occur because of heart failure and structural 

complications like rupture somewhere in the myocardium [4]. Therefore, it is important to detect the 

AMI happening and then study the heart for possible problems. AMI usually leads to pain or 

discomfort which will last more than 20 minutes [1]. Other physiological symptoms may include 

shortness of breath, perspiration, nausea and even fainting [1]. These all should be a sign to go to the 

hospital. One problem is that people are hesitant and unsure when to go to the hospital. Another 

problem is that painless AMI, also called silent AMI, can occur [1][34][35][33]. Especially patients 

who are suffering from diabetes mellitus, are known experience painless AMI [34]. However, 

painless AMI  has been noticed to occur with other patients as well [35]. Due to the structural damages 

caused by the infarction, it its crucial to detect also these silent AMIs. As stated, the ECG records can 

change after AMI, which is why regular ECG recordings are recommended [13]. Also during the 

AMI, even though there might not be any other signals of it, the ECG could be the only detection 

method [1]. Recording ECG continuously is probably not the answer though but predicting and 

preventing the possible AMI with regular ECG recordings could be. One thing to note is that the more 

we have understood the reasons behind AMI, the better we have been able to detect myocardial 

infarctions [1]. 

2.3 Available methods 
 

There are multiple different methods on how to detect AMI. The 12-lead electrocardiogram is the 

golden standard when detecting AMI, but it is not easily accessible for the patients. It usually can’t 

be measured at home by the patient. In this chapter we go through some potential competitors for our 
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device. Focus will be on portable devices, which the patient can use by himself. There has been an 

rising interest towards health technology and especially wearable devices in the recent years and 

COVID-19 pandemic seemed to boost this interest even more [36]. The main reason behind these 

portable devices in healthcare is to track patients’ health. Additionally the purposes of especially 

portable ECG devices are  to advance the diagnostic process [37] and to reduce time spend in doctor’s 

office. It has been noted that the patients do not seem to struggle using these kind of technologies 

[36]. The fact that healthcare can be very expensive and that the cardiologist might not be available 

for every patient all the time, supports the need for self-used portable devices [38]. The financial 

savings could reach even billions with these kind of devices [38], while the devices themselves would 

have enormous financial opportunities. 

2.3.1 AliveCor 

AliveCor is a company from the United States that develops medical devices. They have multiple 

different products, but the focus is set on their latest device. This product is called KardiaMobile 6L. 

KardiaMobile 6L is an ECG device which can record up to 6-leads of high quality ECG [36]. The 6-

leads include all six limb leads [36][39]. This means the I, II, III and aVL, aVF, aVR leads. The 6L 

has been given the validation by the United States Food and Drug Administration (FDA) to record 

ECGs [36][39]. The system consists of the ECG capturing device itself and also an application called 

KardiaStation developed by AliveCor [36]. The device is rectangle shaped and fits easily in a person’s 

pocket. This means that it is conveniently portable and works anywhere [39]. After the recording, you 

can look at the ECGs yourself and also send them to your doctor for inspection [39]. The device is 

shown in figure 7. 

  

Figure 7. 6-lead ECG with KardiaMobile 6L. [39] 
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The device works by placing the sensor to skin on your left leg and fingers from both of your hands. 

This is demonstrated in figure 7. Once activated, the device records a 30-second long of ECG [36]. 

The ECG recorded is sampled at 300 samples per second. This makes the study of high-frequency 

ECG possible, but not all that reliable since Nyquist’s sampling theorem declares that the sampling 

rate should be at least two times higher than the highest frequency component of the signal [40]. This 

means that the highest possible frequency from KardiaMobile 6L is 150 Hz, which barely scratches 

the range of HF-ECG.  

After the recording the ECG is then send via Bluetooth Low Energy to a mobile device for diagnostics 

[36]. AliveCor claims that they can automatically detect AF, bradycardia, and tachycardia. It also 

detects the normal heart rhythm. The results are ready within minutes [36]. Automatic AMI detection 

with the application is not available, but under development. However, when the patient is suffering 

with chest pain, they can record the ECG and then send it to a doctor to further analysis.  

2.3.2 HeartBeam 

HeartBeam is a medical device designed to detect AMI [41]. It’s developed by a company named 

HeartBeam in the United States. The device is capable of recording 12-lead ECG [41], but the leads 

have to be recorded separately. The device itself is very similar to the KardiaMobile 6L, which was 

introduced in the last chapter. It’s the size of a credit card and can be with the patient all the time. 

Contrary to the 6L, HeartBeam does not have FDA approval and it is not in the market yet. However, 

the development seems to be in a good phase which is why it is included here. The device can be seen 

in figure 8. 

 

Figure 8. HeartBeam. [41][42] 
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This device can also be used by the patients at their home [41]. The ECG record can be done by 

placing the device on the chest of the patient and then pushing the sensors on the sides of the device 

with fingers from both hands. This is demonstrated in the figure 8. After the recording, the ECG is 

sent to a mobile device where the ECG can be evaluated in an application called iCardiologist. It is 

developed by HeartBeam and it sends the recorded ECG to a cloud where a doctor can access it and 

then can make the correct diagnosis [38]. They can determine if the chest pains are actually caused 

by an AMI or is it a false alarm [41][38]. The algorithms, sampling frequency and recording time of 

the device are not revealed by HeartBeam. 

2.3.3 RELF Project 

RELF Project is a medical project funded by Ghent University in Belgium [43]. RELF takes a little 

different approach to the ECG recording than the two previous. They have developed a handheld 

device that uses proper ECG electrodes rather than having them embedded in the device itself like in 

the two previous ones. The device is relatively small, and it and it’s leads on which the electrodes are 

attached to can be seen in figure 9. 

The device seen in figure 9 is connected to a mobile device via Bluetooth [43]. For the mobile device 

they have created a user interface application where you can control the ECG device [43]. This 

application also analyses the ECG recordings. They have based the calculations on an automatic 

algorithm, called the RELF method, that they had been developing for 7 years before the publication 

in 2019 [43]. This algorithm has been proven to work very accurately at detecting ischaemia [44]. 

The results are then generated using this algorithm and automated feedback is given within 1 minute 

[43]. The algorithm uses ST-segments differences in the last 13 measurements done by the patient 

[43]. This takes advantage of serial-ECG and gives reliable results according to the study.  
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Figure 9. RELF device. [45] 

They suggest that the patients should carry this device and electrodes with them and when 

experiencing symptoms should take the recording [43]. The recording itself is simple, the leads are 

connected to the right shoulder, left shoulder and to the left iliac crest located in the pelvic area [43]. 

The recording is 12 seconds long after which the mobile application tells you the analysis and adds 

the recording to the library. The sampling frequency of the recording is not revealed. 

2.3.4 AngelMed 

AngelMed Guardian System is a medical device system that alarms the patient about AMI. The 

system is made of an implantable medical device and an external device [33]. The implantable device 

is very similar to pacemaker and it provides continuous ECG monitoring [33][46]. The implantable 

device is planted on the patient’s chest where it can detect myocardial changes [33]. The device will 

then analyse the ECG and if an abnormality emerges, it will alarm the patient via vibration [33]. In 

case the situation is severe, also the external device will start beeping and flashing to signal the patient 

to either call a doctor or an ambulance [33]. The alerting system is based on ST-segments changes 

[33]. Every 90 seconds the system records 10-second-long ECG and calculates the ST-segment values 

from it [33]. After the calculation, it will refer the values with 24-hour average of the patient [33]. If 

a reasonable ST level change happens, the device will then start to record ECG every 30 seconds [33] 

and if the trend continues, depending on the severity of the changes the device will warn the patient 

to go to see a doctor or alert an emergency [46]. Sampling frequency of the device is not revealed. In 

figure 10, we can see the external device and the implantable device. 
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Figure 10. AngelMed Guardian System. [46] 

2.3.5 Smartwatches 

In the last few years, some smartwatches have been starting to provide the possibility to record ECG. 

One example of this is Apple’s Apple Watch Series 4. This device has two electrodes, one on the 

back of the watch and one in the digital crown of the watch [47]. These two electrodes create a single-

lead ECG, which can be used to acquire ECG from all 12-leads [48]. Apple Watch has been given 

the US Food and Drug Administration approval [48]. It has been mainly used to detect atrial 

fibrillation, but there are definitely possibilities to detect AMI [48]. It is important to note that the 

smartwatch is not meant for clinical tests [48]. However, it has been studied that the smartwatch can 

produce a signal that shows ST-segment and QRS-complex changes [48][49]. This can make the 

smartwatch an valuable asset when the standard ECG is not an option or available. The ECG signal 

from the watch is good enough for making tentative diagnosis and monitoring.  

