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Ever since the global financial crisis of late 2000s and early 2010s, there has been 
increased interest in the systemic risk and its measurement. Systemic risk is defined 
as the risk for severe financial crisis that spreads widely through the interconnected 
financial markets and has negative spillover effects on the broader economy. One 
trading network that causes this interconnectedness in the banking sector is the 
interbank lending market where banks can both lend and borrow short term loans 
which they use to manage their monetary reserves. For example, the distressed 
interbank lending markets further escalated the emerging systemic crisis during the 
late 2000s.

Interbank lending markets and the monetary reserves of the individual banks are 
modelled with the system of coupled diffusion processes. In the model, banks lend 
money based on the differences in their monetary reserves and their lending prefer-
ences. Under specific assumptions, the total monetary reserves of the whole banking 
sector follow squared Bessel process where the dimension represents the total growth 
rate. The growth rate and the lending preference define whether the systemic crises 
exist in the banking system or not. In general, the banking sector benefits from the 
increased lending activities and higher growth rate as this decreases the probability 
of banks to go bankrupt.

So called Mean field model ads some additional assumptions to the more general 
coupled diffusion model and these assumptions allow the model to be numerically 
simulated. When the interbank lending activity is high, then the reserves of the 
individual banks develop almost identically as the differences in the reserve levels 
diminish. However, this lending activity also causes adverse shocks to spread from 
one bank to all other banks. Therefore, if the lending activity in the markets is 
strong but the total growth rate is low, then the interbank lending activity actually 
increases the probability of severe systemic crisis. Further numerical analysis shows 
that it is better to increase the size of the banking system by adding new banks to 
the system rather than by increasing the sizes of the existing banks as the latter 
option increases the tail risks more than the former option. However, the Coupled 
banking model framework has many limitations that greatly drive these findings. 
Thus these limitations should be addressed in the future model development.

Keywords: Interbank lending, Monetary reserves, Systemic risk, Coupled banking 
model, Mean field model, Coupled diffusion process, Squared Bessel process.
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2000-Luvun lopulla ja 2010-luvun alussa taphtuneen globaalin finanssikriisin jäl-
keen systeemiriski ja sen mallintaminen ovat herättäneet erityistä kiinnostusta. Sys-
teemiriski määritellään riskinä vakavalle finanssikriisille, joka leviää markkinoiden 
kautta toisiinsa kytkeytyneiden pankkien välityksellä ja aiheuttaa laskusuhdanteen 
finanssimarkkinoiden lisäksi myös reaalitaloudessa. Pankkien välisten lainamarkki-
noiden kautta pankit hallinnoivat reservivivarojaan hyödyntäen lyhytaikaista anto- 
ja ottolainausta. Samalla kuitenkin nämä lainamarkkinat luovat pankkien välille 
riippuvuutta. Esimerkiksi juuri 2000-luvun lopun finanssikriisi kiihtyi ongelmiin 
joutuneiden pankkien välisten lainamarkkinoiden kautta.

Pankkien välisiä lainamarkkinoita ja pankkien reservejä voidaan mallintaa hyödyn-
täen toisiinsa kytkeytyneitä stokastisia diffuusioprosesseja. Mallissa pankit lainaa-
vat toisiltaan varoja perustuen pankkien reservitasojen välisiin eroihin ja pankkien 
omiin lainauspreferensseihin. Tiettyjen oletusten vallitessa pankkisysteemin koko-
naisreservit seuraavat tällöin neliöityä Bessel prosessia, jonka dimensio puolestaan 
kuvaa pannkijärjestelmän kasvuvauhtia. Kasvuvauhti ja lainauspreferenssit yhdessä 
määrittävät sen, voiko pankkijärjestelmässä syntyä systeemikriisejä ollenkaan. Käy-
tännössä pankit hyötyvät aktiivisista lainamarkkinoista ja korkeasta kasvuvauhdista, 
sillä nämä alentavat pankkien konkurssitodennäköisyyksiä.

Niin sanotussa Mean field -mallissa tehdään yksinkertaistavia lisäoletuksia kytkey-
tyneeseen diffuusiomalliin, minkä ansiosta Mean field -mallia voidaan simuloida. 
Mallissa pankkien reservit kehittyvät lähes identtisesti silloin, kun pankkien väliset 
lainamarkkinat ovat aktiiviset, sillä aktiivinen lainaaminen tasoittaa eroja pankkien 
reservien välillä. Tällöin kuitenkin myös vakavat sokit leviävät pankkien välillä 
tehokkaasti. Jos pankkien väliset lainamarkkinat ovat aktiiviset ja pankkijärjestel-
män kasvuvauhti on alhainen, aktiiviset lainamarkkinat itseasiassa lisäävät vakavan 
systeemikriisin todennäköisyyttä. Simuloimalla voidaan myös näyttää, että pankki-
järjestelmän riskit pysyvät alhaisempina, mikäli järjestelmä kasvaa uusien pankkien 
kautta sen sijaan, että olemassa olevat pankit kasvattaisivat kokoaan. Kytkeytynei-
den pankkien mallissa on kuitenkin useita rajoittavia oletuksia, jotka osaltaan joh-
tavat esitettyihin tuloksiin. Mallia tulisikin kehittää niin, että näitä rajoitteita 
saadaan vähennettyä.

Avainsanat: Pankkien väliset lainamarkkinat, Pankkien reservit, Systeemiriski,
Kytkeytyneiden pankkien malli, Mean field -malli, Kytkeytynyt diffuusio prosessi, 
Neliöity Bessel prosessi.
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1 Introduction

Ever since the global financial crisis that started in the latter half of 2000s and 
continued until early 2010s, there has been increased interest in the systemic risk 
and its measurement. Systemic risk is defined as the risk for severe financial crisis 
that spreads widely in the financial sector and has negative spillover effects on the 
broader (real) economy too. Such financial crises that adversely affect the broader 
economy are called systemic crises. For example, the aforementioned global finan-
cial crisis was systemic crisis that initially started from fairly limited losses in the 
US housing markets but then spread and caused global recession. As financial sec-
tor has immensely important role in the modern economic system, it is clear that 
governments have strong incentives to make sure that systemic crises don’t happen.

Financial sector is very different compared to the other business sectors as fi-
nancial institutions actively trade with each other using different and complex in-
struments. Therefore, adverse shocks that first realize for few institutions can easily 
spread and contaminate other institutions too. One of these special trading net-
works is the interbank lending market, where banks can both lend and borrow short 
term loans which they use to manage their monetary reserves. If bank doesn’t have 
enough reserves available, then it can’t meet all its obligations (e.g. deposit out-
flows) and thus it becomes insolvent. During the early stages of the global financial 
crisis, interbank lending markets became severely distressed which caused problems 
for banks that heavily relied on the interbank lending markets. Furthermore, this 
distress then escalated the emerging systemic crisis.

In this thesis, a model by Fouque and Ichiba (2013) [7] is studied where banks’ 
reserves and interbank lending markets are modelled using coupled stochastic diffu-
sion processes. In the model, banks can either borrow or lend money depending on 
if they have less or more reserves available than their counter-parties. Under specific 
(symmetry) assumptions, the total monetary reserves of the whole banking sector 
follow squared Bessel (BESQ) process. The dimension of the BESQ process, that 
is interpreted as the total growth rate of the banking sector, and the lending activity 
determine whether the systemic crises exist in the system or not.

The model analysis indicates that the system generally benefits from the in-
creased interbank lending activities. However, using a specific version of the Coupled 
banking model by Sun (2017) [19], which is called Mean field model, it is numerically 
shown that the interbank lending activities can actually drive the systemic crises 
when the total growth in the system is low enough. Finally, the quantitative risk 
analysis of the Mean field model shows that the banking system should be grown 
by adding new banks to the system rather than by growing the existing banks since 
the risks develop more favourable in the former than in the latter case.

In section 2, systemic risk and interbank lending markets are described, and the 
basics of the quantitative risk measurement are presented. In section 3, theoretical 
background for Brownian motion and diffusion process are given. In addition, as 
the first hitting time distributions are important in the Coupled banking model 
analysis, the theory behind the first hitting time distribution of Brownian motion is 
summarized. As the modelling of the total reserves applies squared Bessel process, 
the basic properties of this process are described in section 4. Section 5 includes 
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theoretical analysis for the Coupled banking model and the default and systemic 
crisis probabilities are evaluated. Section 6 includes simulation study for the Mean 
field model and the quantitative risk measures for the total system are analysed. 
Lastly, section 7 concludes this thesis.
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2 Financial risk management and interbank lend-
ing markets

2.1 Risk management and systemic risk

Although the definition of financial risk itself is not always straightforward, it usually 
reflects the uncertainty around the future outcomes of financial business activities. 
Specifically, risk is often related to the possibility of facing adverse outcomes more so 
than to the possibility of facing favourable outcomes. Furthermore, there are many 
different types of risks in the financial markets. For example, market risk is typically 
defined as the risk of change in the value of a financial instrument or portfolio. On 
the other hand, credit risk is the risk of not receiving promised repayments on 
investments such as loans. In addition to these two, other commonly mentioned risk 
types are liquidity risk, operational risk, model risk and underwriting (or insurance) 
risk.

As financial institutions face different risks in their activities, it is clear that 
they also need to manage these risks. In practice, financial institution manage risks 
because they try to decrease the probability of facing adverse events in the future, or 
at least to limit the impacts of these possible events. In addition, government’s (or 
financial regulator’s) have clear incentives to ensure that financial markets don’t fail 
even if severe crises occur. After all, the impacts of severe financial crises (such as 
the global financial crisis of 2007–2008) don’t always limit to just financial markets 
but the broader economy may suffer too.

For banking industry, much of the regulatory work originates from the Basel 
committee of Banking Supervision which was set up by the central bank governors 
of major industrialised countries (G-10) in 1974. The Basel committee does not have 
any formal supranational legal force, but it formulates broad supervisory standards 
and guidelines called Basel accords which are then implemented by the local financial 
authorities. For example, Basel accords include rules regarding minimum capital 
requirements. In insurance industry, similar set of regulatory rules is called Solvency 
II framework.

Many of the newer regulatory rules are set up to mitigate systemic risk. Freixas 
et al. (2015) [9, pp. 13-18] define systemic risk (following definition given by Eu-
ropean Central Bank) as the risk of threats to financial stability that impair the 
functioning of a large part of the financial system with significant adverse effects on 
the broader economy. Since financial institutions are more intertwined to each other 
than companies in other business areas generally are, adverse shocks can easily start 
to spread from one institution to other institutions through their shared network of 
business activities. As financial industry plays crucial role in modern society, severe 
impairments in financial markets can produce negative spillovers to the real sector 
too. Such crisis events are called systemic financial crises.1 To avoid these systemic 
crises, regulators need to set up new macro-prudential regulatory rules that aim to 
manage the stability of the financial markets as a whole.

1Since broader economy is not modelled in this thesis, systemic financial crises is simply defined 
as an event where many or most of the financial institutions face severe financial distress.
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2.2 Monetary reserves and interbank lending
In this subsection, monetary reserves and interbank lending markets are introduced 
following Mishkin et al. (2013) [16, pp. 29, 148, 176-231]. First of, bank’s balance 
sheet can be summarised through following equality:

  \label {bank_balance} \text {total assets } = \text { total liabilities } + \text { capital}.      (1)

In short, banks obtain funds by borrowing and and by issuing liabilities such as 
deposits. Deposits consist of time deposits that depositors (customers) have to keep 
in bank’s accounts for minimum periods of time, and sight (demand) deposits that 
depositors can withdraw at any time they want. Naturally, banks can also borrow 
money from financial markets by issuing bonds and certificates of deposits.

On the left side of the balance sheet, bank’s assets consist of loans that bank 
has granted to its customers, securities such as government bonds and commercial 
papers, and net trading assets such as derivatives. On the right side of the balance 
sheet, capital is defined as the bank’s net worth (assets minus liabilities) and it 
is raised by selling new equity (i.e. bank’s stocks) or by keeping old earnings in 
bank’s balance sheets. If the value of the liabilities exceeds the value of the assets, 
then bank’s capital is negative which in practice means that the bank is insolvent. 
Therefore, capital works as a cushion against the drop in the value of bank’s assets.

In addition to loans, securities and net trading assets, monetary reserves also 
belong to the left side of bank’s balance sheet. In practice, banks hold reserves as 
deposits at the central bank or in their own vaults. Generally, reserves earn very 
low or even zero interest meaning that banks don’t want to hold too much reserves 
or they will loose profits. Bank’s reserves are divided into required and excess 
reserves. The former is needed since it is regulated that banks need to hold certain 
percentage (called required reserve ratio) of sight deposits as required reserves. On 
the other hand, excess reserves are used as cushioning against deposit outflows. In 
practice, banks constantly need to manage their reserve levels to make sure that 
excess reserves don’t grow too large while simultaneously making sure that their 
reserves meet the required reserve levels (i.e. to avoid reserve shortfalls). Under 
severe reserve shortfalls, banks can’t meet all their obligations.

In order to manage reserves, banks take part in interbank lending markets where 
they can either borrow or deposit (lend) funds depending on if they have too little or 
too much reserves at hand. These interbank deposits can either be demand deposits 
or short term loans with fixed maturities that generally vary between one day to 
few weeks. The process of bidding and offering interbank loans creates the market 
rate of interest which in essence is the price that banks who are borrowing money 
are paying to banks that are lending money. In addition to borrowing and lending 
from each others, banks can also borrow from the central bank, which means that 
central bank can also affect the dynamics of interbank lending markets.

Although interbank lending markets aim to ease the reserve management of 
financial institutions, they also work as an example of a shared network that can 
transmit adverse shocks from one financial institution to another. For example, the 
global financial crisis that started in 2006 from losses in US housing markets was 
amplified by increased uncertainty in the interbank lending markets. Due to the 
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rising loss rates, banks with excess reserves became more cautious and they were 
not willing to give interbank loans as easily as before. This distress caused interbank 
lending rates to increase sharply. Finally, these strains in interbank lending markets 
forced central banks to provide more liquidity to the markets, but the taken actions 
were not sufficient and the growing issues eventually triggered the global systemic 
financial crisis.

2.3 Quantitative risk measurement
Following McNeil et al. (2005) [15, pp. 25–53], this subsection introduces two stan-
dard quantitative risk measures called Value-at-Risk (VaR) and Expected Shortfall 
(ES), and describe some standard modelling methods for the loss distributions.

2.3.1 Risk measures

In general, quantitative risk measures can be used for many different purposes such 
as to estimate the risk limits for trading portfolios or to estimate the prices of 
bearing the risk of the insurance policies. Furthermore, quantitative risk measures 
are used to estimate the capital buffers that individual financial institutions need 
to hold against the future losses. On more aggregated level, new macro-prudential 
regulatory rules can give similar capital requirements for the financial system as a 
whole.

In order to understand quantitative risk measures in mathematical terms, loss 
L is first defined as the difference between the value V of the portfolio at time t
and the future value of the portfolio after the given time horizon ∆, i.e. Lt,t+∆ =
−(Vt+∆ − Vt). The distribution Lt,t+∆ is the loss distribution and it is typically 
assumed to be independent of the time point t. If the time horizon ∆ is fixed and 
Lt,t+∆ is shortly written as L, then the cumulative distribution function for the loss 
distribution is defined as FL(l) = P(L ≤ l). The first quantitative risk measure called 
Value-at-Risk (VaR) is then defined using this cumulative distribution function and 
predefined confidence level α ∈ (0, 1).

Definition 1 (Value-at-Riks (VaR)). VaR at the confidence level α ∈ (0, 1) is given 
by the smallest number l such that the probability that the loss L exceeds l is no 
larger than (1− α). More formally, this can be written as 

  VaR_{\alpha }=\inf \{l \in \mathbb {R}:\mathbb {P}(L>l) \leq 1-\alpha \}= \inf \{l \in \mathbb {R}:F_L(l) \geq \alpha \}.                     (2)

In probabilistic terms, VaR is the quantile of the loss distribution.

Furthermore, so called mean-VaR measure is normally used for the capital ade-
quacy calculations instead of the regular VaR.

Definition 2 (Mean-VaR). Assuming that E[L] = µ, then mean-VaR is defined as 

  VaR_{\alpha }^{mean}=VaR_{\alpha }-\mu . 
      (3)

One clear weakness of this VaR measures is the fact that it does not give any 
information about the severity of the losses that occur with a probability that is less 
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than 1 − α. This problem and some other theoretical and practical weaknesses of 
VaR (e.g. non-additivity, see Artzner et al. (1999) [1]) have prompted development 
of other risk measures. One of these is Expected Shortfall (ES) which develops 
VaR in a sense that it can look further into the tail of the loss distribution. More 
precisely, ES gives the avarage VaR (i.e. conditional expected loss) over all levels 
u ≥ α. In general, both VaR and ES are tail risk measures, as they aim to quantify 
the extreme (i.e. tail) losses. The definitions and differences between VaR and ES 
are further illustrated in figure 1 where a random loss distribution and its VaR and 
ES are plotted.

Figure 1: VaR and ES at α = 0.95 confidence level for a random loss distribution.

Definition 3 (Expected Shortfall (ES)). For loss L with E(|L|) < ∞ and cumulative 
distribution function FL, ES at the confidence level α ∈ (0, 1) is defined as

  ES_{\alpha }=\frac {1}{1-\alpha }\int _{\alpha }^{1}VaR_u(L)du. 








  (4)

Furthermore, if the loss distribution is continuous, then ES can be defined as

  \label {es_var_rule} ES_{\alpha }=\mathbb {E}(L|L \geq VaR_{\alpha }).       (5)

Proof. See McNeil et al. (2005) [15, pp. 45] for the detailed proof of the equation 
5.
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2.3.2 Modelling loss distributions

There are different methods that can be used when modelling loss distributions 
and risk measures. Generally, these methods rely on the assumption that the loss 
distribution for Lt+1 can be modelled through risk factors Xt = (X1

t , ..., X
n
t )

′ and loss 
operator ft : Rn → R. This loss operator essentially maps the risk factor changes 
into losses, i.e.

  L_{t+1}=f_t(\Delta \bold {X}_{t+1}), \text { where } \Delta \bold {X}_{t+1}=(X_{t+1}^1-X_{t}^1,...,X_{t+1}^n-X_{t}^n)'.     


  




 (6)

In practice, the choice of risk factors and loss operator is the actual modelling issue. 
Frequently used risk factors are for example logarithmic prices of financial assets 
and exchange rates, but many other factors can be used depending on the types of 
the modelled instruments and markets.

Traditionally, there exists three general classes of methods that can be used when 
measuring financial risk (especially market risk). The first one of these methods is 
called variance-covariance method2. In this method, it is assumed that the risk 
factor changes have a multivariate normal distribution with the mean vector µµµ and 
the variance-covariance matrix , meaning that ∆Xt+1 ∼ Nn(µµµ, ). The loss operator 
is often assumed to be linear, i.e. ft(x) = −(ct + btx), which indicates that the loss 
distribution is

  L_{t+1} \sim N(-c_t-\bold {b}'_t\pmb {\mu },\bold {b}'_t\bold {\Sigma } \bold {b}_t).    


