
 

 

Distinguishing Noise and Main Text Content from 

Web-Sourced Plain Text Documents Using 

Sequential Neural Networks 

 

 

 

 

 

 

 

 

 

Anna Salmela 

Master’s thesis 

Language Specialist Degree Programme, Digital Language Studies 

School of Languages and Translation Studies 

Faculty of Humanities 

University of Turku 

April 2022 

 

 

 

 

 

 

The originality of this thesis has been checked in accordance with the University of Turku quality 

assurance system using the Turnitin Originality Check service. 



Master's Thesis 

 

Language Specialist Degree Programme, Digital Language Studies: 

Anna Salmela 

Distinguishing Noise and Main Text Content from Web-Sourced Plain Text Documents Using 

Sequential Neural Networks 

Number of pages: 60 pages, 9 appendices 

 

 

Boilerplate removal and the identification of the actual textual content is a crucial step in web corpus 

creation. However, existing methods don’t always filter out the noise perfectly and are often not 

applicable for plain text corpora. In this thesis, I will develop machine learning methods to identify the 

main textual content in plain text documents. I will utilize transfer learning and pretrained language 

models as a base for training monolingual models with French and Swedish data as well as a 

multilingual model with French, Swedish, English, Finnish, German and Spanish data. I will compare 

two machine learning architectures based on the XLM-RoBERTa language model: first a classification 

model built on top of the pretrained XLM-RoBERTa model and a second model using an additional 

Long Short-Term Memory (LSTM) network layer. I will show that the LSTM layer improves the 

classification of the XLM-RoBERTa model and the built multilingual model performs well even with 

data in unseen languages. I will perform a further analysis on the results and show that the results of 

the boilerplate detection with the trained models differ with text varieties. Certain types of text 

documents, such as lyrical texts or discussion forum texts pose challenges in boilerplate detection, and 

it would be beneficial for future research to focus on gathering data that has been difficult to clean. 

 

 

 

Key words: web corpus creation, boilerplate detection, artificial neural networks, sequence-to-

sequence learning. 

 

 



Table of contents 

1 Introduction 4 

2 Web as Corpus 7 

3 Boilerplate Removal 9 

Definition 9 

Approaches to Boilerplate Removal 13 

4 Artificial Neural Networks in Digital Linguistics 16 

Sequence Classification and Sequence-to-Sequence Learning 17 

Language Models and Transfer Learning 20 

5 Data and Methodology 22 

Line-wise Annotated FreCORE and SweCORE 22 

Register annotations 28 

Experimental Setup 30 

6 Analysis 34 

Results of the classification 34 

Register-wise Performance 38 

Error Analysis 39 

Monolingual French Model 39 

Monolingual Swedish Model 44 

Multilingual Model 48 

Discussion 51 

7 Conclusion 53 

References 55 

Appendices 60 

Appendix 1 Line-wise Annotation Guidelines 60 

Appendix 2 Suomenkielinen lyhennelmä 63 

 



4 
 

1 Introduction 

Due to the rise of the use of the Internet over the last few decades, the importance of linguistic 

data collected from the Web has similarly increased. In response to the manually selected 

smaller collections of web-documents, automatic processes have been developed to obtain 

large amounts of textual data from the Internet, resulting in large-scale web corpora such  as 

Common Crawl (Wenzek et al., 2019) and OSCAR (Abadji et al., 2022). Web-sourced 

corpora can be powerful tools in linguistic analysis and machine learning, but they often 

favour quantity over quality. Texts sourced from web crawls often contain all sorts of 

metadata also known as boilerplate that should be filtered out in order to improve the quality 

of the data (Laippala et al., 2020). Filtering out this kind of metadata is often overlooked and 

underreported in web corpus construction process even though it is a crucial step in order to 

obtain high quality data (Kilgarriff, 2007).  