The ECG can be recorded in multiple different ways. The simplest way is to record Einthoven’s lead 

I. If the patient is wearing the watch on his left wrist, as normally you would, then the recording can 

be done by placing your right index finger on the crown of the watch [49]. Other leads can be also 

recorded, but with different setups. One recording is 30 seconds long and the sampling frequency is 

not revealed. After the recording is done, the ECGs can be stored into Health Application made by 

Apple [47][50]. The application will then calculate and categorize the patient’s ECG to normal 
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rhythm or some kind of irregularity [50]. The ECG is also visible for the users and it can be send to 

a doctor if necessary [50]. One study found that when comparing these smartwatch ECG recordings 

to a 12-channel ECG, they both produced very similar signals [49]. In figure 11 we can see lead I 

being recorded. 

 

Figure 11. ECG with Apple Watch Series 4. [47] 

 

2.4 Machine learning methods 

For the past decades, machine learning has been one of the most studied subjects in computer science 

[51]. Machine learning means that a computerized method can detect meaningful patterns from data 

[51]. Nowadays with big data, machine learning has become even more valuable. Some patterns can’t 

be detected by humans, but with the right attributes machine learning can. This is why machine 

learning is widely used in different fields, including medicine and health technology [51]. In this 

study, we used 5 different machine learning methods. All of these methods are classification methods, 

which is a supervised machine learning technique [52]. Classification is one of the most used  machine 

learning techniques [52]. In classification-based machine learning, the algorithm is first given a 

training set which has input and output values. In this study for example, input values are features 

gathered from the patient’s ECG signals, while the outputs are the labels given for these patients. 

After the algorithm has been trained, then it can be given a test set with only the input values [52]. 
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Then the algorithm tries to predict the output based on these inputs. It is called supervised machine 

learning because of the training sets given to the algorithm are all known [52]. The test and training 

set is usually split so that the training set includes 70-80% of the data, while the test set is the 

remaining part of the dataset. This way the results will be more relevant, and the training will be 

enough depending on the size of the dataset.  All of the machine learning methods used in this thesis 

are presented in the following subchapters, and are created with scikit-learns machine learning library 

[53].  

2.4.1 K-Nearest neighbors 

K-nearest neighbors (KNN) is one of the simplest machine learning methods [51]. The way it works 

is that the model memorizes all of the training set and then classifies the test data instances based on 

reviewing the closest data points next to it [51]. The number of closest points or ‘neighbors’ is 

determined as the ‘k’. It can be changed to any value, but in binary classification it should be an odd 

number so that the prediction does not end in a draw. This all is based on the expectation that all 

things that look the same, must be the same [51]. The benefits of this method are that it is easily 

executable and also it calculates very fast even though if the data set is big [51]. Figure 12 shows this 

method in action. 

 

Figure 12. K-nearest neighbors machine learning method. 
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Figure 12 shows the nearest 5 neighbors of the instance. 2 of these neighbors are diamonds, while the 

other 3 are squares. This means that the green instance will be predicted as a square with KNN, if the 

k-value is 5.  

2.4.2 Support Vector Machine 

Support vector machine (SVM) is a supervised machine learning method where the goal is to divide 

the classes as well as possible with a hyperplane [52][54]. It has been determined as a great method 

at detecting heart diseases with relevant features [2]. SVM relies on statistical learning theory [52]. It 

can be used as a regression model, but support vector classification (SVC) model is used more often. 

Depending on how many features (n) the classes have, the SVC will create (n-1)-dimensional 

hyperplane to separate the classes. Maximising the separation between these classes is key when 

using SVC and reducing errors [52]. This separation can be seen in figure 13.  

 

Figure 13. Support Vector Machine. [55] 

 

Figure 13 represents the simplest form of SVC. In this SVC, there are only 2 features x and y, which 

means that the model has only 2 dimensions. The hyperplane then is simple line, which can be placed 

anywhere between the two distinct groups. The most optimal placement is exactly in the middle of 

the two groups, minimizing possible errors when predicting new values. This is represented by the 

black line. The placement can be calculated with the help of support vectors that can be seen in the 

figure 13. These vectors are the outermost values, nearest to the other class [56]. These also give the 

name SVM for this machine learning method [56]. 
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2.4.3 Decision Tree 

Decision tree is a supervised machine learning method [52]. It predicts the label of the data based by 

travelling a decision tree from its root node through every node until a leaf node is reached and the  

answer is given [51]. Node can be described as a crossing, a question which will guide the decision 

in one way or another. Leaf node can then be described as the last point, where there are no more 

nodes to go to. Meanwhile root node is the complete data set. At every node in this root-to-leaf 

process, the data is split based on the features of the data [51]. Each node is then a test on a feature, 

depending on the value, it will make a decision and move on to the next node [52]. These features 

can be numerical or of other types of requirements. A very simple binary-classification is presented 

in figure 14. 

 

Figure 14. Decision tree. 

Figure 14 demonstrates a really simple example of a decision tree trying to answer if the person is fit 

or unfit. The decision tree moves one question at a time and, based on the answer, moves on to the 

next question. After the decision tree has been processed, answer can be given. 

Decision trees try to expose the structural information within the data [52]. If a human programmer 

makes a classifier, it usually works like a decision tree [51]. These methods are reasonably simple 

and fast, while having a good accuracy [52]. However, on a complex data this method might not work 

perfectly, since they are computationally hard to learn [51] and also some of the complexity can be 

overlooked by the simplicity of this method. Decision trees can also suffer from overfitting [51]. 
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2.4.4 Random Forest 

Random Forest is a supervised machine learning method, which consists of multiple decision trees 

[51]. It can be a classifier or a regressor. The way it works is that it uses multiple different decision 

trees and then with results of these trees it makes the predictions based on majority vote [51]. With 

this kind of machine learning, the method reduces the possibility of overfitting and also handle more 

complex data [51]. While using multiple decision trees to make a prediction, the computational 

complexity becomes much higher. This can limit the usage of this machine learning method in real-

time solutions. Figure 15 demonstrates the usage of random forest classifier with 3 decision trees. 

 

Figure 15. Random forest. 

 

2.4.5 Extra Trees 

Extra Trees is a supervised machine learning method, very similar to Random Forest. It uses multiple 

randomized decision trees and then makes a decision based on the majority vote. The main difference 

between Random Forest and Extra Trees is that, while Random Forest uses bootstrap replicas and 
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chooses the optimum split, Extra Trees randomizes the split and uses the whole sample [57]. Extra 

Trees algorithm is also computationally faster than the Random Forest [57], making it a good option.  

2.5 Cross-validation 
 

The machine learning models need to be trained. For this, the models need training data. The models 

also need to be tested, which also requires data, test data. If the dataset used is not big enough, it 

might affect the performance of the machine learning methods. To avoid this happening, one solution 

could be cross-validation [15]. Usually, the data is randomly split between training and test in the 

sizes of training set being 90% to 70% of the data and the test set containing 10% to 30% of the data 

[58]. In cross-validation however, the dataset is split into these sets’ multiple times. For example, in 

leave-one-out cross-validation (LOOCV), the training set contains all but one instance of the dataset. 

The one instance remaining is then used for testing. This operation is then iterated throughout the 

dataset, so that every instance of the dataset is left out one time. This means that every instance is 

used for testing in each iteration alone, while the rest of the dataset is used for training. Then the 

results are calculated together. With this kind of approach, we can make the most of the amount of 

data available [15][58]. Figure 16 demonstrates how the LOOCV works. 

 

Figure 16. Leave-one-out Cross-validation. 
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3 STAFF III 

3.1 Database 

The STAFF III is a public database that was acquired to get a better understanding of ECG during 

acute myocardial ischemia [15][59]. It’s a unique database since the AMI is caused purposely. This 

is possible due to prolonged angioplasty. Percutaneous transluminal coronary angioplasty (PTCA) 

was the method used [15], and it’s a procedure where a blocking point or clot in the artery is opened. 

This method is the basic procedure after AMI [60]. This prolonged PTCA then causes the coronary 

artery to be blocked for some time, causing the ischemia to happen. The procedure of PTCA can be 

seen in figure 17. This is what makes the database special, they produce the AMI and record ECG 

simultaneously, which includes the full coronary occlusion.  