 (7)

Using this distribution, VaR and ES can be easily calculated. In the simplest case, 
assuming that n = 1 (thus variance is σ), ct = 0 and bt = −1, VaR is

  VaR_{\alpha }=\mu +\sigma \Phi ^{-1}(\alpha ),     (8)

where Φ−1(·) is the inverse of the standard normal distribution function. It is easy 
to show (see e.g. McNeil et al. (2005) [15, pp. 45]) that the ES in this case is

  ES_{\alpha }=\mu +\sigma \frac {\phi (\Phi ^{-1}(\alpha ))}{1-\alpha },   



 (9)

where φ(·) is the probability density function for the standard normal distribution.
In practice, one needs to parametrize µµµ and before the model can be applied. 

Assuming that the risk factors follow stationary processes, µµµ and can be estimated 
by using the sample means and standard deviations of the historical observations of 
the risk factors. The parameters calculated this way are unconditional and thus the 
resulting loss distribution is also unconditional. More advanced methods assume 
that the historical risk factor data is a multivariate time series meaning that the 
conditional µµµ and can be estimated by using time series models.3 In this case, the 
resulting loss distribution is conditional.

Variance-Covariance methods have many known weaknesses. For example, the 
linear loss operator is often too inaccurate approximation of the true link between 

2Depending on the source and exact description, this method (or similar methods) can also be 
called parametric VaR methods.

3In short, the parameters are conditional to the past observations.
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the risk factors and the loss distribution. Other major weakness of the method is 
the normality assumption since the actual financial return series tend to be more 
leptokurtic and heavier-tailed than the Gaussian distribution. This means that the 
risk is underestimated if normality is assumed. Naturally, normal distribution can 
be changed to some other distribution that has heavier tail such as multivariate t 
distribution. However, the use of more complicated loss operators and distributions 
can lead to a situation where there is no closed form solutions available for the risk 
measures. In such case, variance-covariance methods need to borrow tools from the 
second class of the loss distribution methods that are called Monte Carlo methods.

In Monte Carlo -methods, quantitative models for the risk factor changes are first 
decided and parametrized and then the realizations for the risk factor changes are 
simulated using these models. The vector of the simulated risk factor realizations 
is denoted as ∆X̃i

t+1. This simulation process is repeated s times, resulting in 
∆X̃1

t+1, ...,∆X̃s

t+1. The risk factor realizations are converted to losses through loss 
operator, i.e. L̃

i

t+1 = ft(∆X̃i

t+1) for i = 1, ..., s. Finally, as s → ∞, the loss 
distribution FL(l) can be estimated as

  F_s(l):=\frac {1}{s} \sum _{i=1}^{s} \mathbb {I}(\tilde {L}_{t+1}^i \leq l) \rightarrow F_L(l), 









     (10)

where I(·) is the indicator function. Naturally, VaR and ES can be calculated directly 
as the empirical estimates from the simulated losses L̃1

t+1, ..., L̃
s

t+1.
In practice, Monte Carlo models allow the use of more complicated distribu-

tions and loss operators since there is no need to find analytical solutions for the 
risk measures. The downside of these models is the fact that when the simulation 
models become big and complicated, then the computational cost becomes quite con-
siderable. This means that it can take a lot of time to estimate the risk measures. 
Furthermore, the users of the advanced Monte Carlo methods need to have sufficient 
technical understanding of the simulation algorithms and information technology in 
general.

The third class of the loss distribution methods are called historical simulation 
methods. In general, methods in this class are somewhat simplified versions of 
Monte Carlo methods as historical simulations don’t use any complicated simulation 
algorithms to estimate the risk factor distributions. Therefore, the user only needs 
to parametrise the loss operator ft. In fact, the actual historical observations of 
the risk factors are used directly (as ∆X̃i

t+1) and converted to losses. Therefore, the 
model assumption is that the future loss distribution can directly be estimated based 
on the historical observations. However, the historical data series need to be fairly 
large and accurate especially when the rare tail events are evaluated or otherwise the 
estimated risk measures become inaccurate. However, additional tools like extreme 
value theory can be used when the extreme tail losses are estimated, although the 
use of these extreme value theorems also bridges the gap between the historical 
simulation methods and the variance-covariance (or parametric) methods.
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3 Diffusion process
One if not the most common building block when constructing financial models is 
diffusion process. On a general level, stochastic process (Xt : t ≥ 0) is a diffusion if 
its local dynamics can be approximated by using the following stochastic differential 
equation: 

  X_{t+\Delta }-X_t=\mu (t,X_t) \Delta t+\sigma (t,X_t)Z_t. \label {eq:diffusion}      (11)

Here, the process Xt is driven by the drift function µ(t,Xt) and diffusion (or volatil-
ity) function σ(t,Xt) which is multiplied by the independent and normally dis-
tributed Gaussian disturbance term Zt. To understand this process better, Gaussian 
disturbance term is described through Brownian motion which is introduced in this 
section along with some basic results for stochastic diffusion processes.

3.1 Brownian motion
3.1.1 Basic properties of Brownian motion

Before conducting any further modelling with the diffusion process, exact defini-
tion for the Gaussian disturbance term Zt is introduced. This is done by defining 
stochastic process called Brownian motion. The introduction is done following Björk 
(2020) [2, pp. 43-54].

Definition 4 (Brownian motion). A stochastic process (Bt : t ≥ 0) is called a 
standard (one-dimensional) Brownian motion (Wiener process) if the following con-
ditions hold:

1. B0 = 0.

2. For every pair of disjoint time intervals [t1, t2] and [t3, t4] where t1 < t2 ≤ t3 <
t4, the process Bt has independent increments i.e. Bt2 −Bt1 and Bt4 −Bt3 are 
independent stochastic variables.

3. For t1 ≥ t2 the stochastic variable Bt2 − Bt1 has Gaussian distribution with 
mean 0 and variance t2 − t1, i.e. Bt2 − Bt1 ∼ N(0, t2 − t1).

4. Bt has continuous trajectories.

Some basic properties can be shown for Brownian motion by fixing two time 
points, t and t + ∆t, and defining the difference ∆Bt = Bt+∆t − Bt. Based on the 
definition 4, it is easy to see that E[∆Bt] = 0 and V ar[∆Bt] = E[(∆Bt)

2] = ∆t. 
Furthermore, since ∆Bt ∼ N(0,∆t), then based on properties of normal distribution 
it also holds that E[(∆Bt)

4] = 3(∆t)2. Lastly, this means that V ar[(∆Bt)
2] =

E[(∆Bt)
4]−(E[(∆Bt)

2])2 = 3(∆t)2−(∆t)2 = 2(∆t)2. Therefore, when E[(∆Bt)
2] =

∆t → 0, then the variance V ar[(∆Bt)
2] will tend to zero much faster than expected 

value, meaning that (∆Bt)
2 actually starts to look deterministic. This gives some 

heuristic justification to the rule which states that  \int _{0}^{t} (dB_t)^2=t \iff (dB_t)^2=dt. 




   

   (12)
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Figure 2: One hundred random trajectories for Brownian motion.

An example of multiple realized trajectories for standard Brownian motion are 
illustrated in figure 2. As the figure illustrates, the trajectories of Brownian motion 
are continuous but very kinky. In fact, one could proof that the trajectories are 
nowhere differentiable.

Theorem 1. A Brownian motion trajectory is with probability one nowhere differ-
entiable, and it has locally infinite total variation. 

Finally, Brownian motion has some basic transformations that turn out to be 
standard Brownian motions again.

Proposition 1 (Scaling and inversion laws). For any a > 0, the scaled process 
defined by 

  X_t=\frac {1}{\sqrt {a}}B_{at} \text { for $t \geq 0$} 


    (13)

and the inverted process defined by 

  Y_0=0 \text { and } Y_t=tB_{1/t} \text { for $t > 0$}          (14)

are both standard Brownian motion on [0,∞).
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3.1.2 Reflection principle and first hitting time distribution

One often used application in stochastic financial models is to analyse first hitting 
times and probabilities. In practice, first hitting time is time point τa when stochastic 
process first breaches value a. Following Steele (2001) [18, p.66–69], standard Brow-
nian motion (Bt : t ≥ 0) and its first hitting time, defined as τa = inf{t : Bt = a}, 
are analysed. To start with, reflection principle for Brownian motion is defined.

Definition 5 (Reflection principle). If τa is a first hitting time for standard Brow-
nian motion (Bt : t ≥ 0), then the reflected process (B̃t : t ≥ 0) can be defined by 

  \tilde {B}_t= \begin {cases} B_t & \text {if t $< \tau _a$}\\ a-(B_t-a) & \text {if t $\geq \tau _a$}\\ \end {cases}  


 

    
(15)

and B̃t is a standard Brownian motion.

One example of a Brownian motion trajectory and its reflection is given in figure 
3. It can be observed that the reflected path (after hitting the barrier) is basically 
a mirror image of the original trajectory. 

Figure 3: An example of a reflected trajectory for Brownian motion.
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Proposition 2. The process (B̃t : t ≥ 0) is equivalent to process (Bt : t ≥ 0), which 
means that all the joint distributions of these processes are equal.

Based on proposition 2, one can note that if t ≥ τa and Bt > a+ x where x ≥ 0, 
then also B̃t < a + x holds. Since both processes are equivalent, this also means 
that

  \begin {split} \mathbb {P}(\tau _a \leq t, B_t>a+x) & = \mathbb {P}(\tau _a \leq t, \tilde {B}_t<a-x) \\ & =\mathbb {P}(\tau _a \leq t, B_t<a-x). \end {split}               

  \begin {split} \mathbb {P}(\tau _a \leq t, B_t>a+x) & = \mathbb {P}(\tau _a \leq t, \tilde {B}_t<a-x) \\ & =\mathbb {P}(\tau _a \leq t, B_t<a-x). \end {split}      
  \begin {split} \mathbb {P}(\tau _a \leq t, B_t>a+x) & = \mathbb {P}(\tau _a \leq t, \tilde {B}_t<a-x) \\ & =\mathbb {P}(\tau _a \leq t, B_t<a-x). \end {split} 

By introducing maximal process B∗
t = max(Bs : 0 ≤ s ≤ t), the last equality in 

above equation can be illustrated by noting that for all a ≥ 0 and x ≥ 0 it holds 
that 

  \label {eq_ref1} \mathbb {P}(B_t^* \geq a, B_t>a+x) =\mathbb {P}(B_t^* \geq a, B_t<a-x) = \mathbb {P}(B_t>a+x), 
      

           (17)

where the last equality holds since Bt > a+ x naturally implies that B∗
t ≥ a.

The equation 17 gives rather nice way to find the distribution for B∗
t . By setting 

the variable x to 0, the later equality in 17 can be rewritten as P(Bt > a) = P(B∗
t ≥

a,Bt < a). In addition, it is trivially true that P(Bt > a) = P(B∗
t ≥ a,Bt ≥ a). 

Therefore, it holds that 

  \label {eq_ref2} \begin {split} \mathbb {P}(B_t^*\geq a) & =\mathbb {P}(B_t^* \geq a, B_t<a)+\mathbb {P}(B_t^* \geq a, B_t \geq a) \\ & =2\mathbb {P}(B_t>a) \end {split} 
   

     
   

  \label {eq_ref2} \begin {split} \mathbb {P}(B_t^*\geq a) & =\mathbb {P}(B_t^* \geq a, B_t<a)+\mathbb {P}(B_t^* \geq a, B_t \geq a) \\ & =2\mathbb {P}(B_t>a) \end {split}  
  \label {eq_ref2} \begin {split} \mathbb {P}(B_t^*\geq a) & =\mathbb {P}(B_t^* \geq a, B_t<a)+\mathbb {P}(B_t^* \geq a, B_t \geq a) \\ & =2\mathbb {P}(B_t>a) \end {split} 

for all a ≥ 0. Since by definition the increments of Brownian motion are normally 
distributed, one can further write that 

  \label {eq_ref3} \mathbb {P}(B_t > a) = 1-\Phi \left (a/\sqrt {t}\right ).     






 (19)

Therefore, it can be deduced that the cumulative distribution function for maximum 
process B∗

t is 
  \mathbb {P}(B_t^*\leq a) = 2\Phi \left (a/\sqrt {t}\right )-1 

   






  (20)

where equation Φ(•) is the cumulative density function of standard normal distri-
bution.

Finally, the distributional properties of B∗
t can be translated into first hitting 

time distribution for barrier a > 0. First, by noting that 

  \mathbb {P}(B_t^* < a)=\mathbb {P}(\tau _a > t)=2\Phi \left (a/\sqrt {t}\right )-1, 
       







  (21)

then it can be deduced that the cumulative distribution function Fτa is 

  \label {eq_ref3} \mathbb {P}(\tau _a \leq t)=F_{\tau _a}(t)=2\left (1-\Phi \left (a/\sqrt {t}\right )\right ) =2\Phi \left (-a/\sqrt {t}\right ).      

















 (22)

Finally, by differentiating this with respect to t, the probability density function fτa
can be formulated as 

  f_{\tau _a}(t)=\frac {a}{t^{3/2}}\phi \left (\frac {a}{\sqrt {t}}\right ), \text {for t $\geq $ 0}, 










   (23)

where φ(•) is the probability density function of standard normal distribution.
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3.1.3 Lévy characterization of Brownian motion

First, a heuristic definition for information FX
t and definition for (FX

t )-martingale 
are given following Björk (2020) [2, p. 45-46].

Definition 6 (The information generated by X). The symbol FX
t denotes the in-

formation generated by X over the interval [0, t].

• If it is possible to decide whether a given event A has occurred or not based 
on the trajectory (Xs : 0 ≤ s ≤ t), then this can be written as A ∈ FX

t which 
means that A is FX

t -measurable.

• If the value of a given random variable Z can be completely determined by 
the observations of the trajectory (Xs : 0 ≤ s ≤ t) then one can write that 
Z ∈ FX

t .

• If Y is a stochastic process such that Yt ∈ FX
t for all t ≥ 0 then one can say 

that Y is adapted to the filtration {FX
t }t≥0.

Definition 7 ((FX
t )-martingale). A stochastic process X is (FX

t )-martingale if fol-
lowing conditions hold:

• X is adapted to filtration {FX
t }t≥0.

• For all t it holds that E[|Xt|] < ∞.

• For all s ≤ t it holds that E[Xt|Fs] = Xs

In practice, this definition means that the expected future value of Xt is the same 
as the observed value now. By changing the last condition, so called supermartingale 
and submartingale can also be defined.

Definition 8 (Supermartingale and submartingale). Given that X is adapted to 
filtration {FX

t }t≥0 and E[|Xt|] < ∞, then

• if it holds that E[Xt|Fs] ≤ Xs for all s ≤ t, then this is called supermartingale.

• if it holds that E[Xt|Fs] ≥ Xs for all s ≤ t, then this is called submartingale.

One of the most important notions for martingale theory is stopping time, which 
intuitively describes a rule that could be used to stop a random process. Following 
Björk (2020) [2, pp. 530-532], a definition for stopping time and stopped process 
are given.

Definition 9 (Stopping time). A random variable θ that takes values in [0,∞) is 
called a stopping time with respect to the filtration {Ft}t≥0 if {θ ≤ t} ∈ Ft for all 
t ≥ 0.

Based on this definition, a stopping time can be characterized by the fact that at 
any time t one can decide whether θ has occurred or not based upon the information 
available at t. Furthermore, a bounded stopping time is then defined as min(t, θ).
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Proposition 3. Let X be a martingale and let θ be a stopping time with respect to 
the filtration {Ft}t≥0. Then the stopped process Xθ is defined by 

  X^{\theta }_t=X_{\min (t,\theta )} 
   (24)

and it is a martingale.

A localized version of the martingale property is given following Steele (2001) 
[18, pp. 103-104].

Definition 10 (Local martingale). If a process Xt is adapted to filtration {FX
t }t≥0, 

then (Xt : t ≥ 0) is called a local martingale provided that there is a non-decreasing 
sequence {θk} of stopping times with the property that θk → ∞ with probability 
one as k → ∞ and such that for each k the process defined by 

  X_t^{\theta _k} = X_{\min (t,\theta _k)}-X_0 \text { for } t \in [0, \infty ) 
       (25)

is a martingale with respect to the filtration {FX
t }t≥0.

Jeanblanc et al. (2009) [12, pp. 27-30] define predictable quadratic variation 
for a continuous local martingale M , denoted as ⟨M⟩ = ⟨M,M⟩, to be equal to the 
limit in probability of 

∑︁
i(Mtni+1

− Mtni
)2, where 0 = tn0 < tn1 ... < tnp(n) = t, when 

sup0<i≤p(n)−1(t
n
i+1 − tni ) goes to zero.4

Proposition 4 (Quadratic variation of Brownian motion). For Brownian motion 
Bt, quadratic variation is defined such that 

  \langle B \rangle _t=\lim \sum _{i=0}^{p(n)-1}(B_{t^n_{i+1}}-B_{t^n_{i}})^2=t  






   (26)

So called Lévy characterization of Brownian motion can be given by using the 
properties described in this subsection. The characterization follows Jeanblanc et 
al. (2009) [12, p. 30].

Definition 11 (Lévy characterization of Brownian motion). Let Bt be a R-valued 
continuous process starting from 0 and {Ft}t≥0 its natural filtration. Then this 
continuous process Bt is said to be Brownian motion if one of the following equivalent 
properties is satisfied:

• The processes (Xt : t ≥ 0) and (X2
t − t : t ≥ 0) are {Ft}t≥0 -local martingales.

• The process (Xt : t ≥ 0) is {Ft}t≥0 -local martingale with ⟨B⟩t = t.

Lastly, it is noted that Jeanblanc et al. (2009) [12, pp. 27-30] define continuous 
semi-martingale as R-valued process (Xt : t ≥ 0) that can be decomposed so that 
Xt = Mt + At, where (Mt : t ≥ 0) is a continuous local martingale with M0 = 0, 
and (At : t ≥ 0) is a continuous adapted process that has locally finite variation.

4For quadratic covariation between two continuous local martingales M and N , ⟨M,N⟩, it holds 
that ⟨M,N⟩ = 1

4 (⟨M +N⟩ − ⟨M −N⟩).
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3.2 Stochastic differential equations
3.2.1 Itô’s formula

Now that Brownian motion and some of its basic properties are described, the 
diffusion equation (11) can be analysed further. As is noted in Björk (2020) [2, 
pp. 45], as ∆t → 0, then the equation (11) becomes following stochastic differential 
equation:   \begin {cases} dX_t=\mu (t,X_t)dt+\sigma (t,X_t)dB_t \\ X_0=x. \end {cases} \label {eq:diffusion2} 

  

 
(27)

Moreover, equation 27 can be expressed equivalently as the following integral equa-
tion: 

  X_t= x + \int _{0}^{t} \mu (s,X_s)ds + \int _{0}^{t} \sigma (s,X_s)dB_s. \label {eq:stoch_int}  











 (28)

Here, the first integral is the standard Rieman integral and the latter stochastic 
integral is called Itô integral.

