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ABSTRACT 

 

BACKGROUND Technological advances have provided modern approaches for drug discovery and 

development. Its application, computer-aided drug design (CADD), enables solving complex drug design 

challenges practically unsolvable by traditional methods. Here, CADD was applied for a drug target 

retinoic acid receptor-related orphan receptor gamma t (RORγt). RORγt is a nuclear receptor that medi-

ates inflammation and is connected to multiple chronic inflammatory diseases. RORγt inhibition pro-

poses anti-inflammatory effects and, as such, RORγt has been identified as an appealing drug target. The 

highest inhibition is achieved with inverse agonist -inhibitors. Due to unspecificity and complexity of 

RORγt, no effective drugs targeting RORγt have been developed so far. Accordingly, CADD approach 

can be justified to address this challenge.  

 

UNMET MEDICAL NEED Some patients suffering from inflammatory diseases do not respond suffi-

ciently to the current therapies. Hence, search for novel therapies can be justified, and RORγt inhibition 

is a promising option for this purpose.  

 

AIM OF THE STUDY Modern CADD approaches were executed to discover novel RORγt inverse 

agonists.  

 

MATERIALS AND METHODS Several CADD methods were utilized including ligand- and structure-

based drug design.  

 

RESULTS 29 novel potential RORγt inverse agonists were discovered.  

  

CONCLUSION CADD protocol was demonstrated suitable for discovering novel potential RORγt in-

verse agonists.  
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1 INTRODUCTION 

 

1.1 Retinoic acid receptor-related orphan receptor gamma t (RORγt) 

Retinoic acid receptor -related orphan receptor gamma (RORγ, also known as NR1F3) is a nuclear re-

ceptor that has a role as a transcription factor in various cells. RORγt is expressed as inactive in the 

cytosol and activates upon agonist binding. Activated RORγt functions as a transcription factor and mod-

ulates (activates or silences) its target genes in the cell nucleus mediating a physiological response. RORγ 

originates from the protein-coding gene RORC (GeneCards, 2021). RORγ has multiple physiological 

roles, such as in the regulation of circadian rhythm, metabolism, and immunity (Jetten AM, 2009). It is 

also involved in the progression of inflammation-associated cancers (Yang et al., 2014).  

An isoform of RORγ, known as RORγt (or RORγ2), is expressed in a variety of immune cells where it 

is involved in the regulation and activation of the immune system. Unlike RORγ, RORγt is solely ex-

pressed in immune cells, and hence its effects are specifically limited to immune system. Not all RORγt-

mediated regulatory pathways are known due to their complexity, but there are several. Some regulatory 

effects include T helper 17 cell maturation and activation of the NLRP3 inflammasome, both leading to 

an inflammatory response (Billon et al., 2019; Weaver et al., 2013). RORγt may also play a role in T cell 

receptor activation pathways aiding in the maturation of alpha/beta T-cells (GeneCards, 2021). In addi-

tion, the development of immune system components such as lymph nodes is orchestrated by RORγt-

mediated pathways (Jetten et al., 2018). RORγt is therefore considered as a master regulator of the im-

mune response (Unutmas D, 2009).  

The interest in RORγt-related research is increasing, as determined by PubMed search (search word 

‘RORγt’ in 2021). The first related RORγt study was published in 1994, and ever since, the number of 

such studies has increased. Nowadays, the number of annually published such studies is around 300.  

Previously, the typical aim in ROR-targeting drug design studies (for discovering anti-inflammatory 

agents) was to nonexplicitly inhibit ROR protein family members such as RORα, RORβ, and RORγ. 

However, the focus shifted specifically towards RORγ due to off-target effects (Huang et al., 2020). Over 

time, it was later discovered that the isoform of RORγ, known as RORγt, could provide an even more 

explicit anti-inflammatory effect. The current focus of discovering ROR-targeting drugs has indeed been 
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set at RORγt inhibition. Furthermore, RORγt has become a more relevant and approachable target for 

drug discovery as its 3D protein structure was determined just a few years ago.  

 

1.1.1 The role in inflammatory diseases  

RORγt is important in mediating an immune response to aid in fighting against pathogens or destruction 

of abnormal malignant cells in the body. However, constantly elevated expression of RORγt has been 

connected to multiple inflammatory diseases such as arthritis, psoriasis, inflammatory respiratory dis-

eases, autoimmune encephalomyelitis, multiple sclerosis, and inflammatory bowel disease (Weaver et 

al., 2013; Yang et al., 2014).  

A typical characteristic of these diseases is persistent and chronic inflammation, which is partly due to 

constantly active RORγt. As a master regulator of inflammation, RORγt disruption has been hypothe-

sized to neutralize its inflammatory effects and aid in directing the physiology of the body towards the 

normal condition.  

 

1.1.2 Biomolecular and pharmacological characteristics  

A compound exerts biological activity when it chemically interacts with a biological target, typically a 

receptor protein, in such a way that leads to a physiological response. This response is generally reached 

when a compound binds to the binding site of the protein and changes its biological activity. Such com-

pounds are also called modulators which either increase or decrease the protein activity. Modulators 

increasing activity are called agonists while compounds decreasing activity are called inhibitors.  

A group of inhibitors, antagonists, hamper the biological activity by inhibiting agonist binding and neu-

tralizing the biological effect. However, protein bound to an antagonist may still have basal biological 

activity as receptor proteins can signal in the absence of agonists (figure 1). Greater inhibition can be 

achieved by blocking the basal activity of a receptor by inhibitors known as inverse agonists. Inverse 

agonists show negative intrinsic efficacy and provide opposite or ‘inverse’ effects to that of agonists. 

Modulators showing partially characteristic effect are called partial modulators. For example, partial in-

verse agonists do not completely block basal biological activity, like full inverse agonists (Kelly et al., 

2018).  
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Figure 1. Inhibitory response of a different group of inhibitors on active protein presented as half maximal inhibitory 

concentration (IC50) curve (Berg et al., 2018). Inhibitory response is presented in the Y-axis while inhibitor concentration 

is presented in the X-axis. Inverse agonists provide the highest inhibitory effect. Figure has been adapted and modified from 

Berg et al., 2018.  

 

However, the comprehensive model for pharmacological function of RORγt would be far more compli-

cated than the simplified model described above. Its biological complexity can be explained by its dy-

namic structural states and the second binding site, also known as allosteric binding site or ABS (Scheep-

stra et al., 2015; Sun et al., 2018). Additionally, novel discoveries suggest several regulatory factors for 

RORγt, such as a third binding site in the hinge domain (HD) called hinge domain binding site (HD-BS). 

It is subject to SUMOylation which alters the biological function of RORγt by specifically activating T 

cell regeneration but halting lymph node development (Lao et al., 2019; He et al., 2018).  

To elucidate the actual mechanism of action of RORγt inhibition, the biological function of RORγt upon 

activation must be understood. RORγt-mediated inflammation initiates when an agonist is bound to its 

binding site leading to a conformation change cascade. Consequently, one of the dynamic helices, known 

as helix 11, locks into a fixed position stabilizing adjacent dynamic helix 12 consolidating ABS. Result-

ing ABS stabilization enables a co-activator peptide binding to ABS which activates RORγt (figure 2). 

The activated RORγt-coactivator complex shifts to the cell nucleus, binds to the specific DNA sequences 

as a monomer, and activates genes responsible for inflammation while downregulating anti-inflammatory 

genes (Zhang et al., 2015). Some of the activated genes include Th17 cell genes IL-17A, IL-17F and IL-
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23R (Castro et al., 2017). Since RORγt is an orphan receptor, no endogenous ligands are known. How-

ever, oxysterols, such as desmosterol, have been hypothesized to be natural agonists of RORγt, but this 

has not been confirmed so far (Hu et al., 2015).  

Antagonists have been shown to block RORγt activation by preventing a co-activator binding to the ABS, 

which neutralizes its effects. On the other hand, inverse agonists paradoxically tip RORγt towards anti-

inflammatory effects. Inverse agonist binding stabilizes ABS into such conformation that it binds a co-

repressor peptide instead of a co-activator. Co-repressor binding modulates RORγt function so that the 

physiological effects are the opposite of an agonist-bound RORγt. This is since the genes modulated by 

an agonist-bound RORγt are reversely modulated by an inverse agonist-bound RORγt. Consequently, 

the genes responsible for inflammation are downregulated and anti-inflammatory genes upregulated re-

sulting in anti-inflammatory effects.  

 
 
Figure 2. Molecular mechanism of RORγt. A modulator (inhibitor or agonist) binding to OBS (orthosteric site, 1.) stabilizes 

ABS (allosteric site) through stabilization of adjacent helices 11 (H11) and 12 (H12) enabling allosteric modulator binding 

(corepressor or coactivator peptide, 2.). This results in a physiological response leading to either activation (by agonists) or 

repression (by inverse agonists). Antagonists block both of these effects but retain basal activity. Figure has been adapted and 

modified from Scheepstra et al., 2015.  

 

Inhibition of a biological target is typically evaluated and measured as half-maximal inhibitory concen-

tration (IC50) values which indicates the concentration of a given compound (here inverse agonist) that 
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is needed to inhibit the function of a given biological target (here RORγt) by 50 %. Inverse agonists 

provide the highest inhibitory effects, as indicated in figure 1.  