 

 

Figure 17. Percutaneous transluminal coronary angioplasty. Source: [61] 

 

STAFF III was recorded in 1995-1996 in a medical centre in West Virginia, USA [15][32][59]. The 

ECG recorded was the standard 12-lead ECG [59], where precordial leads were placed with the 

standard placements, while the limb leads used Mason-Likar electrode placement in order to reduce 

noise [59]. Only voluntary patients receiving the PTCA were included [59]. The database includes 

104 patients and all of these patients have multiple different ECG recordings [15][32][59]. These 

different ECG recordings include baseline data, balloon inflation data and post-inflation data. There 

are two different baselines: baseline 1 and baseline 2. Both are done pre-inflation. Baseline 1 is 

recorded in a relaxing room, where the patient is in a resting position [59]. This should be basically 

the best possible ECG that we can get from the patient. The recordings are 5 minutes long [59]. 

Baseline 2 is very similar to baseline 1, but instead of the relaxing room, it was done in the 

catherization laboratory [32]. It was also done in resting position and lasted for 5 minutes, but one 
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thing to note is that it was done right before the PTCA. This could mean that the ECG gets distorted 

due to nervousness or something else. This might affect the baseline 2 ECG, but it should still be very 

similar to the baseline 1. This is because the baseline 2 recording is done right before the inflation 

recording. Some patients do not have their baseline 1 ECG recording from the relaxing room, but 

instead it is done in the catherization laboratory as well. 

The inflation data was also recorded in the catherization laboratory. These ECGs were acquired while 

the balloon inflation was applied to the patient [59]. Each patient have at least one inflation recording, 

but some patients have multiple balloon inflation recordings [59]. More than 2 recordings are rare, 

but one patient has 5 balloon inflations. The ECG recordings start before the occlusion happens and 

are carried on until the inflation is over. Unlike the baselines, the length of the inflation recordings 

varies a lot. Shortest recording is 1 min 30 s while the longest is 9 min 54 s [32]. The average time of 

the inflation recordings was 4 minutes and 23 seconds [32].  

 

Figure 18. Different types of ECG recordings from STAFF III. Patient 102, lead II. 

 

Patients also have post-inflation recordings. These ECGs are recorded after the PTCA is done and are 

done in a very similar way as the baseline recordings. There are two different kinds of post-inflation 
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recordings, ones done in catheterization laboratory while the other one is done in the relaxing room 

[59]. These recordings are 5 minutes long as well. In figure 18, we can see these different ECGs. 

The full database can be found in physionet [32]. The database consists of *.dat and *.hea files [59]. 

They are marked from 001a to 108g. All of the patients have multiple recordings. Usually, A and B 

marked files are baselines, while c and further marked are inflations and post-inflations. Some 

recordings also have annotation files *.event to mark the balloon inflations and deflations [59]. The 

database also includes fully filled annotation Excel-file, which has a lot of important information 

regarding the database. The timings of the balloon inflations, the occluded arteries, age and sex of the 

patient and other important annotations can be found in this file. All of the annotations have been 

made manually [32]. This annotation file reveals that the database contains 152 balloon inflations in 

coronary arteries [59]. Of these, 58 happen in the left anterior descending artery (LAD), 59 in right 

coronary artery (RCA), 32 in left circumflex artery (LCX) and 3 in left main artery (LM) [59]. The 

annotation file also further divides these occlusions more specifically in the arteries, LAD for example 

is divided into proximal LAD, mid LAD, proximal mid LAD and LAD diagonal. However, more 

work has been done with ischemia detection from the data and the identification of the occluded artery 

has been mainly left out [15]. This is a bit of a mystery, because the site of the occlusion is known, 

so it would be easy to evaluate the efficiency of the identification method [15]. Some patients also 

had dye injections, which are also annotated in the annotation file [59]. These injections can cause 

some changes in the ECG [59]. However, all of the dye injections are not annotated so researchers 

analysing the database have to be cautious [59]. 

The STAFF III database also focuses on high-frequency ECG during ischemia [15]. This is the reason 

for sampling rate of 1000 Hz [59]. ECG also has amplitude resolution of 0.625 μV [59]. These values 

provide high quality digital signals, which would show even the smallest changes that could be further 

analysed [59]. Although a lot of effort was put into it in order to record quality HF-ECG and it was 

one of the primary interest, there are no annotations made specifically for the HF-ECG content [15]. 

This is because the high frequency contents and changes are almost impossible to annotate manually 

[15].  

Even though the STAFF III database is over 20 years old, studies are still done to this date [15]. Due 

to its unique nature with the prolonged PTCA and HF-ECG, it keeps on fascinating and providing 

new techniques for the researcher to study. The number of studies done with the database has only 

been increasing over the years, but most of the studies do not focus on HF-ECG [59]. It has been an 

excellent database to try new methods of detecting ischemia [15]. The database has also been 
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especially valuable when developing new or improving old signal processing methods [59]. The lack 

of HF-ECG studies done with STAFF III might suggest that it will keep increasing in popularity over 

the following years. The unique nature of the PTCA is also interesting. Usually the ischemic data is 

just brief inflation, but this database provides one long prolonged inflation [59]. This also could gain 

more popularity over the following years, since techniques providing ECG recordings from home 

already exist, but also in the future there might be a way of continuously recording ECG. This way 

we could get the full ischemia recorded from the patient in time and then compare it to this database’s 

prolonged PTCA.  

3.2 Comparing different ECGs  

As stated, the STAFF III database consists of 104 patients, who all have multiple recordings from 

different kind of situations. In figure 17, we can see these different signals from one patient. It seems 

like that all the signals seem to be very similar to each other, at least with the first glance. When 

taking a more in-depth look, we can see that the post-inflation ECG seems to have more noise 

compared to the other signals. This might be due to the pain caused by the occlusion and then 

recovering from it. But the first three, baselines and inflation signals do not really tell a difference. 

We can evaluate the signals more closely by taking the average waveform of ECG based on the R-

peaks detected from the signal. We can see these average waveforms in figure 19. 

 

Figure 19. Average waveforms for the signals. From STAFF III database, patient 17 lead II. 

In figure 19 we can see that even when comparing the signals in average waveforms, they seem to be 

similar. The most noticeable differences are in the height of T-wave and the R-peak. The inflation 

and post-inflation seem to have lower T-waves, but higher R-peaks than the baseline recordings. 
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Otherwise, they are almost equal. The form of the ECG, QRS-complex and the P-wave are all 

comparable to each other. One thing to note is that this is not the case for all the patients in the 

database, but this already gives us a lot of information regarding to the similarities between these 

signals. This provides us a great foundation to start comparing these different ECGs with each other 

and creating serial ECG analysis.  

Baseline 1 and baseline 2 should always be very similar to each other, since they are recorded from 

the same patient, without any procedures yet to be done to the patient. However, there can be some 

changes due to nervousness and the basic nature of ECG. Also, the baseline 2 and inflation recording 

should be fairly similar, since they are recorded in the same room, in the same day and within minutes 

of each other. The inflation data of course has one artery occluded, but still the baseline 2 should be 

at least a little bit comparable with the inflation recordings.  

For the serial electrocardiography analysis, we can then use two different types of comparisons. 

Baselines versus each other, and the baseline 2 versus the inflation recording. Basically, we will use 

the baseline 2 as sort of an anchor. The differences between baseline 1 and inflation recording are 

usually shown way clearer when compared in this way. Also, when using one ECG recording as an 

anchor, we should get more relevant results. This is basically what the S-ECG is about, comparing 

different ECG recordings with each other. 
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4 Signal processing 

4.1 Pre-processing the data 

As stated, the STAFF III database consists of *.dat files which are the signals. Each of these .dat files 

has a lot of information about the recording. The time of the recording, values of the analog to digital 

converter, information and comments about the patient and most importantly, 9 different channels of 

ECG. To read these signals, I have used waveform-database package [62]. This package makes 

reading and processing of the .dat files a lot easier. After reading the signal, I extract one channel of 

ECG and create timestamp for the signal based on the length and the sampling frequency of the signal. 

In figure 20 we can see an example of a full STAFF III ECG signal. 

 

Figure 20. Raw ECG signal from STAFF III. Recording 45a, lead II. 
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Pre-processing process also included removing incorrect signals. Annotation file of STAFF III states 

that patients 1, 4, 5, 6 and 89 all have been identified as incorrect [32]. I did not include these patients 

in the study.  