Although the exact analysis of stochastic integrals is beyond the scope of this 
thesis, one of the most important results of stochastic calculus, called Itó’s formula 
(Itó’s lemma), is introduced following Björk (2020) [2, pp. 54].
Theorem 2 (Itó’s formula). Assume that process X has a stochastic differential 
given by 

  dX_t=\mu _tdt+\sigma _tdB_t     (29)
where µ and σ are adapted processes, and let f be a C1,2-function. Define process 
Z by Zt = f(t,Xt), then Z has a stochastic differential given by 

  df(t,X_t)=\left (\frac {\partial f}{\partial t}(t,X_t) + \mu _t \frac {\partial f}{\partial x}(t,X_t) + \frac {1}{2} \sigma ^2_t \frac {\partial ^2 f}{\partial x^2}(t,X_t) \right )dt + \sigma \frac {\partial f}{\partial x}(t,X_t)dB_t 





 























 (30)

Proof. A heuristic proof can be given by noting that Taylor expansion that includes 
second order terms gives 

  df=\frac {\partial f}{\partial t}dt+\frac {\partial f}{\partial x}dX_t +\frac {1}{2}\frac {\partial ^2 f}{\partial x^2}(dX_t)^2 +\frac {1}{2}\frac {\partial ^2 f}{\partial t^2}(dt)^2 +\frac {\partial ^2 f}{\partial t \partial x}(dt)(dX_t). 
































 (31)

By definition, dXt = µtdt+ σtdBt. Therefore 
  (dX_t)^2=\mu _t^2(dt)^2+2\mu _t\sigma _t(dt)(dB_t)+\sigma _t^2(dB_t)^2. 

 


   


 (32)
Plugging this to the Taylor expansion results to 

  \begin {split} df=\frac {\partial f}{\partial t}dt &+\frac {\partial f}{\partial x}(\mu _tdt+\sigma _tdB_t) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial x^2}(\mu _t^2(dt)^2+2\mu _t\sigma _t(dt)(dB_t)+\sigma _t^2(dB_t)^2) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial t^2}(dt)^2 +\frac {\partial ^2 f}{\partial t \partial x}(dt)(\mu _tdt+\sigma _tdB_t). \end {split} 










  \begin {split} df=\frac {\partial f}{\partial t}dt &+\frac {\partial f}{\partial x}(\mu _tdt+\sigma _tdB_t) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial x^2}(\mu _t^2(dt)^2+2\mu _t\sigma _t(dt)(dB_t)+\sigma _t^2(dB_t)^2) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial t^2}(dt)^2 +\frac {\partial ^2 f}{\partial t \partial x}(dt)(\mu _tdt+\sigma _tdB_t). \end {split} 










   




  \begin {split} df=\frac {\partial f}{\partial t}dt &+\frac {\partial f}{\partial x}(\mu _tdt+\sigma _tdB_t) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial x^2}(\mu _t^2(dt)^2+2\mu _t\sigma _t(dt)(dB_t)+\sigma _t^2(dB_t)^2) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial t^2}(dt)^2 +\frac {\partial ^2 f}{\partial t \partial x}(dt)(\mu _tdt+\sigma _tdB_t). \end {split} 














  \begin {split} df=\frac {\partial f}{\partial t}dt &+\frac {\partial f}{\partial x}(\mu _tdt+\sigma _tdB_t) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial x^2}(\mu _t^2(dt)^2+2\mu _t\sigma _t(dt)(dB_t)+\sigma _t^2(dB_t)^2) \\ &+\frac {1}{2}\frac {\partial ^2 f}{\partial t^2}(dt)^2 +\frac {\partial ^2 f}{\partial t \partial x}(dt)(\mu _tdt+\sigma _tdB_t). \end {split} 

When dt → 0, then the term (dt)2 tends to zero much faster. Furthermore, it can 
be shown that also (dt)(dBt) tends to zero much faster than dt. These justifications 
motivate to plug (dt)2 = 0 and (dt)(dBt) = 0 to the equation above. Finally, Itô 
formula is obtained by plugging the known relation (dBt)

2 = dt to the equation 
above.
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3.2.2 Time-homogeneous diffusion

Following Jeanblanc et al. (2009) [12, pp. 270-271], time-homogeneous diffusion is 
defined as a linear diffusion that is a strong Markov process with continuous paths 
taking values on interval I ∈ [l, r] where l > −∞ and r < ∞. Then the time 
homogeneous diffusion (or Itô diffusion) is defined as

  \label {th_diffusion} X_t=x+\int _{0}^{t}b(X_s)ds+\int _{0}^{t}\sigma (X_s)dB_s  











 (34)

where b(·) and σ(·) are two real valued functions which are Libschitz on the interval 
I such that σ(x) > 0 for all x in the interval I. In that case, there exists a unique 
solution to the diffusion 34 starting at point x ∈ (l, r) up to the first exit time 
τl,r = min(τl, τr).

Two useful properties for the time-homogeneous diffusion process are introduced, 
which are scale function and quadratic variation. Following Jeanblanc et al. (2009) 
[12, pp. 270-271], scale function is introduced.

Definition 12 (Scale function). Let X be a diffusion on I and τy = inf{t ≥ 0 :
Xt = y} for y ∈ I. A scale function s(·) is an increasing function from I to R such 
that for x ∈ [a, b]

  \mathbb {P}_x(\tau _a<\tau _b)=\frac {s(x)-s(b)}{s(a)-s(b)}.   



 (35)

In addition, if s(·) is scale function, then so is αs(·) + β where α > 0.

Proposition 5. The process (s(Xt), 0 ≤ t ≤ τl,r) is a local martingale, i.e. s(Xt)
τl,r . 

The scale function satisfies 

  \frac {1}{2}\sigma ^2(x)s''(x)+b(x)s'(x)=0. 


     (36)

Following Steele (2001) [18, pp. 129-129], quadratic variation for the time-
homogenous diffusion process is defined.

Proposition 6 (Quadratic variation of time-homogeneous diffusion process). As-
suming that Xt is time-homogeneous diffusion process defined as in 34, then its 
quadratic variation is 

  \langle X_t \rangle = \int _0^t \sigma ^2(X_s) ds 




 (37)

Finally, assuming that there are two time-homogeneous diffusion processes X1
t

and X2
t with σ1(·) and σ2(·) respectively, then quadratic covariation is

  \begin {split} \langle X^1_t,X^2_t \rangle &=\frac {1}{4}(\langle X^1_t+X^2_t \rangle -\langle X^1_t-X^2_t \rangle ) \\ &=\frac {1}{4} \left (\int _0^t(\sigma _1(X_s^1)+\sigma _2(X_s^2))^2ds-\int _0^t(\sigma _1(X_s^1)-\sigma _2(X_s^2))^2ds \right ) \\ &=\frac {1}{4}(4\sigma _1(X_s^1)\sigma _2(X_s^2)) =\int _0^t \sigma _1(X_s^1)\sigma _2(X_s^2)ds. \end {split} 
 


 







  




  \begin {split} \langle X^1_t,X^2_t \rangle &=\frac {1}{4}(\langle X^1_t+X^2_t \rangle -\langle X^1_t-X^2_t \rangle ) \\ &=\frac {1}{4} \left (\int _0^t(\sigma _1(X_s^1)+\sigma _2(X_s^2))^2ds-\int _0^t(\sigma _1(X_s^1)-\sigma _2(X_s^2))^2ds \right ) \\ &=\frac {1}{4}(4\sigma _1(X_s^1)\sigma _2(X_s^2)) =\int _0^t \sigma _1(X_s^1)\sigma _2(X_s^2)ds. \end {split} 










  











 







  \begin {split} \langle X^1_t,X^2_t \rangle &=\frac {1}{4}(\langle X^1_t+X^2_t \rangle -\langle X^1_t-X^2_t \rangle ) \\ &=\frac {1}{4} \left (\int _0^t(\sigma _1(X_s^1)+\sigma _2(X_s^2))^2ds-\int _0^t(\sigma _1(X_s^1)-\sigma _2(X_s^2))^2ds \right ) \\ &=\frac {1}{4}(4\sigma _1(X_s^1)\sigma _2(X_s^2)) =\int _0^t \sigma _1(X_s^1)\sigma _2(X_s^2)ds. \end {split} 










 












  \begin {split} \langle X^1_t,X^2_t \rangle &=\frac {1}{4}(\langle X^1_t+X^2_t \rangle -\langle X^1_t-X^2_t \rangle ) \\ &=\frac {1}{4} \left (\int _0^t(\sigma _1(X_s^1)+\sigma _2(X_s^2))^2ds-\int _0^t(\sigma _1(X_s^1)-\sigma _2(X_s^2))^2ds \right ) \\ &=\frac {1}{4}(4\sigma _1(X_s^1)\sigma _2(X_s^2)) =\int _0^t \sigma _1(X_s^1)\sigma _2(X_s^2)ds. \end {split} 

16



4 Squared Bessel process
Squared Bessel process is used in many practical applications of financial modelling 
such as in Cox-Ingersoll-Ross interest rate models and Constant Elasticity Variance 
models for equity modelling. In this study, squared Bessel process is used to model 
the total monetary reserves of the banks in financial markets. Therefore, this section 
introduces definition and some of the main properties of the squared Bessel process. 
If not stated otherwise, the main sources used in this section are chapter XI of 
Revuz and Yor (1991) [17, pp. 409-434] and chapter 6 of Jeanblanc et al. (2009) 
[12, pp. 333-403]. Furthermore, notes by Dufresne (2004) [6, pp. 3–7] are used as a 
secondary source when the definition and distribution of squared Bessel process in 
subsections 4.1 and 4.2 are discussed.

4.1 Definition
Assume that Bt = (B1

t , ..., B
δ
t ) is δ-dimensional Brownian motion, i.e. Bt ∼ BM δ. 

Furthermore, assume that process ρt is defined as ρt = ||Bt|| = (
∑︁n

i=1(B
i
t)

2)
1/2

and its square is ρ2t =
∑︁n

i=1(B
i
t)

2. By applying Itô’s formula and by noting that 
f(x) = x2, f ′(x) = 2x and f ′′(x) = 2, it follows that

  d\rho _t^2=2\sum _{i=1}^{\delta }B_t^i dB_t^i+\sum _{i=1}^{\delta }dt  













 (39)

and therefore

  \rho _t^2=\rho _0^2+2\sum _{i=1}^{\delta }\int _{0}^{t}B_s^i dB_s^i+\delta t.    












   (40)

Following this, a new one dimensional process βt is defined such that

  \beta _t=\sum _{i=1}^{\delta }\int _{0}^{t}\left (\frac {B_s^i}{\rho _s}\right )dB_s^i, 


















 (41)

where the division by ρt causes no problems since for δ = 1 the set {t : ρt = 0} has 
Lebesgue measure 0 and for δ > 1, ρt is a.s > 0. Importantly, process βt is also 
Brownian motion since

  \langle \beta _t, \beta _t \rangle = \sum _{i=1}^{\delta }\int _{0}^{t}\frac {(B_s^i)^2}{\rho _s^2}ds =\int _{0}^{t}\frac {\rho _s^2}{\rho _s^2}ds=t.  























   (42)

Therefore, the stochastic differential for ρ2 can be rewritten as

  \rho _t^2=\rho _0^2+2\int _{0}^{t}\rho _s d\beta _s+\delta t, \delta =1,2,...    





        (43)

The process ρ2t is further extended for other δ ≥ 0 and starting points y ≥ 0 by 
considering the following stochastic differential equation:

  \label {bessel_def1} Y_t=y+2\int _{0}^{t}\sqrt {|Y_s|}d\beta _s+\delta t.    






   (44)
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Using some general theorems (see Revuz and Yor (1991) [17, pp. 409] for further 
details), it can be shown that this stochastic differential equation has a unique strong 
solution for any δ ≥ 0 and y ≥ 0. The comparison theorems also show that Yt ≥ 0
a.s, meaning that the absolute value in the square root can be discarded.

Definition 13 (The squared Bessel process of dimension δ). For every y, δ ≥ 0, the 
unique strong solution of

  Y_t=y+2\int _{0}^{t}\sqrt {Y_s}dB_s+\delta t    






   (45)

is called the squared Bessel process of dimension δ started at y. The index of the 
process is v = δ/2− 1. The shorthand notation for this process is BESQδ(y).

Finally, two important properties for the squared Bessel process are introduced, 
which are additivity property and scaling property.

Theorem 3 (Additivity property of BESQ). If Y 1
t ∼ BESQδ1(y1) and Y 2

t ∼
BESQδ2(y2) are independent, then Y 1

t + Y 2
t ∼ BESQδ1+δ2(y1 + y2).

Proof. For two independent linear BM’s B1
t and B2

t , call Y 1
t and Y 2

t the correspond-
ing two solutions for (y1, δ1) and (y2, δ2), and set Y 3

t = Y 1
t + Y 2

t . Then

  Y_t^3=(y_1+y_2)+2\int _{0}^{t}\left (\sqrt {Y_s^1}dB^1_s + \sqrt {Y_s^2}dB^2_s\right )+(\delta _1+\delta _2)t. 
     




















    (46)

Now, let B3 be a third BM independent of B1
t and B2

t , then the process γt is defined 
by

  \gamma _t= \int _{0}^{t}\mathbb {I}(Y^3_s>0)\sqrt {\frac {Y^1_s}{Y^3_s}}dB^1_s+ \int _{0}^{t}\mathbb {I}(Y^3_s>0)\sqrt {\frac {Y^2_s}{Y^3_s}}dB^2_s+ \int _{0}^{t}\mathbb {I}(Y^3_s=0)dB^3_s, 






 
















 
















 

  (47)

which is linear BM since ⟨γt, γt⟩ = t. Therefore, one can write that

  Y^3_t=(y_1+y_2)+2\int _{0}^{t}\sqrt {Y_s^3}d\gamma _s+(\delta _1+\delta _2)t 
     







      (48)

which then completes the proof.

Theorem 4 (Scaling property of BESQ). For any Yt ∼ BESQδ(y) and c > 0, it 
holds that cYt/c ∼ BESQδ(cy).

Proof. Stochastic differential equation for cYt/c can be written as

  cY_{t/c}=cy+2\int _{0}^{t/c}\sqrt {cY_s}\sqrt {c}dB_{s/c}+\delta t.    









   (49)

Based on the scaling property of Brownian motion, also 
√
cBt/c is Brownian mo-

tion and the result follows from the uniqueness of the solution to this stochastic 
differential equation.
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4.2 Distribution
To start with, it is assumed that ρ2t ∼ BESQδ(x). Then the two sided Laplace 
transform of the probability density function fρ2 is5

  \mathcal {L}\{f_t^\delta \}(\lambda )=E[e^{-\lambda \rho ^2_t}]=\phi (x, \delta ). 
        (50)

Now, the additivity property of squared Bessel process implies that φ(x1 + x2, δ1 +
δ2) = φ(x1, δ1)φ(x2, δ2) for all x1, x2, δ1, δ2 ≥ 0. Importantly, this also means that 
φ(x, δ) = φ(x, 0)φ(0, δ). Since φ(0, 0) = 1, it holds that φ(x, 0) = αx for some α > 0. 
Similarly, it holds that φ(0, δ) = βδ for some β > 0. Therefore, one can write that

  \phi (x,\delta )=\phi (x,0)\phi (0,\delta )=\alpha ^x \beta ^\delta .         (51)
So that α and β can be solved, it is assumed that Bt is one dimensional Brownian 

motion starting from 
√
x, i.e. Bt ∼ BM1(

√
x). Based on this assumption and by 

setting δ = 1, one can further calculate that 

  \begin {split} \phi (x,1)&=E[e^{-\lambda B_t^2}] \\ &=\int _{-\infty }^{\infty }e^{-\lambda y^2} \frac {1}{\sqrt {2 \pi t}} e^{-\frac {-(\sqrt {x}-y)^2}{2t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}} \int _{-\infty }^{\infty } e^{-(\lambda +\frac {1}{2t})y^2+\frac {\sqrt {x}y}{t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}}\sqrt {\frac {\pi }{\lambda +\frac {1}{2t}}} e^{\frac {x}{4t^2(\lambda +\frac {1}{2t})}} \\ &=\frac {1}{(1+2\lambda t)^{1/2}}e^{-\lambda x / (1+2\lambda t)}. \end {split}   


  \begin {split} \phi (x,1)&=E[e^{-\lambda B_t^2}] \\ &=\int _{-\infty }^{\infty }e^{-\lambda y^2} \frac {1}{\sqrt {2 \pi t}} e^{-\frac {-(\sqrt {x}-y)^2}{2t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}} \int _{-\infty }^{\infty } e^{-(\lambda +\frac {1}{2t})y^2+\frac {\sqrt {x}y}{t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}}\sqrt {\frac {\pi }{\lambda +\frac {1}{2t}}} e^{\frac {x}{4t^2(\lambda +\frac {1}{2t})}} \\ &=\frac {1}{(1+2\lambda t)^{1/2}}e^{-\lambda x / (1+2\lambda t)}. \end {split} 















  \begin {split} \phi (x,1)&=E[e^{-\lambda B_t^2}] \\ &=\int _{-\infty }^{\infty }e^{-\lambda y^2} \frac {1}{\sqrt {2 \pi t}} e^{-\frac {-(\sqrt {x}-y)^2}{2t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}} \int _{-\infty }^{\infty } e^{-(\lambda +\frac {1}{2t})y^2+\frac {\sqrt {x}y}{t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}}\sqrt {\frac {\pi }{\lambda +\frac {1}{2t}}} e^{\frac {x}{4t^2(\lambda +\frac {1}{2t})}} \\ &=\frac {1}{(1+2\lambda t)^{1/2}}e^{-\lambda x / (1+2\lambda t)}. \end {split} 

















  \begin {split} \phi (x,1)&=E[e^{-\lambda B_t^2}] \\ &=\int _{-\infty }^{\infty }e^{-\lambda y^2} \frac {1}{\sqrt {2 \pi t}} e^{-\frac {-(\sqrt {x}-y)^2}{2t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}} \int _{-\infty }^{\infty } e^{-(\lambda +\frac {1}{2t})y^2+\frac {\sqrt {x}y}{t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}}\sqrt {\frac {\pi }{\lambda +\frac {1}{2t}}} e^{\frac {x}{4t^2(\lambda +\frac {1}{2t})}} \\ &=\frac {1}{(1+2\lambda t)^{1/2}}e^{-\lambda x / (1+2\lambda t)}. \end {split} 

















  \begin {split} \phi (x,1)&=E[e^{-\lambda B_t^2}] \\ &=\int _{-\infty }^{\infty }e^{-\lambda y^2} \frac {1}{\sqrt {2 \pi t}} e^{-\frac {-(\sqrt {x}-y)^2}{2t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}} \int _{-\infty }^{\infty } e^{-(\lambda +\frac {1}{2t})y^2+\frac {\sqrt {x}y}{t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}}\sqrt {\frac {\pi }{\lambda +\frac {1}{2t}}} e^{\frac {x}{4t^2(\lambda +\frac {1}{2t})}} \\ &=\frac {1}{(1+2\lambda t)^{1/2}}e^{-\lambda x / (1+2\lambda t)}. \end {split} 


 


  \begin {split} \phi (x,1)&=E[e^{-\lambda B_t^2}] \\ &=\int _{-\infty }^{\infty }e^{-\lambda y^2} \frac {1}{\sqrt {2 \pi t}} e^{-\frac {-(\sqrt {x}-y)^2}{2t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}} \int _{-\infty }^{\infty } e^{-(\lambda +\frac {1}{2t})y^2+\frac {\sqrt {x}y}{t}}dy \\ &=\frac {e^{-x/2t}}{\sqrt {2\pi t}}\sqrt {\frac {\pi }{\lambda +\frac {1}{2t}}} e^{\frac {x}{4t^2(\lambda +\frac {1}{2t})}} \\ &=\frac {1}{(1+2\lambda t)^{1/2}}e^{-\lambda x / (1+2\lambda t)}. \end {split} 

This implies that in general

  \phi (x,\delta )=\frac {1}{(1+2\lambda t)^{\delta /2}}e^{-\lambda x / (1+2\lambda t)}.  