RORγt consists of several functional sequences. In short, the DNA-binding domain (DBD) is responsible 

for inflammatory regulation of the target genes while HD provides flexibility and is involved in the 

regulation of RORγt function. On the other hand, the ligand-binding domain (LBD) binds a ligand which 

determines the physiological response in the end (Huang et al., 2020). The LBD comprises 14 α-helices, 

four short beta strands, and two turns (The UniProt Consortium, 2021). The main binding site, orthosteric 

binding site (OBS) lies in the core, while the ABS is adjacent to it.  

Regarding drug design, the most exciting domain is the LBD, as it is responsible for protein activation 

and can be chemically modulated by compounds. Consequently, the focus of this project is on the LBD. 

HD-BS appears also to be druggable but as the function of HD is largely unknown, it was excluded from 

the scope of this project.  

The most important mechanism of action for RORγt inverse agonism is the disruption of the H-bonds 

between amino acids tyrosine 502 (TYR502) and histidine 479 (HIS479) in LBD (Sun et al., 2018). 

Phenylalanine 506 (PHE506) may also form an H-bond with TYR502 or/and HIS479. These H-bonds 

are stabilized upon agonist binding and disrupted upon inverse agonist binding, which eventually 

determines co-activator/co-repressor binding to ABS and the physiological effect. Other important amino 

acids for inverse agonist binding are histidine 323 (HIS323), leucine 324 (LEU324), arginine 367 

(ARG367), phenylalanine 377 (PHE377), phenylalanine 378 (PHE378), and phenylalanine 388 

(PHE388). Additionally, a water molecule named WAT770 in proximity to PHE377 and HIS323 is 

considered important in mediating an inverse agonism response (Li et al., 2017; Kallen et al., 2017). The 

positions of the eight important amino acids for inverse agonist binding (and hence inverse agonism) in 

sequence are presented in figure 3. The binding sites are illustrated in figure 4.  
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Figure 3. The sequence of 518 amino acids for RORγ. The sequence consists of N-terminal domain at 1-30 (red), DNA-
binding domain (DBD) at 31-95 (purple), hinge domain (HD) at 96-265 (green), ligand binding domain (LDB) at 266-505 

(blue), and a C-terminal domain at 506-518 (orange). RORγt, an isoform of RORγ, differs only in the first 24 amino acids 

(amino acids 1-21 truncated, amino acids 22-24 mutated: HTS → MRT) but is otherwise completely identical. The eight most 

important amino acids for inverse agonist binding are marked as red circles.  

 

 

Figure 4. RORγt binding sites. 

Orthosteric binding site (OBS) is the 

main binding site. Allosteric binding 

site (ABS) lies next to it, which 

participates in a co-modulator peptide 
binding. OBS and ABS are located in 

the ligand-binding domain (LBD). 

Hinge domain binding site (HD-BS), 

presumably exists and is located in the 

hinge domain (HD). HD-BS 

supposedly regulates RORγt function 

and is subject to modifications such as 

SUMOylation. RORγt activation can 

be interrupted by interfering with any 

of these mechanisms, indicating 

several ways to manipulate RORγt 
function by chemical agents. 

Importantly, this information is 

essential in a drug design process for 

RORγt. NB: This figure just visualizes 

RORγt binding sites and does not 

demonstrate their accurate locations or 

shape.  

 

RORγt modulators can be classified into several different classes. First, there exist both full and partial 

RORγt inhibitors (inverse agonists and antagonists). Full inhibitors completely stabilize RORγt and, as 

such, provide the maximal effect, while partial inhibitors only partly stabilize ABS resulting in poorer 

co-repressor binding leading to lesser inhibitory effects. Additionally, inhibitors can bind to either OBS 

or ABS. Inhibitors binding to OBS are called orthosteric inhibitors, while inhibitors binding to ABS are 
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called allosteric inhibitors. In conclusion, a total of at least eight (2 x 2 x 2) different inhibitory pharma-

cological states of RORγt have been discovered. See Table 1 for more information.  

 

Table 1. The pharmacological characteristics of known RORγt inhibitors.  

 

INHIBITION TYPE COMMENT 

Full orthosteric inverse agonist Provides a high anti-inflammatory effect and OBS is a well-characterized binding 

site. This group of inhibitors seems the most appealing in drug discovery.  

Full allosteric inverse agonist Provides a high anti-inflammatory effect with less off-target effects, but ABS-target-

ing inhibitors are a less studied field and not well characterized. ABS is also signifi-

cantly smaller than OBS, which might be harder to target.  

Full orthosteric antagonist Cease inflammatory effects but do not result in anti-inflammatory effects like inverse 
agonists do.  

Full allosteric antagonist Similar effects as full orthosteric antagonists but with less off-target effects and is 
harder to target.  

Partial orthosteric inverse 

agonist 

Provide partial anti-inflammatory effects.  

Partial allosteric inverse agonist Provide partial anti-inflammatory effects. Are not considered as a good RORγt inhib-

itor group.  

Partial orthosteric antagonist Inhibitory effect is not significant.  

Partial allosteric antagonist Inhibitory effect is not significant.  

 

In conclusion, RORγt agonists aggregate inflammation, antagonists neutralize RORγt effects, while in-

verse agonists propose anti-inflammatory effects. RORγt inverse agonists have the highest anti-inflam-

matory effect and show the highest therapeutic value for treating inflammatory diseases with RORγt 

modulators.  

 

1.2 RORγt and drug discovery  

RORγt is important in mediating an immune response and proposing inflammatory effects, as mentioned 

previously. Consequently, RORγt is considered an appealing drug target for multiple inflammatory con-

ditions. RORγt inhibition has already been demonstrated in vivo to reduce the symptoms of psoriasis-

like skin inflammation, arthritis, and colitis in mice (Xue et al., 2016; Chang et al., 2014; Igaki et al., 

2019). Additionally, RORγt-deficient mice have been shown to develop resistance for experimental au-

toimmune encephalomyelitis and multiple sclerosis (Kumar et al., 2012; Fukase et al., 2018).  

Until today, some patients impaired by chronic inflammatory diseases do not respond correspondingly 

to the available treatment. Hence, the arsenal of treatment options for chronic inflammatory diseases 
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could be expanded. As RORγt-targeting drugs are not currently commercially available and RORγt has 

been shown as a potential drug target for treating chronic inflammatory diseases, RORγt inhibitors search 

can be justified. Indeed, several clinical trials (Phase I/II) for the treatment of psoriasis with RORγt in-

verse agonists have emerged, proving the potential of RORγt inhibitors for therapeutic human use (Clin-

icalTrials.gov, 2016).  

However, the ongoing clinical trials have already demonstrated some issues with RORγt inhibitors im-

plying higher potency and efficiency might be required to reach a significant therapeutic value (Huang 

et al., 2020). Another issue with RORγt is its unspecificity. As RORγt mediates several physiological 

pathways, it is not considered as a specific target. Consequently, RORγt inhibition might lead to several 

adverse effects, and due to its complexity and unspecificity, it is challenging to predict the potential 

undesired effects. Hypothetically, one expected adverse effect might include immune system deprivation.  

Due to its relatively recent discovery as a promising drug target, RORγt-related research has many po-

tentially undiscovered applications in the pharmaceutical industry for treating inflammatory conditions. 

Especially full RORγt inverse agonists appear to provide the most potent anti-inflammatory effect (table 

1).  

RORγt druggability has been demonstrated. According to the latest studies, ABS might be a more drug-

gable target due to its higher specificity and corresponding lesser number of off-target effects (Huang et 

al., 2020). This is because similar OBS (as for RORγt) can also be present in other receptors of ROR-

family (such as RORα, RORβ, and RORγ) while ABS are typically unique to each protein subtype. 

However, ABS is not as well characterized as OBS since significantly less research has been conducted 

on ABS. It is also substantially smaller in volume than OBS suggesting ABS might be more challenging 

to target due to less surface area for binding. The scope of this study was limited to discovering one class 

of inhibitors targeting one specific site. Here, the focus was set at discovering inverse agonists for OBS 

mainly due to its better characterization.  
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1.3 Computer-aided drug design (CADD)  

Drug design is a process of developing a novel medication by rational design. A similar term, drug dis-

covery, refers to the process of how new medications or drug candidates are discovered. An ancient form 

of drug discovery is dated to thousands of years ago and was based on experiments conducted by con-

suming either processed or unprocessed plants or other extracts originating from living organisms. Gen-

eration after generation, the lore of natural medicine accumulated thanks to serendipitous discoveries 

over time. Herbal medicine could be considered the oldest form of medicine.  

Modern medicine commenced when the effect of a medication was conceptualized to be mediated by a 

specific chemical compound, which interacts with a biological target (usually receptor protein) and mod-

ulates its bioactivity. In the case of medication, this modulation is considered favorable as disturbing the 

function of a protein by either inhibiting or activating it can alleviate or even eliminate symptoms of a 

specific disease. For example, RORγt is a biological target that mediates inflammation. If its function is 

inhibited, it proposes anti-inflammatory effects, and would be beneficial for treating inflammatory dis-

eases.  

Nowadays, computer tools are applied to model the complex interaction between compound and target. 