 

4.1.1 Filtering 

The ECG signals were filtered to remove possible noise. The filtering method used for the ECG is 

Butterworth filter. I have used a bandpass filter with cut-off frequencies of 0.5 and 40 Hz. The filter 

is second order. For the high-frequency signal, I have used a second order high-pass Butterworth filter 

with high-pass of 150 Hz. The effect of these filters to the signal can be seen in figure 21. These cut-

off frequencies are based on the literature considered in chapter 2. In some patients the HF-ECG 

might be stronger than others. This can be seen in figures 21 and 22. 

 

 

Figure 21. Raw, filtered and HF-ECG. From STAFF III, recording 17a, lead II. 
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Figure 22. Raw, filtered and HF-ECG. From STAFF III, recording 32a, lead II. 

 

4.1.2 Normalization 

In order to make the ECG signals to appear more similar and reduce the possible intraindividual 

difference, normalization has to be done. Patients respiration can cause the ECGs baseline to drift, 

which can  further change the nature of ECGs amplitude [63]. This can be reduced with normalization 

of the signal. Basically, it means scaling the signals to identical level. In this case, the signals are 

scaled from 0 to 1. This also means that the signals can’t be negative [64]. Normalization is especially 

necessary when comparing ECG signals from different sources. The amplitude can change due to the 

equipment. The formula used to normalize the ECG is the following: 

𝑛 =∑
𝑥𝑖 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)

𝑖

0

 

where n is the normalized signal, x is the original signal and i represents the variable within the signal.  

The effect of this can be seen in figure 23. The signal itself does not change; amplitude of the signal 
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just gets altered. This way all of the signals will have the same power level. This needs to be done in 

order to compare the signals in respect to each other. 

 

Figure 23. Normalization of the ECG. From STAFF III, recording 104a, lead II. 

 

4.2 Peak detection 

Peak detection can get interfered by noise [24]. Due to this, peak detection process can be started only 

after the signal has been pre-processed and filtered. STAFF III database does not recommend any 

specific nor include any peak detection methods [15]. We will want to detect the QRS-complex and 

the P- and T-waves. QRS-complex and R-peak detection is the most important thing in ECG 

processing and analysis [24][65]. Detecting the T- and P-waves of the signal is also necessary, in 

order to provide ST- and PQ-segment analysis [65]. Detecting these features helps us calculating 

features on which we can analyse and determine the patients’ health. ECG is a periodic signal [23], 

which means that the P-, QRS-, T-wave cycles happens regularly and that the same peak detection 

methods can be applied throughout the whole ECG for all of the peaks.  Most QRS detection 

algorithms already reach almost a 100% accuracy when detecting R-peaks [23], but noise and motion 

artefacts can be a problem. Also the speed, reliability and computational consumption varies within 

the peak detection algorithms [23]. 

4.2.1 R-peak detection 

Over the years, multiple different R-peak detection algorithms have been established [24]. There isn’t 

any generally accepted method yet [24], which means there is still room for improvement. This is one 

of the reasons why in this study we created our own R-peak detection method.  
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Figure 24. Processing the signal for peak detection. 

 

In figure 24 we can see the process of breaking down the signal into peaks only. Some studies have 

proven that the R-peak is always positive [23] in some leads. One of the most noticeable features of 

the QRS-complex is its intense slope. By this I mean that the increase from Q-peak to R-peak happens 

suddenly and also the drop from R-peak to S-peak is rapid. This means, that the derivation around 

QRS-complex should be noticeable. And that was the first step, derivate the original signal in order 

to produce more clearly distinguishable R-peaks. This change happens in figure 23 from window 1 

to window 2. After the derivation, the signal is squared. This is so that the signals derivation always 

is positive and shows the peaks once again more clearly. This happens from window 2 to window 3. 

After squaring the derivative signal, the signal gets integrated to produce only one peak per QRS-

complex. After this, the signal is normalized by dividing the signal with its maximum value. This 

process can be seen from window 3 to window 4. 

After the signal shown in window 4 of figure 24, it is very easy to detect the peaks. For this, SciPy’s 

signal library’s “find_peaks” method is used [66]. This algorithm requires parameters and based on 

those, it will return an array of peaks detected from the signal. The parameters include the signal itself 

and voluntary parameters like minimum distance between the peaks and the minimum required height 
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of the peak. For the distance I used the frequency of the signal divided by 4. The reason for this is 

because this would equal 0.25 seconds, which equals the heart rate of 240 BPM. This heart rate is not 

impossible for humans, but very rare. Also, in this database the patients are all in resting position and 

even though they are receiving PTCA, they should not have HR of more than 240 BPM. The threshold 

for the height is based on the mean of the processed signal. From the processed signal, we calculate 

the mean and then multiply it by 1.5. This threshold value should get all the weaker R-peaks from the 

signal as well. In figure 25, we can see the signal produced by the aforementioned methods, filtered 

signal and, in red, R-peaks generated by the detection method. 

 

Figure 25. R-peak detection. 

 

In figure 25 we can see that the peaks in the filtered signal (blue peaks) are a bit off. This is because 

these peak locations are taken straight from the extracted signal. To fix this, the correct peaks will 

have to be calculated. To do this, a window based on the extracted peak locations is created. The 

window includes an area of 0.1 seconds on both sides of the extracted peaks. Then the algorithm will 
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find the maximum value within this window. This will be the correct R-peak, which will be returned 

as an array of values of locations. The correction made can be seen in figure 26.  

 

 

Figure 26. Corrected R-peaks. 

 

4.2.2 P-, Q-, S- and T-wave detection 

 

The P-, Q-, S- and T-waves are all important parts of ECG analysis. Detection method for these waves 

works based on the R-peaks we have identified with the previously introduced algorithm.  

The P-wave is detected based on the R-peak. The algorithm creates a window before the R-peak and 

then locates the max value within this window. This should be the P-wave if the window is calculated 

correctly. The way the size and timing of the window is calculated is also based on the R-peaks. The 

mean difference between the peaks (RR-interval) is calculated and then based on the difference, a 

window is created. This window starts around 3/4th of the gap between the R-peaks and ends 1/9th 

before the next R-peak. From this window, we try to find the maximum value, which would be the 

P-peak. This is demonstrated in figure 27. 



4 Signal processing  38 
 

 

Figure 27. Detection of the P-wave. From STAFF III database, recording 48a lead II. 

 

Figure 27 demonstrates the detection method for P-wave. Red line represents the starting point of the 

window, yellow line the ending point. Within these lines the algorithm finds the maximum value and 

returns it. Q- and S- and T-waves are detected based on the same method. A window is created next 

to the R-peak and then the peaks are detected. For every peak, the algorithm is a bit different. For Q-

wave, algorithm creates a window between 15/16th of the RR-interval and the R-peak itself. Within 

this window, it finds the minimum value. For S-peak the window is the same but starting from the R-

peak and ending 1/16th of the RR-interval, the algorithm finds minimum value within this window. 

These are demonstrated in figure 28. 
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Figure 28. Q- and S-peak detection. From STAFF III database, recording 48a lead II. 

The T-wave detection is done in similar fashion as the ones before. The RR-interval of the signal is 

calculated and then a window based on these values is created. The window starts from 2/9th of the 

interval and ends at 4/9th of the interval. Maximum value within this window is then found. This can 

be seen in figure 29. 
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Figure 29. Detection of the T-wave. From STAFF III database, recording 48a lead II. 

Figure 30 shows the ECG signal with all of the peaks detected. 

 

Figure 30. ECG signal with all the peaks detected. From STAFF III database, recording 48a lead II. 
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4.3 Average waveform 

Average waveform is a method where the cardiac cycle of a full ECG recording has been averaged 

into one waveform. Since ECG is almost perfectly repetitive signal [23], averaging it is possible [67]. 

Motivation for waveform averaging is that it will improve the signal-to-noise ratio [67] and can 

possibly help to detect myocardial diseases [30]. Averaging needs to be locked to a point which is 

not based on time, but rather an identical reference point for all of the signal [67]. For this the R-peak 

is ideal since it can be easily detected and is also a vital part of the ECG analysis. Based on the R-

peaks, the algorithm creates a window around the peaks and extracts this waveform created by the 

window to a list. After every waveform of R-peaks have been added, algorithm calculates the average 

of these waveforms. This can be seen in figure 31. The thick red line represents the average waveform, 

while the thinner lines all represent one single ECG waveform.  