 
 (53)

where

  \alpha =e^{-\lambda / (1+2\lambda t)} \text { and } \beta =\frac {1}{(1+2\lambda t)^{1/2}}.   


 
 (54)

When x = 0 and δ > 0, the exponential disappears which means that

  \phi (0,\delta )=\frac {1}{(1+2\lambda t)^{\delta /2}}.  


 
 (55)

In this case, ρ22 has a gamma distribution6 with shape parameter δ/2 and scale 
parameter 2t that has probability density function

  f_t^\delta (0,y)=\frac {y^{\delta /2-1}}{(2t)^{\delta /2}\Gamma (\delta /2)}e^{-y/2t} \mathbb {I}_{\{y>0\}}. 
  




 (56)

5For later use, it is noted that the relation between the moment-generating function and the 
two sided Laplace transform is MX(λ) = L{fX}(−λ)

6Gamma distribution Γ(k, θ) has moment-generating function 1
(1−λθ)k
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When x, δ > 0, the exponential factor in φ(x, δ) corresponds to a compound 
distribution where Poisson(x/2t) is frequency distribution and Γ(1, 2t) is severity 
distribution7, since

  e^{-\lambda x / (1+2\lambda t)}=e^{\frac {x}{2t}(M(\lambda )-1)} \text { where } M(\lambda )=\frac {1}{(1+2\lambda t)}.  


 



 
 (57)

Furthermore, one can write that

  \begin {split} \phi (x,\delta )&= M(\lambda )^{\delta /2} e^{\frac {x}{2t}(M(\lambda )-1)} \\ &= e^{-x/2t} M(\lambda )^{\delta /2} \sum _{n=0}^{\infty }\frac {(\frac {x}{2t}M(\lambda ))^n}{n!} \\ &=e^{-x/2t} \sum _{n=0}^{\infty }\frac {x^n}{(2t)^n n!}M(\lambda )^{n+\delta /2}. \end {split}   




  \begin {split} \phi (x,\delta )&= M(\lambda )^{\delta /2} e^{\frac {x}{2t}(M(\lambda )-1)} \\ &= e^{-x/2t} M(\lambda )^{\delta /2} \sum _{n=0}^{\infty }\frac {(\frac {x}{2t}M(\lambda ))^n}{n!} \\ &=e^{-x/2t} \sum _{n=0}^{\infty }\frac {x^n}{(2t)^n n!}M(\lambda )^{n+\delta /2}. \end {split} 









  \begin {split} \phi (x,\delta )&= M(\lambda )^{\delta /2} e^{\frac {x}{2t}(M(\lambda )-1)} \\ &= e^{-x/2t} M(\lambda )^{\delta /2} \sum _{n=0}^{\infty }\frac {(\frac {x}{2t}M(\lambda ))^n}{n!} \\ &=e^{-x/2t} \sum _{n=0}^{\infty }\frac {x^n}{(2t)^n n!}M(\lambda )^{n+\delta /2}. \end {split} 









  \begin {split} \phi (x,\delta )&= M(\lambda )^{\delta /2} e^{\frac {x}{2t}(M(\lambda )-1)} \\ &= e^{-x/2t} M(\lambda )^{\delta /2} \sum _{n=0}^{\infty }\frac {(\frac {x}{2t}M(\lambda ))^n}{n!} \\ &=e^{-x/2t} \sum _{n=0}^{\infty }\frac {x^n}{(2t)^n n!}M(\lambda )^{n+\delta /2}. \end {split} 

Now, it can be shown that the following function

  f_t^\delta (x,y)=\sum _{n=0}^{\infty }\frac {x^n y^{\delta /2+n-1}} {n! \Gamma (\delta /2+n)(2t)^{\delta /2+2n}} e^{-(x+y)/(2t)} 
  






 
 (59)

inverts this Laplace transform, i.e.  \int _{0}^{\infty }e^{-\lambda y} f_t^\delta (x,y) dy = \phi (x,\delta ) 




      (60)

which means that the function f δ
t (x, y) is the probability density function for the 

squared Bessel process at time t in case when x, y > 0. By introducing the modified 
Bessel function Iv of the first kind of order v:

  I_v(z)=\sum _{n=0}^{\infty }\frac {(z/2)^{v+2n}}{n!\Gamma (n+v+1)}, v,z \in \mathbb {C}, 





  
     (61)

density f δ
t (x, y) can be further written as

  f_t^\delta (x,y)=\left (\frac {1}{2t}\right )\left (\frac {y}{x}\right )^{v/2}e^{-(x+y)/2t}I_v(\sqrt {xy}/t)\mathbb {I}_{\{y>0\}}, 
  













 (62)

where v = δ/2− 1 is the index v introduced in the definition of the squared Bessel 
process.

Lastly, in the case where δ = 0 and x > 0, then the Laplace transform φ(x, δ) is 
just 

  \phi (x,0)=e^{-\lambda x / (1+2\lambda t)} =e^{\frac {x}{2t}(M(\lambda )-1)}.     


 (63)

which is the Laplace transform for the aforementioned compound Poisson(x/2t)
and Gamma Γ(1, 2t) distribution. This also means that the probability for the case 

7Assume that X =
∑︁N

i=1 Zi where N ∼ Poisson(θ) and Zi are independently and iden-
tically distributed. Then the moment-generating function is MX(λ) = MN (ln(Mz(λ))) =

eθ(e
ln(Mz(λ))−1) = eθ(MZ(λ)−1).

20



where ρ2t = 0 is non-zero since the probability that the Poisson(x/2t) distribution 
produces zero observation is e−x/2t. Therefore, in case when δ = 0, it holds that

  \begin {split} &f_t^0(x,0)=e^{-x/2t} \\ &f_t^0(x,y)=\left (\frac {1}{2t}\right )\left (\frac {y}{x}\right )^{-1/2}e^{-(x+y)/2t}I_1(\sqrt {xy}/t)\mathbb {I}_{\{y>0\}} \end {split} 
   

  \begin {split} &f_t^0(x,0)=e^{-x/2t} \\ &f_t^0(x,y)=\left (\frac {1}{2t}\right )\left (\frac {y}{x}\right )^{-1/2}e^{-(x+y)/2t}I_1(\sqrt {xy}/t)\mathbb {I}_{\{y>0\}} \end {split} 
  















  \begin {split} &f_t^0(x,0)=e^{-x/2t} \\ &f_t^0(x,y)=\left (\frac {1}{2t}\right )\left (\frac {y}{x}\right )^{-1/2}e^{-(x+y)/2t}I_1(\sqrt {xy}/t)\mathbb {I}_{\{y>0\}} \end {split} 

Finally, the result obtained here can be collected under the following theorem.

Theorem 5 (Probability density function of BESQδ(x)). For Yt ∼ BESQδ(x) and 
δ > 0, the probability density function is

  f_t^\delta (x,y)=\left (\frac {1}{2t}\right )\left (\frac {y}{x}\right )^{v/2}e^{-(x+y)/2t}I_v(\sqrt {xy}/t), 
  













 (65)

where Y0 = x > 0, v = δ/2− 1 and Iv(·) is the Bessel function of index v.
When x = 0, then the density is 

  f_t^\delta (0,y)=\frac {y^{\delta /2-1}}{(2t)^{\delta /2}\Gamma (\delta /2)}e^{-y/2t}, 
  




 (66)

which means that Yt ∼ Γ(δ/2, 2t).
When δ = 0, then the probability density that Yt = 0 is 

  f_t^0(x,0)=e^{-x/2t}. 
     (67)

Based on e.g. Delbaen and Shirakawa (2002) [5, pp. 90–91], there is a conve-
nient connection between the squared Bessel process and the non-central chi-squared 
distribution. The non-central chi-squared distribution, denoted as V ∼ χ2(k,Λ), is 
defined so that V =

∑︁k
i=1 Z

2
i , where Zi are independently distributed normal random 

variables, i.e. Zi ∼ N(µi, 1). The parameter k is the degree of freedom parameter 
and Λ =

∑︁k
i µ

2
i is the non-centrality parameter.

Lemma 1. For Yt ∼ BESQδ(x), where x ≥ 0 and δ ≥ 0, it holds that

  Y_t \stackrel {d}{=} tV, 

  (68)

where V ∼ χ2(δ, x
t
).

Proof. The Laplace transform for V ∼ χ2(δ, x
t
) is

  \mathbb {E}\left [e^{-\lambda V}\right ]= \frac {e^{-\frac {\lambda }{1+2\lambda }\frac {x}{t}}}{(1+2\lambda )^{\delta /2}}. 













 
 (69)

As was shown before, the Laplace transform for the squared Bessel process, i.e. 
BESQδ(x), is φ(x, δ). Therefore, it holds that

  \phi (x,\delta )=\frac {e^{\frac {-\lambda x}{1+2\lambda t}}}{(1+2\lambda t)^{\delta /2}} =\frac {e^{\frac {-\lambda t}{1+2\lambda t}\frac {x}{t}}}{(1+2\lambda t)^{\delta /2}} =\mathbb {E}\left [e^{-\lambda tV}\right ],  





 









 






 (70)

As the Laplace transforms for both random variables are equal, this concludes the 
proof.
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4.3 Trajectories

In many modelling applications, the behaviour of the process trajectories play an 
important role, as for example the process behaviour around zero or the long-term 
convergence of the process can tell a lot about the properties of the underlying 
phenomenon. For squared Bessel process, the dimension δ is the key variable that 
defines the behaviour of its trajectories. This fact is illustrated in figure 4 where 
example paths for squared Bessel process are plotted using different dimensions.

Figure 4: Four random squared Bessel process trajectories for different dimensions. 
When δ = 0, once process hits zero it thereafter remains at zero level. When δ = 1, 
the process hits zero multiple times, but instantly reflects away from zero point. 
When δ = 2 and δ = 3, then the process never hits zero.

The analysis of the the trajectories requires the use of scale functions for squared 
Bessel process. Assuming that Yt is a squared Bessel process with dimension δ, then 
s(Yt)

τ is a local martingale where τ is the first hitting time of 0. The scale functions 
for the different dimensions are introduced in the following proposition.

Proposition 7. Let Yt be a squared Bessel process with dimension δ, then the scale 
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functions are 

  \begin {split} &s(x)=x^{1-\delta /2} \text { for } 0 \leq \delta <2, \\ &s(x)=\ln (x) \text { for } \delta =2 \text { and } \\ &s(x)=-x^{1-\delta /2} \text { for } \delta >2. \\ \end {split}       

  \begin {split} &s(x)=x^{1-\delta /2} \text { for } 0 \leq \delta <2, \\ &s(x)=\ln (x) \text { for } \delta =2 \text { and } \\ &s(x)=-x^{1-\delta /2} \text { for } \delta >2. \\ \end {split}      
  \begin {split} &s(x)=x^{1-\delta /2} \text { for } 0 \leq \delta <2, \\ &s(x)=\ln (x) \text { for } \delta =2 \text { and } \\ &s(x)=-x^{1-\delta /2} \text { for } \delta >2. \\ \end {split}     

  \begin {split} &s(x)=x^{1-\delta /2} \text { for } 0 \leq \delta <2, \\ &s(x)=\ln (x) \text { for } \delta =2 \text { and } \\ &s(x)=-x^{1-\delta /2} \text { for } \delta >2. \\ \end {split} 

Proof. Based on proposition 5 of subsection 3.2.2, one needs to show that condition

  \label {scale_function_cond} \frac {1}{2}\sigma ^2(x)s''(x)+b(x)s'(x)=0. 


     (72)

holds for the scale functions. For squared Bessel process, σ(x) = 2
√
x, σ2(x) = 4x, 

(1/2)σ2(x) = 2x and b(x) = δ. Now, when 0 ≤ δ < 2, then s′(x) = (1 − δ/2)x−δ/2

and s′′(x) = −(δ/2)(1− δ/2)x−δ/2−1. Thus left side of 72 becomes

  \begin {split} &-2x(\delta /2)(1-\delta /2)x^{-\delta /2-1}+\delta (1-\delta /2)x^{-\delta /2} \\ =&-\delta (1-\delta /2)x^{-\delta /2}+\delta (1-\delta /2)x^{-\delta /2} \\ =&0, \end {split}    

  \begin {split} &-2x(\delta /2)(1-\delta /2)x^{-\delta /2-1}+\delta (1-\delta /2)x^{-\delta /2} \\ =&-\delta (1-\delta /2)x^{-\delta /2}+\delta (1-\delta /2)x^{-\delta /2} \\ =&0, \end {split}     

  \begin {split} &-2x(\delta /2)(1-\delta /2)x^{-\delta /2-1}+\delta (1-\delta /2)x^{-\delta /2} \\ =&-\delta (1-\delta /2)x^{-\delta /2}+\delta (1-\delta /2)x^{-\delta /2} \\ =&0, \end {split} 

  \begin {split} &-2x(\delta /2)(1-\delta /2)x^{-\delta /2-1}+\delta (1-\delta /2)x^{-\delta /2} \\ =&-\delta (1-\delta /2)x^{-\delta /2}+\delta (1-\delta /2)x^{-\delta /2} \\ =&0, \end {split} 

which means that the condition holds. Similarly, when δ > 2, then s′(x) = −(1 −
δ/2)x−δ/2, s′′(x) = (δ/2)(1−δ/2)x−δ/2−1 and condition 72 holds. Lastly, when δ = 2, 
then s′(x) = 1/x and s′′(x) = −1/(x2). Thus left side of 72 becomes 

  -\frac {4x}{2x^2}+\frac {2}{x}=-\frac {2}{x}+\frac {2}{x}=0. 















  (74)

meaning that condition 72 holds.

In order to understand the behaviour of the squared Bessel trajectories around 
zero, local time formula is introduced following Jeanblanc et al. (2009) [12, pp. 223].

Theorem 6 (Local time formula for a continuous semi-martingale). If X is a con-
tinuous semi-martingale, then local time Lx

t at x satisfies 

  L_t^x(X)=\lim _{\epsilon \rightarrow 0} \frac {1}{\epsilon } \int _{0}^{t} \mathbb {I}(x \leq X_t <x+\epsilon )d \langle X_s \rangle , 
  











      (75)

and it holds that 
  L_t^x(X)-L_t^{x-}(X)=2 \int _0^t \mathbb {I}(X_s=x)dX_s 
 

  





   (76)

Proposition 8. Let Yt be a δ-dimensional squared Bessel process. For δ = 0, the 
point 0 is absorbing (i.e. the process remains zero after hitting that level for the first 
time) and for 0 < δ < 2, the process is reflected instantaneously.

Proof. In case if δ = 0 the point is reached a.s. Naturally, the point is absorbing as 
the process remains at zero level (note that dYt = δdt+ 2

√
YtdBt = 0+ 0 = 0 when 

δ = 0 and Yt = 0). The proof for case 0 < δ < 2 requires the use of the fact that 
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squared Bessel process is a semi-martingale for 0 < δ < 2. From the theory of the 
local times, it can be shown that L0−

t (Y ) = 0 and then

  L_t^{0}(Y)=2\delta \int _{0}^{t} \mathbb {I}(Y_s=0)ds. 
   





   (77)

Thereafter, it needs to be shown that since d⟨Yt⟩ = 4Ytdt, then the occupational 
time formula leads to

  \begin {split} t \geq \int _0^t\mathbb {I}(Y_s=0)ds &=\int _0^t\mathbb {I}(Y_s=0)(4Y_s)^{-1} d \langle Y_s \rangle \\ &=\int _0^{\infty }(4a)^{-1}L_t^a(Y)da. \end {split} 




  





 


  \begin {split} t \geq \int _0^t\mathbb {I}(Y_s=0)ds &=\int _0^t\mathbb {I}(Y_s=0)(4Y_s)^{-1} d \langle Y_s \rangle \\ &=\int _0^{\infty }(4a)^{-1}L_t^a(Y)da. \end {split} 






 

  \begin {split} t \geq \int _0^t\mathbb {I}(Y_s=0)ds &=\int _0^t\mathbb {I}(Y_s=0)(4Y_s)^{-1} d \langle Y_s \rangle \\ &=\int _0^{\infty }(4a)^{-1}L_t^a(Y)da. \end {split} 

The local time at x = 0 needs to be identically equal to zero, i.e. L0
t ≡ 0, since 

otherwise the integral on the right-hand side is not convergent (see e.g. Revuz and 
Yor (1991) [17, pp. 412] for further details).

Finally, the properties of squared Bessel process trajectories are collected under 
one theorem. Although the exact details of the proof for the theorem are beyond 
the scope of this thesis, it is noted that the proof applies the convergence theorems 
for local martingales (as s(Yt)

τ is a local martingale) and proposition 8 (see Revuz 
and Yor (1991) [17, pp. 409-434] for further details).

Theorem 7 (Trajectories of the squared Bessel process). Let Yt ∼ BESQδ(Y0). 
Then,

1. if δ = 0, then Yt hits 0 at some time and the point is absorbing.

2. if 0 < δ < 2, then Yt hits zero at arbitrary times but the point is instantly 
reflecting. Also, lim supt→∞ Yt = ∞.

3. if δ = 2, then Yt is strictly positive at all times and lim supt→∞ Yt = ∞ and 
lim inft→∞ Yt = 0.

4. if δ > 2, then Yt is strictly positive at all times and Yt → ∞ as t → ∞.

4.4 First hitting time distribution
Following Göing-Jaeschke and Yor (2003) [10], a general description of the steps re-
quired for deriving the first hitting time distribution of 0 for squared Bessel process 
is given. As discussed in subsection 4.3, squared Bessel process can only hit zero 
when 0 ≤ δ < 2. The probability density function for the first hitting time distribu-
tion is introduced in Makarov and Glew (2009) [14, pp. 3]. In order to find the first 
hitting time distribution, (non-squared) Bessel process needs to be introduced first. 
Assuming that Yt ∼ BESQδ(x), then the δ-dimensional Bessel process Rt =

√
Yt is 

the solution to the following differential equation

  dR_t=\left (\frac {\delta -1}{2}\frac {dt}{R_t}\right )+dB_t,\text { } R_0=r=\sqrt {x}. 


 








    


 (79)
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To find the first hitting time distribution, Bessel process Rt is set to start from 
0 at time 0 and its dimension is set as δ = v > 0. It can be shown that it holds for 
l = sup{t > 0, Rt = 1} that

  l \stackrel {d}{=} \frac {1}{2Z_v} 







(80)

where P(Zv ∈ dt) = (tv−1e−t)/Γ(v)dt and t > 0.
In addition, time reversed Bessel process R̂t is introduced. This process starts 

from 1 at time 0 and its dimension is δ = 2(1− v). The first time that this process 
hits zero is τ̂ = inf{t > 0; R̂t = 0} and it can be shown that the following relation 
holds between the original and time reversed Bessel processes:  \left (\hat {R}_{\hat {\tau }-u};u \leq \hat {\tau }\right ) \stackrel {d}{=} \left (R_u;u<l \right ). 

