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The breast cancer stage and prognosis are mainly diagnosed from surgically
removed sentinel lymph nodes which are dissected, stained and scanned for the
presence of tumor cells. The extent of tumor cells spreading to lymph nodes affects
the treatment plan and prognosis of the patient. Currently, the best practice
for scanning stained glass slides of lymph node tissue sections is a microscopic
examination by a trained pathologist. The time-consuming examination is prone
to subjective errors as the scanner produced images are typically gigapixel size and
tumor areas are relatively small. An isolated tumor cell (ITC) especially, is hard to
spot, and requires a trained eye.

The recent progress with convolutional neural networks (CNN) in the image
processing area has also proven effective in detecting metastases from tissue sample
images. Their performance has been on par with a group of expert pathologists.
CNN’s could be used routinely to highlight possible tumor areas for pathologists or
even independently assess the level of metastatic regions in samples to ease human
experts’ workload.

What makes the tumor detection from tissue images challenging is the high
resolution of images the commercial scanners export. Processing a whole gigapixel
image requires a lot of memory so the image is typically split into smaller windows
that are fed through CNN separately. The weakness of such procedure is that
the field-of-view per sample window is narrow and the information about the
surrounding context is lost.

This thesis examines the benefits of feeding image batch samples of different zoom
levels, cropped from the same location, to a CNN tumor classifier.
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1 Introduction

1.1 Background

Breast cancer is the leading cancer in women worldwide according to World Health

Organization (WHO), and it annually causes more than 500,000 deaths [1]. Early

detection is critical as the five-year survival rate is very low if cancer has spread

outside the breast to other parts of the body (27% according to American Cancer

Society) [2]. The stage of cancer affects the patient’s prognosis, and treatment plan

and one of the regional spreading indicators is whether cancer has spread to lymph

nodes.

The nodal status and tumor size are the primary observations used to for patient

prognosis. Larger tumor sizes decrease the patient survival rate, and the lymph node

status gives indication about the tumors ability to spread [3]. The American Joint

Committee on Cancer (AJCC) has established a breast cancer staging system widely

known as TNM staging where T stands for the primary tumor, N for regional lymph

nodes, and M for distant metastasis. Each of the three categories has several sub-

categories, and defining the patient’s cancer stage will determine prognosis and aid

in choosing the right treatment plan. [3]–[5]

Getting the lymph node status involves a sentinel lymph node biopsy where the

nodes that are first affected by regional tumor spread are removed and inspected [6].

The removed lymph nodes are sliced and stained with hematoxylin & eosin (H&E),
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or if specific antigens (proteins) need to be identified, binding immunohistochemical

stains. The slides are imaged with a microscope and visually inspected by an expert

pathologist who looks for the presence, quantity, and type of metastases for cancer

staging [4]. Metastasis, smaller than 2.0 mm, are regarded as micrometastases, and

single metastatic cells smaller than 0.2 mm as isolated tumor cells ITC [5]. The

latter ones especially can be hard to detect due to their small size, but they can be

an important indicator for selecting effective treatment for early stage breast cancer

[4].

1.2 Digital pathology

Digital whole slide scanning is the process of capturing a digital image from a mi-

croscope sample. Due to the high magnification and large filming area, the scanners

may capture the sample in smaller tiles and digitally stitch them back to a large

image. Some devices use line-scanning sensors that don’t require tile splitting, but

instead, film the whole area line by line from one side to another. When a glass slide

sample is scanned, the device creates a digital image where the size of the scan file

depends on scanned area, magnification level, color depth, and compression format.

A slide scanned at 40X magnification and 24-bit color depth, for instance, may pro-

duce 48 MB of data for every square millimeter of the scanned area. [7] Disk space

is quickly used in such high-resolution imaging and to reduce storage space require-

ments, scanners may use lossy JPEG compression. Some scanner models include

pre-scan automatic tissue area detection that first scans the slide in lowest magni-

fication to detect empty regions in glass slide. This allows to scan only tissue parts

of the slide, and reduce filming time and final file size. However, automatic tissue

detection adds a potential scanning failure case where part of a faint tissue gets

left out if the contrast between the glass slide, and tissue is below a set threshold.

Figure 1.1 demonstrates such case. [8]
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Figure 1.1: Example of the same tissue scanned at two different settings. (A) has a

high threshold for automatic tissue detection and parts of the fatty tissue are left

out. (B) has a lower threshold and the algorithm has not detected any non-tissue

regions. [8]

Besides failure in automatic tissue area recognition, other potential scanning is-

sues are out-of-focus tissue and compression artifacts, failed stitching operation, poor

exposure and white balance adjustments, or other scanner settings-related causes.

Some errors may propagate from slide preparation, such as uneven tissue staining,

cuts and broken tissue, and bubbles in the slide. [7], [8] These error scenarios and

even the differences between practices of different laboratories are affecting result-

ing scan quality and causing variation between illumination, sharpness, and color

representation. Attempts have been made to calibrate scanning procedures to pro-

duce similar color representations, but since there are multiple sources of variation

in several stages of scanning, it is difficult to achieve a consistent scan look within

all samples taken in single laboratory, let alone across laboratories. The whole slide

imaging protocol of an International Color Consortium in Figure 1.2 is a standard

which aims to unify color representation.
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Figure 1.2: The color standardized whole slide imaging pipeline of the International

Color Consortium. The scanner and image viewer software as well as the monitor

are color calibrated to ensure similar color representation for the viewer. [7]

1.3 AI in digital pathology

1.3.1 Milestones

Advances in digital slide scanning microscopy and hard drive storage cost reduc-

tions have entirely digitized the slide analysis workflow [9]. Among benefits like

remote analysis and more accessible archived samples, some health care facilities

have made a combined effort to publish large whole slide image (WSI) collections

such as the CAMELYON16 and CAMELYON17 datasets [10], [11]. These publicly

accessible and large annotated datasets, and the advances in deep learning during

the last decade, especially in the use of convolutional neural networks CNN in image

processing, have advanced the use of artificial intelligence (AI) in digital pathology.

Figure 1.3 highlights some of the notable milestones that have affected modern

AI practices in digital pathology. Starting from the AI branch of computer science

being created by McCarthy [12], and the first convolutional neural network by Yann

LeCun in 1988 [13] to Generative Adversarial Networks invented by Ian Goodfellow

in 2014. These have been a few of the major milestones that have played part
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to CNN architectures dominating many of the vision-related tasks. Their success

comes from convolutional layers, which are translationally invariant. Thus, they

are efficient with images where objects may be present in different picture regions.

The same neurons that learn to recognize certain features will work in all image

parts without needing to learn the same features several times for each location [13].

Each convolutional layer learns to detect features from the output feature maps

of a previous layer, and the deeper the stack goes, the more complex the learned

features will get. For instance, in dog and cat classification, the first convolutional

layers may learn to detect simple edges and contours. The later ones could specialize

in higher-level features such as ears or snout.

However, recent research and success of vision transformer architecture could

very well lead to transformers replacing CNN architecture in some of the tasks in the

coming years [14]. Especially in tasks where it’s beneficial to perceive longer spatial

distances than CNN receptive fields cover. Convolutional layers are relatively local,

meaning a single point in the layer’s output is affected only by the immediate neigh-

borhood of the corresponding point in the input. When stacking these operations

in sequence, the area in the image which can affect the response in certain one point

in the last convolutional output is called its receptive field, and this may only cover

part of the input image. Vision transformers don’t have these spatial limitations

and can simultaneously see all input regions.

The invention of whole slide scanner, photoacoustic microscopy [15] and mi-

croscopy with ultraviolet surface excitation [16] have enabled more scalable digital

imaging for medical diagnostics. Modern AI technologies along with large digital

record datasets have made assisted pathology software tools possible. The Philips

IntelliSite Pathology Solution, which received De Novo pathway clearance and Food

and Drug Administration approval in 2017 is one example of such AI assisted pathol-

ogy software [17]. Apart from the major technology companies, there are also sev-
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eral emerging startups that are using deep learning technologies in digital pathology

such as Paige.AI [18], DeepLens [19], Proscia [20], PathAI [21], Inspirata [22] and

DeePathology [23].

Figure 1.3: Milestones that have led to the use of AI in modern digital pathology.