Additionally, other computer approaches are also used to boost the discovery of novel medications. Such 

approaches can be put under the concept called Computer-Aided Drug Design (CADD). Indeed, recent 

technological advances have enabled the development of sophisticated CADD protocols to provide su-

perior aid in discovering novel pharmacologically active compounds.  

Computing tools for drug discovery and development have existed as long as there have been computers. 

However, early CADD approaches were relatively simple. Initially, computers stored data originating 

from experimental studies, which was analyzed with statistical methods. Over time, when computing 

power increased, more sophisticated tools were developed solely for drug design purposes.  

The modern concept for CADD was compiled in the early 1980s, but no single comprehensive descrip-

tion for CADD exists. In short, CADD can be defined as a computational approach to discover and ana-

lyze biologically active compounds against the target of interest (Odilia et al., 2016). The field is rapidly 

growing, which can be determined by PubMed search. For example, there are 391 relevant articles pub-

lished in 1980 with the search word ‘computer-aided drug design’ (all publications), while in 2000, there 
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are 6,373 publications and 24,326 publications in 2020 with the same search parameters. Indeed, the 

number of relevant publications steadily increases each year.  

CADD is typically divided into ligand- and structure-based drug design, even though several other ap-

proaches exist (Amy et al., 2003; Acharya et al., 2011). Ligand-based drug design utilizes the structural 

data of known bioactivate compounds towards the target of interest. Structural characteristics of these 

compounds, such as shape and charge, responsible for bioactivity can be modeled. Furthermore, the de-

rived model can be used to discover or design novel compounds that contain similar characteristics and 

may subsequently show the desired activity towards the target of interest. On the other hand, structure-

based drug design utilizes a three-dimensional (3D) structure of the biological target. Based on the struc-

tural data, it is possible to predict whether a given compound binds to the biological target or not.  

Thanks to the technological advances, more and more complex CADD approaches can be developed in 

the future. One such promising approach is called molecular dynamic simulation, where the dynamic 

state of chemical interactions can be modeled (Liu et al., 2018). The movement of both the compound 

and target are predicted over time in the compound binding process, which enables higher prediction 

accuracy as the information of dynamic state is utilized. These simulations are especially applicable when 

the target is highly dynamic. However, such simulations require an immense amount of computing power 

due to the complexity of the models. Anyhow, CADD models will keep on evolving, which will enable 

the discovery of evermore complex drugs in the future.  

 

1.3.1 Structure-based drug design  

Protein 3D structures has several applications in drug design. The first protein 3D structure to be solved 

was myoglobin in 1958 and over the following years, more and more protein 3D structures were deci-

phered (Kendrew et al., 1958). Structural data of proteins became publicly available upon foundation of 

the Protein Data Bank (PDB) in 1971, accelerating the utilization of structural data (Berman et al., 2000). 

A critical application of structural data was discovered in drug design, which led to the concept of struc-

ture-based drug design.  

Structure-based drug design utilizes the 3D structure of the biological target. Structural data enables 

prediction of what kind of compounds might bind to the biological target by modeling chemical interac-

tions between a given compound and binding site of the biological target. Generally, the compounds that 
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are complementary both in shape and polarity/charge to the binding site show strong chemical interac-

tions and hence provide high binding affinity (figure 5).  

 
 

Figure 5. Principle of structure-based drug design. Protein 3D structure can be utilized to model its binding site. Here, red 
color describes hydrophobic and blue color polar binding site regions. Based on the structure, it is possible to design such 

compounds that are complementary in shape and charge in respect to the binding site and thus might show high binding 

affinity.  Here, three (1. hydrophobic end, 2. hydrophilic area, 3. hydrophobic area) important regions are defined (1-3). If a 

given compound placed/docked in the binding site (final frame) fits without steric obstruction and shows favoring polar-

ity/charges upon binding, it probably has a good binding affinity. With this approach, structural data can be utilized to estimate 

whether a given compound binds to the target or not.  

 

3D protein structures are determined by a protein crystallization process followed by X-ray crystallog-

raphy imaging. However, structural state of the protein may alter during the crystallization process which 

causes flaws to the model. Additionally, 3D protein structure represents only one structural state even 

though especially dynamic proteins have actually several different conformations. Considering only one 

structural state has indeed limitations. This challenge can be partly overcome by running computer sim-

ulations that consider the dynamic movement of the protein, and consequently, different structural states 

can be predicted.  

 

1.3.2 Ligand-based drug design  

If a set of active compounds towards the biological target are known, it is possible to identify those 

structural characteristics that make them bioactive towards the target. This abstract description of molec-

ular features is called pharmacophore. The pharmacophore concept dates back to the end of the nine-

teenth century when methylene blue was discovered to selectively bind to nerve fibers, leading to the 

idea that there must be such chemical properties that make a compound bind to a specific biological 
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target. However, the pharmacophore concept itself was introduced far later via publication in 1971 and 

its widely accepted definition was introduced a few years later in 1977. Pharmacophore is currently de-

fined as “a set of structural features in a molecule that is recognized at a receptor site and is responsible 

for that molecule's biological activity” (Daisy et al., 2011).  

Ligand-based drug design relies on pharmacophore modeling, which defines those characteristics that 

are required for compound binding to the target. These characteristics involve structural properties of the 

compound, such as shape, charge or functional group. To evaluate this, quantitative structure-activity 

relationship (QSAR) is defined to model the relationship between structural features of compounds and 

their known biological activities towards the target, such as inhibition potency IC50. Furthermore, the 

derived model can be used to discover or design novel compounds with similar characteristics which, as 

such, may be pharmacologically active towards the same target. If any given compound does not meet 

the required characteristics for binding (as defined by the QSAR model), it is eliminated in the ligand-

based drug design process (Verma et al., 2010).  

The basic idea of pharmacophore is presented in figure 6, where three known bioactive compounds (to-

wards the same biological target) are compared. In this example, each compound has three similar struc-

tural properties which include an H-bond acceptor end, an aromatic ring in the middle, and a hydrophobic 

end, each in the same approximate positions. These three structural properties can be hypothesized to be 

crucial for bioactivity, and a pharmacophore model can be constructed. This information can be used in 

CADD to exclude those compounds that do not show the required three structural properties in similar 

positions. However, no reliable pharmacophore model can be constructed solely based on three com-

pounds. Instead, tens or preferably hundreds of bioactive compounds are looked upon to discover the 

common characteristics. The more compounds are included, the more detailed and reliable QSAR model 

can be constructed.  
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Figure 6. Principle of pharmacophore, demonstrated by a quantitative structure-activity relationship (QSAR) model 

generation. Three common characteristics (H-bond acceptor end, aromatic ring in the middle, and hydrophobic end) of the 

three known bioactive compounds are identified for constructing a simple QSAR model. Compounds that do not show the 

three required bioactive characteristics presented by QSAR are excluded.  

 

One limitation with pharmacophore includes lack of discovery of novel bioactive structural features as 

QSAR model favors compounds similar to already known bioactive compounds. This basically leads to 

a less innovative drug discovery approach as compounds that are remarkably different from the defined 

characteristics are excluded even though they might have desired biological activity towards the target.  

 

1.3.3 Other CADD approaches  

Other relevant CADD methods are shortly described here. In general, there are hundreds of different 

programs that can be utilized in the CADD protocol to conduct a single virtual screen (VS). Here, VS 

refers to a set of CADD methods that are applied to search the most potential bioactive compounds 

against the biological target from a compound library containing hundreds of thousands of molecules. 

As hundreds of different programs exist and different program settings may be used, there are practically 

unlimited ways to conduct a single VS.  

Generally, CADD tools are used to predict which compounds have bioactivity against the target of inter-

est. Some programs can directly predict the binding affinity of the compound, while other tools are solely 

used for optimization purposes. Additionally, chemical properties like lipophilicity of a given compound 

can be predicted which might provide useful information as highly hydrophobic compounds make poor 



14 
 

drugs due to poor solubility. Compounds with high logP values are typically discarded early on. Thus, it 

is possible to predict before any experimental test whether a given compound has such chemical proper-

ties that makes it a good drug or not. Other similarly challenging compounds include pan-assay interfer-

ence compounds (PAINS). These are such compounds that react with numerous biological targets and 

disturb experimental tests. Such compounds can be identified with computational tools and discarded 

(Sun et al., 2018).  

Lately, molecular dynamics tools have been developed for CADD (Liu et al., 2018). Molecular mechan-

ics with generalized Born and surface area solvation (MM/GBSA) is a tool used to calculate binding 

affinity of compounds to the biological target of interest (Virtanen et al., 2015). It essentially calculates 

dynamic compound binding energies to the target by running molecular dynamics simulations.  

After CADD protocol has been executed, compounds (originating from a compound library) showing 

the highest potential are selected. Finally, these compounds may be inspected individually by using bio-

molecular visualization tools to estimate reliability of compound binding. This process is called visual 

screening. Thanks to VS, only a few (typically tens or hundreds) compounds need to be inspected instead 

of the whole compound library. Furthermore, the most potential compounds based on visual screening 

are manually selected for in vitro or in vivo experiments to discover its actual bioactivity. Therefore, 

CADD is nowadays considered as a crucial part of drug discovery and development process.  