  



     (81)

Therefore, it also holds that

  \hat {\tau } \stackrel {d}{=} \frac {1}{2Z_v}. 







 (82)

Now, based on the scaling property of the squared Bessel process, one may write 
that

  \hat {\tau } \stackrel {d}{=} \frac {x}{2Z_v}. 







 (83)

Finally, it can be concluded that since Zv follows Gamma distribution with param-
eter v = 1− δ/2, it holds that

  \mathbb {P}(\hat {\tau } \in dt) \stackrel {d}{=} \frac {1}{t \Gamma (v)} \left (\frac {x}{2t} \right )^v e^{-x/2t} dt  












 (84)

which is the probability density function for the first hitting time distribution of the 
squared Bessel process.
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5 Modelling monetary reserves using coupled
diffusion processes

In this section, a model by Fouque and Ichiba (2013) [7] is described and analysed. In 
the model, the monetary reserves of individual banks are modelled through coupled 
diffusions processes. The coupling represents interbank lending activities where 
banks borrow and lend money from each other.

5.1 Diffusion processes for individual banks
Assume that bank i has monetary reserve X i

t and all the banks in the financial mar-
kets are represented by a vector of monetary reserves Xt :=

(︁
X1

t , ..., X
N
t , 0 ≤ t < ∞

)︁
. 

Furthermore, the dynamics of the monetary reserves for individual bank i are rep-
resented by the following diffusion:

  \label {feller_bank} \begin {split} X^i_t=X^i_0&+\int _{0}^{t} \left [\delta _i+\sum _{j=1}^{N}(X^j_u-X^i_u)p_{i,j}\left (\bold {X}_u\right )\right ]du \\ &+2\int _{0}^{t}\sqrt {X^i_u}dB^i_u. \end {split} 
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  \label {feller_bank} \begin {split} X^i_t=X^i_0&+\int _{0}^{t} \left [\delta _i+\sum _{j=1}^{N}(X^j_u-X^i_u)p_{i,j}\left (\bold {X}_u\right )\right ]du \\ &+2\int _{0}^{t}\sqrt {X^i_u}dB^i_u. \end {split} 

The assumptions required for the system are that

1. the vector of starting values for individual monetary reserves is
(X1(0), ..., XN(0)) ∈ [0,∞)N ,

2. the vector (B1
t , ..., B

N
t , 0 ≤ t < ∞) is standard N -dimensional Brownian mo-

tion,

3. δi ≥ 0 for i = 1, ..., N ,

4. the function pi,j : [0,∞)N → [0, 1] is bounded α-Hölder continuous on compact 
sets in (0,∞)N for some α ∈ (0, 1], 1 ≤ i, j ≤ N .

The diffusion process 85 and its assumptions construct simple banking system 
where interbank lending is allowed. In the system, each bank reserves money with 
a drift term δi ≥ 0 (called growth rate) which is taken from bank’s profits that 
come from its business activities such as investment operations and money lending. 
Second drift term (Xj

u−X i
u)pi,j (Xu) arises from the overnight short term lending and 

it is driven by the difference in the monetary reserves of bank i and j, i.e. Xj
t −X i

t , 
which is multiplied by the lending preference 0 ≤ pi,j (Xu) ≤ 1, 1 ≤ i, j ≤ N . If 
bank i has bigger reserves than bank j, i.e. X i

t > Xj
t , then money flows from bank 

i to j and vice versa. Bank i can lend or borrow money from all other banks in 
the system, which is reflected by the sum term 

∑︁N
j=1. Lastly, monetary reserves 

are affected by the independent shock term Bi
u and the effect of this shock term 

increases when the size of bank’s reserves increases.
The lending preference function pi,j(·) plays an important role in driving the 

dynamics in the system as it describes how willingly banks lend and borrow money 
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with each other based on the market conditions (i.e. the current reserve levels of all 
banks in the system). Basically, the model works so that at each time point t bank i
actively seeks for lending and borrowing opportunities and asks every other bank in 
the markets whether they could lend money from it (X i

t > Xj
t ) or borrow money to 

it (X i
t < Xj

t ). The lending preference then defines how large part of the difference 
X i

t − Xj
t will flow between the banks. If pi,j(·) = 0, then there is no monetary 

flow between the banks j and i. If pi,j(·) = 1, then the whole difference X i
t − Xj

t

will flow from the bank with bigger reserves to the bank with smaller reserves. If 
0 < pi,j(·) < 1, then the difference will only flow partially between the banks. Banks 
can have asymmetric lending preferences, which means that pi,j(·) ̸= pj,i(·). In 
practice, this allows bank to behave differently depending on if it is the one who 
is actively seeking for lending and borrowing opportunities or if it is the one being 
asked to take part in transactions.

If bank’s reserves hit zero, i.e. X i
t = 0, bank i is then in bankruptcy. However, 

this default state is (usually) temporary since defaulted bank immediately receives 
money from other banks or from external bailouts, meaning that it can instantly 
recover. Other possible way to interpret this instant salvation is to consider that 
a new but identical bank is immediately created after the old bank has defaulted. 
Either way, this property means that the total number of banks will remain the 
same and that bankruptcies don’t bring any real consequences to the system. Fur-
thermore, it is assumed that bank’s reserves can be interpreted as an approximation 
of its size, which means that bigger bank’s are assumed to have larger reserves too.

Right away, it is clear that this simple model has some shortcomings which 
should be kept in mind when the model is analysed. For example, since assets and 
liabilities from bank’s balance sheet are not modelled, there is no real obligation 
to repay any interbank debts. This also means that bank is not harmed even if it 
keeps very low reserves, although in real world low reserves usually imply that bank 
has difficulties to meet its obligations and that its reserves may even be below the 
required reserve levels. Furthermore, bank’s growth rate δi is not affected by the 
size of its reserves which means that bigger banks are not growing any faster than 
smaller banks. Consequently, bigger size is not a direct competitive advantage in the 
model, although in the real world size usually brings some advantages against smaller 
competitors. It also overly simple to assume that growth rate δi is deterministic and 
non-negative as bank’s operating results are stochastic (i.e. one can not predict the 
exact result in advance) and sometimes banks need to reduce their reserves due to 
the realized losses from their business activities.
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5.2 Diffusion process for the total reserves
The dynamics of the total monetary reserves in the banking system can be modelled 
by summing all the reserves of individual banks together, i.e. Yt =

∑︁N
i=1 X

i
t . The 

dynamic equation for total monetary reserve is then

  \label {feller_system} \begin {split} Y_t=Y_0&+\int _{0}^{t} \left [\sum _{i=1}^{N}\delta _i+\sum _{i=1}^{N}\sum _{j=1}^{N}(X^j_u-X^i_u)p_{i,j}\left (\bold {X}_u\right )\right ]du\\ &+2\int _{0}^{t}\sqrt {Y_u}d\tilde {B}_u. \end {split}   

















 






  \label {feller_system} \begin {split} Y_t=Y_0&+\int _{0}^{t} \left [\sum _{i=1}^{N}\delta _i+\sum _{i=1}^{N}\sum _{j=1}^{N}(X^j_u-X^i_u)p_{i,j}\left (\bold {X}_u\right )\right ]du\\ &+2\int _{0}^{t}\sqrt {Y_u}d\tilde {B}_u. \end {split} 








  \label {feller_system} \begin {split} Y_t=Y_0&+\int _{0}^{t} \left [\sum _{i=1}^{N}\delta _i+\sum _{i=1}^{N}\sum _{j=1}^{N}(X^j_u-X^i_u)p_{i,j}\left (\bold {X}_u\right )\right ]du\\ &+2\int _{0}^{t}\sqrt {Y_u}d\tilde {B}_u. \end {split} 

The stochastic integral part of equation 86 is reached by introducing new Brownian 
motion B̃t which is effectively set so that 

∫︁ t

0

√
YudB̃u =

∫︁ t

0

∑︁N
i=1

√︁
X i

udB
i
u.8 Since 

δi is the growth rate for individual bank, then the sum 
∑︁N

i=1 δi naturally represents 
the total growth rate of the whole banking system.

By assuming that the lending preferences pi,j(·) are symmetric, i.e. pi,j(·) =
pj,i(·), then the equation 86 can be significantly simplified. When x ∈ RN , it holds 
that

  \begin {split} \sum _{i=1}^{N}\sum _{j=1}^{N}(x_j-x_i)p_{i,j}(\bold {x}) & =\sum _{i<j}^{N}(x_j-x_i)p_{i,j}(\bold {x}) +\sum _{j<i}^{N}(x_j-x_i)p_{i,j}(\bold {x}) \\ &+\sum _{i,j=1}^{N}(x_i-x_j)p_{i,j}(\bold {x}) \\ &=\sum _{i<j}^{N}(x_j-x_i)p_{i,j}(\bold {x})-\sum _{i<j}^{N}(x_j-x_i)p_{i,j}(\bold {x}) \\ &=0. \end {split} 
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  \begin {split} \sum _{i=1}^{N}\sum _{j=1}^{N}(x_j-x_i)p_{i,j}(\bold {x}) & =\sum _{i<j}^{N}(x_j-x_i)p_{i,j}(\bold {x}) +\sum _{j<i}^{N}(x_j-x_i)p_{i,j}(\bold {x}) \\ &+\sum _{i,j=1}^{N}(x_i-x_j)p_{i,j}(\bold {x}) \\ &=\sum _{i<j}^{N}(x_j-x_i)p_{i,j}(\bold {x})-\sum _{i<j}^{N}(x_j-x_i)p_{i,j}(\bold {x}) \\ &=0. \end {split} 

Therefore, equation 86 reduces to

  \label {bessel_system} Y_t=Y_0+\delta _{\Sigma }t+2\int _{0}^{t}\sqrt {Y_u}d\tilde {B}_u,     






  (87)

where δΣt is the total growth of the whole banking system during time interval [0, t], 
i.e. δΣt :=

∫︁ t

0

∑︁N
i=1 δi. Importantly, 87 also holds when there is no interbank lending, 

i.e. p(·)li,j = 0.
Equation 87 shows that under the symmetric lending preferences, interbank lend-

ing activities don’t affect the development of the total monetary reserves and that 
8The exact proof for this equality is beyond the scope of this thesis, but the backbone for this 

proof is given in theorem 3.4.2 of Karatzas and Shreve (1991) [13, p. 170]. This theorem is also 
introduced in appendix B of this thesis. Furthermore, one practical justification for this equality 
(under symmetric lending preferences) is seen in figure 9, where the total reserves are simulated by 
using the dynamics in 86 directly and by simulating each bank in the system individually based on 
dynamics in 85. The final (loss) distributions for the total reserves are very similar in both cases 
which implies that the equality indeed holds.
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the reserves follow squared Bessel process of dimension δΣ. Therefore, the develop-
ment of the total monetary reserves can be described by the total growth rate δΣ
and the trajectories of the squared Bessel process (theorem 7).

• If δΣ = 0, then the total monetary reserves will almost certainly reach to 
value zero in a finite time. Since the total growth rate is zero, the banking 
system will stop existing when the total monetary reserves reach value zero 
(no external bailouts).

• If 0 < δΣ < 2, then the banking system will grow forever. However, the 
banking system will almost certainly face a severe financial crises at some 
finite point in the future where the total monetary reserves reach the zero 
level. The zero point is instantly reflecting meaning that the reserves will 
instantly start to grow again (external bailouts).

• If δΣ = 2, then the total reserves will never reach zero point, i,e, P(Yt > 0) = 1. 
In addition, the system will grow forever, but it almost certainly faces severe 
financial crises where the monetary reserves almost breach the zero level, i.e. 
P(inf0≤t<∞Yt = 0) = 1.

• If δΣ > 2, then the total reserves will never reach zero and the reserves will 
grow to infinity.

5.3 Existence of systemic crisis
As the real economy is not modelled within this coupled banking system, systemic 
crisis is defined as a situation where multiple banks default simultaneously. A subset 
of risky banks is denoted as (l1, ..., lk) ⊂ {1, ..., N} where k ∈ {1, ..., N}. Further-
more, it is assumed that the lending preferences pi,j(·) are restricted to some range 
that is close to zero. More precisely, it is assumed that lending preference pi,j(·) and 
the growth rates δli , ..., δlk satisfy

  \label {restriction_feller} \sup _{\bold {x} \in [0,\infty )^N}|x_{l_i}-x_{j}| \cdot p_{l_i,j}(\bold {x})<2c_0:=\frac {1}{k(N-1)}\left (2-\sum _{i=1}^{k}\delta _{l_i}\right ) 


      


 










(88)

for 1 ≤ i ≤ k, 1 ≤ j ≤ N . Under this assumption, it can be shown that the 
banking system almost surely faces systemic crisis where multiple banks are broke 
simultaneously.

Proposition 9. Under the additional assumption 88, banks (l1, ..., lk) are simulta-
neously in default at some time t ∈ (0,∞) almost surely, i.e. 

  \mathbb {P}(X^{l_1}_t,...,X^{l_k}_t=0 \text { for some } t \in (0, \infty ))=1. 
  


        (89)

Proof. This proof applies the comparison theorem of Ikeda and Watanabe (1977) 
[11], which is introduced in appendix A. By summing the monetary reserves of 
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individual banks (l1, ..., lk) together, the process of total monetary reserves Y k
t for 

this subset of banks is

  dY^k_t=\sum _{i=1}^{k}\left [\delta _{l_i}+\sum _{j=1}^{N}(X^j_t-X^{l_i}_t)p_{l_i,j}\left (\bold {X}_t\right )\right ]dt\\ +2\sqrt {Y^k_t}d\tilde {B}^k_t, 












 

 










  (90)

where new Brownian motion B̃k

t is once again set so that 
∫︁ t

0

√︁
Y k
u dB̃

k

u

=
∫︁ t

0

∑︁k
i=1

√︁
X li

u dBli
u . Based on the assumption 88 , it can be noted that

  \begin {split} \bar {\delta } &:=\sum _{i=1}^{k}\delta _{l_i}+\sup _{\bold {x} \in [0,\infty )^N}\left |\sum _{i=1}^{k}\sum _{j=1}^{N}(x_j-x_{l_i})\cdot p_{l_i,j}(\bold {x})\right | \\ &<\sum _{i=1}^{k}\delta _{l_i}+2c_0k(N-1)=2. \end {split} 
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  \begin {split} \bar {\delta } &:=\sum _{i=1}^{k}\delta _{l_i}+\sup _{\bold {x} \in [0,\infty )^N}\left |\sum _{i=1}^{k}\sum _{j=1}^{N}(x_j-x_{l_i})\cdot p_{l_i,j}(\bold {x})\right | \\ &<\sum _{i=1}^{k}\delta _{l_i}+2c_0k(N-1)=2. \end {split} 

It follows from the comparison theorem that the total monetary reserves Y k
t for 

the subset (l1, ..., lk) of banks is less than or equal to the squared Bessel process Ỹ k

t

of dimension δ̄ < 2 with the same initial value Y k
0 = Ỹ

k

0, i.e. Ỹ
k

t ∼ BESQδ̄(Ỹ
k

0). 
Since it has been shown that the squared Bessel process with dimension that is less 
than two will almost surely reach zero at a finite time, and since it was shown that 
δ̄ < 2, this means that also the total reserves Y k

t reach zero level at some finite time 
point. During such event, all the banks are in default simultaneously which proofs 
the proposition 9.

In practise, additional condition 88 restricts the banks with larger reserves from 
lending money to banks with smaller reserves which therefore leads to a situation 
where these distressed banks can go bankrupt simultaneously. Therefore, restric-
tions on the interbank lending preferences can create multiple defaults. However, 
interbank lending can also be encouraged so that the banks with larger reserves are 
forced to lend enough money for distressed banks which then avoid bankruptcies. 
In fact, under the following restriction

  \label {restriction_feller2} \inf _{\bold {x} \in [0,\infty )^N} \sum _{j=1}^{k} \sum _{i=1}^{N} (x_{j}-x_{l_i}) \cdot p_{l_i,j}(\bold {x}) \geq 2c_0k, 








       (92)

the subset (l1, ..., lk) of banks will never default simultaneously.

Proposition 10. Under the additional assumption 92, it holds banks (l1, ..., lk) will 
almost surely avoid multiple defaults, i.e. 

  \mathbb {P}(X^{l_1}_t,...,X^{l_k}_t=0 \text { for some } t \in (0, \infty ))=0. 
  


        (93)

Proof. This proof follows similar steps as the proof for proposition 9, but now the 
dimension δ̄ for the corresponding squared Bessel process is shown to be limited 
from the lower end, i.e. δ̄ ≥ 2.
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5.4 Probability of systemic crisis
The time when the total monetary reserves of banks (l1, ..., lk) first hit zero is in-
terpreted as a time where systemic crisis occurs, and this time point τ is defined as 

  \tau = \inf \{t \geq 0: Y^k_t=0\}, \text { where } Y^k_t=\sum _{i=1}^{k}X^{l_i}_t.      
   







  (94)

Although the general analytical solution for the first hitting time distribution is not 
known for the Coupled banking system, the probabilities can still be evaluated by 
using the known properties of the squared Bessel process.

By assuming banking system where interbank lending is not allowed, i.e. p(·)li,j =
0, the total monetary reserves for the subset of banks follow squared Bessel process, 
i.e. Y k

t ∼ BESQδΣk (Y k
0 ), where δΣk

=
∑︁k

i=1 δli is the total growth rate for this 
subset of banks. As was shown in subsection 4.4, the first hitting time probability 
is then

  \label {bessel_default_bank_prop} \mathbb {P}(\tau _k \leq t)=\int _{0}^{t}\frac {1}{s\Gamma (v)} \left (\frac {Y^k_0}{2s}\right )^{v} \exp \left (-\frac {Y^k_0}{2s}\right )ds =:F \left (Y^k_0,v,t\right ),   


























 



  


 (95)

where v = 1 − δΣk
/2 and t > 0. Therefore, the function F (·) gives the probability 

for the systemic crises event where the subset of banks with no interbank lending 
default simultaneously before (or at) time point t. However, it should be noted 
that this only holds when δΣk

< 2 since otherwise squared Bessel process is always 
strictly positive.

Figure 5: Default probabilities in banking system with no interbank lending, Y k
0 ∈

{1, 10, 20} and δΣk
∈ {0, 1, 1.5}.

System with no interbank lending is analysed in figure 5, where it can be observed 
that the default probabilities increase when the observed time interval increases and 
it is almost certain that systemic crisis occurs if low enough growth rate and initial 
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reserves are given. Furthermore, it can be observed that the default probabilities 
decrease when the total growth rate δΣk

increases (left). This is very intuitive finding 
since higher returns from banking operations will naturally decrease the default 
probabilities. Similarly, it can be observed that the default probabilities decrease 
when the initial monetary reserves Y k

0 increase (right). Again, this is intuitive finding 
since larger reserves work as a buffer against the bankruptcies.