Even though there are great attempts in improving the quality of web-sourced text data, there 

is no one size fits all approach to cleaning the web-sourced texts, since they can vary greatly 

in their linguistic features. The existing methods don’t always generalize well and as such 

leave room for improvement (Laippala et al., 2020). Previous approaches have often used 

HTML documents as their base for boilerplate detection, and not much progress has been 

documented in boilerplate detection from plain text. There are however web-corpora such as 

OSCAR (Abadji et al., 2022) that don’t have their HTML documentation available. In 

addition to this, in some cases the boilerplate cleaning based on the HTML documents isn’t 

enough (Laippala et al., 2020) and a further cleaning of the textual data might be necessary. 

Most of the existing applications are based on heuristics such as Trafilatura (Barbaresi, 2021) 

and jusText (Pomikálek, 2011), and some on machine learning such as BoilerNet (Leonhardt 

et al., 2020) and Web2Text (Vogels et al., 2018).  

Some groundwork has been made in defining what constitutes as boilerplate, and how it 

usually appears among main content text. The definition of boilerplate isn’t clear-cut 

(Pomikálek, 2011), but some annotation guidelines have been created in order to create 

datasets for boilerplate cleaning application development: in general, any text that doesn’t 

belong to the main content of a web page is counted as boilerplate. A common notion is that 

boilerplate and main content appear in blocks (Leonhardt et al., 2020; Pomikálek, 2011), and 

thus a sequential classifier seems like a logical solution to the problem. 



5 
 

The goal of this thesis is to develop a machine learning method for boilerplate detection in 

plain text documents and evaluate its performance. This will be done by first training an 

XLM-R model to label each line in a document and then use this classification as a sequence 

that will be fed to a separate model with an LSTM layer. I will train monolingual models in 

French and Swedish as well as a multilingual model with French, Swedish, English, Finnish, 

German and Spanish data. The research questions are based on the performance of the trained 

model and are thus the following: 

1. Does the use of sequentiality improve the boilerplate detection done by the first 

model? 

2. How well does the multilingual model perform with data in unseen languages? 

3. How do the results of said sequential classification compare to the existing 

applications? 

4. How well does the sequential model perform with different varieties of web-sourced 

data? 

The language model used for the base of the training in this thesis is XLM-RoBERTa 

(Conneau et al., 2019), that has been previously used successfully in e.g., in text classification 

bot in single-language and multilingual settings (Repo et al., 2021; Rönnqvist et al., 2021). I 

will attempt to improve the results achieved with the XLM-R by training another model with 

an added Long Short-Term Memory (LSTM) layer in order to take the sequential form of the 

data into account: as noted in Leonhardt et al. (2020) and Pomikálek (2011), main content and 

boilerplate often appear in blocks. LSTM networks have been previously used in boilerplate 

detection (Leonhardt et al., 2020), as well as in text generation (Karpathy, 2015; Sutskever et 

al., 2011) and sequence tagging (Huang et al., 2015). The results of the classification are 

compared to Trafilatura (Barbaresi, 2021), jusText (Pomikálek, 2011), Web2Text (Vogels et 

al., 2018) and BoilerNet (Leonhardt et al., 2020) to estimate the models’ performance 

compared to previous accomplishments in boilerplate detection.  

The data used in this thesis consists mainly of FreCORE and SweCORE that have been 

previously used in (Repo et al., 2021) and that are annotated by register, “a [text] variety 

associated with a particular situation of use” (Biber & Conrad, 2019), such as News texts, 

Encyclopedia Articles or Discussion Forum texts. For the purposes of this thesis, the data is 

annotated per line in two classes: boilerplate and main content. The different text type 



6 
 

varieties on the Internet might affect the results of the classification. I will examine the effect 

by calculating the models’ performance separately for different Internet registers based on the 

register annotations available for FreCORE and SweCORE.  

This thesis is done in collaboration with TurkuNLP1 research group as a part of their project 

“Massively multilingual modeling of registers in web-scale corpora”. This work contributes a 

pipeline for web corpus cleaning that can be used in future research. The data used in this 

thesis consists of 1982 French and 2 399 Swedish documents sourced from the free web. They 

contain 84 103 French and 99 406 Swedish lines that are manually annotated into two classes: 

boilerplate and main content. This data has been previously used in Repo et al. (2021) and 

contains annotated register information that will be used in the analysis. In addition to this, 

smaller datasets of English, Finnish, German and Spanish are included to conduct 

multilingual tests. 