 

1.4 RORγt and CADD  

As previously mentioned, RORγt is a rather challenging drug target. This is mainly due to its complex 

function and numerous roles in regulating inflammation in the body. Additionally, its structure has been 

considered complex and dynamic which proposes additional challenges for drug design projects. To 

overcome these challenges, powerful CADD approaches can be justified (Liu et al., 2018).  

There is a sufficiently large amount of data for both ligand- and structure-based drug design approaches 

for discovering novel RORγt modulators. Until today (as in 2021), there are around 1,700 known RORγt 

ligands in ChEMBL database, a few hundred of which are RORγt inhibitors and around half of those 

inhibitors are inverse agonists (Gaulton et al., 2012). Additionally, there are over 100 RORγt structures 

currently available in PDB, most of which are inhibitor-RORγt complexes. The first inverse agonist -
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bound structure was published in 2015 while there are already 78 inverse agonist -bound structures avail-

able as in 2021.  

RORγt inhibition has demonstrated its opportunities in treating inflammatory conditions but because of 

its complexity and its relatively recent discovery as a potential drug target, no actual commercially avail-

able RORγt inhibitors exists so far. Hence, the discovery of novel RORγt inhibitors can be justified and 

recent CADD methods provide useful and modern approach for this challenge. Additionally, there are 

plenty of new ligand- and structure data for RORγt which enables a powerful VS approach for discover-

ing potent RORγt inhibitors.  

 

1.5 Thesis summary  

The purpose of the study is to discover novel promising full RORγt inverse agonists by utilizing CADD 

methods. Here, the applied methods are hypothesized to be applicable for discovering RORγt inhibitors 

by utilizing available RORγt protein structures and known RORγt inhibitors. Additionally, RORγt is 

assumed to be a feasible drug target justifying this study (Huang et al., 2020).  

The designed CADD protocol includes several methods. The two main methods include ligand- and 

structure-based drug design which both were designed with the aid of two ‘in-house methods’ known as 

SDFCONF (for ligand-based drug design), and brute force negative image-based optimization (BR-NiB, 

for structure-based drug design) developed by MedChem group (www.medchem.fi/) (Kurkinen et al., 

Submitted). Note that ligand-based drug design approach with SDFCONF is not considered as a tradi-

tional ligand-based drug design. Instead, SDFCONF is a tool that can be applied for filtering compounds 

that do not meet the pharmacophore-points characteristics set by SDFCONF. For simplification, 

SDFCONF-based approaches are from now on referred as ligand-based drug design as SDFCONF was 

only used for ligand-based drug design -like applications in this project.  

Additional tools were utilized for developing CADD models such as protein structure optimization, lig-

and preparation, ligand docking and NIB-modeling, to name a few. In the end, other applicable CADD 

methods were also utilized including PAINS- and logP-filtering, MM-GBSA and visual screening. In the 

end, a successful CADD protocol was designed to run a RORγt inverse agonist VS. Details are provided 

in chapter 4.  
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2 RESULTS  

 

2.1 Structure-based drug design 

Two 3D protein structures (presented as 5NTW and 5VB6) were successfully utilized for constructing 

models for structure-based drug design. The two protein structures were optimized which were also uti-

lized in ligand-based drug design. Structure-based drug design approach proved to be a powerful method 

for identifying inverse agonist candidates as described in this chapter.  

 

2.1.1 Evaluation and validation of the docking- and scoring methods  

Pearson correlation coefficients were calculated for known experimental data (as IC50 values) of known 

191 full orthosteric inverse agonists which was proportionated with the predicted VS score for each 

compound. The best R2 score was achieved when the compounds were docked with PLANTS and scored 

with ShaEP. The R2 values and graphs for 5NTW and 5VB6 models (figure 7) were managed with 

GraphPad Prism (GraphPad Prism version 8.0.0 for Windows, GraphPad Software, San Diego, Califor-

nia USA, www.graphpad.com). R2 values of 0.33 and 0.27 were calculated for 5NTW and 5VB6, re-

spectively.  

 
 

Figure 7. Correlations of the activity data of the 191 CHEMBL compounds against ShaEP scores for 5NTW (A) and 

5VB6 (B). The highest correlation coefficient (R2) was achieved when the compounds were docked with PLANTS and scored 

with ShaEP. This yielded R2 values of 0.33 for 5NTW and 0.27 for 5VB6 model. Potency of the compounds is presented as 

pIC50 in the X-axis and the corresponding ShaEP score in the Y-axis.  
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2.1.2 Optimization of the final Negative image-based (NIB)-models  

Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 20 (BEDROC20 or BR20) 

got higher generation by generation as seen in figure 8. Here, each new generation is created upon elim-

ination of a single NIB-point from the previous NIB-model generation. The values improved quickly in 

the beginning but the steepness of the curve got milder in the end. The NIB-models were generated by 

BR-NiB, but manual modifications were also conducted.  

5NTW model with a full set of active compounds was restarted after generation 101 as BR20 did not 

improve in generation 102.  BR-NiB was continued despite of the tiny decline in the BR20 score. Even-

tually, BR20 score improved until 114th generation (figure 8A). 5VB6 NIB-model optimization with a 

full set of active compounds halted at the 51st generation due to failure in BR20 improvement. However, 

the optimization process was continued and BR20 improved until 121st generation (figure 8B).  

5NTW model with the lowest-ranked active compounds present was similarly restarted after 39th gener-

ation as BR20 did not improve in 40th generation and BR20 steadily improved until 52nd generation (fig-

ure 8C). 5VB6 NIB-model with the lowest-ranked active compounds present was generated without any 

modifications (figure 8D).  

Rocker graphs were obtained for each four NIB-models to characterize the enrichment of the active com-

pounds. NIB-model optimization significantly improved enrichment of the active compounds in each of 

the models as illustrated in the figure 9.  
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Figure 8. Improvement of BR20 values 

generation by generation in each of the 

four NIB-models. Generations of the op-

timized NIB-models by BR-NiB are pre-

sented in the X-axis and BR20 values in 

the Y-axis. As seen from the graphs, BR-

NiB improved the BR20 values of the 

NIB-models remarkably. A) 5NTW model 

with the full set of active compounds B) 

5VB6 model with the full set of active 

compounds C) 5NTW model with the low-

est-ranked active compounds included 

only D) 5VB6 model with the lowest-
ranked active compounds included only. 

The graphs were generated with GraphPad 

Prism (version 8.0.0).  

 

 

 
 

 

 

 

Figure 9. Rocker graphs of the four dif-

ferent models illustrating enrichment of 

the active compounds against one 

fourth of randomly selected inactive 

compounds from Specs. The blue rocker 

curves present the enrichment of the active 

compounds based on the original NIB-

models while the red graphs present the 

enrichment based on the optimized, final 

NIB-models. True positives or active com-

pounds are presented in the Y-axis while 
false positives or Specs compounds are 

presented in the X-axis. As seen from the 

graphs, BR-NiB improved the enrichment 

of the active compounds. The rocker 

graphs presented herein describe the fol-

lowing models for enrichment: A) 5NTW 

model with the full set of active com-

pounds B) 5VB6 model with the full set of 

active compounds C) 5NTW model with 

the lowest-ranked active compounds in-

cluded only D) 5VB6 model with the low-

est-ranked active compounds included 
only. The graphs were generated with 

Rocker software.  
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2.2 Ligand-based drug design  

Crucial amino acids for ligand binding were determined for constructing a ligand-based drug design 

model with ‘in house’ SDFCONF script. Ligand-based drug design screen separated active compounds 

from inactive ones. With the optimized settings for the nine coordinate points with corresponding radi-

uses (figure 10), SDFCONF-screen excluded 87 % of all the remaining Specs compounds while 30-40 

% (percentage depended on which of the four models were used) of the active compounds were discarded 

in the screening.  

 
 

 

Figure 10. SDFCONF-based (3D) QSAR pharmacophore 

model illustrated as 2D. 3D coordinates of each of the selected 

amino acids were acquired from the optimized protein structures 

of 5NTW and 5VB6 and their position was used to identify the 
most potential compounds presenting RORγt-inverse agonism by 

setting criterions for screening. The applied criterions included: (1) 

N, O, S, F, Cl, Br or I present within 4.0 Å radius from either 

HIS479 or TYR502, (2) any aromatic atom within 4.5 Å radius 

from either LEU324 or PHE388, (3) any aromatic atom within 5.2 

Å radius from PHE378, (4) N, O, S, F, Cl, Br or I present within 

4.0 Å radius from either HIS323, PHE377 or WAT770, (5) N, O, 

S, F, Cl, Br or I present within 4.0 Å radius from ARG367. Com-

pounds that fulfilled the criterions 1, 2, 3 and 4 or fulfilled the cri-

terions 2, 3, 4 and 5 but also had any heavy atom within 4Å radius 

from either HIS479 or TYR502 passed the SDFCONF screen. Red 
circles demonstrate radiuses for hydrophilic groups and green cir-

cles radiuses for hydrophobic groups in respect to the selected 

amino acids.  