 

Figure 31. Average waveform for recording 104a, lead II from STAFF III database. 
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4.3.1 HF Average waveform 

The high-frequency average waveform is very similar to the average waveform. Based on the R-

peaks, algorithm creates the window and generates a list of waveforms and calculates the average 

waveform. The difference is that instead of the regularly filtered ECG, HF average waveform is 

filtered with high-pass-filter of 150 Hz. In figure 32 we can see the HF average waveform.  

 

 

Figure 32. HF average waveform for recording 17a, lead II from STAFF III database. 

 

4.4 P-average waveform 

From figures 31 and 32, we can see that the P-waves are also present to some degree. To detect 

changes in the atrial myocardium, assessment of P-wave is also necessary. The acquirement of the 

average waveform of the P-wave is similar to the normal average waveform. The window size is 

smaller, and the reference point is P-peak instead of R-peak. The average waveform of P-wave is 

shown in figure 33. 
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Figure 33.The average waveform of P-waves for recording 17a, lead II from STAFF III database. 

 

4.4.1 HF P-average waveform 

The HF average waveform for P-wave is just the high-frequency equivalent of the P-average 

waveform. For this, the signal is filtered with high-pass-filter of 150 Hz. The average waveform 

generated can be seen in figure 34. 

 

Figure 34. The high-frequency average waveform of P-waves for recording 17a, lead II from STAFF III database. 
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4.5 Segmentation 

 

It has been proven that assessing the ST-segments changes in ECG is a relevant way to detect AMI 

[15]. The ECG signals provided in the STAFF III database are 5 minutes long in average, which 

means that a lot can happen during one ECG recording. In addition to the ST-segments change, the 

PQ-segment and QRS-complex can change throughout the ECG, especially if an AMI is detected. 

These are the reasons for segmenting the ECG signals into 30-second-long segments. In figure 35 we 

can see a 5-minute-long ECG signal segmented into 30-second-long segments. 

 

Figure 35. ECG segmented into 30 second epochs. Recording is 9a lead II from STAFF III. 

 

After we have segmented the signal, we take these segments and calculate features within them. The 

change of different features within the segments is shown in figure 35.  
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Figure 36. Segmental changes. 

 

In figure 36 we have 4 different features. We have the ST-segments length and amplitude and also 

the PQ-segments length and amplitude. Every dot in the figure represents a 30-second-long segments 

average of the specific value. In all of the figures, the baselines consist of 10 dots meaning that they 

are 5 minutes long, while the inflation in this case is 12 dots and 6 minutes long. The graphs represent 

the variability of the specific feature over the course of the ECG signal. From figure 36 we can see 

that the ST-segments of both of the baseline signals stay relatively similar throughout the signal in 

both amplitude and length. The ST-segments of the inflation ECG however change drastically. We 

can see that around 55 seconds, the length of the ST-segment drops significantly and returns to normal 

around 160 second mark. Around 90 second mark, the amplitude of the ST-segment rises significantly 

and then returns to more stable course after 200 second mark. Similar things happen with the PQ-

segment as well. From the STAFF III annotation file, we can see that the patient 44 has his artery 

occluded from the 0 second mark until 180 second mark. This can somewhat be seen in the figures.   
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Based on the results of figure 36, we want to calculate the difference and variability of ST- and PQ-

segment features within the 30-second segments of the ECG. This is done by adding all of the 30-

second segments calculated values into a list, and then calculating the root mean square of the 

differences between successive segments. Other methods to calculate this variability were used, but 

this seemed to work most reliability.  
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5 Feature extraction and selection 

5.1 Feature extraction 

To evaluate the patients, features from the ECG signals have to be extracted. These features and their 

values give insightful information of the patient’s myocardial health. Feature extraction gives more 

distinguishable characteristics to the data and makes it easier for the machine learning methods to 

train.  

Multiple different features were extracted from the ECGs of the patients. The extracted features can 

be divided into five different sections. First section includes the heart rate and heart rate variability 

features. After the R-peak detection, the HR and HRV features can be extracted. Second feature 

section focuses on the high-frequency ECG signal. The HF-ECG of the signal is calculated, and then 

high-frequency features can be extracted. The third section includes the segmentation features. Based 

on the algorithm shown in chapter 4, the ECG signal is segmented into 30-second-long sections and 

the features are extracted from the segmented ECG signal.  The fourth feature selection includes 

frequency domain features. Frequency domain was calculated using Welch method and algorithms 

provided by SciPy’s library. The fifth feature section includes average waveform features which are 

based on the algorithms presented in chapter 4. All of these extracted features are listed below. 

1. Heart rate and heart rate variability features 

• Heart rate (BPM) 

• Root mean square of successive differences (RMSSD) 

• Standard deviation of NN intervals (SDNN) 

• Spread of RR intervals on the Poincare plot (SD1 and SD2) 

• The standard deviation of the successive differences between RR intervals (SDSD) 

• The proportion of RR intervals greater than 50ms, out of the total number of RR 

intervals (pNN50) 
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• The proportion of RR intervals greater than 20ms, out of the total number of RR 

intervals. (pNN20) 

2. HF-ECG features 

• Zero-cross rate of the high-frequency signal 

• Root-mean-squared of the high-frequency signal (RMS) 

• Absolute energy of the high-frequency signal 

• Variance of the high-frequency signal 

• Derivative kurtosis of the high-frequency signal 

3. Segmentation features 

• R-peak amplitude changes in 30-second periods 

• ST-segment amplitude changes in 30-second periods 

• ST-segments length changes in 30-second periods 

• PQ-segments amplitude changes in 30-second periods 

• PQ-segments length change in 30-second periods 

• Variance of the signal in 30-second periods 

4. Frequency domain features 

• Median frequency 

• Spectral entropy 

• Spectral kurtosis 

• Dominant frequency 
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5. Average waveform features 

• Slope of average waveform 

• Difference of average waveform 

• Zero-crossing rate of high-frequency average waveform 

• Root-mean-square of high-frequency average waveform 

• Kurtosis of high-frequency average waveform 

• Variability of high-frequency average waveform 

• Slope of P-average waveform 

• Absolute energy of high-frequency P-average waveform 

• Kurtosis of high-frequency P-average waveform 

These features were extracted for 3 different ECG signals for each patient. These signals included the 

previously mentioned baselines 1 and 2 and also the inflation ECG. After the feature extraction, two 

different samples for each patient were created. The first one is the healthy sample from the patient, 

meaning that the features of the baseline 1 were subtracted from features of the baseline 2. The second 

sample on the other hand was the diseased or the sick sample. In this, the inflation recordings features 

were subtracted from the features of the baseline 2. After these subtractions, the samples were added 

to a data frame with the patient’s number as a reference, the type of sample as a label and the values 

of the features as features. 

5.2 Feature selection 

To make the machine learning process as efficient as possible, the features fed into the machine 

learning method must be selected carefully. The features have to describe the dataset in the best way 

possible [68]. The input features can’t be irrelevant or redundant. If multiple features have strong 

correlation between each other, then some of the features might be redundant and can be removed 

[68].  
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The feature selection was made manually by evaluating different feature’s relevance via correlation 

heatmaps, boxplots and by trying different combinations for the machine learning. To help the manual 

evaluation, a feature selection algorithm was run. This was done by Random Forest feature 

importance algorithm provided by scikit learn. The decisions were made by comparing the 

importance of the features. 

Final features chosen are listed below. 

• Root mean square of successive differences (RMSSD) 

• Standard deviation of NN intervals (SDNN) 

• Zero-cross rate of the high-frequency signal 

• Root-mean-squared of the high-frequency signal (HF-RMS) 

• Derivative kurtosis of the high-frequency signal 

• R-peak amplitude changes in 30 second periods 

• ST-segment amplitude changes in 30 second periods 

• ST-segments length changes in 30 second periods 

• PQ-segments amplitude changes in 30 second periods 

• PQ-segments length change in 30 second periods 

• Dominant frequency 

• Slope of average waveform 

• Zero-crossing rate of high-frequency average waveform 

• Root-mean-square of high-frequency average waveform 

• Kurtosis of high-frequency average waveform 

• Slope of high-frequency average waveform 
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6 SAFE 

6.1 SAFE device 

SAFE is a single channel ECG measuring necklace developed by the University of Turku. The 

necklace is based on Suunto’s Movesense device and in addition it includes a casing done with 3D 

printer, two copper leads and a string. The devices two leads can take measurements all over the body. 