The structure of this thesis is the following: in chapters 2-4, I will present the theoretical 

framework necessary to the study. Chapter 2 will shed light on web corpus creation and its 

problematics, as well as the meaning behind the term “Web as Corpus”. In Chapter 3, I will 

briefly explain the mechanics behind the artificial neural networks used in this thesis. Chapter 

4 introduces the background of boilerplate removal and some previous approaches to it. In 

Chapter 5, I will focus on the data used in this thesis and explain the experimental setup in 

training the model. The results are analysed in Chapter 6 in both monolingual French and 

Swedish as well as multilingual settings, and Chapter 7 concludes the work. 

                                                      

1 https://turkunlp.org/  

https://turkunlp.org/


7 
 

2 Web as Corpus 

The World Wide Web serves an enormous amount of textual data that can be harnessed for 

linguistic research: as of January 2021, there are 5.1 billion active Internet users2 and 1.9 

billion active websites3. The importance of digital media has steadily increased during the 

past decades, and the quick emergence of new social platforms forces the field in constant 

flux and development. Recent subjects of interest in the research of the Web have been e.g. 

Twitter discourse (Johansson et al., 2018), blogs (Lehti, 2013) and discussion forums and 

their discourse themes (Jantunen, 2018). 

Corpus linguistics can be seen as a research field that utilizes digitalized corpora in linguistic 

analysis. For some, it represents a linguistic research method rather than a field: the results of 

a corpus linguistics analysis can be further used in other linguistic research, such as discourse 

analysis (Partington, 2013, p. 5-6). According to Biber et al. (1998), the goal of corpus 

linguistics is also to describe and analyse the usage of a language. Biber et al. emphasize that 

corpus linguistics enables the study of language usage or linguistic characteristics among a 

group of writers or speakers.  

Traditionally, a linguistic corpus is a large collection of texts that are chosen to represent a 

certain area of a language, be it a certain genre, a temporal window or a method of usage 

(Baker, 2009, p. 34-35). These corpora are then used in quantitative analysis of the language, 

for example by searching for the most frequently used words in a text: can be presumed that if 

a word or an expression appears frequently in a corpus, it is probably typical for the corpus in 

question (Baker, 2006; Gatto, 2014). These kinds of word frequencies can be further analysed 

e.g., by comparing two different corpora to find words or expressions that appear more 

frequently in one corpus.  

Even though the traditional corpora are usually very large, corpus linguistics is sometimes 

criticized of representing only parts of language without giving an exhaustive description of 

its use (Baker, 2006). Web as corpus approach differs from this since its goal is to represent 

the whole World Wide Web that contains lots of extremely varied data (Barbaresi, 2021). 

Web corpus construction includes “crawling, downloading, ‘cleaning’ and de-duplicating the 

data, then linguistically annotating it and loading it into a corpus query tool” (Kilgarriff, 

                                                      

2 https://www.internetlivestats.com/internet-users/  
3 https://www.internetlivestats.com/total-number-of-websites/  

https://www.internetlivestats.com/internet-users/
https://www.internetlivestats.com/total-number-of-websites/


8 
 

2007). The crawling step has been made easier with datasets like Common Crawl (Wenzek et 

al., 2019) that essentially makes it possible to outsource the crawling step and use a massive 

selection of randomly sampled “snapshot” of the web. Many similar text extraction methods 

have been developed in order to gather as much data as possible (Barbaresi, 2016; Laippala et 

al., 2020), but it is essential to further filter out the contents of the crawled data. 

The data from these kind of ready-made data sets is typically varied in its content and quality 

and not all of it is useful in linguistic analysis. Even the useful parts may contain duplicates, 

machine translation and useless metadata such as lists of links, headers, footers and navigation 

bars that need to be filtered in order to increase quality of the corpus (Barbaresi, 2021). This 

step is often overlooked even though it impact all further analysis and computational 

linguistics pipelines (Barbaresi, 2021; Kilgarriff, 2007). After cleaning and filtering a web 

corpus, there is often little information about the documents in it.  Because of the random-

sampled nature of a web corpus, its contents typically remain a mystery without further 

annotation and it is not until its completion that the contents of a web corpus can be listed 

(Barbaresi, 2019; Laippala et al., 2020).  