Although the exact analysis is much more complicated in general case where 
interbank lending is allowed, especially when the lending preferences are not sym-
metric, it is still possible to evaluate the default probabilities by defining upper and 
lower limits for the interbank lending activities. The lower limit for the total growth 
rates and interbank lending activities is

  \underline {\delta } :=\delta _{\Sigma _k}+\inf _{\bold {x} \in [0,\infty )^N}\sum _{i=1}^{k}\sum _{j=1}^{N}(x_j-x_{l_i})\cdot p_{l_i,j}(\bold {x}) \\ 










     (96)

and the upper limit is

  \bar {\delta } :=\delta _{\Sigma _k}+\sup _{\bold {x} \in [0,\infty )^n}\left |\sum _{i=1}^{k}\sum _{j=1}^{N}(x_j-x_{l_i})\cdot p_{l_i,j}(\bold {x})\right |.  












   

  (97)

Using these limits, a upper limit process Ȳ k
t ∼ BESQδ̄(Y k

0 ) and lower limit process 
Y k

t ∼ BESQδ(Y k
0 ) are created. Naturally, these processes also have their own 

default times which are defined as τ̄ k = inf{t ≥ 0 : Ȳ
k
t = 0} and τ k = inf{t ≥ 0 :

Y k
t = 0}.

By applying the comparison theorem A, it can be shown that the default time 
probability for the system with interbank lending is limited between the default time 
probabilities for the upper and lower limit processes, i.e.

  \label {probability_comparison_bank} \mathbb {P}(\bar {\tau }_k \leq t) \leq \mathbb {P}(\tau _k \leq t) \leq \mathbb {P}(\underline {\tau }_k \leq t).             (98)
This result together with the findings from figure 5 imply that by increasing the 
interbank lending activities in the banking system, the default probabilities decrease, 
and by decreasing the lending activities, the default probabilities increase.

5.5 Number of defaulting banks
In many practical applications, it is actually more interesting to evaluate the number 
of the defaults that occur in the banking system rather than to evaluate the total 
default probabilities. Therefore, the process Dt is introduced which calculates the 
number of occurred defaults in the banking system before (or at) time point t ≥ 0
and is defined as

  D_t=\sum _{i=1}^{N} \mathbb {I}\left (\min _{0 \leq s \leq t} X^i_s=0 \right ), 










 


 (99)

where I(A) is the indicator function which returns value 1 if A is true and 0 otherwise.
Once again, a banking system with no interbank lending is considered as a simple 

example. As was shown in 95, function F (·) gives default probability for the subset 
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(l1, ..., lk) of banks in a system without interbank lending. Therefore, F (X i
0, vi, t), 

where vi = 1− δi/2, gives the default probability for individual bank i (as if k = 1) 
and 1−F (X i

0, vi, t) gives the probability that the bank i will survive. The probability 
that k number of banks go bankrupt and N − k survive (before or at the time point 
t) can be calculated by considering all possible choices of (l1, ..., lk), i.e. 

  \begin {split} &\mathbb {P}(D_t=k)= \\ &\sum _{1 \leq l_1 < ... < l_k \leq N} \left (\prod _{j=1}^{k}(F(X^{l_j}_0,v_j,t)\right ) \left (\prod _{i \notin (l_1,...,l_k)}(1-(F(X^{i}_0,v_i,t))\right ). \end {split}      \begin {split} &\mathbb {P}(D_t=k)= \\ &\sum _{1 \leq l_1 < ... < l_k \leq N} \left (\prod _{j=1}^{k}(F(X^{l_j}_0,v_j,t)\right ) \left (\prod _{i \notin (l_1,...,l_k)}(1-(F(X^{i}_0,v_i,t))\right ). \end {split} 









  




  
 


  \begin {split} &\mathbb {P}(D_t=k)= \\ &\sum _{1 \leq l_1 < ... < l_k \leq N} \left (\prod _{j=1}^{k}(F(X^{l_j}_0,v_j,t)\right ) \left (\prod _{i \notin (l_1,...,l_k)}(1-(F(X^{i}_0,v_i,t))\right ). \end {split} 

Figure 6: Theoretical probabilities that k number of banks default before (or at) 
time point t = 100 in a system with no interbank lending and 10 identical banks, 
δi ∈ {0, 1, 1.5} and X i

0 ∈ {1.5, 3, 4.5}.

The system of ten banks is numerically analysed in figure 6, where it is assumed 
that all banks have identical growth rates, identical initial monetary reserves at 
t = 0, and that interbank lending is not allowed. The results follow similar pat-
terns as observed before. When either growth rate or initial reserves are increased 
(decreased), the default probability for individual bank decreases (increases) and 
therefore it is more likely that fewer banks will default. However, default for indi-
vidual bank only occurs if the growth rate of the bank is below 2.

Once again, the exact analysis of the general case where interbank lending is 
allowed is fairly difficult and requires numerical methods. However, it is implied 
(see e.g. 98) that by increasing (decreasing) the interbank lending activities in the 
system, the total default probability for the subset of banks will decrease (increase). 
Therefore, it seems reasonable to state that interbank lending works as a stabilizing 
force in the banking system that seemingly decreases the probability of individual 
banks to go bankrupt and thus decreases the overall risk of systemic crisis. However, 
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in section 6.1, it is shown that interbank lending can actually drive systemic crises 
in some specific situations.
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6 Measuring risk in Mean field banking model
In this section, a model is studied where bank’s monetary reserves are set to reverse 
to the average level of the reserves in the system. Moreover, the model works as a 
simple example of the coupled banking system introduced in section 5 with symmet-
ric lending preferences. The model is analysed using simple simulation methods for 
which the codes are provided in appendix C.9 In subsection 6.1, this model, called 
Mean field model, and some of its basic properties are introduced following Sun 
(2017) [19]. In subsection 6.2, the total loss distribution of the whole banking sector 
is modelled using the Mean Field model and tail risk measures (VaR and ES) are 
numerically estimated.

6.1 Mean field model and systemic crisis
As mentioned, the Mean field model belongs to the family of the Coupled banking 
models introduced in section 5. Specifically, this Mean field model describes the 
monetary reserves X i

t of bank i using constant growth rate δ and fixed normalized 
lending preference α/N ≤ 1 where N refers to the total number of banks in the 
banking system. The stochastic differential equation for bank i is

  \label {mean_field_sde} \begin {split} dX_t^i &=\left ( \frac {\alpha }{N} \sum _{j=1}^{N}(X_t^j-X_t^i)+\delta \right )dt+ 2\sqrt {X_t^i}dB_t^i \\ &= \left (\alpha (\bar {X}_t - X_t^i) +\delta \right )dt+ 2\sqrt {X_t^i}dB_t^i, \text { } i=1,...,N, \end {split} 
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  \label {mean_field_sde} \begin {split} dX_t^i &=\left ( \frac {\alpha }{N} \sum _{j=1}^{N}(X_t^j-X_t^i)+\delta \right )dt+ 2\sqrt {X_t^i}dB_t^i \\ &= \left (\alpha (\bar {X}_t - X_t^i) +\delta \right )dt+ 2\sqrt {X_t^i}dB_t^i, \text { } i=1,...,N, \end {split} 

where Bi
t is a standard uncorrelated Brownian motion and X̄ t =

∑︁N
j=1 X

j
t /N is the 

averaged value of the reserves at time point t. For simplicity, it is assumed that all 
banks have same initial reserves X0 available at time t = 0 which means that all 
banks are identical. Furthermore, X i

t is reverting to the mean reserves X̄ t with the 
mean reversion rate α.10

The model name ”Mean field” refers to the Mean field game theory. In general, 
Mean field game theory studies the strategic decision making between N -number of 
small agents in very large populations (when N → ∞). The goal of these games is to 
minimize the target cost functions J1(a1, ..., aN), ..., JN(a1, ..., aN) where (a1, ..., aN)
represents the actions taken by the players in the game (see e.g. Carmona and 
Delarue (2018) [3] for further information regarding the Mean field games). Al-
though this thesis does not focus on the game side of interbank lending models, it is 
noted that Sun (2017) [19] analyses the model introduced in this section as a Mean 
field game, and the latter equation in the formula 101 represents the lending and 
borrowing in the Mean field form.11

9Simple Euler scheme is applied. The process is simulated using R
10Mean reversion means that stochastic variable tends to converge to its average level over time.
11The Mean field game set-up of this model ads central bank to the banking system. In this 

set-up, the equation 101 is denoted as dXi
t =

(︁
α(X̄t −Xi

t) + δ + ait
)︁
dt + 2

√︁
Xi

tdB
i
t, where ait is 

the strategy taken by bank i at time point t. Each bank chooses this strategy independently to 
optimize its lending and borrowing rates to/from the central bank at each time point t.
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The stochastic differential equation for the monetary reserves of the total banking 
system, i.e. Yt =

∑︁N
i=1 X

i
t , is

  dY_t=N\delta dt + 2\sqrt {Y_t}d\tilde {B}_t.   

  (102)

where B̃t is a standard Brownian motion in some extension probability space. This 
means that the total monetary reserves follow squared Bessel process, i.e. Yt ∼
BESQNδ(Y0) where Y0 = NX0. In addition, it is important to note that the lending 
preference parameter α is not present in the stochastic differential equation for the 
total monetary reserves.

Figure 7: Example trajectories for banking system with different parameters.

The behaviour of the Mean field system is further illustrated in figure 7, where 
four different trajectories for the banking system are drawn using different parameter 
sets. When interbank lending preference α is zero, then the monetary reserves 
develop independently meaning that some banks triumph while other banks even 
face defaults despite the fact that the growth rate is positive (top-left). When 
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full interbank lending (i.e. α/N = 1) is applied, then the monetary reserves for 
individual banks develop almost identically (i.e. grouped development) and positive 
growth rate δ > 2/N causes monetary reserves to grow for all banks (top-right). 
When δ drops to zero, i.e. δ < 2/N , then the growth of the grouped reserves is 
weak and the banking system may even face systemic crises where reserves for all 
banks are close to zero (bottom-right). However, by increasing the total number of 
banks in the system, the development of the reserves gets seemingly stronger even 
though growth rate is still zero (bottom-left).

Figure 8: System of 10 banks analysed by simulating 200 scenarios until t = 100
starting from X0 = 10. If bank faces default (i.e. its reserves reach zero level) during 
time interval (0, 100], then the bank is counted as defaulting bank.

Naturally, the behaviour of the trajectories can be explained by the same prop-
erties that were discussed in section 5.2. If δ > 2/N , then the total reserves Yt will 
never reach zero. In case if δ = 2/N , then the total reserves will diminish to almost 
zero almost surely at some point in the future. However, the system will always 
survive since P(Yt > 0 for t ∈ [0,∞)) = 1. In case if 0 < δ < 2/N , all banks will 
likely default in the future and the total reserves reach zero almost surely at some 
point in the future, but the system will instantly reflect away from this crisis state 

37



(due to external bailouts). Finally, in case if δ = 0, then the total reserves will reach 
zero in some finite time and remain there. This means that all banks will default 
and then remain as defaulted almost surely.

Based on the behaviour of the trajectories, it can be seen that the stability of 
this banking system is hugely affected by the total number of banks in the system 
N and growth rate δ. More precisely, when δ > 2/N , then interbank lending creates 
stability, but when 0 ≤ δ ≤ 2/N , then interbank lending actually creates systemic 
risk. This finding is illustrated in figure 8, where the banking system is analysed by 
simulating independent scenarios and by counting the number of defaulting banks 
per each scenario. Clearly, most of the banks default when both interbank lending 
and growth rate are low (top-left), but when growth rate alone is increased, then 
the number of defaulting banks gets lower (bottom-left).

Interestingly, when δ < 2/N and full interbank lending is applied, then it is 
very likely that either zero banks or all banks will default (top-right, figure 8). 
Due to these low growth rates, banks are weak against adverse shocks and these 
shocks spread from one bank to other banks through interbank lending activities. 
Therefore, interbank lending can actually drive systemic risk if the total growth rate 
in the banking system is low enough. Naturally, when the growth rate is increased to 
δ > 2/N , then the system becomes stronger against adverse shocks (bottom-right, 
figure 8). In this case, if one bank faces adverse shock, it can borrow money from 
other banks that are likely thriving and thus it will likely survive too. In conclusion, 
active interbank lending markets alone don’t ensure that the banking system is safe, 
but large enough growth rates (i.e. operating results) are also needed.

6.2 VaR and ES for the total monetary reserves
As was discussed in subsection 2.3.1, common way of measuring risk is to simulate 
loss distributions and calculate risk measures such as Value-at-Risk or Expected 
Shortfall. In this subsection, VaR, mean-VaR and ES measures are estimated for the 
total banking system. To make the analysis simple enough, it is assumed that all the 
banks in the Mean field system are identical. Therefore, loss distribution for the total 
monetary reserves is simply defined as a change between initial monetary reserves 
Y0 = NX0 and current monetary reserves at time point t, i.e. Lt = −(Yt − Y0).

As the total monetary reserves follow squared Bessel process Yt ∼ BESQNδ(Y0)
and based on the analysis conducted in the subsection 4.2, the total monetary re-
serves at time t follow non-central chi-squared distribution that is scaled by the time 
point t, i.e.

  \label {bessel_total_loss_dist} Y_t \sim t \chi ^2(N \delta ,\frac {Y_0}{t}),  



 (103)

where Nδ ≥ 0, Y0 ≥ 0 and t > 0. For the loss distribution Lt, it is easy to see that 
Lt follows non-central chi-squared distribution that is scaled with the negative time 
point −t and displaced using the starting reserves Y0, i.e.

  L_t = -(Y_t-Y_0) \sim Y_0 - t \chi ^2(N \delta ,\frac {Y_0}{t}).        



 (104)

Furthermore, given the theory of the loss operators described in section 2, the loss 
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operator ft : R → R takes one-dimensional linear form here. More specifically, 
ft(x) = −(ct + btx) where ct = −Y0, bt = t and the only risk factor follows the 
non-central chi-squared distribution χ2(Nδ, Y0/t).

Unfortunately, there is no closed form solution for the quantile function (i.e. 
inverse cumulative distribution function) of the non-central chi-squared distribution 
which means that there isn’t closed form solutions for VaR and ES measures either. 
However, as mentioned in subsection 2.3.2, Monte Carlo methods can be applied 
when there is no closed form solutions available. In this case, simulations for the 
loss distribution are conducted using two methods. The first method simulates total 
monetary reserves using 103 directly. This is computationally very efficient method 
and returns results that very closely follow theoretical distributions. The second 
method is to simulate trajectories for individual banks according to 101 and then 
to aggregate the total monetary reserves, but this is computationally much more 
demanding method.

Figure 9: Loss distribution for the total monetary reserves at time point t = 10
created by simulating the non-central chi-squared distribution and simulating the 
trajectories for individual banks.

In figure 9, total monetary reserves at time point t = 10 are simulated using 
both these methods. The simulation error in the first method is in practice almost 
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negligible, although also the second method creates loss distribution that follows 
the theoretical distribution fairly closely.12 Using these simulation methods, it is 
analysed how the risk measures change when the growth rate δ, number of banks 
N , initial monetary reserves X0 and interbank lending preference α are changed. 
First three of these tests can be conducted by using the non-central chi-squared 
distribution directly and the last test is conducted by simulating the trajectories for 
individual banks.

Figure 10: Analysing changes in the risk measures (VaR and ES on 95% confidence 
level) for the total monetary reserves when individual variables are changed. The 
base level of variables is N = 10, α = 5, δ = 0.1, t = 10 and X0 = 10.

Based on the results in figure 10 (bottom-right), the interbank lending preference 
has no effect on the risk measures as was expected based on the theoretical model 
analysis. The variation seen in the risk measures happens due to the simulation 
error as the total number of simulation rounds needs to remain low when banks are 

12Simulation error is defined here as the difference between the theoretical outcomes and the 
simulated outcomes. The non-central chi square distribution is simulated by using rchisq function 
in base R. Repeating this simulation multiple times (e.g. 1 million times), one can quickly create 
(almost) the exact non-central chi-squared distribution.
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simulated individually. Furthermore, when the growth rate δ is increased (top-left), 
then the banks essentially have better operating results which means that they can 
also endure adverse shocks better. As the risk is measured unsymmetrical through 
the tail loss events, it is clear that the risk measures decrease too.

Despite the fact that the total initial reserves (Y0 = NX0) develop similarly 
when N or X0 is altered, still the risk measures develop very differently. When the 
initial reserves are increased, then the risk grows as the potential tail losses grow 
too (figure 10, bottom-left). However, when the number of banks in the system is 
increased, then the risk measures initially grow, but after a certain threshold, the 
risk measures start to decrease instead (figure 10, top-right). This happens because 
the total growth rate Nδ also increases when N is increased. Since higher growth 
rate makes the banking system stronger, the overall risk starts to decrease once the 
growth rate becomes high enough.

Figure 11: Comparing changes in mean-VaR measures on 95% confidence level when 
N and X0 are changed. The base level of variables is N = 10, α = 5, δ = 0.1, t = 10
and X0 = 10.

In figure 11, N and X0 are analysed again so that the mean losses and mean-
VaR measures are plotted with the standard VaR measures. Although the mean-
VaR measures develop similarly in both cases (right graph), still the mean losses 
and VaR measures develop very differently (left and centre graphs). When the 
number of banks is increased, then the mean loss starts to decrease (negative loss 
is interpreted as profit) which indicates that the system overall has lower risk for 
severe losses compared to the case where initial reserves are increased instead.

The results obtained here clearly indicate that from a macro-prudential point of 
view it is better (i.e. less risky) to have more banks in the markets than to have fewer 
but larger banks. However, the crude model assumptions clearly drive these results, 
as it is assumed in the model that any new bank can instantly add more growth 
to the system whereas existing banks have constant growth rates. Yet real world 
banking markets don’t work like that as operating results (i.e. growth rates) are not 
constant or deterministic and usually larger banks have at least some competitive 
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advantages against the smaller banks. Therefore, one potential improvement to the 
model is to replace the constant growth rate component with a stochastic growth rate 
component that also depends on the sizes of the banks. This stochastic component 
would capture the nature of the uncertain markets and operating results better and 
make it possible to directly link the growth rate to bank’s size.
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7 Conclusion

Interbank lending markets and reserve management have crucial role in the risk 
management of the banking system. For example, the distressed interbank lending 
markets further escalated the emerging systemic crisis during the late 2000s. As 
proposed by e.g. Fouque and Ichiba (2013) [7], interbank lending markets can be 
modelled with a system of coupled diffusion processes, and under specific (symme-
try) assumptions the total monetary reserves of the whole banking sector follow 
squared Bessel process. Furthermore, the dimension of this BESQ process is then 
interpreted as the total growth rate and together with the lending preference, these 
two factors define whether the systemic crises exist in the banking system or not. In 
general, the banking sector benefits from the increased lending activities (and higher 
growth rate) as this decreases the probability of individual banks to go bankrupt.

Somewhat simplified version of the Coupled banking model was proposed by Sun 
(2017) [19] and this model is called Mean field model. In the Mean field model, it 
is assumed that the reserves of the individual banks revert to the average level of 
the reserves and that the speed of this reversion is defined by the constant lending 
preference parameter. Based on the numerical simulations, it is shown that the 
monetary reserves of individual banks develop almost identically when the interbank 
lending preference is strong. This happens because each bank constantly compares 
its reserves to the reserves of the other banks and acts in interbank lending markets 
based on the differences in the reserve levels. Therefore, the interbank lending 
activity reduces the differences in the reserves of the individual banks. However, 
this active lending also causes the adverse shocks to spread from one bank to all 
the other banks in the markets. Furthermore, if the total growth in the system is 
low, then the banks are fairly vulnerable to these widespread shocks. Therefore, the 
interbank lending activity can actually increase the probability of severe systemic 
crises if the total growth rate in the banking system is low enough.