[24], [25], [26], [13], [15], [16], [17]

1.3.2 Modern methods

The performance of CNN models in image-related tasks such as the famous Ima-

genet classification benchmark challenge [27] have been improving in the last decade,

and they have become the dominant algorithm in image classification, segmentation

and object detection. The advances have come partially from the deeper and more

efficient model architectures, but also from the improved practices in training pro-

cedures. These include adaptive optimizers such as Adam [28] and learning rate

schedules. Namely cosine annealing, cyclical or one-cycle [29], [30]. Also, many

minor model architecture changes have improved the accuracy, such as changing

the stride of the first convolutional layers or including channel- and spatial-wise

attention into CNN building blocks. [31], [32].
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As for digital pathology, accessible large datasets like CAMELYON16 and 17

have possibly accelerated the use and adoption of CNN models in the field. Now,

virtually anyone could develop computer vision algorithms to identify cancer in tissue

samples, as previously this would have required access to patient biopsy records

through a medical research institute or hospital and an expert pathologist to label

samples. AI models have already been beating pathologist-level performance and

proven to be useful in classifying and segmenting tumor regions, as well as assisting

in grading biopsy samples [33], [34]. Lee & Paeng showed that a CNN-based AI

algorithm could be used in predicting the TNM stage of a patient from lymph

node biopsy. Such prediction was not achieved by end-to-end learning, meaning

predicting the stage directly from images. Rather, they used statistical and shape

features calculated from CNN segmentation maps of tumor regions and predicted

the stage using a second-level random forest classifier [34]. It may be helpful for

complex tasks like TNM staging, to split the problem in multiple parts to achieve

good results and transparency in decision logic.

1.3.3 Generalization and robustness

Even though recent advances in AI have shown that computer algorithms can miss

fewer tumor regions compared to human pathologists, leaving the diagnosis or grad-

ing decision solely to algorithms could be dangerous [35], [33]. These models have

merely learned to transform the training data into a feature space that separates

target label classes, but there are several pitfalls into this. The training data may

not be representative enough of the population, the input data might not have the

necessary information to make predictions of the target, or the training targets could

be erroneously labeled. The latter is often present to some degree in medical image

data, since labels may be ambiguous and pathologists don’t necessarily agree on

each case [35] [33]. To address this, majority voting of three or more pathologists
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may be used to get better annotations.

One of the reasons why it is difficult to have generalizing models in digital

pathology is the variation in the sample staining and scanning settings. Biopsies

scanned in one laboratory may look quite different in color hue and contrast com-

pared to samples from another laboratory. Image post color normalization using

different computational methods have been proposed for bringing all color repre-

sentations on the same scale before the analysis [36], [37], [38]. Even generative AI

models have been proposed for the normalization [39]. Many of the conventional

H&E normalization methods are computationally trying to estimate the fraction of

hematoxylin and eosing color components. This is done for each sample or area of

the sample and scaling fractions against a reference region. [37], [36].

A second approach for dealing with color variation is color augmentation. In-

stead of bringing the color component fractions of hematoxylin and eosin to static

values, color augmentation varies the hue, saturation, and value of the color, and

forces the AI model not to trust colors blindly. Color augmentation methods exist

that target the H&E staining, and in a similar way that normalization tries to scale

color components to fixed fractions, augmentation randomizes these within given

limits [38].

AI models are often regarded as black boxes when interpreting the model’s

reasoning. In more conventional modeling where features are engineered based on

domain knowledge, [13] models find patterns and features from the images by getting

feedback from data labels. The objective of the training algorithm is to minimize

the outcome of a loss function by adjusting weights and biases of the model layers

by backward propagating the errors of predictions. It is difficult to regulate what

features the model can learn, so the model may learn to use bias in training data

as a shortcut. An example of such a case is when a pathologist marks abnormal

tissue regions with a sharpie to glass slides, and these markings show in training
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images. Then, instead of learning the features of abnormal tissue, the model may

discover that a sharpie marking is a good feature for identifying abnormal regions.

The outcome may be a model that works perfectly when glass slides have markings

around abnormal tissue parts but fails to make correct predictions if they are missing.

Several tools and techniques have been developed to interpret and visualize

the reasoning of CNN models. These include occlusion-based methods where part

of images is hidden to see how the prediction changes or class activation mapping

(CAM) methods such as Grad-CAM. [40] In Grad-CAM, class-specific positive ac-

tivations are followed back to convolutional layers that hold spatial structure to

highlight the regions of image that contributed to a class label outcome [41]. Figure

1.4 shows different visualization methods such as fine-grained and class-invariant

Guided Backpropagation [42], class-specific Grad-CAM, their combination, and an

occlusion based visualization method. These visualization techniques help debug

the reasoning of a CNN classifier models and are useful in discovering data biases.

One way of making sure that the model is learning right features is to check that

the target class regions in images are showing actions. Figure 1.5 shows an example

of data bias that is visible in activated regions. The gender-biased model mainly

bases predictions in the face region that provides gender cues. [43]
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Figure 1.4: Top and bottom rows show the cat-specific and dog-specific activation

visualizations methods. The first column shows (a and g) original images, second

column (d and h) high-resolution Guided Backpropagation, third column (c and i)

Grad-CAM, fourth column (d and j) Guided Grad-CAM, fifth column (e and k)

occlusion maps and final column (f and l) ResNet model’s Grad-CAM activations

overlaid on top of the original images. [41]
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Figure 1.5: Comparison of Grad-CAM class-activations of gender-biased and

unbiased models. The first column shows the input image with ground-truth label,

and second and third columns the activations of predicted class from biased and

unbiased models.[43]

For potentially critical applications such as patient diagnosis where an error

may have fatal consequences, it is better to have a trained human pathologist in the

loop. For instance, if the algorithm encounters samples out of training distribution,

it may behave in unexpected ways. It has been studied that even though AI mod-

els are on par or exceed pathologist-level performance on narrow tasks, an expert

pathologist who has the help of an AI model performs even better [44]. In the future,

WSI viewing software may have more AI assistant features that highlight identified

tumorous regions along with shape description and other statistic information for
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human pathologists to analyze. Viewer software visual interface could look like in

the Figure 1.6. These tools could merely indicate the regions that it found suspi-

cious to a human expert, who would make the final decision. Human alertness and

the ability to spot faint features in vast images can vary throughout the day and

from expert to another. In contrast, an algorithm performs at constant level but

can only do a narrow task and is not good at adapting to unseen cases. However,

combining humans ability to reason and adapt past experience to new situations

with algorithms tireless execution, we can have the best of both worlds.
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Figure 1.6: A hypothetical visualization of a WSI viewing software that highlights

suspicious tumor regions along with shape and other statistics for a human

pathologists to inspect.

1.3.4 Multilevel AI model

Since the introduction of WSI scanning technology, pathologists have been able to

view digitized scans using software that allows panning and zooming the scanned

tissue, similarly as with Google Earth satellite imagery. Before the digitized images,

one could look at a tissue biopsy with different microscope magnification lenses to

observe the sample in different scales before concluding on a diagnosis. However,
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conventional CNN models are typically given a single input frame, and due to their

fixed receptive fields, the scale range of observable features is limited. To cover

a broader scale of features, CNN would need to have more convolutional kernels

with varying receptive fields, and eventually, the input image size would limit the

upper range [45]. The aim of this work is to investigate whether having a secondary

context feature extraction branch would improve the classification performance of

a WSI tile tumor classification model. The second branch adds the ability to see

context-level features, which brings the classification setting closer to what human

pathologists can observe.

1.4 Related work

The idea of having multiple input scales for a CNN model is not new. It has

been tried for classification, segmentation and object detection in remote sensing

and other large scale image tasks with success [46], [45], [47], [48]. The multi-

scale design has been especially effective in segmenting larger features such as large

constructions in satellite images and the approach has reduced holes in predicted

masks significantly [47]. To combine multiple scales, there are several approaches

in fusing information from different levels, and the simplest one is to concatenate

pooled features from several single-scale encoders right before the classification layer.

Another approach is to fuse before pooling to have spatial aware multi-scale features

[46].

Multiple input scales have been also used in medical imaging in Optical Coher-

ence Tomography and in WSI classification. [49], [50]. Liu et al. published a very

similar multi-scale WSI tumor classification experiment in 2017, and reportedly, fu-

sion of two magnification scales did not offer other benefits than smoother tumor

probability maps. The model design for the multi scale feature fusion is show in

Figure 1.7.
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Figure 1.7: Tumor classification architecture designs for single scale and multi

scale in the work of Liu et al. (2017). Patches of different magnifications are

passing through Inception (V3) feature encoders to a fully connected classification

layer. Features from different scales are concatenated for the classification. [50]



2 Methods and implementation

This chapter introduces the methods used for testing a hypothesis of including

context-level CNN features to a tumor patch image classifier offers some benefit

over just having local patch area features. The idea is related to a workflow of

professional pathologists who inspect a WSI in multiple magnification levels. [51]

2.1 Image data set

CAMELYON17 hematoxylin & eosin (H&E)-stained lymph node section whole-slide

image data set was used as the training and evaluation data. It is a larger and WSI-

level annotated successor of the CAncer MEtastases in LYmph nOdes challeNge

(CAMELYON16) data set that was created for a challenge, intended for improving

the automated methods of detecting breast cancer metastasis. The data set has 1399

WSIs collected from five different medical centers. Centers 0,1 and 3 or Radboud

University Medical Center (RUMC), Canisius-Wilhelmina Hospital (CWZ), and Ri-

jnstate Hospital (RST) respectively, had similar 3DHistech Pannoramic Flash II

250 WSI scanners with pixel size of 0.24 µm. Center 2, University Medical Center

Utrecht (UMCU) had Hamamatsu NanoZoomer-XR C12000-01 scanner with pixel

size of 0.23 µm and center 4, Laboratory of Pathology East-Netherlands (LPON)

had Philips IntelliSite Ultrafast Scanner with pixel size of 0.25 µm. The differences

of color characteristics between centers are visualized in Figure 2.1 that shows ten

randomly sampled image patches from each center. [11]
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Center 4 LPON was used only for evaluation and centers 0,1,2 and 3 (RUMC,

CWZ, UMCU, and RST) were used in CNN training in a leave-center-out cross-

validation manner.