Easiest and the originally intended way to take a measurement is to place the flat side of the device 

to the patient’s chest and then put your finger on the other lead. After both leads detect electric 

activity, the red indicator LED of the device will start to blink, and the device starts taking the 

measurement.  It will then produce an ECG recording and also accelerometer x-, y- and z-axis 

recordings. The length and bandwidth of the measurement can be adjusted. It is capable of 128, 256 

or 512 Hz sampling frequency [69]. For this study, we used the 512 Hz sampling frequency in order 

to have the HF-ECG components as well. In figure 37, we can see the SAFE device, its casing and 

the leads. 

 

Figure 37. SAFE.  

Inside the SAFE necklace there is a device called Movesense medical device (MD) sensor which was 

developed by Suunto. Movesense is designed to measure ECG and motion signals, which then can 

be extracted for analysis [69]. It can measure heart rates from 20 BPM to 240 BPM [69]. Movesense 

MD can also produce clinical grade signals [70] and is classified as a Class IIa medical device [69]. 

This means that it can’t be used as a life sustaining device [69], but can still be valuable. However, it 



6 SAFE  52 
 

should not be used as the initial monitoring device in clinical situations and the patient is in risk of 

severe myocardial injury [69]. The Movesense MD is shown in figure 38.  

 

Figure 38. Movesense MD. Source: [70] 

The benefits of Movesense MD is that it is very small, wireless and easily reprogrammable [70]. The 

diameter is 36.6 mm, 10.6 mm thick and weighs only 9.4 g [70]. It’s also very easy to use and the 

patient can do the measurements himself [69]. After the measurement, the device sends data 

wirelessly with Bluetooth low energy to a smart phone for example [69][70]. After the transmission, 

the signal can be stored, processed and analysed in an application [69]. The peak detection and 

analysing algorithms can be programmed into it [70] and give the patient real time analysis of the 

condition of his heart. However, in this study the data is extracted from the device, and the analysis 

is done later. The data comes in .csv files. Depending on the programming, it includes the timestamp, 

ECG values and 3 different accelerometer values. In this study, we extract only the ECG values and 

timestamps are added manually. 

These kinds of wearable devices could be used to determine the health of the heart easily and with 

regular measuring to also alarm the patient about potential risks [20]. To be effective, some believe 

that they should be used daily [21]. Movesense MD is water proof, can sustain reasonable amount of 

force [70] and has a good battery life which makes it possible for everyday use. However, the device 

does not automatically measure ECG, it needs to be started voluntarily. With the necklace design, it 

could become more useful for daily usage. The patient could easily carry it around with him and do 

a short measurement once a day. This way the analysis could be based on serial ECG as well as initial 

ECG. The measurement itself is also user friendly, which will be helpful especially with the elder 
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people [21]. This kind of a necklace also hides the fact that you have a myocardial disease. Some 

patients may not want to be recognized as cardiac patients [21] and the necklace does not look like a 

typical ECG device.   

6.2 Taking measurements/Data gathering 

For this study, I was able to acquire serial-ECG recordings from 10 different people with the SAFE 

device. This means that for every patient, the ECG was recorded twice. Some patients had measuring 

interval of 1 hour while some patients had interval of 1 week. This was decided to see if there is a 

difference regarding the measurement interval. All of the patients were in reasonably good health and 

did not suffer from any heart diseases. 

The measurements were all taken in a resting position, either sitting or lying down. If the first 

measurement was done while sitting, then also the second measurement was done in the same fashion. 

The patients were told to relax, while I instructed them on how to use the device. After a quick 

briefing, the recording could be started. The recordings are 1 minute long, and the patients were 

instructed to avoid talking or moving unnecessarily during this time. The recordings are taken from 

the patient’s chest. The necklace is placed around the neck and the patients then press down the device 

to their chest with their index finger of the right hand. The placement on the chest was instructed to 

be “over the heart”.  Figure 39 demonstrates how the measurement works with SAFE device. 

 

Figure 39. SAFE measurement. 



6 SAFE  54 
 

After the recording is done with the device, it will be connected to a smart phone to which we can 

download the recording. The recording can be found in the smart phone’s data folder as a .csv file. 

From here, the recording can be transferred to a computer in which we can extract the signal from the 

.csv file with Python. After the signal is extracted, we can apply our algorithms to that specific signal. 

In figure 40 we can see an unprocessed ECG signal gathered with the SAFE device. 

 

Figure 40. ECG from SAFE device. 

From figure 40 we can see that the amplitude created by the device is much different than the ECGs 

in STAFF III database. Because of this, all of the signals were normalized to limit possible differences 

due to equipment. The signal in figure 40 is quite clear and including the obvious QRS-complex, we 

can see the T-waves and even the P-waves quite clearly. For some of the recordings this was not the 

case however, and only the QRS-complex was easily recognizable, while the T-wave could be spotted 

but not so clearly and the P-wave was tenuous. A quality check was done for the signals and if it 

contained any artefacts, the recording was repeated or removed from the database.  
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7 Results 

7.1 Results of STAFF database 

From the STAFF dataset, I was able to use 94 different patients. While using 3 different recordings 

from the patients, I was able to gather 94 healthy cases (baseline2-baseline1) and 94 sick cases 

(baseline2-inflation). This means that the dataset includes 188 instances. The dataset was split 

randomly into training set, 75% of the dataset, and a test set, 25% of the dataset. After this the machine 

learning methods explained in chapter 2.4 were trained with the training set and then tested with the 

testing set. The results based on these, are shown in the graphs below. 

First, these results are presented with confusion matrixes. Confusion matrix is a visual tool that helps 

to demonstrate the performance of supervised classification machine learning algorithms. In binary 

classification problem such as ours, it shows the true and false positives and the true and false 

negatives. With these values, we can calculate the accuracy and other evaluation metrics such as 

precision, recall and F1 score for the results. 

 Predicted Healthy Predicted inflation 

Healthy 22  0 

Inflation 6 19 

Table 1. K-Nearest Neighbor confusion matrix for STAFF III dataset. 

 

 Predicted Healthy Predicted inflation 

Healthy 21  1 

Inflation 3 22 

Table 2. Support Vector Classification confusion matrix for STAFF III dataset. 
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 Predicted Healthy Predicted inflation 

Healthy 21 1 

Inflation 3 22 

Table 3. Decision tree confusion matrix for STAFF III dataset. 

 

 Predicted Healthy Predicted inflation 

Healthy 20  2 

Inflation 1 24 

Table 4. Random Forest confusion matrix for STAFF III dataset. 

 

 Predicted Healthy Predicted inflation 

Healthy 21  1 

Inflation 1 24 

Table 5. Extra Trees confusion matrix for STAFF III dataset. 

 

 Accuracy  Precision Recall F1 Score LOOCV 

KNN 87% 89% 88% 87% 91.5% 

SVC 91% 92% 92% 91% 93.1% 

Decision Tree 94% 94% 93% 94% 93.6% 

Random Forest 94% 94% 93% 94% 96.8% 

Extra Trees 96% 96% 96% 96% 97.9% 

Table 6. Statistics for the different machine learning methods. 
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Results of the confusion matrixes are similar for all of the machine learning methods. All of them 

seem to be capable of classifying healthy and inflated ECG signals from each other. However, when 

looking at the statistics from table 6, we can see that as expected, the most computationally heavy 

algorithms, Random Forest and Extra Trees, got the best results. However, Decision Tree was not far 

behind from these two. Extra Trees classifier exceeds the other methods in every aspect based on the 

statistics. The machine learning methods with lower computational power, KNN and SVC, produced 

the poorest results.  Especially the results of KNN were disappointing.  

In table 6, LOOCV represents the accuracy calculated with leave-one-out cross-validation explained 

in chapter 2.4. Since this dataset was rather small, the LOOCV should produce the most accurate 

result possible for determining the true accuracy of different machine learning models. With this 

method, the results correlate strongly with the other evaluation metric values. The computationally 

heavy methods, Random Forest and Extra Trees, produce the best results. 

The number of trees used in the Random Forest and Extra Trees classifiers was 500, meaning that 

based on the results of 500 Decision Trees, a majority vote was taken, and the classification was based 

on that. This amount was decided based on the results, while decreasing the number of trees, the 

accuracy did not significantly decline, but to get the best possible results, 500 trees were chosen. 