 

 

 

 

2.3 Acquiring compounds with structure- and ligand-based drug design screen 

A total of around 6,800 unique (duplicates removed) compounds remained after the structure-based drug 

design screen (from each of the four NIB-models) originating from the total number of 1,900,000 Specs 

compounds. Furthermore, the number of 6,800 compounds was reduced to a total of 865 compounds 

after SDFCONF ligand-based drug design screen. The remaining 865 compounds were acquired for the 

final screening.  
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2.4 Final screening and obtaining the final compounds 

The last step consisted of four separate screens described herein. After the first three screens (logP-, 

PAINS- and MM/GBSA-screening), a total of 230 compounds remained (5NTW 1st model: 63 com-

pounds, 5NTW 2nd model: 62 compounds; 5VB6 1st model: 58 compounds, 5VB6 2nd model: 47 com-

pounds). Hundred compounds possessing the highest MM/GBSA-scores, which were considered as the 

most potent compounds, were visually inspected by including the 25 highest scored compounds from 

each of the four models. Out of the hundred compounds, 29 compounds were eventually selected as the 

promising inverse agonists. The compounds are shown in table 2 with comments on LBD goodness of 

fit.  

 

Table 2. The selected 29 compounds of the final screen shown with compound ID, compound structure and comment 

on inverse agonist goodness of fit binding based on the visual screen. The general fit, H-bonding with ARG367 and 

TYR502-HIS479-PHE506 agonist lock disruption was evaluated. Nitro groups were also described as they may show 

toxicity issues in clinical usage.  

 

COMP

OUND 

 ID 

COMPOUND 

STRUCTURE 

 

COMMENT 

 

COMP

OUND 

ID 

COMPOUND 

STRUCTURE 

 

COMMENT 

 

AH-

487/40

936254 

 

 

Good fit to OBS. 

Strong H-bond with 

ARG367 and mod-

erately blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  

Includes nitro group 
which may show 

toxicity issues in 

clinical usage.  

AO-

081/15

386957 

 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

moderately 

blocks 

TYR502-

HIS479-
PHE506 ago-

nist lock for-

mation.  

AK-

968/15

608930 

 

 

Good fit to OBS. 

Moderately strong 

H-bond with 

ARG367 and mod-

erately blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  

 

AK-

968/15

253414 

 

 

Excellent fit to 

OBS. Strong 

H-bond with 

ARG367 and 

moderately 

blocks 

TYR502-

HIS479-

PHE506 ago-

nist lock for-
mation.  

AO-

022/43

452979 

 

 

Good fit to OBS. 

Strong H-bond with 

ARG367 and sig-

nificantly blocks 

TYR502-HIS479-

AF-

399/15

599217 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

moderately 

blocks 
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PHE506 agonist 

lock formation.  

TYR502-

HIS479-

PHE506 ago-

nist lock for-

mation.  

AK-

968/12

162001 

 

 

 

Good fit to OBS. 

No H-bond with 

ARG367 and mod-

erately blocks 

TYR502-HIS479-
PHE506 agonist 

lock formation.  

Includes nitro group 

which may show 

toxicity issues in 

clinical usage.   

AF-

399/41

318865 

 

 

 

Excellent fit to 

OBS. Strong 

H-bond with 

ARG367 and 

significantly 
blocks 

TYR502-

HIS479-

PHE506 ago-

nist lock for-

mation.  

AG-

690/11

570086 

 

 

 

Good fit to OBS. 

No H-bond with 

ARG367 and mod-

erately blocks 

TYR502-HIS479-

PHE506 agonist 
lock formation.  

Includes nitro group 

which may show 

toxicity issues in 

clinical usage.   

AN-

989/41

838397 

 

 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

significantly 

blocks 
TYR502-

HIS479-

PHE506 ago-

nist lock for-

mation.  

AH-

487/41

654264 

 

 

 

Good fit to OBS. 

Moderately strong 

H-bond with 

ARG367 and sig-

nificantly blocks 

TYR502-HIS479-

PHE506 agonist 
lock formation.  

 

AN-

648/15

596220 

 

 

 

Excellent fit to 

OBS. No H-

bond with 

ARG367 and 

significantly 

blocks 

TYR502-
HIS479-

PHE506 ago-

nist lock for-

mation.  

AN-

989/41

838307 

 

 

 

Excellent fit to 

OBS. No H-bond 

with ARG367 and 

significantly blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  

 

AO-

081/15

386326 

 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

excellently 

blocks 

TYR502-

HIS479-

PHE506 ago-
nist lock for-

mation.  

AF-

399/42

017933 

 

 

Excellent fit to 

OBS. No H-bond 

with ARG367 and 

significantly blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  

AG-

205/36

940103 

 

 

Good fit to 

OBS. Strong 

H-bond with 

ARG367 and 

significantly 

blocks 

TYR502-
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 HIS479-

PHE506 ago-

nist lock for-

mation.  

AK-

918/11

909161 

 

 

Good fit to OBS. 

No H-bond with 

ARG367 and sig-

nificantly blocks 

TYR502-HIS479-

PHE506 agonist 
lock formation.  

Includes nitro group 

which may show 

toxicity issues in 

clinical usage.   

AF-

399/41

895766 

 

 

 

Good fit to 

OBS. Strong 

H-bond with 

ARG367 and 

moderately 

blocks 
TYR502-

HIS479-

PHE506 ago-

nist lock for-

mation.  

AG-

205/33

688028 

 

 

  

Excellent fit to 

OBS. No H-bond 

with ARG367 and 

significantly blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  
Includes nitro group 

which may show 

toxicity issues in 

clinical usage.   

AK-

968/15

607331 

 

 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

significantly 

blocks 

TYR502-
HIS479-

PHE506 ago-

nist lock for-

mation.  

AG-

219/11

789371 

 

 

Good fit to OBS. 

Strong H-bond with 

ARG367 and mod-

erately blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  

 

AK-

968/41

022069 

 

 

Excellent fit to 

OBS. No H-

bond with 

ARG367 and 

moderately 

blocks 

TYR502-

HIS479-
PHE506 ago-

nist lock for-

mation.  

AF-

399/42

017292 

 

    

 

Good fit to OBS. 

No H-bond with 

ARG367 and sig-

nificantly blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  

 

AE-

641/30

156032 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

significantly 

blocks 

TYR502-

HIS479-

PHE506 ago-

nist lock for-
mation.  

AG-

219/12

748006 

  

 

Good fit to OBS. 

Moderately strong 

H-bond with 

ARG367 and sig-

nificantly blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  

AG-

690/40

753951 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

excellently 

blocks 

TYR502-

HIS479-
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 PHE506 ago-

nist lock for-

mation.  

AF-

399/42

017398 

       

 

Excellent fit to 

OBS. No H-bond 

with ARG367 and 

excellently blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  
 

AG-

690/40

752975 

 

 

Good fit to 

OBS. No H-

bond with 

ARG367 and 

excellently 

blocks 

TYR502-
HIS479-

PHE506 ago-

nist lock for-

mation.  

AK-

968/15

359742 

 

 

Good fit to OBS. 

No H-bond with 

ARG367 and excel-

lently blocks 

TYR502-HIS479-

PHE506 agonist 

lock formation.  
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3 DISCUSSION  

 

3.1 CADD protocol 

Functionality of the CADD protocol was demonstrated in theory as several potential RORγt inverse ag-

onists were discovered based on the promising CADD scores and visual screening. Even though the 

project was considered successful, some issues were faced. The overall project methodologies with goods 

and limitations are discussed herein.  

The selected docking (PLANTS) and scoring (Panther/ShaEP) methods yielded a correlation coefficient 

R2 value of 0.33 for 5NTW model and 0.27 for 5VB6 model. This is not considered a high correlation 

value but it could be explained by the heterogenous nature of the activity data as it originated from mul-

tiple laboratory measurements. This issue was confirmed as the activity data (RORγt inhibition) of the 

ChEMBL compounds was acquired by several different experiments. Indeed, there was a lot of disper-

sion reported among the IC50 values for the same RORγt-inverse agonists and the IC50 values typically 

varied multi-fold for the same compound (Gaulton et al., 2012). A better correlation would probably 

have been achieved if the active compounds would have been selected more systematically. However, 

this would have resulted in the exclusion of several active compounds and thus decreasing the amount 

of utilizable data. Considering heterogeneous data origin, the selected docking- and scoring methods 

were demonstrated to sufficiently predict compound activity.  

NIB-model optimization was considered successful. As seen in the figure 8, BR20 got higher generation 

by generation proving the NIB-models improved with BR-NiB. However, 5VB6 models were not opti-

mized as decently as 5NTW models. Especially, 5VB6 model with the lowest-ranked active compounds 

improved only by eight generations which is a modest number when compared to other models. No 

comprehensive explanation was identified for this issue.  

BR-NiB was validated as a functional method in the CADD protocol as demonstrated by the remarkable 

improvement of the optimized NIB-models to discern active compounds from inactive ones (figure 9). 

However, one rather impractical feature of BR-NiB was identified, as it automatically halts the program 

when BR20 do not increase in the next generation. This may not always serve the user. Here, BR-NiB 

was manually rerun a total of three times (once for both of the 5NTW models and once for the 5VB6 

model with the lowest-ranked active compounds) after the first decline in BR20 value but still the final 
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obtained BR20 value eventually got higher. Such a setting decreases the amount of time required for one 

run but a more practical approach would be to run the program until to the very last generation/NIB point 

and select the NIB-model with the highest BR20 score.  