Figure 2.1: Random patch image samples from medical centers of CAMELYON17

showing the characteristic colors of different scanners and dyeing procedures.

CAMELYON17 WSIs had polygon annotations for metastatic regions, and

these were used for evaluating the binary segmentation models. For a binary tumor

versus normal tissue area classification data set, tissue areas were extracted from the

gigapixel WSIs as shown in Figure 2.2. Figure 2.2a is a resized WSI with original

colors and black areas that the scanner software has thresholded out. The red rect-

angle is the focus region of b and c figures. Tissue area mask was extracted from 16

times downsampled WSI by performing Otsu binarization for the saturation channel

of hue, saturation and value color space (HSV) [52]. To fill small holes in the mask

and to leave out small isolated tissue areas, morphological closing was applied two

times with a kernel size of five, followed by median filtering with a kernel size of 15.

Kernel sizes and the number of iterations were chosen by visually examining mask

outputs of different combinations until satisfied with the segmentation result. The

output tissue mask of a WSI crop region is shown as blue overlay color in Figure

2.2b.
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The tissue areas were further sampled into 256x256 pixel red, green and blue

image channels (RGB) patches. The sampling was done in overlapping manner so

that corners of one tile were the center coordinates of neighboring tiles. The resulting

patches are visualized in Figure 2.2c where each blue tile is a sampled position. To

collect tissue samples of different magnification levels, 256x256 sized images were

sampled from each tile center coordinate with different downsampling factors of

16,8,4,2, and 1 (Figure 2.3). The label for binary classification was determined by

the percentage of tumor area (shown in green in Figure 2.3) within the tile without

downsampling. If tumor covered 75% or more of the area, the label was "tumor" and

"normal" otherwise. The same label was used for all other downsampling variants.
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(a) Complete original WSI. The red

rectangle is the cropped area in

Figures b and c. The scanner’s

imaging software is coloring empty

areas as black to save in file size.

(b) WSI crop region where the

segmented tissue areas are colored in

blue.

(c) WSI crop region where the sampled

tissue patches are shown as blue tiles.

Figure 2.2: Tissue area sampling from WSIs.
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Figure 2.3: WSI crop patches of size 256x256 pixels from the same center

coordinate and with different downsampling factors. The green masked areas are

ground truth tumor area polygon annotation from the CAMELYON17 data set.

2.2 Normalization

To correct the color staining variation between medical centers and individual WSIs,

some of the experiments were done with color stain normalized patch images. Nor-

malization was done by separating the stain vector components of hematoxyling and

eosin and normalizing their quantities [53]. The effect of stain color normalization

can be seen in Figure 2.4.
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Figure 2.4: Stain normalization. The first column shows original samples, the

second column stain normalized version, the third column only the Hematoxylin

stain component and the fourth only the Eosin stain component.

2.3 Tasks and evaluation metrics

The work focused on two objectives, binary tumor classification of cropped tissue

area tiles and WSI tumor area segmentation. For the binary tumor versus normal

tile classification, the area under the receiver operating characteristic curve (ROC
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curve) or AUC was used for the evaluation and model comparison.

For measuring the segmentation performance, intersection over union (IoU) and

Dice similarity coefficient (DSC) were both used in comparing models segmentation

accuracies. These metrics are positively correlated, so both metrics will yield similar

rankings between models when comparing results of single inference tests. However,

when taking an average of multiple tests, IoU penalizes outliers more than DSC.

2.4 Model

Models that were used in WSI region tumor binary classification consisted of back-

bone CNN feature extractor and a classification module. Feature extractor part

took an RGB image as input downsized the width and height dimension to a small

7x7 while appending the channel dimension through a chain of convolutional and

pooling layers. Finally, an adaptive average pooling layer was used to flatten acti-

vations to a vector of fixed length. This lost all spatial information and produced a

feature vector representing averaged features of the whole input image area.

Backbone’s features were fed to a classification head module that consisted of

three blocks of 1D batch normalization layer [54], dropout layer [55], fully-connected

linear layer, and ReLU activation. Dropout was kept high for regularization effect,

so the final dropout layer’s probability was 0.9, and the rest were 0.45. Softmax

activation was used for the final activation, and it produced two probability values;

for normal and tumor.

2.4.1 Multilevel CNN Model

The Multilevel model followed the same configurations of CNN backbone feature

extractor and classification module head, but instead of a single backbone feature

extractor, the model had two. Feature extractors were meant for two images of
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the same region but in different magnifying levels. One with higher magnification

was called a focus encoder, and the one with lower magnification was a context

encoder. Both of them took the input in the same size and produced flattened

feature vectors of fixed length. Before feeding these to a classification head, the

vectors were concatenated so that the feature vector’s length was doubled. This was

followed by a classification head module similar to a regular one-level model except

that the first fully-connected linear layer had two times more input features. The

overview of the multilevel architecture is visualized in Figure 2.5.

Figure 2.5: Model architecture overview. The model takes two inputs; context and

focus images centered at the same slide region. Both inputs go through their own

feature extracting encoders and these are concatenated to a classification head

module consisting of two fully connected linear layers.
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2.4.2 Backbone architectures

Different backbone base architectures were tested for feature extraction in the bi-

nary classification task. The architectures included ResNet, Densenet, Inception-

ResNetV2, SENet and SE-ResNeXt base models [31], [56]–[58]. ImageNet top-1

and top-5 classification accuracies of their ImageNet pre-trained weights are given

in Table 2.1. All base architectures were loaded with ImageNet weights. ResNet

and Densnet weights were loaded from Torchvision’s repository and the rest from

Cadene’s repository [59]–[61].

Table 2.1: Base architecture ImageNet accuracies

Architecture Top-1 accuracy % Top-5 accuracy %

SENet154 81.30 95.50

InceptionResNetV2 80.40 95.30

SE-ResNeXt101-32x4d 80.24 95.03

SE-ResNeXt50-32x4d 79.08 94.43

ResNet101 77.37 93.56

ResNet50 76.15 92.87

Densenet-169 76.00 93.00

Densenet-121 74.65 92.17

ResNet34 73.30 91.42

ResNet18 69.76 89.08

2.5 Training implementation

The base architectures were loaded with pre-trained Imagenet weights. It was as-

sumed that these weights were already adjusted for extracting meaningful features

out of images and thus giving a better starting point towards new tasks. It has
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been shown that this type of transfer learning nearly always achieves better results

compared to training from scratch [62]. Classification head module weights were

initialized with Kaiming initialization, and to keep base architecture weights from

dispersing while adjusting the head, all weights of base architecture were frozen dur-

ing the first training phase called head training phase [63]. After head training, all

weights were unfrozen, and the training was continued with a lower learning rate in

the finetuning phase.

Training phases were performed with one cycle learning rate and momentum

schedules, and a different number of epochs from one to ten were tried to find

the minimum epochs for training convergence. Adam optimizer was used, and the

maximum learning rate was determined for each model and training phase using a

method called learning rate finder [28], [30]. In this method, the model is trained

by gradually increasing the learning rate with every training batch. Training loss

will decrease until the learning gets too high and the loss diverges. The optimal

learning rate is selected from a point before the loss diverged where the learning

rate is dropping the fastest.

2.5.1 Augmentation

Image augmentations were applied randomly during the training as a way of regu-

larization. The types of augmentations were chosen to mimic variations that could

occur naturally due to differences in staining procedure or sample preparation. Al-

bumentations image processing library [64] was used for random hue, saturation,

and color value transforms, random Gaussian noise, random flips (horizontal and

vertical), random 90-degree rotations, random brightness (limit 0.2), contrast (limit

0.2), and gamma (limit from 50 to 200) variations. The effect of these randomly

applied variations is shown in figure 2.6 where the light set of augmentations had

hue, saturation, and lightness shift limits as 15, 20, and 20 respectively. Strong color
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augmentations had 30, 30, and 20 respectively, but included also contrast limited

adaptive histogram equalization (CLAHE) and RGB shift (red, green and blue shift

limits of 30,15 and 30) augmentations.