Everything over this number of trees was seen computationally heavy and it took too much time to 

train the machine learning model compared to the gains in accuracy. For the KNN classifier, the 

number of the neighbors (k) was 5. This was decided by running an algorithm which tested all k-

values between 2-15. The different k-values were run multiple different times in different training 

and testing set folds, after which the mean accuracy of the results was calculated for each value of k. 

With this algorithm, k-value of 5 was chosen since it produced the highest accuracy. It still was not 

able to keep up with the other machine learning methods when looking at the evaluation metrics. The 

second lowest method was the support vector classifier, which was using a linear kernel. All of the 

kernel options were tested, but the linear option produced the best results and was chosen.  

 

7.2 Results of SAFE vs STAFF 

To be able to answer the research question 2, a dataset gathered with the SAFE device was used as a 

test set for the machine learning methods. This test set included 10 subjects. The training for these 

methods was done with the previously mentioned STAFF database, which included 188 subjects. To 

be able to produce the most accurate results possible, signals from both databases were processed to 
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be as similar as possible. Before extracting features, all of the signals were normalized, meaning that 

their amplitudes were fixed between 0 and 1. SAFE signals were also resampled. Since STAFF III 

database signals had sampling frequency of 1000 Hz, the SAFE device produced a signal with 512 

Hz sampling rate. The sampling frequency of STAFF III database was resampled to 512 Hz before 

the features were extracted. 

 Predicted Healthy Predicted inflation 

Healthy 10  0 

Inflation 0 0 

Table 7. K-Nearest Neighbor confusion matrix when using STAFF as training set and SAFE as test set. 

 

 Predicted Healthy Predicted inflation 

Healthy 9  1 

Inflation 0 0 

Table 8. Support Vector Classification confusion matrix when using STAFF as training set and SAFE as test set. 

 

 Predicted Healthy Predicted inflation 

Healthy 8 2 

Inflation 0 0 

Table 9. Decision tree confusion matrix when using STAFF as training set and SAFE as test set. 

 

 Predicted Healthy Predicted inflation 

Healthy 9 1 

Inflation 0 0 

Table 10. Random Forest confusion matrix when using STAFF as training set and SAFE as test set. 
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 Predicted Healthy Predicted inflation 

Healthy 9  1 

Inflation 0 0 

Table 11. Extra Trees confusion matrix when using STAFF as training set and SAFE as test set. 

 

 Accuracy  Precision Recall F1 Score 

KNN 100% 100% 100% 100% 

SVC 90% 100% 90% 94% 

Decision Tree 80% 100% 80% 88% 

Random Forest 90% 100% 90% 94% 

Extra Trees 90% 100% 90% 94% 

Table 12.  Statistics for the different machine learning methods when using SAFE as test set. 

 

The confusion matrixes show that most of the SAFE measurements get predicted as healthy, as they 

should be. Differing from the STAFF database results, this time KNN gives us the best results. 

However, the machine learning models that performed well in the last database are not lagging behind 

that far. Only one subject is predicted wrong while the others are predicted correctly. Decision Tree 

gets two subjects wrong, but SVC, Random Forest and Extra Trees get only one subject wrong, which 

might indicate that it is the same subject in each case. Cross-validation is not used for this database, 

since it is not a viable option, because the training and test datasets are split in advance. 

 

7.3 Data analysis 
 

Looking and analysing the machine learning results is not the only way to analyse the data. The data 

can be visualised in different ways and analysed based on this visualization. While visualising the 

data, we can find the reasons behind the results and see how the data behaves. Correlation, difference, 

and variation within different data can be seen with the right tools. In the next chapters, some of these 

tools are presented and the data sets are analysed more deeply. 
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7.3.1 Principal component analysis 

Principal component analysis (PCA) is a dimensional reduction method for data analysis [71]. It takes 

the features of the data and presents it in 2-dimensional space. This way, the data can be easily 

presented and analysed in 2D graphs. However even though PCA can be a useful tool, it has its 

shortcomings. PCA can have trouble with high dimensional data [71], meaning that the 2-dimensional 

graph presented might not be completely correct. However, it does give a good idea how the data 

behaves and is a good way to analyse the data, while keeping in mind the shortcomings of the method. 

In figure 41, we can see the PCA analysis of the combined STAFF III and SAFE database.  

 

Figure 41. PCA analysis of STAFF and SAFE databases. 

 

From the PCA we can see that the healthy and sick subjects can be distinguished from each other 

quite easily. The two types of subjects are clearly divided into two different clusters. There are 

however few instances that overlap a little bit within the clusters, but this is expected. We can also 

see that the healthy cluster is more compact and has fewer outliers than the inflation cluster. The 

variation within the inflation cluster is much higher. This indicates that the inflation ECGs are more 

volatile than the healthy ECGs. 
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When looking at the SAFE subjects in the PCA figure, we can see that they are mostly located within 

the healthy cluster. A few subjects are closer to the inflation cluster. However, even in these cases the 

subjects are close to the healthy cluster. Even though the number of the SAFE subjects is low, we can 

already see their cluster forming on top of the healthy cluster.  

7.3.2 Box plots 

Box plot (schematic plot, box-and-whiskers-plot) is one of the simplest tools when analysing the data 

[72]. However, they are useful in multiple different ways. Box plots show the variation within the 

specific type of data and the difference between different types of data. It is used to visually identify 

patterns and attributes within the data [72]. The line in the middle of the box plot represents the 

median of the data. The coloured box contains 50% of the data, 25% on each side of the median. The 

so-called whiskers around the box contain 25% of the data in both sides of the box. The dots outside 

the whiskers are outliers within the data, meaning that they differentiate so much from the rest of the 

data they are considered as exceptions or miscalculations. Figure 42 shows the box plot of ST-

segments amplitude change. 

 

Figure 42. Box plot of ST-segments amplitude change. 

 

From figure 42 we can see that the different sort of data can be distinguished quite clearly from each 

other. Healthy and inflated data seem to be behaving differently. Healthy subjects seem to be very 

stable with the amount of change within the ST-segments amplitude, while the inflation subjects seem 

to have much more change with the amplitude. One thing to note is that the healthy box plot is quite 



7 Results  62 
 

compact while the inflation box plot is very wide and has a lot of variation. The SAFE box plot seems 

to be working similarly to the healthy box plot with this particular feature.  The variation within both 

is low. In SAFE box plot, there is one outlier which might indicate a miscalculation with the algorithm 

or an artefact within one of the signals.  

 

Figure 43. Box plot of the slope of the average waveform. 

 

Figure 43 represents another box plot of the database. From it, we can see that the SAFE and healthy 

box plots are within the same range, while inflation box has higher values. The variation and 

overlapping with this particular feature are higher than with ST-segments changes, but the orientation 

of healthy and inflated features can be seen quite easily.  

 

Figure 44. Box plot of the kurtosis of the HF average waveform. 
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Figure 44 represents a third box plot of the database. This feature works differently, while healthy 

and inflated subjects are differentiated quite clearly, the SAFE patients overlap between both of them. 

Some of the features include this sort of overlapping for the SAFE subjects. These box plots represent 

only three of the features gathered from the signals but demonstrate the data well. Most of the box 

plots visualised with different features work in similar way. One possible explanation for this could 

be that the HF contents of the SAFE device might not similar enough to the STAFF III database. 
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8 Conclusions 

In this thesis, we tried to recognize acute myocardial infarctions with serial electrocardiography. For 

this, we analysed an already existing database and also created our own database with a handheld 

device. These handheld devices could be a plausible solution when monitoring patients’ health [21]. 

With serial ECG, the measurement could be done once per week and a 30-second-long signal could 

be sufficient enough to give an estimate on the patient’s health, when comparing to older 

measurements from the same patient.  

The subject of high frequency serial electrocardiography is not that well studied. Only a few papers 

on the subject can be found [18][19][17]. The results of these studies seem to be in line with our 

results, even though the methods and purposes are a little different. However, these papers conclude 

that if there is no AMI present, there does not seem to be changes in the HF content of the ECG. 

While suffering from AMI, the HF-ECG features seem to be affected. This reflects the results of our 

study. There is still lot to learn about the changes in the HF-ECG, but for now it seems to be an 

effective way to detect AMI. These new methods could become useful, since the COVID-19 

pandemic and its effects on the cardiovascular health [73]. It is shown that the patients infected with 

COVID-19 are in greater risk of suffering from multiple different cardiovascular diseases [73]. These 

diseases include myocardial infarction. This new method could become greatly vital, when trying to 

detect AMI in these types of patients. The possibility to follow the myocardial health of these patients 

at home would also be highly beneficial. The wearable device used in this thesis could be used for 

this. 