Ligand-based drug design screen with SDFCONF was determined being successful. The final settings 

for SDFCONF-screen (figure 10) were manually and experimentally selected and excluded 87 % of the 

Specs compounds while only around 30-40 % of the ChEMBL compounds were excluded with the same 

settings. Additionally, the 30-40 % discarded active compounds were mostly the least potent compounds 

showing the highest IC50 values (IC50 values were obtained from ChEMBL database). This demon-

strated the capacity of SDFCONF-screen to separate compounds entailing characteristics of especially 

potent RORγt inverse agonism.  

In the final screen, the selected high logP threshold value of 5.5 was justified by highly lipophilic LBD 

as indicated in the generated NIB-models (figure 12). The final screen reduced the number of remaining 

compounds to 230 which were looked upon in the visualization window of Maestro. The most promising 

compounds were noticed to be the compounds entailing the highest MM/GBSA scores. This is an ex-

pected outcome since RORγt is a dynamic protein and, as such, molecular dynamics approach with 

MM/GBSA should provide accurate predictions. Consequently, compounds with the lowest MM/GBSA 

scores were excluded and the top 25 compounds for each model (totaling one hundred compounds) were 

selected for the visual screening. The most promising inverse agonist candidates were manually selected 

by visual screening from those compounds. The final screening was considered successful as the number 

of promising compounds was reduced to a reasonable number of 29.  

Each of the 29 compounds has multiple benzene rings but also hydrophobic and hydrophilic areas (table 

2). Almost every compound has a highly hydrophilic end. The most common functional groups include, 

in addition to benzene group, amine-, ketone and ether. Additionally, some compounds contained halo-

gen-, sulfide- and nitro side groups. However, as each of the compounds were considered rather unique, 

no single new structural component responsible for inverse agonism was identified.  

The docked 29 selected compounds were evaluated with maestro visualization tool to predict which of 

the compounds appeared the most promising inverse agonists (table 2). A total of nine compounds were 

estimated as very promising which included compounds AN-648/15596220, AN-989/41838307, AO-

081/15386326, AG-690/40753951, AF-399/42017398, AG-690/40752975, AK-968/15359742, AK-

968/15253414 and AF-399/41318865.  
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Compounds AK-968/15253414 and AF-399/41318865 form an H-bond with ARG367 but also show 

excellent OBS fit. Both compounds also demonstrate moderate or good agonist lock disruption. Other 

compounds were shown to have either good or excellent OBS fit or agonist lock disruption. AF-

399/42017398 was the only compound that has both excellent OBS fit and agonist lock disruption and 

hence it was considered the most promising inverse agonist. Additionally, especially AK-968/15253414 

and AF-399/41318865 are expected to show robust inverse agonism response as they form an H-bond 

with ARG367 in addition to good OBS fit and agonist lock disruption.  

 

3.2 Limitations of the study  

General limitations and potential continuation of the study topic are discussed herein. First, the back-

ground of the study is discussed and this is summarized with considerations.  

RORγt is an extremely complex protein which interacts with numerous biological machineries and tar-

gets. This comes with two main challenges in respect to drug design which can be summarized into words 

‘specificity’ and ‘complexity’ (Huang et al., 2020; GeneCards, 2021). First of all, physiological effects 

of RORγt are versatile and as such not specific. On the other hand, it is a complex and dynamic protein 

and as such a difficult drug target. Additionally, there are many different biological mechanisms that 

modify RORγt function, including regulatory effects of HD-BS SUMOylation (He et al., 2018). These 

two challenges could be overcome by conducting more research on RORγt.  

In this study, novel potential orthosteric RORγt inverse agonists were discovered. However, the obtained 

potential inverse agonists were not tested for inhibition and hence the results were not confirmed in 

practice. Additionally, this study could have been broadened to include other inverse agonist binding 

mechanisms for solving the issue with unspecificity. As previously mentioned, there are other binding 

sites such as ABS and HD-BS demonstrated in figure 4 (Huang et al., 2020). Several ABS-targeting 

inhibitors already exist but no HD-BS-targeting drugs are known as the binding site was just discovered 

and its biological mechanism is largely unknown. Theoretically, it is possible to develop HD-targeting 

drugs for minimizing off-target effects. However, its druggability remains a challenge unless otherwise 

proven.  

Another approach for minimizing off-target effects could be achieved by dual inhibition. As orthosteric- 

and allosteric binding pockets are constantly interacting, it is hypothesized whether combinatory drug 



27 
 

treatment could be possible. In such case, both ABS and OBS would be stabilized with bitopic inhibitors, 

which show binding affinity towards both the binding sites. Indeed, such dual inhibition has been demon-

strated but more research would be needed to discover its potential in practice (Meijer et al., 2021). The 

same outcome should be achieved by administrating orthosteric- and allosteric inhibitors separately to 

the patient at once. Here, an experimental study could have been conducted in such a way that known 

potent allosteric inhibitors would have been administrated together with each herein discovered potential 

orthosteric inverse agonist for discovering potential dual inhibition effects.  

ABS is specifically expressed in RORγt and as such is a more specific binding site than OBS (Huang et 

al., 2020). This is since OBS is similar among ROR family receptors such as RORα, RORβ, and RORγ 

increasing off-target effects. Consequently, targeting RORγt could also show effects on other ROR re-

ceptors increasing the adverse effects. This implies ABS could be a more druggable binding site than 

OBS. However, OBS was selected here for the main focus due to its better characterization as more 

studies have been conducted on it. It has also larger binding area suggesting that designing novel inverse 

agonists for OBS would be an easier task over ABS.  

The complexity issue with RORγt could have been partially overcome by conducting a more robust 

CADD protocol with comprehensive molecular dynamics modelling. Several RORγt structures could 

have been utilized in this study in addition to a larger number of inactive compounds. However, such 

approach would be rather time-consuming and such workload would exceed the requirement for Master’s 

thesis project.  

In conclusion, RORγt inhibitors, especially inverse agonists, have been shown as promising agents for 

treating chronic inflammatory diseases. However, as RORγt inhibition comes with off-target effects, ad-

verse effects are likely to follow. The most common approach to increase specificity is achieved with 

highly potent and selective compounds (compounds with very low IC50 values). However, this might not 

always provide satisfactory results. More specific effects could also be achieved by targeting ABS or 

HD-BS. Targeting ABS or HD-BS either separately or combinatory should provide more specific effects 

on RORγt with less off-target effects. Dual inhibition of both OBS and ABS could also increase speci-

ficity and potency of drug treatment (Meijer et al., 2021). Due to the potential adverse effects of RORγt 

inhibition, systematic administration of inverse agonists might be challenging. Instead, topical admin-

istration of RORγt inverse agonists on the skin for treating psoriasis, for example, could provide a more 

specific approach for treating inflammatory conditions with less adverse effects. With these aspects in 
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mind, more specific treatment for chronic inflammatory diseases by RORγt inhibition could be designed 

but it would require an immense amount of research due to the challenges mentioned above.  

 

3.3 Significance of the study  

New information of the structural state of inverse agonists was produced as the arsenal of known RORγt 

potential inverse agonists was expanded by 29. These compounds could be used for treating chronic 

inflammatory diseases if shown high potency and efficiency without significant adverse effects in prac-

tice. However, this is not probable as RORγt inhibition was not tested in practice and also several RORγt 

inverse agonists have previously failed as a drug treatment. Additionally, the developed CADD protocol 

with two ‘in house’ methods was shown promising for discovering RORγt inverse agonists and it could 

be applied for similar drug discovery projects in the future.  

 

3.4 Conclusions  

The study expanded the arsenal of known, potential RORγt inhibitors for designing novel treatments for 

chronic inflammatory diseases. The developed CADD protocol was demonstrated promising for drug 

search.  
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4 MATERIALS AND METHODS  

The CADD protocol was conducted as described in figure 11. Both structure- and ligand-based drug 

design protocols were used in addition to four other CADD approaches (logP-, PAINS-, MM-GBSA- 

and visual screening). This was followed by selection of the most promising inverse agonists. Detailed 

description of the methodology is provided herein with all the relevant programs and settings included.  

 

 
Figure 11. CADD protocol for discovery of novel potential RORγt inverse agonists. A) Optimization of two selected 

RORγt inverse agonism structures B) Identification of the OBS C) Structure-based drug design; screening based on the opti-

mized NIB-models of OBS D) Ligand-based drug design; SDFCONF-based pharmacophore screening based on the model 

constructed by known inverse agonists E) Obtaining the highest scored, most promising compounds from Specs compound 

library F) Final screening. Compounds presenting logP > 5.5 or PAINS-activity were excluded. The remaining compounds 

were screened with MM-GBSA to obtain the highest ranked molecules which were visually screened for selecting the most 

promising compounds. G) Obtaining the promising inverse agonists.  

 

4.1 Acquiring proteins and ligands and their preparation  

Protein structures were acquired from the Protein Data Bank (PDB) and ligands from and Specs database 

(Specs, The Netherlands; www.specs.net; 10 mg compound library). Both proteins and ligands were 

processed for optimizing the CADD process. Details are provided in this chapter.  
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4.1.1 Obtaining the binding site models  

All the available 99 X-ray structures of RORγt were obtained from PDB at the time of the search (18 

July 2019). The selection criteria for the two protein structures: (1) Must have a full inverse agonist 

bound to OBS. (2) Structures possessing resolutions above 2.3 Å (the lesser is better quality) were ex-

cluded and the R-Value Free could not exceed the resolution/10 by more than 0.05. Additionally, R-free 

had to be approximately equal with the R-value (The Protein Databank; R-value and R-free). (3) The 

structures could not miss any structural data (such as amino acids).  