In the Mean field model, the loss distribution of the total monetary reserves 
follows non-central chi-squared distribution. Quantitative risk analysis shows that 
larger initial reserves (i.e. larger banks) lead to larger tail losses and risk whereas 
higher growth rate decreases the potential tail losses and risk. However, when the 
size of the banking system is increased by adding new banks to the system, then the 
tail risks first grow slowly, but after a certain threshold the risks start to decrease 
instead. This finding indicates that from a macro-prudential point of view it is 
better to increase the size of the banking system by adding new banks to the system 
rather than by increasing the sizes of the existing banks as the former alternative 
creates less risk than the latter alternative.

The Coupled banking model has many limiting assumptions that drive these 
aforementioned findings. Specifically, it is assumed that the growth rates of the 
individual banks are constant, that the banks don’t gain any competitive edge when 
their sizes grow, that any new bank can instantly add more growth to the system 
(i.e. increase the total growth rate), and that bank’s growth rate is not linked to 
its size (i.e. its growth rate remains the same even if its reserves grow). These 
crude assumptions drive towards the aforementioned conclusion that from a macro-
prudential point of view it is better to have more banks than to have larger banks. 
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Therefore, one potential future improvement to the model is to replace the constant 
growth rate with a stochastic growth rate component. This component would cap-
ture the uncertain nature of the markets better and directly link the growth rate to 
bank’s size.
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A Comparison theorem for solutions of stochastic 
differential equations

A Comparison theorem for solutions of stochastic differential equations by Ikeda 
and Watanabe (1977) [11] is introduced here.

Theorem 8 (Comparison theorem of Ikeda and Watanabe). Given

• a real continuous function σt(x) defined on x ∈ R and t ≥ 0 such that 

  |\sigma _t(x)-\sigma _t(y)| \leq \rho (|x-y|), x,y \in \mathbb {R}, t \geq 0,             (105)

where ρ(·) is an increasing function on [0,∞) such that ρ(0) = 0 and∫︁
0+

ρ(z)−2dz = ∞,

• real continuous functions b1t (x) and b2t (x) defined on x ∈ R and t ≥ 0 such 
that 

  \label {later_weakened} b^1_t(x) < b^2_t(x), \text { } t \geq 0, x \in \mathbb {R},            (106)

• two continuous processes X1
t and X2

t , and a one-dimensional standard Brow-
nian motion Bt,

• two well measurable processes β1
t and β2

t .

Assuming that they satisfy the following conditions with probability one:  \begin {cases} X^i_t-X^i_0=\int _{0}^{t}\sigma _s(X^i_s)dB_s+\int _{0}^{t}\beta ^i_s ds, \text { } i=1,2 \\ X^1_0 \leq X^2_0 \\ \beta ^1_t \leq b^1_t(X^1_t), \text { for all } t \geq 0 \\ \beta ^2_t \geq b^2_t(X^2_t), \text { for all } t \geq 0. \end {cases} 


 














   


 




  


   


  


   

(107)

Then it holds with probability one that

  \label {Ikeda_Watanabe_conclusion} X^1_t \leq X^2_t, \text { for all } t \geq 0. 
 

     (108)

Furthermore, if the pathwise uniqueness of solutions holds for at least one of the 
following stochastic differential equations

  dX_t=\sigma _t(X_t)dB_t+b^i_t(X_t)dt, \text { } i=1,2.          (109)

then the same conclusion 108 holds if property 106 is weakened to 

  b^1_t(x) \leq b^2_t(x), \text { } t \geq 0, x \in \mathbb {R},            (110)

Proof. See Ikeda and Watanabe (1977) [11, p. 619—622] for complete details of the 
theorem 8 and its proof.
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B Extension probability space
Probability space is denoted as (Ω,F , P ), where Ω is the sample space which is 
the set of all the possible outcomes, F is the set of events from the sample space, 
and P is the probability function that assigns each event in the event space with a 
probability between 0 and 1. In probability theory, stochastic process is a collection 
of the random variables (Xt, 0 ≤ t < ∞) defined on (Ω,F , P ) and sample path is 
defined as function t → Xt(ω), t ≥ 0 for a fixed sample point ω ∈ Ω. Furthermore, 
filtered probability space is denoted as (Ω,F , {Ft}t≥0, P ). The following theorem is 
from Karatzas and Shreve (1991) [13, p. 170] (theorem 3.4.2).

Theorem 9. Suppose Mt = ((M1
t , ...,M

d
T ),Ft, 0 ≤ t < ∞) is defined on (Ω,F , P )

so that M i is a continuous local martingale for i = 1, .., d and that the cross 
variation ⟨M i,M j⟩t(ω) is an absolute continuous function of t for every ω almost 
surely with respect to probability measure P . Then there is an extension probability 
space (Ω̃, F̃ , P̃ ) of (Ω,F , P ) on which is defined a d-dimensional Brownian motion 
Bt = ((B1

t , ..., B
d
t ), F̃ t, 0 ≤ t < ∞) and a matrix 

(︂
(X

(i,k)
t )di,k=1, F̃ t, 0 ≤ t < ∞

)︂
of a 

measurable adapted process with

  \tilde {P}\left (\int _0^t (X_s^{(i,k)})^2 ds < \infty \right )=1, \text { } 1 \leq i,k \leq d, \text { } 0 \leq t < \infty , 





  


             (111)

such that there are, almost surely with respect to probability measure P̃ , representa-
tions

  M_t^i=\sum _{k=1}^{d}\int _0^t X_s^{(i,k)}dB_s^k, \text { } 1 \leq i \leq d, \text { } 0 \leq t < \infty , 












            (112)

and

  \langle M^i,M^j \rangle _t=\sum _{k=1}^d \int _0^t X_s^{(i,k)} X_s^{(j,k)}ds, \text { } 1 \leq i,j \leq d, \text { } 0 \leq t < \infty .   











             (113)

Proof. See Karatzas and Shreve (1991) [13, pp. 170-172 ] for the full proof of this 
theorem.

The theorem 9 provides a theoretical backbone for the equality 
∫︁ t

0

√
YudB̃u =∫︁ t

0

∑︁N
i=1

√︁
X i

udB
i
u, which is an important detail in the Coupled banking model frame-

work as this equality makes it possible to model the total reserves by using squared 
Bessel process. A sketch of the proof for this equality can be given by noting that the 
monetary reserves of banks i = 1, ..., N , i.e. Xt = ((X1

t , ..., X
N
t ,Ft, 0 ≤ t < ∞), are 

on a filtered probability space (Ω,F , {Ft}t≥0, P ) and their dynamics are defined as in 
equation 85, where (B1

t , ..., B
N
t ,Ft, 0 ≤ t < ∞) is standard N -dimensional Brownian 

motion on (Ω,F , {Ft}t≥0, P ). When the dynamics for the total monetary reserves, 
i.e. Yt =

∑︁N
i=1 X

i
t , are formulated, an extension probability space (Ω̃, F̃ , {F̃ t}t≥0, P̃ )

is introduced on which a 1-dimensional Brownian motion (B̃t, F̃ t, 0 ≤ t ≤ ∞) is 
defined. Finally, one can show that based on theorem 9 and properties of Xt and 
Yt, the equality indeed holds.
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C R script
1
2 ## R SCRIPT
3
4 ## Iiro Marttila
5
6 ###################################################################################
7
8 ## VaR and ES illustrated
9

10 par(mfrow=c(1,1))
11
12 set.seed(1234)
13 L <-rnbinom(10000,10,0.5)-15
14 alpha <-0.95
15 EL <-mean(L)
16 VaR <-quantile(L,alpha)
17 ES <-mean(L[VaR<=L])
18
19 den <-density(L)
20 plot(den,lty=1,lwd=2,main=paste0("Loss distribution and its VaR and ES when alpha is ", 100*alpha,"%"),
21 xlab="Loss", ylab="Density", col="black")
22 lines(y=c(0,1),x=c(EL,EL),col="darkgray",lwd=2,lty=3)
23 text(y=0.04,x=EL,labels="E(L)",pos=2)
24 lines(y=c(0,1),x=c(VaR,VaR),col="darkgray",lwd=2)
25 text(y=0.04,x=VaR,labels=paste0("VaR-",round(100*(alpha),0),"%"),pos=4)
26 polygon(c(den$x[den$x >= VaR ], VaR),
27 c(den$y[den$x >= VaR ], 0),
28 col = "lightgray",
29 border = 1)
30 lines(y=c(0,1),x=c(ES,ES),col="darkgray",lwd=2,lty=2)
31 text(y=0.06,x=ES,labels=paste0("ES-",round(100*(alpha),0),"%"),pos=4)
32
33
34
35 ###################################################################################
36
37 ## Brownian motion - trajectories
38
39 par(mfrow=c(1,1))
40
41 #Time
42 t <-0:100
43 #Sigma
44 sig <-1/(length(t)-1)
45 #Number of simulated paths
46 nsim <- 100
47
48 #Simulate paths
49 set.seed(123)
50 X <- matrix(rnorm(n = nsim * (length(t) - 1), sd = sqrt(sig)), nsim, length(t) -
51 1)
52 X <- cbind(rep(0, nsim), t(apply(X, 1, cumsum)))
53
54 #Plot paths with random colors
55 plot(t, X[1, ], xlab = "time", ylab = "", ylim = range(X), type = "l")
56 apply(X[2:nsim, ], 1, function(x, t) lines(t, x, col=round(runif(1,0,100),0)), t = t)
57
58 ###################################################################################
59
60 ## Reflection principle - example
61
62 par(mfrow=c(1,1))
63
64 ## set reflection point
65 m <-1.096
66 ## set time
67 t <- 0:200
68 ## set variance
69 sig2 <- 0.01
70 ## set simulation seed
71 set.seed(1)
72 ## first, simulate a set of random deviates
73 x <- rnorm(n = length(t) - 1, sd = sqrt(sig2))
74 ## now compute their cumulative sum
75 x <- c(0, cumsum(x))
76 ## reflect brownian motion
77 x_refl <-2*m-x
78 ## start reflection from first passage point
79 x_refl[1:(which(x>m)[1]-1)] <-x[1:(which(x>m)[1]-1)]
80
81 plot(t, x_refl, type = "l", ylim = c(-1.5, 2.5),lwd=2, col="gray", ylab="",xlab="Time")
82 lines(x=c(0,2000),y=c(m,m),lty=2,col="red")
83 lines(t,x,lty=1,lwd=2,col="black")
84 legend("bottomleft",ncol=1,lty=c(1,1,2),col=c("black","gray","red"),lwd=c(2,2,1),
85 legend=c("Original path", "Reflected path", "Barrier"), bty='n')
86
87
88 ###################################################################################
89
90 ## Simulating squared Bessel process trajectories
91
92 par(mfrow=c(1,1))
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93
94 # Squared Bessel process function
95 Bessel_path <-function(X_0,delta,t_val,time_steps){
96 dt <-t_val/time_steps
97 X_t <-X_0
98 for(i in 1:time_steps){
99 dX_t <-delta*dt+2*sqrt(abs(X_t[i]))*rnorm(1)*sqrt(dt)

100 X_t[i+1] <-X_t[i] + dX_t
101 if(X_t[i+1] < 0){X_t[i+1] <-0}
102 }
103 return(X_t)
104 }
105
106 ## Simulate using different deltas
107 set.seed(537128)
108 path1 <-Bessel_path(X_0=1,delta=0,t_val=10,time_steps=100000)
109
110 set.seed(18)
111 path2 <-Bessel_path(X_0=1,delta=1,t_val=10,time_steps=100000)
112
113 set.seed(6)
114 path3 <-Bessel_path(X_0=1,delta=2,t_val=10,time_steps=100000)
115
116 set.seed(10)
117 path4 <-Bessel_path(X_0=1,delta=3,t_val=10,time_steps=100000)
118
119 ## Plot
120 plot(y=path1,x=seq(0,10,10/100000), main="Trajectories for the squared Bessel process", xlab="Time",
121 type='l',col="darkgray", ylim=c(-1,max(c(path1,path2,path3,path4))),lwd=1, ylab="")
122 lines(y=c(0,0),x=c(-100,100000),lwd=1,lty=2,col="red")
123 lines(y=path2,x=seq(0,10,10/100000), col="black",lwd=0.5)
124 lines(y=path3,x=seq(0,10,10/100000), col="skyblue",lwd=0.5)
125 lines(y=path4,x=seq(0,10,10/100000), col="darkblue",lwd=0.5)
126 legend("topleft",ncol=2,legend=c("delta 0","delta 1","delta 2","delta 3"),lty=rep(1,4),
127 col=c("darkgray","black","skyblue","darkblue"),bty='n',lwd=rep(2,4))
128
129
130 ###################################################################################
131
132
133 ## Estimating default time probabilities when there is no lending money
134
135 par(mfrow=c(1,2))
136
137 ## probability density function
138 integrant <-function(s){(1/(s*gamma(v)))*(((x_k0)/(2*s))^(v))*exp(-(x_k0)/(2*s))}
139 t <-seq(0.1,100,0.1)
140
141 ## Change in delta
142 x_k0 <-10
143 deltas <-c(0,1,1.5)
144
145 for(ind in 1:length(deltas)){
146
147 delta <-deltas[ind]
148 v <-1-delta/2
149 for(i in 1:length(t)){
150 t_val <-t[i]
151 prob <-integrate(integrant,lower=0,upper=t_val)$value
152 #1-integrate(integrant,lower=t_val,upper=Inf)$value
153 if(i==1){probs <-prob}
154 if(i!=1){probs[i] <-prob}
155 }
156 if(ind==1){plot(x=t,y=probs,type='l',col=ind,ylim=c(0,1.1), lwd=2,
157 xlab="Time", ylab="Probability",
158 main=paste("Default probabilities in system
159 with no interbank lending, Y_0 =",x_k0))}
160 if(ind!=1){lines(x=t,y=probs,col="black",lty=ind,lwd=2)}
161 if(ind==length(deltas)){legend("bottomright",legend=c("Delta:",deltas),col=c(NA,rep("black",3)),
162 lty=c(NA,1,2,3), bty='n')}
163 }
164
165 ## Change in X_k(0)
166 delta <-1
167 x_k0s <-c(1,10,20)
168
169 for(ind in 1:length(x_k0s)){
170
171 x_k0 <-x_k0s[ind]
172 v <-1-delta/2
173 for(i in 1:length(t)){
174 t_val <-t[i]
175 prob <-integrate(integrant,lower=0,upper=t_val)$value
176 #1-integrate(integrant,lower=t_val,upper=Inf)$value
177 if(i==1){probs <-prob}
178 if(i!=1){probs[i] <-prob}
179 }
180 if(ind==1){plot(x=t,y=probs,type='l',col=ind,ylim=c(0,1.1), lwd=2,
181 xlab="Time", ylab="Probability",
182 main=paste("Default probabilities in system
183 with no interbank lending, delta =",delta))}
184 if(ind!=1){lines(x=t,y=probs,col="black",lty=ind,lwd=2)}
185 if(ind==length(x_k0s)){legend("bottomright",legend=c("Y_0:",x_k0s),col=c(NA,rep("black",3)),
186 lty=c(NA,1,2,3), bty='n')}
187 }
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188
189
190 ###################################################################################
191
192 ## Analyse number of defaults in theory
193
194 par(mfrow=c(1,2))
195
196 # delta varies
197 deltas <-c(0,1,1.5)
198 x_k0 <-10
199 t_val <-100
200 banks <-10
201
202 all_probss <-matrix(NA,ncol=banks+1,nrow=length(deltas))
203 for(i in 1:length(deltas)){
204 delta <-deltas[i]
205 v <-((4-delta)/2)-1
206 prob_def <-integrate(integrant,lower=0,upper=t_val)$value
207 prob_sur <-1-integrate(integrant,lower=0,upper=t_val)$value
208 probss <-numeric(0)
209 for(k in 0:banks){
210 probss[k+1] <-sum(rep((prob_def^k)*prob_sur^(banks-k),ncol(combn(1:banks,k))))
211 names(probss)[k+1] <-k
212 }
213 all_probss[i,] <-probss
214 }
215 plot(x=(0:10-0.2),y=all_probss[1,],type="h",col="gray", ylim=c(0,0.7), lwd=6, xaxt='n',
216 xlab="Number of defaulted banks", ylab="Probability",xlim=c(-0.01,10.1)
217 ,main=paste("Number of defaults in system
218 with no interbank lending and",banks, "identical banks
219 X_0:",x_k0)
220 )
221 lines(x=0:10,y=all_probss[2,],lty=1, col="black", type='h', lwd=6)
222 lines(x=(0:10+0.2),y=all_probss[3,],lty=1, col="darkgray",type='h', lwd=6)
223 axis(1,labels=(0:banks),at=(0:banks))
224 legend("topleft",
225 legend=c("Delta:",deltas),
226 ncol=1,
227 lty=c(NA,1,1,1), col=c(NA,"gray","black","darkgray"), bty='n', lwd=c(NA,4,4,4))
228 rowSums(all_probss)
229
230
231 # X_0 varies
232 x_k0s <-c(1,10,20)
233 delta <-1
234 t_val <-100
235 banks <-10
236
237 all_probss <-matrix(NA,ncol=(banks+1),nrow=length(x_k0s))
238 for(i in 1:length(x_k0s)){
239 x_k0 <-x_k0s[i]
240 v <-((4-delta)/2)-1
241 prob_def <-integrate(integrant,lower=0,upper=t_val)$value
242 prob_sur <-1-integrate(integrant,lower=0,upper=t_val)$value
243 probss <-numeric(0)
244 for(k in 0:banks){
245 probss[k+1] <-sum(rep((prob_def^k)*prob_sur^(banks-k),ncol(combn(1:banks,k))))
246 names(probss)[k+1] <-k
247 }
248 all_probss[i,] <-probss
249 }
250 plot(x=(0:10-0.2),y=all_probss[1,],type="h",col="gray", ylim=c(0,0.7), lwd=5, xaxt='n',
251 xlab="Number of defaulted banks", ylab="Probability",xlim=c(-0.1,10.1)
252 ,main=paste("Number of defaults in system
253 with no interbank lending and",banks, "identical banks
254 delta:",delta)
255 )
256 lines(x=0:10,y=all_probss[2,],lty=1, col="black", type='h', lwd=5)
257 lines(x=(0:10+0.2),y=all_probss[3,],lty=1, col="darkgray",type='h', lwd=5)
258 axis(1,labels=(0:banks),at=(0:banks))
259 legend("topleft",
260 legend=c("X_0:",x_k0s),
261 ncol=1,
262 lty=c(NA,1,1,1), col=c(NA,"gray","black","darkgray"), bty='n', lwd=c(NA,4,4,4))
263 rowSums(all_probss)
264
265
266 ###################################################################################
267
268 ## Trajectories in Mean field banking model
269
270 ## Parameter set 1
271
272 par(mfrow=c(2,2))
273
274 N <-10
275 alpha <-0
276 delta <-1
277 time <-100
278 steps <-10000
279 simulations <-1
280 X_0 <-10
281
282 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
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283 colnames(X_matrix) <-1:N
284 X_matrix[1,] <-rep(X_0,N)
285 dt <-time/steps
286 set.seed(1234)
287 for(i in 1:steps){
288 for(n in 1:N){
289 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
290 X_matrix[i+1,n] <-X_matrix[i,n] + dX
291 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
292 }
293 }
294 plot(X_matrix[,1],type='l',col=rgb(0,0,0,alpha=0.5),ylim=c(0,max(X_matrix)),xaxt='n',ylab="Monetary reserves", xlab="