In addition to color augmentations, a more sophisticated staining appearance

variation method was applied. This method unmixes the hematoxylin and eosin

components similarly as in normalization, but instead of normalizing their levels,

stain component ratios is changed in a random manner and the resulting outputs is

shown in 2.7.

Augmentations were not applied for validation or test sets. For multilevel mod-

els that receive two different magnifications images, the same augmentations were

always applied for both of them.
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(a) Light augmentation set.

(b) Strong color augmentation set.

Figure 2.6: Different augmentation applied to the same image.
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Figure 2.7: Stain appearance augmentation applied to the same image. The

method unmixes hematoxylin and eosin color components and randomly alters

their ratio.

2.5.2 Autoencoder pre-training

The effect of unsupervised pre-training was tested for the context backbone branch

weights of the multilevel CNN model. An autoencoder model was constructed by

stacking a dense encoding layer that compressed the output to 512 values and mul-

tiple upsampling blocks after the final pooling layer of backbone architecture. Up-

sampling block consisted of a bilinear upsampling, convolutional layer with a stride

of one, ReLU activation, and batch normalization, except for the last block, which

had sigmoid activation and no batch normalization. Four upsampling blocks were
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used to get an output size same as the input size. The autoencoder model was

trained with randomly augmented context-level WSI patch samples to produce an

output similar to the input. The training was continued until the mean square error

loss converged to levels of 1e-3.

Two different approaches were tried for using autoencoder training in the con-

text branch. In the first one, only the backbone architecture part (Se-ResNeXt50)

from the encoder part of the autoencoder was used for context branch. In the

second, "bottleneck" layers were also included. The "bottleneck" layers were the

convolutional blocks between the backbone and upsampling blocks. These reduced

the output size of the context branch from 2048 to 64 and limited the amount of

information that passes through the context branch. Hence, the term "bottleneck".

2.6 Patch classification

Only 0.2 to 0.5 percent of sampled tissue patches were labeled as tumors, as shown

in Table 2.2. To balance the class distributions, an equal amount of normal patches

as there were tumor patches were randomly selected. This was done separately for

each medical center, so the total number of samples in each center was twice the

number of tumor samples from that center. Re-sampling both training classes equal

amounts skewed the training class distribution from the real world, but this was

done to enforce equal training opportunities for both classes and to avoid the risk

of model learning to predict only the majority class.

Patch classification models predicted tumor probability from which the AUC

score was measured. Medical center cross-validation AUC scores were used in pa-

rameter tuning and model selection, and the test set was reserved for comparing

models that were trained on all training medical centers. Model training with all

training medical centers was repeated for five times with different random seeds to

capture the training variance.
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Table 2.2: Patch image statistics

Medical center Tumor patches Total patches

Center 0 12974 4157654

Center 1 6042 7173904

Center 2 18620 6759188

Center 3 29719 6558462

Center 4 4593 2143729

2.7 WSI segmentation

Segmentation was performed using the trained patch classification models by split-

ting the tissue area into smaller overlapping patches, similar to the ones used for

patch classification. The classification model gave a tumor probability estimate for

each tile center location, and these estimates were stitched back to a probability

map and resized to original WSI dimensions using linear interpolation. Finally, the

probability map was thresholded to a binary mask with a value selected based on

training set fold cross-validation.

For testing, models were trained on all training set medical centers in a non-

deterministic fashion, and the training was repeated five times with different random

seeds to capture the training variance. Three of the test set slides had annotated

tumor regions, and they were used in determining the segmentation performance.

Non-tumor test slides were left out from testing since metrics such as DSC and

IoU require the presence of two classes in the reference samples to have meaningful

values. AUC was measured tile-wise before thresholding the predicted probabilities.
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2.8 Statistical analysis

One-way ANOVA was used for testing the null hypothesis that models had similar

classification or segmentation performances. The five training and testing rounds

from each model gave a distribution of performance metrics that were compared

between different models. ANOVA tested the hypothesis that the resulting scores

of different models had the same mean of distribution. ANOVA was chosen because

it was assumed when training the same model with different random seeds, the

resulting test scores would approximately follow a normal distribution, and different

models would have roughly the same variances.

2.9 Hardware and software

Models were trained in 64bit Ubuntu 16.04.6 LTS operating system inside Ana-

conda virtual environment using Python 3.6 programming language. PyTorch 1.1.0,

Torchvision 0.3.0, and Fastai 1.0.52 were used for CNN model training and OpenSlide

3.4.1, ASAP 1.8, OpenCV 4.1.0 and Albumentations 0.2.3 were used for scanner tiff

file reading, image processing, and image augmentations.

The utilized hardware had four Nvidia Tesla V100 (32 GB) graphics cards, but

only one was used per training. The central processing unit was Intel Xeon Platinum

8160 (2.10 GHz), and the machine had 1510 GB of RAM and a 6.4 TB NVMe SSD.



3 Results

3.1 Autoencoder training

Figure 3.1 shows the reconstruction quality of the autoencoder model. The first

column is the input samples, the second the autoencoder’s output, and the third

column shows the training target, which is the same as the input. All shown samples

are taken from a validation fold that was unseen during model training.
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Figure 3.1: Autoencoder training results. The first column shows input samples,

the second shows the autoencoder’s output, and the third column shows the

training target which is the same as the input.

3.2 Patch classification

Patch classification results include cross-validation scores from parameter and model

optimization. Conventional CNN binary classification models that predict the class

from a single input image are referred to as baseline models. Best baseline model
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architectures were compared to multilevel alternatives.

3.2.1 Baseline model optimization

Baseline model tuning was performed using leave-medical-center-out cross-validation

to find good base model architecture and a number of epochs to train classification

head and base model, learning rate (LR), and whether to normalize the input stain

components. Model selection and parameter tuning were made by changing one

component at a time, and the average AUC score of folds of each test is shown in

Table 3.1. Id value was given for tracking purposes, and suffixes N and A refer to

input stain normalization and heavy color augmentations, respectively. Epoch and

LR columns are separated to classification head only, and full model training values

and the last three models were only trained from the classification head part.

Parameter tuning was started from a DenseNet121 backbone architecture as

it is from the lighter end of models and relatively fast to train. The number of

epoch search was started high and decreased gradually, and the best performance

was achieved only with a single epoch of classification head training. Out of the

tried backbone architectures, Se-ResNeXt101 32x4d and InceptionResNetv2 gave

good scores. Se-ResNeXt101 32x4d was chosen for multilevel models. Adding heavy

color augmentations gave better scores (average area under the ROC curve (AUC) of

97.356) compared to stain input normalization (average area under the ROC curve

(AUC) of 96.045) in the final tests with Se-ResNeXt101 32x4d.



CHAPTER 3. RESULTS 35

Table 3.1: Baseline parameter tuning results

Id Model Epochs LR Normalized avg. AUC

01 DenseNet121 10/10 3e-3/1e-5 No 93.021

02 DenseNet121 8/4 3e-3/1e-5 No 94.560

03 DenseNet121 4/2 3e-3/5e-6 No 94.818

04 DenseNet121 4/2 3e-3/5e-6 Yes 94.886

05 DenseNet169 4/2 3e-3/5e-6 No 92.901

06 SENet154 4/2 3e-3/5e-6 No 95.734

07 InceptionResNetv2 4/2 3e-3/5e-6 No 96.305

07N InceptionResNetv2 4/2 3e-3/5e-6 Yes 96.128

08 Se-ResNeXt101 32x4d 4/2 3e-3/5e-6 No 96.198

08N Se-ResNeXt101 32x4d 4/2 3e-3/5e-6 Yes 96.302

10 Se-ResNeXt101 32x4d 1/- 1e-3/- No 96.852

10N Se-ResNeXt101 32x4d 1/- 1e-3/- Yes 96.045

18A Se-ResNeXt101 32x4d 1/- 1e-3/- No 97.356

3.2.2 Multilevel model optimization

Compared to baseline models, multilevel models had two CNN feature extraction

branches instead of one. The context and the focus branch, and different backbone

model architectures were chosen for both of them. It was assumed that the context

branch wouldn’t need as heavy network architecture for feature extraction as the

focus branch since it provided only supportive information about the surroundings.

Table 3.2 shows the results of multilevel model parameter and model selection.