9 
 

3 Boilerplate Removal 

In this chapter, I will define boilerplate as a concept, explain the task of boilerplate removal 

and its importance in web corpus creation process and introduce some different existing 

approaches in its implementation. 

Boilerplate removal (also referred to as web scraping, web page segmentation, web page 

cleaning, template extraction, content extraction, etc.) is a crucial yet overlooked step in web 

corpus creation process (Barbaresi, 2021). According to Kilgarriff (2007), a well-done 

cleaning step results in a better outcome since all further analysis depends on the cleanliness 

of the data. The cleaning process is often done in seclusion with a particular data set in mind, 

rendering the developed tools to generalize to data in a different page style format or a 

different language poorly (Barbaresi & Lejeune, 2020; Kilgarriff, 2007). In addition to this, 

the documentation of the cleaning process is often very brief, if at all present, in many 

publications (Kilgarriff, 2007). 

Definition 

Web-extracted text content can usually be divided into main content and boilerplate 

(Pomikálek, 2011; Vogels et al., 2018). Pomikálek (2011) notes that boilerplate is often 

defined vaguely as “non-informative parts outside of the main content of a Web page” and it 

is often machine generated and repeated across the pages of one website. Typical examples of 

boilerplate include navigation menus, lists of links and ads. The distinction between 

boilerplate and main content isn’t always straightforward. For example, news articles are 

often accompanied by an abstract of a related article and a link to the full text. Here the line 

between the main content and boilerplate gets blurry: does the abstract belong to the main 

content or is it boilerplate? 

As there is no clear-cut definition of boilerplate, several guidelines have been made for the 

purpose of boilerplate annotation. Two most widely used might be CleanEval4 competition 

(Baroni et al., 2008) gold standard and KrdWrd5 annotation tool guidelines. According 

CleanEval guidelines, boilerplate includes navigation information, internal and external link 

lists, copyright notices and other legal information, headers, footers and templates that are 

                                                      

4 https://sigwac.org.uk/cleaneval/annotation_guidelines.html  
5 https://krdwrd.org/doc_manual/node6.html  

https://sigwac.org.uk/cleaneval/annotation_guidelines.html
https://krdwrd.org/doc_manual/node6.html


10 
 

repeated across the pages of one site, advertisements and web-spam. KrdWrd’s definition is 

less strict: it outlines boilerplate as navigation information, copyright information, links that 

are not part of the text content, as well as headers and footers. In addition, KrdWrd annotation 

guideline however suggests that incomplete sentences, text containing non-language, 

advertisements, foreign language text and lists should not be included in the main content. 

 

Figure 1: An example of a web page view on a news site 

Figure 1 shows a typical news article page on a news site yle.fi6. The main body of text of the 

article is located on the left side of the page. On the right side, there are two columns of links 

to recommended and latest articles. On the top of the page, there is a navigation bar. 

However, finding the main content from the corresponding HTML document may prove 

difficult. Let’s examine the HTML document that is behind this page, show in Figure 1.  

                                                      

6 

https://yle.fi/uutiset/osasto/news/survey_almost_half_of_car_buyers_would_consider_an_electric_vehicle/12114

175  

https://yle.fi/uutiset/osasto/news/survey_almost_half_of_car_buyers_would_consider_an_electric_vehicle/12114175
https://yle.fi/uutiset/osasto/news/survey_almost_half_of_car_buyers_would_consider_an_electric_vehicle/12114175


11 
 

 

Figure 2: An excerpt of the HMTL code of the news site page shown in Figure 1 

Figure 2 shows only a small excerpt of the HTML document of the news article page. The 

whole HTML document is 1604 lines total, but the desired text content can be found on lines 

592-644, including the date of publication, the title, the subtitle, the image caption text, the 

main body of text and sources. These all are between <article> section of the document. Rest 

of the HTML document contains for example links to recommended articles and page 

formatting.  