The structures fulfilling these conditions were superimposed by chain A and analyzed thoroughly with 

molecular modeling tools bodil 3D and Coot to determine two most suitable RORγt structures for the VS 

(Lehtonen et al., 2004; Emsley et al., 2010). Eventually, structures named as 5NTW (Kallen et al., 2017) 

and 5VB6 (Li et al., 2017) in PDB were concluded to be the two representable models for RORγt inverse 

agonism for VS. 5NTW was selected based on the great resolution and its structure was identified being 

almost identical with most of the other full inverse agonism structures hence presenting the average con-

formation state of RORγt full inverse agonism.  

On the other hand, 5VB6 was selected based on the good resolution and its exceptional conformation 

state of the LBD which is explained by the unique X-ray crystallography process. As a part of the crys-

tallography process, RORγt was covalently tethered with a cofactor peptide stabilizing its structure ther-

modynamically providing higher conformational flexibility. Hence, such a conformational state of 

RORγt is emphasized in 5VB6 that may not be feasible to crystallize in regular conditions providing new 

atomic insight for the RORγt inverse agonism (Li et al., 2017).  

 

4.1.2 Proteins preparation  

5NTW and 5VB6 structures were downloaded as PDB format and prepared with Protein Preparation 

Wizard included in Maestro 2018-1 (Maestro, Schrödinger, LLC, New York, NY, 2018) with the fol-

lowing options: (1) import and process: delete waters, preprocess; (2) review and modify: delete chain 

B, C and D (only for 5VB6), delete A: NA601 (sodium; only for 5VB6). Option ‘Create zero-order bonds 

to metals’ was deselected; options ‘Convert selenomethiones to methiones’, ‘Fill in missing side chains 

using Prime’ and ‘Fill in missing loops using Prime’ were selected; (3) refine: use PROPKA pH: set 7.4 

+/- 0, optimize. H2O:s with < 3 hydrogen-bonds were deleted. (4) Restrained minimization: hydrogens 
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only. Conformations of LEU324 and CYS393 (only for 5NTW) were changed to the other state not 

suggested by the default settings. Default settings were otherwise employed. (5) Ligands 98N and 927 

were removed; 5NTW and 5VB6 were exported as MOL2 format.  

 

4.1.3 Acquiring active- and inactive compounds  

A set of RORγt inverse agonists were acquired from CHEMBL-database with the target ID of 

CHEMBL1741186 (10 June 2019) (Gaulton et al., 2012). Only those full orthosteric inverse agonists 

with a reported IC50 value (marked as =) which had traceable data origin were included. Whether several 

activity measurements existed for the same compound, the most potent IC50 value was selected. The 

selected 191 active and unique compounds were downloaded as SMILES format (Simplified Molecular-

Input Line-Entry System) and IC50 values were transformed to a logarithmic scale (pIC50) for producing 

linear reference values. CHEMBL molecules were converted to 3D structures with LIGPREP (LigPrep, 

Schrödinger, LLC, New York, NY, 2018).  

Inactive compounds were obtained by downloading all the available molecules from Specs as MOL2 

format yielding totally around 170,000 unique compounds (28 June 2019) for VS. They served as decoy 

compounds in VS but also as a data set for discovering RORγt inverse agonists.  

 

4.1.4 Ligand preparation  

All the molecules from CHEMBL and Specs were processed with LIGPREP (LigPrep, Schrödinger, 

LLC, New York, NY, 2018) to generate possible tautomers and enantiomers at OPLS3 charges (OPLS 

2005 force field) at pH 7.4 (Harder et al., 2016). Next, ten low-energy conformations were generated for 

each of the compounds with ConfGen (ConfGen, Schrödinger, LLC, New York, NY, 2018) (Watts et al., 

2010). The prepared ligands were converted to MOL2 format with MOL2CONVERT in Maestro. Even-

tually 4,400 CHEMBL compounds and 1,900,000 Specs compounds were generated.  
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4.2 Binding site identification  

The OBS of both the structures 5NTW and 5VB6 were identified and looked upon with bodil 3D. The 

electron density map resolution in the OBS among the structures were confirmed to be proper with Coot.  

 

4.3 Structure-based drug design  

The two selected protein structures were utilized for structure-based drug design approaches. Negative 

image -based (NIB)-models were generated and furthermore optimized for estimating binding affinity of 

the compounds of interest. The optimal docking- and scoring approach was discovered by calculating 

correlations.   

 

4.3.1 NIB-model generation with panther  

NIB-models of the LBD of prepared 5NTW and 5VB6 were constructed with Panther -multipurpose 

docking tool (version 0.18.19) (Niinivehmas et al., 2015). The NIB-models were scrutinized with bodil 

3D to determine whether the models were correctly generated. In the end, three neutral NIB-points were 

manually changed to two negative charges and one positive charge in both 5NTW and 5VB6 NIB-mod-

els.  

NIBs are models that consider shape and charge of OBS, which are needed as a part of the scoring process 

to estimate binding affinity of each compound. NIB-models were optimized as explained later in this 

chapter.  

 

4.3.2 Evaluation and validation of the docking- and scoring methods 

A set of molecular docking- and scoring methods were executed to discover the most optimal computa-

tional methods for identification of active ligands in VS. Docking means predicting binding of the com-

pound of interest to the binding site. The prediction accuracy was determined by calculating correlation 

coefficient R2 for each of the conducted method.  

The generated 4,400 active compounds were docked to the prepared LBD of 5NTW and 5VB6 with 

various docking tools. The docking tools included Glide (Glide, Schrödinger, LLC, New York, NY, 
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2018), Prime (Prime, Schrödinger, LLC, New York, NY, 2018), PLANTS (PLANTSPLP; version 1.2), 

and the docking pose -optimization tool of molecular superimposition/similarity analysis program ShaEP 

(version 1.3.0) (Korb et al., 2009; Vainio et al., 2009). ShaEP docking was based on the NIB-models 

generated by Panther.  

Subsequently, several scoring methods were applied to yield VS-based predictions of the binding affinity 

for each of the docked compound. The docking tools Glide, Prime, PLANTS and ShaEP were applied to 

calculate docking scores. In addition, ShaEP was applied for scoring the active compounds docked with 

PLANTS yielding a total of five methods for predicting binding affinity (table 3). ShaEP scoring was 

based on the constructed NIB-models by Panther.  

Next, the best docking score for each individual compound was extracted and proportionated with the 

highest pIC50 value reported for that active compound in CHEMBL to yield a correlation coefficient. The 

aim was to discover the best suitable predictive docking- and scoring method for the VS which was 

evaluated based on Pearson correlation coefficient (R2) score. PLANTS was selected as the docking tool 

and ShaEP as the scoring tool for VS since the best correlation was achieved with these methods.  

 

Table 3. The five experimentally tested docking- and scoring methods presented as A) – E). The methods were tested to 

select the method that had the most accurate VS-based prediction of the binding affinity of the active compounds. The VS-

based prediction was evaluated as Pearson correlation coefficient R2 scores.  

  
DOCKING SCORING 

A) Glide Glide 

B) Prime Prime 

C) Panther/ShaEP Panther/ShaEP 

D) PLANTS PLANTS 

E) PLANTS Panther/ShaEP 

 

4.3.3 Docking and scoring 

All the 1,900,000 Specs- and 4,400 CHEMBL compounds were docked to the prepared ligand-free struc-

tures 5NTW and 5VB6 with PLANTS. The docking scores were calculated for 5NTW and 5VB6 sepa-

rately with ShaEP utilizing the generated NIB-models. Shape/electrostatic complementary scores were 
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obtained for each of the docked ligand 3D enantiomers and tautomers including their conformers. Only 

the highest ShaEP score was obtained for each of the compounds in VS.  

 

4.3.4 Optimization of the final NIB-models  

The generated NIB-models of LBD of 5NTW (184 NIB-points) and 5VB6 (198 NIB-points) were opti-

mized by BR-NiB approach with the ‘in-house’ Brute Force Image-Based Rescoring -software to im-

prove the capacity of ShaEP to discern active compounds from a random set of compounds based on the 

utilized NIB-models as seen in figure 12 (Kurkinen et al., Submitted). Here, the capacity was estimated 

based on BR20 value as the software was commanded to optimize BR20 values (Truchon et al., 2007). 

BR20 values can be considered as a measurement for evaluating the ability of the model to correctly 

discern active compounds from inactive compounds.  

BR-NiB utilizes Rocker and ShaEP to optimize the NIB-models to enhance the capacity of ShaEP to 

score the active compounds (= CHEMBL compounds) higher on average compared to the decoy com-

pounds (= Specs compounds) improving the capacity of the NIB-model to rank higher compounds pos-

sessing RORγt inverse agonist -like chemical structures (Lätti et al., 2016; Niinivehmas et al., 2015). 

BR-NiB deletes individual NIB-points one by one (the NIB-point that improves BR20 value the most) 

until the maximal BR20 has been reached. Here, BR-NiB halted optimization process if deletion of any 

NIB-point did not improve enrichment demonstrated as BR20.  