Only the classification head was trained for one epoch, and the backbones were

kept frozen. All backbone models had pre-trained ImageNet weights, but three of

the context (ctx.) branch models were autoencoder pre-trained in an unsupervised
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manner. These are marked in the "Ctx. lvl./AE" column, where the first value tells

the context input magnification level, and the second whether or not the context

branch was autoencoder pre-trained. Id value was given for tracking purposes, and

suffixes N tells if the inputs were stain normalized.

Table 3.2: Multilevel parameter tuning results

Id Ctx. model Focus model LR Ctx. lvl./AE Norm. avg. AUC

09 ResNet18 ResNet50 3e-3 3/No No 96.575

11 ResNet34 ResNet101 3e-3 3/No No 94.336

12N ResNet18 ResNet50 1e-3 3/No Yes 96.955

13N Se-ResNeXt50 Se-ResNeXt101 1e-3 3/No Yes 97.262

14N Se-ResNeXt50 Se-ResNeXt101 2e-3 2/No Yes 97.431

15N Se-ResNeXt50 Se-ResNeXt101 2e-3 0/No Yes 96.150

16N Se-ResNeXt50 Se-ResNeXt101 2e-3 2/Yes Yes 98.240

16 Se-ResNeXt50 Se-ResNeXt101 2e-3 2/Yes No 98.878

17N Se-ResNeXt50 Se-ResNeXt101 2e-3 2/Yes Yes 98.125

3.2.3 Combined optimization results

AUC scores from all folds of all model optimization runs are shown in Figure 3.2.

Se-ResNeXt101 backbone architecture was chosen to represent baseline performance

based on its higher AUC compared to other architectures. Figure 3.3 is the same

graph but with fold averages, and it gives a clearer picture of the cross-validation

AUC between different training runs. The best baseline model (Id 18A) reaches AUC

score of 97.356, which is highlighted as red dotted vertical line. The best multilevel

model (ID 16) reaches AUC of 98.878, and these fold models were trained without

normalization and had autoencoder pre-trained context branch without bottlenecks.

Fold 2, which uses the medical center 2 for validation, stands out with lower
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AUC scores (Figure 3.4). Medical center 2 differs from other training folds by having

a different scanner. A DenseNet121 baseline model ID 03 has the best AUC scores

in fold-2 out of baseline models but still leaves behind the best multilevel model by

a margin of over one.

Figure 3.2: AUC scores of each training fold from all baseline and multilevel

training runs. Model labels include the id, backbone information, input

magnification level, and notes about stain normalization or autoencoder

pre-training (pretrained context). Fold number tells which medical center was used

for validation.
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Figure 3.3: Average AUC scores from all folds. The red horizontal dotted line

shows the best baseline performance.

Figure 3.4: AUC scores where medical center 2 was used as the validation fold.

This center had a different scanner than the other training fold centers. The red

horizontal dotted line shows the best baseline AUC performance.

3.2.4 Grad-CAM visualizations

Class-specific Grad-CAM activations were visualized from the baseline model 3.5

and multilevel model to discover potential data biases and see what regions the

models are focusing and basing their predictions. 3.6
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Figure 3.5: Baseline model’s class activation maps of validation fold samples.

Non-tumor activation regions are overlaid with green and tumor activation regions

with red. Titles display (Predicted label/ Actual label/ Predicted tumor

probability). First row shows predictions from random patches, second from

patches with highest losses (most incorrect), and third from lowest patches with

lowest losses (most correct).
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Figure 3.6: Multilevel model’s class activation maps of validation fold samples.

Non-tumor activation regions are overlaid with green and tumor activation regions

with red. Titles display whether the sample is from focus or context branch and

(Predicted label/ Actual label/ Predicted tumor probability). First row shows

predictions from random patches, second from patches with highest losses (most

incorrect), and third from lowest patches with lowest losses (most correct). The

first two and last two columns of each row are from the same sample, and they

display activations from focus and context branches separately.

3.2.5 Test set results

Table 3.3 shows the average AUC results of multilevel and baseline models. The

average is taken from five non-deterministic training runs with different random

seeds. Only the classification head was trained for one epoch, and the backbones

were kept frozen. All backbone models had pre-trained ImageNet weights but some



CHAPTER 3. RESULTS 41

of the context (ctx.) branch models were autoencoder pre-trained in an unsuper-

vised manner. These are marked in the "AE" column. All baseline models had

Se-ResNeXt101 backbones, and all multilevel models had Se-ResNeXt101 for focus

and Se-ResNeXt50 for context branch. Id value was given for tracking purposes,

and suffixes N tells if the inputs were stain normalized, and A if heavy color aug-

mentations were used during training. Type column is either Multilevel or Baseline

and shows the zoom levels for Multilevel models.

Table 3.3: Test set results

Id Type LR AE Norm. avg. AUC

10 Baseline 1e-3 No No 95.886

10N Baseline 1e-3 No Yes 95.527

18A Baseline 1e-3 No No 97.035

13 Multilevel (3&0) 1e-3 No No 90.807

13N Multilevel (3&0) 1e-3 No Yes 94.103

14 Multilevel (2&0) 2e-3 No No 95.745

14N Multilevel (2&0) 2e-3 No Yes 96.100

15 Multilevel (0&0) 2e-3 No No 94.518

15N Multilevel (0&0) 2e-3 No Yes 96.261

16 Multilevel (2&0) 2e-3 Yes No 95.396

16N Multilevel (2&0) 2e-3 Yes Yes 96.195

17 Multilevel (2&0) 2e-3 Yes No 94.979

17N Multilevel (2&0) 2e-3 Yes Yes 94.679

19A Multilevel (2&0) 2e-3 No No 97.765

20A Multilevel (0&0) 2e-3 No No 96.478

21A Multilevel (2&0) 2e-3 Yes No 97.044

Figures 3.7 shows the test fold AUC results per each model training run and
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Figure 3.8 shows the average value of replicate runs. Multilevel model id 19A out-

performs the best baseline model id 18A.

Figure 3.7: AUC scores for test fold from all baseline and multilevel training runs.

Model labels include the id, backbone information, input magnification level, and

notes about stain normalization or autoencoder pre-training (pretrained context).

Each model was trained five times with different random seed and training run

scores are shown in different colors. The red horizontal dotted line shows the best

baseline run performance.



CHAPTER 3. RESULTS 43

Figure 3.8: Average AUC scores for test fold from all baseline and multilevel

training runs. Model labels include the id, backbone information, input

magnification level, and notes about stain normalization or autoencoder

pre-training (pretrained context). Each model was trained five times with different

random seed and the average of runs is show in this plot. The red horizontal

dotted line shows the best baseline performance.

The best baseline model ID 18A, best Multilevel model ID 19A, and Multilevel

model without context information (ID 20A) were checked against the null hypoth-

esis of all models score equally well. Model ID 18A had an average AUC of 97.035,

ID 19A an average of 97.765, and ID 20A an average of 96.478. One-way ANOVA

test gave uncorrected p-values of 0.0018 and 0.000068 for comparisons between 18A

vs. 19A and 19A vs. 20A. Tukey-HSD corrected p-values were 0.0018 and 0.001,

respectively. ANOVA requires that the values are normally distributed, the vari-

ances between the groups are equal. Shaphiro-Wilk’s normality test showed that

all groups were normally distributed with p-values between 0.7 and 0.9 (> 0.05).

Levene test confirmed that the three groups had equal variances with a p-value 0.87
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(> 0.05).

3.3 WSI segmentation

WSI-specific AUC, DSC and IoU scores are presented in Figures 3.9, 3.10 and 3.11.

Figure 3.9: AUC scores for three test WSI tile predictions. WSI-specific AUC

scores are shown in different colors.

Figure 3.10: DCS metrics for the three test WSI segmentations. WSI-specific

scores are shown in different colors.

Figure 3.11: IoU metrics for the three test WSI segmentations. WSI-specific scores

are shown in different colors.



CHAPTER 3. RESULTS 45

Figure 3.12: Segmentation results of the model 19A for three tumor test set WSI’s.

The first column shows the original tissue, second column the ground truth tumor

annotations and third row the predicted tumor mask. Annotated and predicted

tumor regions are colored in black. Rows are test fold WSI samples from top to

down order: Patient-081-node-4, Patient-088-node-1 and Patient-099-node-4.



4 Discussion

4.1 Patch classification

The original hypothesis stated that including context-level CNN features together

with patch-level CNN features (focus-level) in a patch image classifier would im-

prove the tumor classification performance. When comparing three models; the

best performing baseline model with only focus-level features, a multi-level model

with focus and context-level features, and a multi-level model with two separate

focus-level features, the focus and context-level model has the highest test set AUC

(Figure 3.7), and it differs in scores from the other two statistically significantly.