For this thesis, we had two research questions. To answer research question 1, we used STAFF III 

database to train and test machine learning models in order to classify sick and healthy subjects based 

on serial electrocardiography. The results we had were good. We were able to identify acute 

myocardial infarction produced by the balloon inflation with 96% accuracy. The data visualization 

provides evidence that with the features we extracted from the ECG signals, we were able to clarify 

a difference between healthy and inflated serial ECG. Even though the results for the STAFF III 

database were good, we need to keep in mind that we were able to use only 94 subjects, providing a 

dataset of the size of 188 instances. This is quite small in the perspective of machine learning. In 

order to get more reliable results, we need to gather a larger dataset including more subjects. However, 

the results we had from the STAFF III database are promising and are supported by data analysis.  
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For the research question 2, we gathered data with the SAFE device developed by the University of 

Turku. I gathered serial-ECG data from 10 different persons and created a dataset with these signals. 

The machine learning models were trained with the STAFF III database and the dataset I created was 

used as the training set. The average accuracy of these machine learning models for SAFE data was 

90%. Of the 10 patients, 9 were predicted as healthy patients, answering the research question 2. One 

of the patients was predicted as inflated by many of the machine learning models. When analysing 

the patients one by one, we can find the patient who is predicted as unhealthy. After seeing the ECG 

of this patient, we can see the reasons behind the incorrect prediction. The ECG is distorted and has 

high heart rate variability.  

The interval between measurements did not seem to make a difference for the patients. As told in 

chapter 5.2, some of the patients had 1 hour between the measurements while some of the patients 

had 1 week or even 1 month between the measurements. This did not affect the results, as for a few 

of the patients we gathered more than 2 recordings with different measurement intervals, but the 

results were the same for every interval. The person who got predicted as unhealthy had 1 hour time 

interval. This patients’ ECG was also re-measured, but the results did not change. Even with the new 

measurement, the patient was predicted as unhealthy.  

While analysing the results for the SAFE device, we also have to take into consideration that the 

dataset gathered by me does not have any acute myocardial infarction patient. All of the subjects who 

participated in the study were healthy and the measurements were not done within a hospital 

environment. When we do not have any unhealthy patients for the study, we can’t really declare that 

the SAFE device is able to detect acute myocardial infarction. For that, we would need patients who 

suffer from this. This could be one thing that could be done in the future. A possible clinical trial 

which includes inflation or AMI patients with the device would finalize this study and give a 

definitive answer to this question. This could turn out to be more difficult said than done, since 

recording ECG while AMI is hard. One other thing to note is also that the dataset size is relatively 

small. While 90% accuracy is decent, with 10 patients the result might not be the most relevant. With 

a bigger test set size, we would be able to create a more relevant and accurate prediction of the 

accuracy of the machine learning models. This is also another thing that could be done in the future. 

Some other disease recognition such as atrial fibrillation could be done with this device as well in the 

future.  
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Attachments 
 

STAFF III database annotations 
 

The full annotation table can be found at: https://physionet.org/content/staffiii/1.0.0/ 

    
Type of recording and related filenumbers 

Patient Age Sex Baseline 

room (BR) 

Baseline cathlab 

(BC) 

Balloon inflation (BI) 

#     BR BC1 BC2 BI1 BI2 BI3 BI4 

1 52 f 1a 1b 
 

1c       

2 77 m 2a 2b 2c 2d 2e     

3 77 f 3a 3b 
 

3c       

4 45 f   4a 4b 4c       

5 72 m   5a 5b 5c       

6 75 m   6a 6b 6c       

7 66 m 7a 7b 
 

7c 7c     

8 45 m 8a 8b 
 

8c 8d 8e   

9 46 f 9a 9b 
 

9c       

10 54 f 10a 10b 
 

10c       

11 100 m 11a 11b 
 

11c 11c 11d   

12 67 m 12a 12b 
 

12c       

13 78 m 13a 13b 
 

13c 13d 13e 13f 

14 ? m 14a 14b 
 

14c 14d     

15 ? m 15a 15b 
 

15c       

16 47 m 16a 16b 
 

16c       

17 57 m 17a 17b 
 

17c       

18 77 f   18a 
 

18b       

19 60 m 19a 19b 
 

19c       

20 52 f 20a 20b 
 

20c 20d     

21 38 m   21a 21b 21c       

22 65 m 22a 22b 22c 22d       

23 56 f 23a 23b 
 

23c       

24 53 f 24a 24b 
 

24c 24d     

25 74 f 25a 25b 
 

25c       

26 48 m 26a 26b 
 

26c       

27 66 f 27a 27b 
 

27c       

28                   

29 55 f 29a 29b 
 

29c 29c     

30 63 f 30a 30b 
 

30c       

31 72 f   31a 31b 31c 31c     

32 51 m 32a 32b 
 

32c 32d     

33 56 m 33a 33b 
 

33c 33d     

34 54 f   34a 
 

34b       

35 67 m 35a 35b 
 

35c 35d     

36 59 m 36a 36b 
 

36c       
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37 77 f 37a 37b 
 

37c       

38 60 m 38a   
 

38b       

39 48 m 39a 39b 
 

39c 39c 39c 39d 

40 49 m 40a 40b 
 

40c 40d     

41 67 f 41a 41b 
 

41c       

42 53 f 42a 42b 
 

42c 42d     

43 55 m 43a 43b 
 

43c       

44 62 m 44a 44b 
 

44c       

45 67 m   45a 
 

45b 45c     

46 70 f 46a 46b 
 

46c 46d     

47 43 f 47a 47b 
 

47c 47d     

48 48 m 48a 48b 
 

48c       

49 51 f   49a 
 

49b 49c     

50 48 m 50a 50b 
 

50c       

51 67 m 51a 51b 
 

51c       

52 59 m   52a 52b 52c       

53 68 m 53a 53b 
 

53c 53c     

54 51 m 54a 54b 
 

54c 54e     

55 63 m   55a 
 

55b       

56 60 m   56a 
 

56b       

57 73 f 57a 57b 
 

57c       

58 58 m   58a 
 

58b       

59 59 m   59a 
 

59b 59c 59d   

60 58 f   60a 
 

60b       

61 70 m   61a 
 

61b       

62 71 m   62a 
 

62b 62c     

63 65 f   63a 
 

63b       

64 51 f   64a 
 

64b 64b 64c   

65 58 m 65a 65b 
 

65c       

66 53 m 66a 66b 
 

66c       

67                   

68 63 f 68a 68b 
 

68c       

69 78 f 69a 69b 
 

69c       

70 70 m   70a 
 

70b       

71 44 m 71a 71b 
 

71c       

72 63 f 72a 72b 
 

72c       

73 63 m 73a 73b 
 

73c 73d 73e   

74 56 f 74a 74b 
 

74c       

75 70 f   75a 
 

75b       

76 85 f 76a 76b 
 

76c 76d     

77 61 m 77a 77b 
 

77c 77c     

78                   

79 77 m 79a 79b 
 

79c       

80 59 m 80a 80b 
 

80c       

81 72 m 81a 81b 
 

81c 81d     

82 80 m   82a 82b 82c 82d     

83 52 m 83a 83b 
 

83c       

84 72 m   84a 
 

84b       
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85 61 m   85a 
 

85b 85c     

86 46 f   86a 
 

86b 86c     

87 54 m   87a 87b 87c       

88 40 m   88a 
 

88b       

89 57 m 89a 89b 
 

89c 89d     

90 62 m 90a 90b 
 

90c 90d 90e   

91 39 m 91a 91b 
 

91c       

92 56 m 92a 92b 
 

92c       

93 68 f 93a 93b 
 

93c       

94 61 f 94a 94b 
 

94c       

95 69 f 95a 95b 
 

95c       

96 76 m 96a 96b 
 

96c 96d 96e   

97 57 m 97a 97b 
 

97c       

98 53 f 98a 98b 
 

98c       

99 50 m 99a 99b 
 

99c       

100 75 m   100a 
 

100b 100c     

101 63 f   101a 
 

101b       

102 63 m 102a 102b 
 

102c       

103                   

104 74 f 104a 104b 
 

104c       

105 32 m   105a 
 

105b       

106 70 m 106a 106b 
 

106c       

107 53 f   107a 107b 107c       

108 49 m 108a 108b   108c       

 