Time",
295 main=paste("One realization for", N, "banks
296 delta:", delta, "| alpha/N:", alpha/N, "| X_0:", X_0))
297 for(n in 2:N){
298 lines(X_matrix[,n],col=rgb(0,0,0,alpha=0.5))
299 }
300 axis(1,at=c(1,nrow(X_matrix)),labels=c(0,time))
301
302 ## Parameter set 2
303
304 N <-10
305 alpha <-N #meanin alpha/N = 1
306 delta <-1
307 time <-100
308 steps <-10000
309 simulations <-1
310 X_0 <-10
311
312 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
313 colnames(X_matrix) <-1:N
314 X_matrix[1,] <-rep(X_0,N)
315 dt <-time/steps
316 set.seed(144)
317 for(i in 1:steps){
318 for(n in 1:N){
319 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
320 X_matrix[i+1,n] <-X_matrix[i,n] + dX
321 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
322 }
323 }
324 plot(X_matrix[,1],type='l',col=rgb(0,0,0,alpha=0.5),ylim=c(0,max(X_matrix)),xaxt='n',ylab="Monetary reserves", xlab="

Time",
325 main=paste("One realization for", N, "banks
326 delta:", delta, "| alpha/N:", alpha/N, "| X_0:", X_0))
327 for(n in 2:N){
328 lines(X_matrix[,n],col=rgb(0,0,0,alpha=0.5))
329 }
330 axis(1,at=c(1,nrow(X_matrix)),labels=c(0,time))
331
332 ## Parameter set 3
333
334 N <-10
335 alpha <-N #meanin alpha/N = 1
336 delta <-0
337 time <-100
338 steps <-10000
339 simulations <-1
340 X_0 <-10
341
342 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
343 colnames(X_matrix) <-1:N
344 X_matrix[1,] <-rep(X_0,N)
345 dt <-time/steps
346 set.seed(44126)
347 for(i in 1:steps){
348 for(n in 1:N){
349 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
350 X_matrix[i+1,n] <-X_matrix[i,n] + dX
351 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
352 }
353 }
354 plot(X_matrix[,1],type='l',col=rgb(0,0,0,alpha=0.5),ylim=c(0,max(X_matrix)),xaxt='n',ylab="Monetary reserves", xlab="

Time",
355 main=paste("One realization for", N, "banks
356 delta:", delta, "| alpha/N:", alpha/N, "| X_0:", X_0))
357 for(n in 2:N){
358 lines(X_matrix[,n],col=rgb(0,0,0,alpha=0.5))
359 }
360 axis(1,at=c(1,nrow(X_matrix)),labels=c(0,time))
361
362
363 ## Parameter set 4
364
365 N <-30
366 alpha <-N #meanin alpha/N = 1
367 delta <-0
368 time <-100
369 steps <-10000
370 simulations <-1
371 X_0 <-10
372
373 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
374 colnames(X_matrix) <-1:N
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375 X_matrix[1,] <-rep(X_0,N)
376 dt <-time/steps
377 set.seed(100)
378 for(i in 1:steps){
379 for(n in 1:N){
380 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
381 X_matrix[i+1,n] <-X_matrix[i,n] + dX
382 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
383 }
384 }
385 plot(X_matrix[,1],type='l',col=rgb(0,0,0,alpha=0.5),ylim=c(0,max(X_matrix)),xaxt='n',ylab="Monetary reserves", xlab="

Time",
386 main=paste("One realization for", N, "banks
387 delta:", delta, "| alpha/N:", alpha/N, "| X_0:", X_0))
388 for(n in 2:N){
389 lines(X_matrix[,n],col=rgb(0,0,0,alpha=0.5))
390 }
391 axis(1,at=c(1,nrow(X_matrix)),labels=c(0,time))
392
393 ###################################################################################
394
395 ## Calculating number of defaults in the mean fiel banking system
396
397 par(mfrow=c(2,2))
398
399 ## Parameter set 1
400
401 N <-10
402 alpha <-0
403 delta <-0.1
404 time <-100
405 steps <-1000
406 simulations <-200
407 X_0 <-10
408
409 set.seed(1234)
410 defaults_dist <-numeric(0)
411 for(s in 1:simulations){
412 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
413 colnames(X_matrix) <-1:N
414 X_matrix[1,] <-rep(X_0,N)
415 dt <-time/steps
416 for(i in 1:steps){
417 for(n in 1:N){
418 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
419 X_matrix[i+1,n] <-X_matrix[i,n] + dX
420 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
421 }
422 }
423 defaults <-sum(apply(X_matrix,2,min)<=0)
424 defaults_dist <-c(defaults_dist,defaults)
425 }
426 defaults_dist <-table(defaults_dist)
427 barplot(defaults_dist,main=paste0("alpha/N: ",alpha/N, " | 2/N: ",2/N," | delta: ",delta), xlab="Number of defaulting

banks"
428 , ylab="Frequency", ylim=c(0,simulations))
429
430 ## Parameter set 2
431
432 N <-10
433 alpha <-N
434 delta <-0.1
435 time <-100
436 steps <-1000
437 simulations <-200
438 X_0 <-10
439
440 set.seed(111)
441 defaults_dist <-numeric(0)
442 for(s in 1:simulations){
443 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
444 colnames(X_matrix) <-1:N
445 X_matrix[1,] <-rep(X_0,N)
446 dt <-time/steps
447 for(i in 1:steps){
448 for(n in 1:N){
449 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
450 X_matrix[i+1,n] <-X_matrix[i,n] + dX
451 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
452 }
453 }
454 defaults <-sum(apply(X_matrix,2,min)<=0)
455 defaults_dist <-c(defaults_dist,defaults)
456 }
457 defaults_dist <-table(defaults_dist)
458 barplot(defaults_dist,main=paste0("alpha/N: ",alpha/N, " | 2/N: ",2/N," | delta: ",delta), xlab="Number of defaulting

banks"
459 , ylab="Frequency", ylim=c(0,simulations))
460
461
462 ## Parameter set 3
463
464 N <-10
465 alpha <-0
466 delta <-0.5
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467 time <-100
468 steps <-1000
469 simulations <-200
470 X_0 <-10
471
472 set.seed(111)
473 defaults_dist <-numeric(0)
474 for(s in 1:simulations){
475 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
476 colnames(X_matrix) <-1:N
477 X_matrix[1,] <-rep(X_0,N)
478 dt <-time/steps
479 #set.seed(100)
480 for(i in 1:steps){
481 for(n in 1:N){
482 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
483 X_matrix[i+1,n] <-X_matrix[i,n] + dX
484 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
485 }
486 }
487 defaults <-sum(apply(X_matrix,2,min)<=0)
488 defaults_dist <-c(defaults_dist,defaults)
489 }
490 defaults_dist <-table(defaults_dist)
491 barplot(defaults_dist,main=paste0("alpha/N: ",alpha/N, " | 2/N: ",2/N," | delta: ",delta), xlab="Number of defaulting

banks"
492 , ylab="Frequency", ylim=c(0,simulations))
493
494
495 ## Parameter set 4
496
497 N <-10
498 alpha <-N
499 delta <-0.5
500 time <-100
501 steps <-1000
502 simulations <-200
503 X_0 <-10
504
505 set.seed(124)
506 defaults_dist <-numeric(0)
507 for(s in 1:simulations){
508 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
509 colnames(X_matrix) <-1:N
510 X_matrix[1,] <-rep(X_0,N)
511 dt <-time/steps
512 #set.seed(100)
513 for(i in 1:steps){
514 for(n in 1:N){
515 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(X_matrix[i,n])*rnorm(1)*sqrt(dt)
516 X_matrix[i+1,n] <-X_matrix[i,n] + dX
517 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
518 }
519 }
520 defaults <-sum(apply(X_matrix,2,min)<=0)
521 defaults_dist <-c(defaults_dist,defaults)
522 }
523 defaults_dist <-table(defaults_dist)
524 barplot(defaults_dist,main=paste0("alpha/N: ",alpha/N, " | 2/N: ",2/N," | delta: ",delta), xlab="Number of defaulting

banks"
525 , ylab="Frequency", ylim=c(0,simulations))
526
527
528 ###################################################################################
529
530 ## Create loss distribution function for Mean field banking model
531
532 bessel_loss_dist <-function(N,alpha,delta,time,steps,simulations,X_0){
533
534 loss_dist <-numeric(0)
535 for(s in 1:simulations){
536 X_matrix <-matrix(NA,nrow=(steps+1),ncol=N)
537 colnames(X_matrix) <-1:N
538 X_matrix[1,] <-rep(X_0,N)
539 dt <-time/steps
540 for(i in 1:steps){
541 for(n in 1:N){
542 dX <-((alpha/N)*sum(X_matrix[i,]-X_matrix[i,n])+delta)*dt+2*sqrt(abs(X_matrix[i,n]))*rnorm(1)*sqrt(dt)
543 X_matrix[i+1,n] <-X_matrix[i,n] + dX
544 if(X_matrix[i+1,n] < 0){X_matrix[i+1,n] <-0}
545 }
546 }
547 X_t <-rowSums(X_matrix)[nrow(X_matrix)]
548 loss_dist <- c(loss_dist,-(X_t-X_0*N))
549 }
550 return(loss_dist)
551 }
552
553 ## Check process against theoretical non-central chi-square distribution
554
555 par(mfrow=c(1,1))
556
557 N <-10 #number of banks
558 alpha <-5 #interbank lending, 10 banks -> alpha/N = 0.5 <1
559 delta <-0.1 #per bank
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560 time <-10
561 steps <-100
562 simulations <-2000
563 X_0 <-10 #per bank
564
565 set.seed(111)
566 loss_dist1 <-bessel_loss_dist(N=N,alpha=alpha,delta=delta,time=time,steps=steps,simulations=simulations,X_0=X_0)
567
568 X_t <-time*rchisq(n=1000000, df=(delta*N), ncp = ((X_0*N)/time))
569 loss_dist2 <- -(X_t-X_0*N)
570
571 hist(loss_dist1,main=paste("Simulated loss distribution for total monetary reserves \n",
572 "N =",N,"| delta for bank:",delta,"| X_0 for bank:",X_0, "| alpha/N:",round(alpha/N,1)),
573 xlab="Loss",col="black",lwd=2,freq=FALSE,breaks=40)
574 lines(density(loss_dist2),col="darkgray",lwd=2,lty=1)
575 legend("topleft",legend=c(paste("Simulated using total banking \n system,",simulations,"simulations"),
576 "Theoretical non-central \n chi-squared distribution \n for total monetary reserves"),
577 lty=c(NA,1),pch=c(15,NA),
578 col=c("black","darkgray"),lwd=c(2,2),bty='n')
579
580 ###################################################################################
581
582 ## Analys how changes in variables affect VaR and ES for total monetary reserves
583 ## in Mean field model
584
585 par(mfrow=c(2,2))
586 var_alpha <-0.95
587
588 # 1. Change of growth rate delta
589
590 N <-10 #number of banks
591 alpha <-5 #interbank lending
592 delta <-0.1 #per bank
593 time <-10
594 X_0 <-10 #per bank
595
596 deltas <-range(0,1,0.01) #different deltas
597 vars <- es <-numeric(0)
598 for(delta in deltas){
599 X_t <-time*rchisq(n=200000, df=(delta*N), ncp = ((X_0*N)/time))
600 loss_dist <- -(X_t-X_0*N)
601 var <-quantile(loss_dist,var_alpha)
602 es <-c(es,mean(loss_dist[loss_dist>=var]))
603 vars <-c(vars,var)
604 }
605 plot(y=vars,x=deltas,type='l',col="black",lwd=2,ylim=c(0,max(c(vars,es))),ylab="Risk Measure",xlab="Delta for

individual bank",
606 main=paste0("VaR-",round(100*var_alpha,0),"% (solid) \n ES-",round(100*var_alpha,0),"% (dashed)"))
607 lines(y=es,x=deltas,col="black",lwd=2,lty=2)
608
609
610
611 # 2. Change of number of banks
612
613 N <-10 #number of banks
614 alpha <-5 #interbank lending
615 delta <-0.1 #per bank
616 time <-10
617 X_0 <-10 #per bank
618
619 Ns <-seq(1,800,2) #number of banks
620 vars <- es <-numeric(0)
621 for(N in Ns){
622 X_t <-time*rchisq(n=200000, df=(delta*N), ncp = ((X_0*N)/time))
623 loss_dist <- -(X_t-X_0*N)
624 var <-quantile(loss_dist,var_alpha)
625 es <-c(es,mean(loss_dist[loss_dist>=var]))
626 vars <-c(vars,var)
627 }
628 plot(y=vars,x=Ns,type='l',col="black",lwd=2,ylim=c(0,max(c(vars,es))),ylab="Risk Measure",xlab="Number of banks in

system",
629 main=paste0("VaR-",round(100*var_alpha,0),"% (solid) \n ES-",round(100*var_alpha,0),"% (dashed)"))
630 lines(y=es,x=Ns,col="black",lwd=2,lty=2)
631
632
633
634
635 # 3. Change of start value X_0
636
637 N <-10 #number of banks
638 alpha <-5 #interbank lending
639 delta <-0.1 #per bank
640 time <-10
641 X_0 <-10 #per bank
642
643
644 X_0s <-seq(1,800,2)
645 vars <- es <-numeric(0)
646 for(X_0 in X_0s){
647 X_t <-time*rchisq(n=200000, df=(delta*N), ncp = ((X_0*N)/time))
648 loss_dist <- -(X_t-X_0*N)
649 var <-quantile(loss_dist,var_alpha)
650 es <-c(es,mean(loss_dist[loss_dist>=var]))
651 vars <-c(vars,var)
652 }
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653 plot(y=vars,x=X_0s,type='l',col="black",lwd=2,ylim=c(0,max(c(vars,es))),ylab="Risk Measure",xlab="X_0",
654 main=paste0("VaR-",round(100*var_alpha,0),"% (solid) \n ES-",round(100*var_alpha,0),"% (dashed)"))
655 lines(y=es,x=X_0s,col="black",lwd=2,lty=2)
656
657
658
659 # 4. Change of alpha -> simulating whole banking system
660
661 N <-10 #number of banks
662 alpha <-5 #interbank lending
663 delta <-0.1 #per bank
664 time <-10
665 steps <-100
666 simulations <-2000
667 X_0 <-10 #per bank
668
669
670 alphas <-seq(0,N,1) #maximum alpha/N can be 1
671 vars <- es <-numeric(0)
672 set.seed(767)
673 for(alpha in alphas){
674 loss_dist <- bessel_loss_dist(N=N,alpha=alpha,delta=delta,time=time,steps=steps,simulations=simulations,X_0=X_0)
675 var <-quantile(loss_dist,var_alpha)
676 es <-c(es,mean(loss_dist[loss_dist>=var]))
677 vars <-c(vars,var)
678 }
679 plot(y=vars,x=alphas,type='l',col="black",lwd=2,ylim=c(0.7*min(c(vars,es)),1.3*max(c(vars,es))),ylab="Risk Measure",
680 xlab="Alpha for interbank lending",
681 main=paste0("VaR-",round(100*var_alpha,0),"% (solid) \n ES-",round(100*var_alpha,0),"% (dashed)"))
682 lines(y=es,x=alphas,col="black",lwd=2,lty=2)
683 lines(y=c(mean(vars),mean(vars)),x=alphas[c(1,length(alphas))],col="black",lwd=1,lty=2)
684 lines(y=c(mean(es),mean(es)),x=alphas[c(1,length(alphas))],col="black",lwd=1,lty=2)
685
686
687 ###################################################################################
688
689 ## Analyse VaRs, mean losses and mean-VaRs for change of N and X_0 in mean fiel model
690
691 par(mfrow=c(1,3))
692
693 # Change of number of banks
694
695 N <-10 #number of banks
696 alpha <-5 #interbank lending
697 delta <-0.1 #per bank
698 time <-10
699 X_0 <-10 #per bank
700
701 Ns <-seq(1,800,2) #number of banks
702 vars <- means <- mean_vars <-numeric(0)
703 for(N in Ns){
704 X_t <-time*rchisq(n=200000, df=(delta*N), ncp = ((X_0*N)/time))
705 loss_dist <- -(X_t-X_0*N)
706 mu <-mean(loss_dist)
707 var <-quantile(loss_dist,var_alpha)
708 mean_var <-var-mu
709 means <-c(means,mu)
710 vars <-c(vars,var)
711 mean_vars <-c(mean_vars,mean_var)
712 }
713 plot(y=vars,x=Ns,type='l',col="black",lwd=2,ylim=range(c(mean_vars,vars,means)),ylab="Risk Measure",
714 xlab="Number of banks in system",
715 main=paste0("VaR-",round(100*var_alpha,0),"% (solid black) \n",
716 "Mean Loss (dashed) \n",
717 "Mean-VaR-",round(100*var_alpha,0),"% (solid red)"))
718 lines(y=means, x=Ns, col="black", lty=2)
719 lines(y=mean_vars, x=Ns, col="red",lty=1)
720 mean_vars1 <-mean_vars
721
722
723
724 # Change of start value X_0
725
726 N <-10 #number of banks
727 alpha <-5 #interbank lending
728 delta <-0.1 #per bank
729 time <-10
730 X_0 <-10 #per bank
731
732
733 X_0s <-seq(1,800,2)
734 vars <- means <- mean_vars <-numeric(0)
735 for(X_0 in X_0s){
736 X_t <-time*rchisq(n=200000, df=(delta*N), ncp = ((X_0*N)/time))
737 loss_dist <- -(X_t-X_0*N)
738 mu <-mean(loss_dist)
739 var <-quantile(loss_dist,var_alpha)
740 mean_var <-var-mu
741 means <-c(means,mu)
742 vars <-c(vars,var)
743 mean_vars <-c(mean_vars,mean_var)
744 }
745 plot(y=vars,x=X_0s,type='l',col="black",lwd=2,ylim=range(c(mean_vars,vars,means)),ylab="Risk Measure",xlab="X_0",
746 main=paste0("VaR-",round(100*var_alpha,0),"% (solid black) \n",
747 "Mean Loss (dashed) \n",
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748 "Mean-VaR-",round(100*var_alpha,0),"% (solid red)"))
749 lines(y=means, x=X_0s, col="black", lty=2)
750 lines(y=mean_vars, x=X_0s, col="red",lty=1)
751
752 #check the difference in mean vars
753 diff_mean_var <-(mean_vars1-mean_vars)/mean_vars1
754 summary(diff_mean_var)
755
756 plot(y=mean_vars1,x=(N*X_0s),type='l',xlab="Y_0 = N * X_0", ylab="Risk measure",
757 main="Mean-VaR when N changes (black) \nvs. Mean-VaR when X_0 changes (red)")
758 lines(y=mean_vars,x=(N*X_0s),col="red")
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