A multi-level model with two separate focus-level feature branches performed

the worst from the three models. This shows that the high score of the context and

focus model was not caused by double the amount of features going to the classifier.

On the contrary, doubling the number of classifier features seems to deteriorate the

performance here. Even though the two focus-level branches had different feature

encoders, Se-ResNeXt50 and Se-ResNeXt101, the two branches likely had many

near-duplicate features, which did not increase the representative capacity. Further-

more, adding features that do not contribute much additional information would

probably need more training iterations to reach a similar performance with more

compressed feature representation.

The tumor regions marked by pathologists often covered greater than single
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image patch-sized areas. This meant that for a tumor patch image, at least some

of the neighboring patches in the context range had tumor as well. Thus, tumor

signals would have been amplified when including context features, and this could

be one reason why the context information helped. Another explanation could be

availability of larger-scale features. Since context features were extracted from a less

magnified scale and the input image size was kept the same, the CNN module had

a higher receptive field in terms of micrometers and could potentially see patterns

of larger scale.

The risk of including context-level features in patch-level classification increased

ambiguity, especially in the border regions of a tumor. Class label is assigned only

based on the focus region, but the CNN context features have no way of differenti-

ating what part of the image the features were originating. All spatial information

of the context branch is lost in the final pooling layer that compresses the width and

height dimensions of features into channel averages. If the center of a context image

were the only area free of tumor, the context features would have likely included

tumor signals even if the focus patch would have been considered as non-tumor.

This could have been addressed by making the context features spatially aware, for

instance, by adding coordinate maps such as x- and y-gradient maps as new chan-

nels to the input. Similarly, this would have been achieved with using a CoordConv

layer in place of one of the context branch convolutional layers [65].

The threshold of the tumor coverage percentage for labeling the patch image as

tumor was 75%. Thus, using an average feature pooling instead of maximum pooling

was justified to weight more on the whole set of features over any small region’s high

outliers. The label ambiguity increases when moving away from tumor mass center

to tumor borders, and models that can see context will get mixed healthy and tumor

signals on both sides of the boundary. Thus, it is possible that context information

would impair classification accuracy near tumor borders.
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Grad-CAM visualizations in Figures 3.5 and 3.6 show a possible data bias.

Both models were the most certain in the border regions of tissue where the glass

underneath the tissue was showing partially. Since tissue in these regions was not

intact, the tumor annotations were not often present in these parts except for a

few cases. Models probably learned to associate tissue border regions as non-tumor

because of the class imbalance within similar samples, and thus, made very confident

predictions for non-tumor. In the few samples that include a tumor in the tissue

border, models made confident and wrong predictions. Grad-CAM visualization

show that it is not the white glass part of the image that shows most non-tumor-

specific activations but the contours of cells and tissue on the edges of white glass.

Adjusting context level feature encoder with unsupervised autoencoder training

before training the classifier did not improve the classification accuracy. Another

observation from the path classifier training was that using heavy color augmen-

tations seemed to work better than normalizing stain colors. The point of color

normalization was to fade out differences between scanners and different scanning

parameters and decrease hardware bias. Stain normalization probably did not re-

move the bias and still left subtle differences in colorization that the CNN model was

able to detect. Randomizing color hue, saturation and intensity was more effective

in decreasing hardware bias and increasing the robustness against color differences.

The downside of this is that any useful information that the color may hold becomes

more difficult to learn. It is worth noting that this work did not explore normaliza-

tion algorithms extensively. Thus, it is possible that the choice of the normalization

method was not optimal.

4.2 WSI segmentation

The multi-level model improvements were not clear when examining WSI-level DSC

and IoU scores but on rank-based AUC, multi-level had the best scores in all WSI
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samples. The only sample where multi-level DSC and IoU were better than baseline

was Patient-099-node-4 which had the largest tumor regions. The smaller the tumor

regions were, the worse the DSC and IoU were. This would indicate that tumor

prediction mask binarization thresholds that were chosen based on training set folds

cross-validation were not generalizing to smaller tumor regions. This is likely since

the majority of the patch samples in all folds came from larger tumor regions.

The reason why area-based metrics were worse in small tumor regions of the

multi-level model compared to the baseline model is unclear. Smaller tumors have a

higher boundary region to total tumor area ratio, so one explanation could be that

context branch impairs boundary classification. However, higher AUC for multi-

level in all samples, including the small tumors, confirms that the underlying reason

is likely a poorly chosen threshold for multi-level models.

It is evident in Figure 3.12 that the multi-level model’s segmentation predictions

tend to label healthy regions that are covered by tumor masses as tumor. This could

indicate that context is taken into account in class label prediction even though the

focus patch would not have tumor.

4.3 Other applications for multilevel architecture

Multi-level CNN architecture is not only suitable for medical imaging but could be

helpful to a plethora of applications such as remote sensing, defect detection, or

whenever an image is reasonable to split into sub-regions for distributed processing.

This architecture could suit small defect anomaly detection since the classification

could be stated as "do focus features belong to context feature distribution?". Such

a network could be trained in an unsupervised manner with the same and different

focus-context image pairs similar to Siamese network [66].

The architecture is not limited to two dimensions either. The same approach

would also work for 3D and for instance, this could be used for classifying 3D patches
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in magnetic resonance imaging scans.

4.4 Future work

The main weakness in multi-level CNN architecture presented in this work was

classification accuracy in the boundary regions of two classes. To fix this, one

could try different pooling techniques in the final feature pooling of context encoder

branch, or other methods that would retain spatial information of context features.

The average pooling used here may not be optimal since it dilutes signals from a

single spatial region. Mean and maximum concatenated pooling or generalized mean

pooling could work better in cases where the context is not a uniform single-class

region. Network architecture is not the only option for solving class border region

ambiguity. Part of the issue may incur from poor data sampling. Thus, having more

examples from borders or giving them more weight in loss calculations might help

with border accuracy.



5 Conclusion

In the light of this work, adding a context zoom-level feature extraction branch

to tissue classification improves the overall classification accuracy in certain condi-

tions. Overall, the multilevel model reduced classification error by 24.6%; from the

lowest baseline error of 2.97% to 2.24%. However, further analysis revealed that

the method seems to increase ambiguity in border regions of tumor areas, whereas

patches inside larger tumor areas are classified more accurately. Thus, multilevel

architecture would be recommended only for WSI segmentation applications where

an intact prediction mask is preferred over border accuracy. A conventional single-

level approach is likely more suitable for the latter case or when segmenting smaller

objects.

In conclusion, the multilevel model is a promising architecture for digital pathol-

ogy examining large tissue regions. Its main shortcoming of border region ambiguity

is possibly solvable by trivial changes in model architecture, such as switching the

last pooling layer type to mean and maximum concatenated pooling.



References

[1] WHO, WHO position paper on mammography screening. Geneva, Switzerland:

WHO Press, 2014.

[2] A. C. Society, Survival rates for breast cancer. [Online]. Available: https:

//www.cancer.org/cancer/breast-cancer/understanding-a-breast-

cancer-diagnosis/breast-cancer-survival-rates.html.

[3] C. Carter, C. Allen, and D. Henson, “Relation of tumor size, lymph node

status, and survival in 24,740 breast cancer cases”, cancer, vol. 63, pp. 181–

187, 1989.

[4] “Relevant impact of central pathology review on nodal classification in indi-

vidual breast cancer patients”, The Annals of Oncology, vol. 23, 2012. doi:

10.1093/annonc/mds072.

[5] F. Greene, C. Compton, A. Fritz, J. Shas, and D. Winchester, AJCC cancer

staging atlas. New York, United States of America: Springer, 2006.

[6] K. Sevensma and C. Lewis, Axillary sentinel lymph node biopsy. Treasure

Island FL: StatPearls Publishing, 2020.

[7] M. Zarella, D. Bowman, F. Aeffner, N. Farahani, A. Xthona, S. Absar, A.

Parwani, M. Bui, and D. Hartman, “A practical guide to whole slide imaging”,

Archives of pathology & laboratory medicine, vol. 143 (2), pp. 222–234, Feb.

2019.

https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-rates.html
https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-rates.html
https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-rates.html
https://doi.org/10.1093/annonc/mds072


REFERENCES 53

[8] N. Atallah, M. Toss, C. Verill, M. Salto-Tellez, D. Snead, and E. Rakha, “Po-

tential quality pitfalls of digitalized whole slide image of breast pathology in

routine practice”, Modern Pathology, Dec. 2021. doi: 10.1038/s41379-021-

01000-8.

[9] B. Lee and K. Paeng, “A robust and effective approach towards accurate

metastasis detection and pn-stage classification in breast cancer”, 2018. doi:

arXiv:1805.12067.

[10] B. Ehteshami, M. Veta, van Diest P, van Ginneken B, N. Karssemeijer, G.