Randomly selected one fourth of the generated around 1,900,000 (≈ 475,000) compounds from Specs 

were chosen as the set of decoy compounds and all the generated 4,400 CHEMBL compounds were 

selected as the active compounds. This resulted in around 475,000 decoy compounds and 4,400 active 

compounds (incl. 10x conformations, enantiomers and tautomers) for NIB-model optimization process. 

Optimized NIB-models were generated for both 5NTW and 5VB6 structures.  

Additionally, another two NIB-models were generated by excluding the highest-ranked CHEMBL mol-

ecules from the set of active compounds. Those CHEMBL compounds that ranked among the best 1 % 

of decoy compounds based on the final optimized NIB-model were separately excluded for models 

5NTW and 5VB6. Then, NIB-models were optimized second time with the new set of active compounds. 

Subsequently, additional two NIB-models were separately generated for 5NTW and 5VB6 resulting in 

four optimized NIB-models as in total.  
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Figure 12. NIB-model optimization with BR-NiB software. Optimization was executed by deleting the excessive NIB-

points to improve the scoring and enrichment of those compounds entailing characteristics of active compounds.  

 

4.4 Ligand-based drug design  

The amino acids of RORγt being responsible for ligand binding were identified based on the literature. 

The most relevant amino acids for ligand binding include HIS323, LEU324, ARG367, PHE377, 

PHE378, PHE388, HIS479 AND HIS502. Especially, hydrophobic-/stacking effects with LEU324 or 

PHE377 stabilize inverse agonism conformation as does the disruption of the H-bond formation between 

HIS479 and TYR502 by a ligand interaction. The latter could be achieved most effectively by formation 

of a hydrogen bond (H-bond) with either HIS479 or TYR502. Additionally, H2O (WAT770) in LBD 

may participate in ligand binding.  

Consequently, these eight amino acids and the H2O (nine coordinate points) were used for construction 

of pharmacophore points for ligand-based drug design approach with the in-house algorithm SDFCONF 

(Lätti et al. manuscript in preparation). SDFCONF-based pharmacophore points screening as a part of 

CADD process has been demonstrated before (Rauhamäki et al., 2018). The selected 3D coordinates of 

the amino acids of the prepared 5NTW and 5VB6 were utilized to construct a pharmacophore model 

(figure 13). The 3D coordinates were carefully selected to yield a set of pharmacophore filter points for 

each of the amino acids to exclude those docked compounds that are not in proximity of the selected 

amino acids and hence probably do not interact with those amino acids.  

Five important binding regions were identified in LBD of RORγt. Next, such pharmacophore filter points 

were generated with SDFCONF to exclude the compounds not present within the defined range among 

the required regions.  
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The first region (1.) included HIS479 and TYR502 which can be either H-bond acceptors or donors. Two 

pharmacophore filter points were created to set a criterion that hydrophilic groups must be present near 

HIS479 or TYR502. The screen was executed by determination of possible H-bond acceptors or donors 

presented as heavy atoms N, O, S, F, Cl, Br or I near HIS479 or TYR502.  

The second region (2.) included LEU324 and PHE388 which are important for forming hydrophobic- or 

stacking effect with ligands. Compounds not possessing any aromatic atom near LEU324 or PHE388 

were excluded. Similarly, the third region (3.) included PHE378 and compounds not possessing any 

aromatic atom near PHE378 were excluded.  

The fourth region (4.) included amino acids HIS323 and PHE377 but also WAT770 which can be either 

H-bond acceptors or donors. Pharmacophore filter points were generated for each of them to exclude 

those compounds that did not show hydrophilic groups (simplified as N, O, S, F, Cl, Br or I) near HIS323, 

PHE377 or WAT770.  

The fifth region (5.) included amino acid ARG367 which acts as a H-bond donor. A pharmacophore filter 

point was created to set a criterion that hydrophilic groups must be present near ARG367 demonstrated 

as heavy atoms N, O, S, F, Cl, Br or I near ARG367.  

Next, SDFCONF-based pharmacophore screening was specified by setting the following requirements: 

the compound passed the screening if any of its tautomer, enantiomer or conformer fulfilled the criterions 

1, 2, 3 and 4 or the criterions 2, 3, 4 and 5 but also had any heavy atom (any other than H) within 4Å 

radius from either TYR502 or HIS479.  

Then, the 3D coordinates of individual heavy atoms of the docked compounds were obtained for each of 

the generated tautomers, enantiomers and their conformations. The 3D coordinates of all the compounds 

were then compared against the selected 3D coordinates of the amino acids HIS323, LEU324, ARG367, 

PHE377, PHE378, PHE388, HIS479 AND HIS502. The 3D coordinate of the center of oxygen of 

WAT770 was included for the pharmacophore model. SDFCONF-screening was executed separately to 

all the four groups of Specs compounds that were ranked among the best 1 % based on the ShaEP-score.  

SDFCONF-screening was experimentally validated by adjusting the radiuses of the nine selected 3D 

coordinates and determining the optimal radiuses which would discard as many decoy compounds as 

possible with relatively low number of active compounds being discarded. No more than 50 % of the 
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active compounds discarded by SDFCONF-screen was accepted. Eventually, SDFCONF-based pharma-

cophore screening radiuses were determined to be 4.0 Å for criterion 1, 4.5 Å for criterion 2, 5.2 Å for 

criterion 3, 4.0 Å for criterion 4 and 4.0 Å for criterion 5.  

 
Figure 13. SDFCONF pharmaphore model construction. The amino acids being crucial for ligand binding were first 

identified and the corresponding 3D coordinates were selected for each of the amino acids. The model was used to exclude 

those docked compounds that do not present desired chemical groups within the selected radiuses (marked as red circles on 

the right) from the amino acids and hence do not likely form molecular interaction with those amino acids.  

 

 

4.5 Acquiring compounds from structure- and ligand-based drug design screen  

All the 1,900,000 compounds, including generated enantiomers, tautomers and conformations, from 

Specs 10 mg compound collection (retrieved: 28 June 2019; www.specs.net) were docked with PLANTS 

to the prepared LBD of 5NTW and 5VB6 and scored with ShaEP based on the four optimized NIB-

models separately. 1 % of the highest ranked compounds were included from each of the four structure-

based drug design models. The remaining compounds were SDFCONF-screened to exclude those com-

pounds that do not meet the required structural characteristics set by pharmacophore points. Duplicates 

were discarded and a set of potentially activate compounds were obtained.  

 

4.6 Final screening  

In the final CADD step, logP values were calculated with Maestro for the remaining compounds. The 

compounds possessing logP values of > 5.5 were excluded as highly lipophilic compounds have poor 

solubility. PAINS compounds were removed with PAINS-filtering (PAINS1, PAINS2, PAINS3) with 

Canvas program (Canvas, Schrödinger, LLC, New York, NY, 2018) (Duan et al., 2010). Additionally, 

the compounds possessing reactive side groups such as aldehyde groups were excluded.  
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Free energy binding of the remaining docked compounds was calculated with Molecular Mechanics/Gen-

eralized Born Surface Area (MM/GBSA) -tool in Maestro to exclude the compounds presenting weaker 

predicted binding energies (Genheden et al., 2015; Virtanen et al., 2015). MM/GBSA were generated 

individually to the compounds docked with PLANTS to 5NTW and 5VB6 structures. The following 

options were used: (1) VSGB solvation model and OPLS3 force field were applied; (2) use input partial 

charges ON, use implicit membrane OFF; (3) distance from ligand = 4 Å, sampling method: minimize.  

The compounds presenting MM/GBSA-binding energies (MMGBSA dG Bind) of > -95 were excluded. 

The remaining molecules were visually evaluated with Maestro based on the generated MM-GBSA mod-

els. In visual selection, the goodness of fit of the docked compounds to the OBS was evaluated and 

compared to other known inverse agonist structures from PDB. Additionally, visual evaluation was con-

ducted whether a given compound would disrupt TYR502-HIS479-PHE506 agonist lock formation and 

interaction with ARG367, both of which are known to be important upon inverse agonist binding. Each 

of these three properties were ranked from one to three to yield semi-quantitative evaluation of the good-

ness of fit.  

 

4.7 Obtaining final compounds 

The most promising inverse agonists were selected based on the overall CADD protocol and the visual 

screening. The data of the selected compounds was obtained for considerations.  
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6 ABBREVIATIONS  

3D   Three-dimensional 

ABS    Allosteric Binding Site 

BR20    Boltzmann-Enhanced Discrimination of Receiver Operating Characteristic 20 

BR-NiB  Brute Force Negative Image-Based Optimization 

CADD   Computer-aided drug design 

DBD   DNA-Binding Domain 

HD   Hinge Domain 

HD-BS  Hinge Domain Binding Site 

H-bond   Hydrogen Bond 

IC50    Half Maximal Inhibitory Concentration 

LBD   Ligand Binding Domain 

MM/GBSA   Molecular Mechanics/Generalized Born Surface Area 

NIB    Negative Image-Based 

OBS   Orthosteric Binding Site 

QSAR    Quantitative Structure-Activity Relationship 

RORγt   Retinoic Acid-related Orphan Receptor Gamma t 

VS    Virtual Screening 
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