Litjens, V. der Laak J, M. Hermsen, Q. Mason, M. Balkenhol, O. Geessink,

N. Stathonikos, V. D. M, P. Bult, F. Beca, A. Beck, D. Wang, A. Khosla,

R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H. Lin, P. Heng,

C. Hab, E. Bruni, Q. Wong, U. Halici, M. Öner, R. Cetin-Atalay, M. Berseth,

V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan,

K. Sirinukunwattana, T. Qaiser, Y. Tsang, D. Tellez, J. Annuscheit, P. Huf-

nagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen,

S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe,

S. Seno, Y. Takenaka, H. Matsuda, A. P. H, V. Kovalev, A. Kalinovsky, V.

Liauchuk, G. Bueno, M. Fernendez-Carrobles, I. Serrano, O. Deniz, D. Raco-

ceanu, and V. R, “Diagnostic assessment of deep learning algorithms for de-

tection of lymph node metastases in women with breast cancer”, The Jour-

nal of the American Medical Association, vol. 22, pp. 2199–2210, 2017. doi:

10.1001/jama.2017.14585.

[11] P. Bandi, O. Geessink, Q. Manson, van Dijk M, M. Balkenhol, M. Hermsen,

B. Bejnordi, B. Lee, K. Paeng, A. Zhong, Q. Li, F. Zanjani, S. Zinger, K.

Fukuta, D. Komura, V. Ovtcharov, S. Cheng, S. Zeng, J. Thagaard, A. Dahl,

H. Lin, H. Chen, L. Jacobsson, M. H. M, M. Cetin, E. Halici, H. Jackson,

R. Chen, F. Both, and J. Franke, “From detection of individual metastases

https://doi.org/10.1038/s41379-021-01000-8
https://doi.org/10.1038/s41379-021-01000-8
https://doi.org/arXiv:1805.12067
https://doi.org/10.1001/jama.2017.14585


REFERENCES 54

to classification of lymph node status at the patient level: The camelyon17

challenge”, IEEE Transactions on Medical Imaging, vol. 38, no. 2, pp. 550–

560, 2018. doi: 10.1109/TMI.2018.2867350.

[12] J. McCarthy, M. Minsky, N. Rochester, and C. Shannon, “A proposal for the

dartmouth summer research project on artificial intelligence, august 31, 1955”,

AI Mag, vol. 27 (12), 2006.

[13] Y. Lecun, P. Haffner, and Y. Bengio, “Object recognition with gradient-based

learning”, Aug. 2000.

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and

N. Houlsby, “An image is worth 16x16 words: Transformers for image recog-

nition at scale”, Oct. 2020.

[15] J. Yao and L. V. Wang, “Photoacoustic microscopy”, Laser & Photonics Re-

views, vol. 7, no. 5, pp. 758–778, 2013. doi: https://doi.org/10.1002/

lpor.201200060. [Online]. Available: https://onlinelibrary.wiley.com/

doi/abs/10.1002/lpor.201200060.

[16] A. Qorbani, F. Fereidouni, R. Levenson, S. Lahoubi, Z. Harmany, A. Todd,

and M. Fung, “Muse (microscopy with uv surface excitation): A novel approach

to real-time inexpensive slide free dermatopathology”, Journal of Cutaneous

Pathology, vol. 45, Aug. 2017. doi: 10.1111/cup.13255.

[17] Food and D. Administartation, Intellisite pathology solution. [Online]. Avail-

able: https://www.fda.gov/drugs/resources-information-approved-

drugs/intellisite-pathology-solution-pips-philips-medical-systems.

[18] Paige.AI, Paige.ai. [Online]. Available: https://www.paige.ai/technology.

[19] DeepLens, Deeplens. [Online]. Available: https://www.deeplens.ai/.

[20] Proscia, Proscia. [Online]. Available: https://proscia.com/.

https://doi.org/10.1109/TMI.2018.2867350
https://doi.org/https://doi.org/10.1002/lpor.201200060
https://doi.org/https://doi.org/10.1002/lpor.201200060
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201200060
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201200060
https://doi.org/10.1111/cup.13255
https://www.fda.gov/drugs/resources-information-approved-drugs/intellisite-pathology-solution-pips-philips-medical-systems
https://www.fda.gov/drugs/resources-information-approved-drugs/intellisite-pathology-solution-pips-philips-medical-systems
https://www.paige.ai/technology
https://www.deeplens.ai/
https://proscia.com/


REFERENCES 55

[21] PathAI, Pathai. [Online]. Available: https://www.pathai.com/.

[22] Inspirata, Inspirata. [Online]. Available: https://www.inspirata.com/.

[23] DeePathology, Deepathology. [Online]. Available: https://deepathology.

ai/.

[24] B. Kaustav, K. Schalper, D. Rimm, V. Velcheti, and A. Madabhushi, “Artifi-

cial intelligence in digital pathology — new tools for diagnosis and precision

oncology.”, Nature reviews. Clinical oncology, vol. 16 (11), pp. 703–715, Nov.

2019.

[25] S. Mukhopadhyay, M. Feldman, E. Abels, R. Ashfaq, S. Beltaifa, N. Caccia-

beve, H. Cathro, L. Cheng, K. Cooper, G. Dickey, R. Gill, R. Heaton, R.

Kerstens, G. L. R. Malhotra, J. Mandell, E. Manlucu, A. Mills, S. Mills, C.

Moskaluk, and C. Taylor, “Whole slide imaging versus microscopy for primary

diagnosis in surgical pathology: A multicenter blinded randomized noninferi-

ority study of 1992 cases (pivotal study)”, Am. J. Surg. Pathol., vol. 42 (1),

pp. 39–52, 2018.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521, pp. 436–

444, 2015.

[27] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.

Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei, “Imagenet large

scale visual recognition challenge”, International Journal of Computer Vision,

vol. 115, Sep. 2014. doi: 10.1007/s11263-015-0816-y.

[28] D. Kingma and J. Ba, “Adam: A method for stochastic optimization”, Inter-

national Conference on Learning Representations, Dec. 2014.

[29] L. Smith, “Cyclical learning rates for training neural networks”, Mar. 2017,

pp. 464–472. doi: 10.1109/WACV.2017.58.

https://www.pathai.com/
https://www.inspirata.com/
https://deepathology.ai/
https://deepathology.ai/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/WACV.2017.58


REFERENCES 56

[30] L. Smith, “A disciplined approach to neural network hyper-parameters: Part

1 – learning rate, batch size, momentum, and weight decay”, Mar. 2018.

[31] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks”, in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–

7141.

[32] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for

image classification with convolutional neural networks”, Jun. 2019, pp. 558–

567. doi: 10.1109/CVPR.2019.00065.

[33] B. E. Bejnordi, M. Veta, P. J. van Diest, B. van Ginneken, N. Karssemeijer,

G. J. S. Litjens, J. A. van der Laak, M. Hermsen, Q. F. Manson, M. C. A.

Balkenhol, O. G. F. Geessink, N. Stathonikos, M. C. van Dijk, P. Bult, F. Beca,

A. H. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q.

Li, H. Chen, H. Lin, P.-A. Heng, C. Hass, E. Bruni, Q. K.-S. Wong, U. Halici,

M. Ü. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. I. Vylegzhanin,

O. Z. Kraus, M. Shaban, N. M. Rajpoot, R. Awan, K. Sirinukunwattana, T.

Qaiser, Y.-W. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K.

Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mun-

gal, A. A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka,

H. Matsuda, H. A. Phoulady, V. A. Kovalev, A. Kalinovsky, V. Liauchuk, G.

Bueno, M. del Milagro Fernández-Carrobles, I. Serrano, O. Deniz, D. Raco-

ceanu, and R. Venâncio, “Diagnostic assessment of deep learning algorithms

for detection of lymph node metastases in women with breast cancer”, JAMA,

vol. 318, pp. 2199–2210, 2017.

[34] B. Lee and K. Paeng, “A robust and effective approach towards accurate

metastasis detection and pn-stage classification in breast cancer”, ArXiv, vol. abs/1805.12067,

2018.

https://doi.org/10.1109/CVPR.2019.00065


REFERENCES 57

[35] W. Bulten, K. Kartasalo, P.-H. Chen, P. Ström, H. Pinckaers, K. Nagpal, Y.

Cai, D. Steiner, H. Boven, R. Vink, C. Hulsbergen-van de Kaa, J. van der Laak,

M. Amin, A. Evans, T. Van der Kwast, R. Allan, P. Humphrey, H. Grönberg,

H. Samaratunga, and J. Park, “Artificial intelligence for diagnosis and gleason

grading of prostate cancer: The panda challenge”, Nature Medicine, Jan. 2022.

doi: 10.1038/s41591-021-01620-2.

[36] T. A. Azevedo Tosta, P. R. de Faria, L. A. Neves, and M. Z. do Nascimento,

“Computational normalization of h&e-stained histological images: Progress,

challenges and future potential”, Artificial Intelligence in Medicine, vol. 95,

pp. 118–132, 2019, issn: 0933-3657. doi: https://doi.org/10.1016/j.

artmed.2018.10.004. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S093336571830424X.

[37] M. Macenko, M. Niethammer, J. Marron, D. Borland, J. Woosley, X. Guan,

C. Schmitt, and N. Thomas, “A method for normalizing histology slides for

quantitative analysis.”, vol. 9, Jun. 2009, pp. 1107–1110. doi: 10.1109/ISBI.

2009.5193250.

[38] D. Tellez, M. C. A. Balkenhol, I. Otte-Höller, R. van de Loo, R. Vogels, P. Bult,

C. A. Wauters, W. Vreuls, S. J. J. Mol, N. Karssemeijer, G. J. S. Litjens, J. A.

van der Laak, and F. Ciompi, “Whole-slide mitosis detection in h&e breast

histology using phh3 as a reference to train distilled stain-invariant convolu-

tional networks”, IEEE Transactions on Medical Imaging, vol. 37, pp. 2126–

2136, 2018.

[39] F. G. Zanjani, S. Zinger, B. E. Bejnordi, and J. van der Laak, “Histopathology

stain-color normalization using deep generative models”, 2018.

[40] V. Buhrmester, D. Muench, and M. Arens, “Analysis of explainers of black

box deep neural networks for computer vision: A survey”, Nov. 2019.

https://doi.org/10.1038/s41591-021-01620-2
https://doi.org/https://doi.org/10.1016/j.artmed.2018.10.004
https://doi.org/https://doi.org/10.1016/j.artmed.2018.10.004
https://www.sciencedirect.com/science/article/pii/S093336571830424X
https://www.sciencedirect.com/science/article/pii/S093336571830424X
https://doi.org/10.1109/ISBI.2009.5193250
https://doi.org/10.1109/ISBI.2009.5193250


REFERENCES 58

[41] R. Rs, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra, “Grad-

cam: Why did you say that? visual explanations from deep networks via

gradient-based localization”, Oct. 2016.

[42] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for

simplicity: The all convolutional net”, Dec. 2014.

[43] R. Rs, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-

cam: Visual explanations from deep networks via gradient-based localization”,

International Journal of Computer Vision, vol. 128, Feb. 2020. doi: 10.1007/

s11263-019-01228-7.

[44] D. Steiner, R. MacDonald, Y. Liu, P. Truszkowski, J. Hipp, C. Gammage,

F. Thng, L. Peng, and M. Stumpe, “Impact of deep learning assistance on

the histopathologic review of lymph nodes for metastatic breast cancer”, The

American Journal of Surgical Pathology, vol. 42, p. 1, Oct. 2018. doi: 10.

1097/PAS.0000000000001151.

[45] S. Genyun, H. Huang, A. Zhang, F. Li, H. Zhao, and H. Fu, “Fusion of

multiscale convolutional neural networks for building extraction in very high-

resolution images”, Remote Sensing, vol. 11, p. 227, Jan. 2019. doi: 10.3390/

rs11030227.

[46] Y. Sun, L. Zhu, G. Wang, and F. Zhao, “Multi-input convolutional neural

network for flower grading”, Journal of Electrical and Computer Engineering,

vol. 2017, pp. 1–8, Aug. 2017. doi: 10.1155/2017/9240407.

[47] M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, “Classification and

segmentation of satellite orthoimagery using convolutional neural networks”,

Remote Sensing, vol. 8, p. 329, Apr. 2016. doi: 10.3390/rs8040329.

[48] T. Panboonyuen, K. Jitkajornwanich, S. Lawawirojwong, P. Srestasathiern,

and P. Vateekul, “Semantic segmentation on remotely sensed images using

https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1097/PAS.0000000000001151
https://doi.org/10.1097/PAS.0000000000001151
https://doi.org/10.3390/rs11030227
https://doi.org/10.3390/rs11030227
https://doi.org/10.1155/2017/9240407
https://doi.org/10.3390/rs8040329


REFERENCES 59

an enhanced global convolutional network with channel attention and domain

specific transfer learning”, Remote. Sens., vol. 11, p. 83, 2019.

[49] S. Li, Y. Liu, X. Sui, C. Chen, G. Tjio, D. Ting, and R. Goh, “Multi-instance

multi-scale cnn for medical image classification”, in. Oct. 2019, pp. 531–539,

isbn: 978-3-030-32250-2. doi: 10.1007/978-3-030-32251-9_58.

[50] Y. Liu, K. Gadepalli, M. Norouzi, G. E. Dahl, T. Kohlberger, A. Boyko, S.

Venugopalan, A. Timofeev, P. Q. Nelson, G. S. Corrado, J. D. Hipp, L. H.

Peng, and M. C. Stumpe, “Detecting cancer metastases on gigapixel pathology

images”, ArXiv, vol. abs/1703.02442, 2017.

[51] Y. Liu, K. Gadepalli, M. Norouzzi, T. Dahl, T. Kohlberger, A. Boyko, S.

Venugopalan, A. Timofeev, P. Nelson, G. Corrado, J. Hipp, L. Peng, and M.

Stumpe, “Detecting cancer metastases on gigapixel pathology images”, 2017.

doi: arXiv:1703.02442.

[52] N. Otsu, “A threshold selection method from gray-level histograms”, IEEE

Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[53] M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley, Xiao-

jun Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histol-

ogy slides for quantitative analysis”, in 2009 IEEE International Symposium

on Biomedical Imaging: From Nano to Macro, 2009, pp. 1107–1110.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift”, Feb. 2015.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting”, Journal

of Machine Learning Research, vol. 15, pp. 1929–1958, Jun. 2014.

https://doi.org/10.1007/978-3-030-32251-9_58
https://doi.org/arXiv:1703.02442


REFERENCES 60

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion”, in 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2016, pp. 770–778.

[57] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks”, in 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[58] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-

resnet and the impact of residual connections on learning”, in Proceedings of

the Thirty-First AAAI Conference on Artificial Intelligence, ser. AAAI’17, San

Francisco, California, USA: AAAI Press, 2017, pp. 4278–4284.

[59] S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package of torch”,

in Proceedings of the 18th ACM International Conference on Multimedia,

ser. MM ’10, Firenze, Italy: Association for Computing Machinery, 2010, pp. 1485–

1488, isbn: 9781605589336. doi: 10.1145/1873951.1874254. [Online]. Avail-

able: https://doi.org/10.1145/1873951.1874254.

[60] T. contributors, Pytorch.vision, version 0.3.0, Aug. 2019. [Online]. Available:

https://github.com/pytorch/vision.

[61] pretrainedmodels contributors, Cadane pretrained models, pytorch, version 0.7.4,

Aug. 2019. [Online]. Available: https://github.com/Cadene/pretrained-

models.pytorch.

[62] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer

better?”, 2019. [Online]. Available: https://arxiv.org/pdf/1805.08974.

pdf.

[63] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification”, in 2015 IEEE Interna-

tional Conference on Computer Vision (ICCV), 2015, pp. 1026–1034.

https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/1873951.1874254
https://github.com/pytorch/vision
https://github.com/Cadene/pretrained-models.pytorch
https://github.com/Cadene/pretrained-models.pytorch
https://arxiv.org/pdf/1805.08974.pdf
https://arxiv.org/pdf/1805.08974.pdf


REFERENCES 61

[64] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and

A. A. Kalinin, “Albumentations: Fast and flexible image augmentations”, In-

formation, vol. 11, no. 2, 2020, issn: 2078-2489. doi: 10.3390/info11020125.

[Online]. Available: https://www.mdpi.com/2078-2489/11/2/125.

[65] R. Liu, J. Lehman, P. Molino, F. Such, E. Frank, A. Sergeev, and J. Yosinski,

“An intriguing failing of convolutional neural networks and the coordconv

solution”, Jul. 2018.

[66] I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features for image

matching”, Dec. 2016, pp. 378–383. doi: 10.1109/ICPR.2016.7899663.

https://doi.org/10.3390/info11020125
https://www.mdpi.com/2078-2489/11/2/125
https://doi.org/10.1109/ICPR.2016.7899663


Appendix A Code repository

The source code repository of the multilevel model work including additional docu-

mentation.

https://github.com/jpjuvo/camelyon17-multilevel



Appendix B Stain augmentation

repository

The source code repository of the stain augmentation method.

https://github.com/jpjuvo/HEnorm_python
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