Most of the existing applications in boilerplate removal utilizes the HTML markup of the web 

pages. They make it possible to distinguish different parts of the page, even when the HTML-

markup convention isn’t consistent between different web sites (Barbaresi, 2021). The HTML 

nodes construct a Document Object Model (DOM) tree, which is used to further segment the 

web page. A very simple HTML document and its DOM tree is presented in Figure 2. 



12 
 

 

Figure 3: HTML example and corresponding Document Object Model tree 

As shown in Figure 3, a HTML document can be divided node-wise into segments within the 

document. In this example, the “head” node contains the page title, which is also usually 

shown at the top of the web browser. Under the <body> node, there are two nodes: <h1> as in 

heading and <p> as in paragraph. These are typical markers for the main text content: in the 

example shown in Figure 2, <h1> corresponds to the main title of the news article (“Survey: 

Almost half of car buyers would consider an electric or hybrid vehicle”) and <h2> its subtitle 

(“The Autobarometer 2021 survey also found that Finland's young people were becoming 

more interested in car ownership.”). The main body of text is often divided into several <p> 

paragraphs. Even when utilizing the HTML markings, it can be difficult to develop a method 

that is generalizable due to the various HTML conventions across the Internet (Barbaresi, 

2021). 

In the following chapter, I will shortly present some of the boilerplate removal applications 

made for cleaning up web corpora. These methods are all based on cleaning html-marked text 

and as such they are not applicable to removing boilerplate or noise from plain text. It should 

also be emphasized that the existing boilerplate removal methods might not be enough to 

remove all the noise from web-sourced texts, as noted in Laippala et al. (2020). Even a 

successful HTML level filtering can still leave some noise in the text, and applications aimed 

for plain text are needed to resolve this. 



13 
 

Approaches to Boilerplate Removal 

The approaches to boilerplate removal can in general be divided in two: rule-based and 

machine learning based approaches. Examples of rule-based boilerplate removal applications 

are jusText7, Onion8 (ONe Instance ONly) (Pomikálek, 2011) as well as Trafilatura9 

(Barbaresi, 2021) that classify text content on the web based on rule-based filters and 

heuristics.  

jusText splits the HTML document into blocks based on the DOM tree nodes. Each block is 

first given a classification out of two possible classes: main content for long blocks with 

grammatical text, boilerplate for all the other long blocks, short blocks containing links and 

any blocks with many links. Grammatical text is found using a function word heuristic: 

according to Pomikálek (2011, p. 29), grammatical text usually contains a certain proportion 

of function words, whereas boilerplate doesn’t. The blocks that don’t fall clearly into either 

are further classified as short or near-good. In total the classification contains four classes: 

good, bad, short and near-good. These labels are given based on the length of the block, the 

number of links and the proportional amount of function words. (Pomikálek, 2011, p. 29-33) 

  

                                                      

7 https://github.com/miso-belica/jusText  
8 https://corpus.tools/wiki/Onion  
9 https://github.com/adbar/trafilatura  

https://github.com/miso-belica/jusText
https://corpus.tools/wiki/Onion
https://github.com/adbar/trafilatura


14 
 

Table 1: jusText context-wise block classification (Pomikálek, 2011) 

BAD 
 

BAD 

SHORT 
 

BAD 

BAD 
 

BAD 

SHORT 
 

BAD 

NEAR-GOOD 
 

BAD 

BAD 
 

BAD 

SHORT 
 

BAD 

SHORT 
 

 

BAD 

GOOD 
 

GOOD 

SHORT 
 

GOOD 

SHORT 
 

GOOD 

GOOD 
 

GOOD 

SHORT 
 

GOOD 

NEAR-GOOD 
 

GOOD 

SHORT 
 

BAD 

BAD 
 

BAD 

NEAR-GOOD 
 

BAD 

 

After the labelling, the short and near-good blocks are further classified context-wise as in the 

example in Table 1. According to Pomikálek (2011, p. 31-32), “a boilerplate block is usually 

surrounded by other boilerplate blocks and vice versa”. The short and near-good blocks are 

thus re-evaluated based on their context to form clusters of main content and boilerplate or 

groups of good and bad blocks. If a group of short and near-good blocks are surrounded by 

two good or bad blocks, they are classified according to the surrounding blocks. In the case 

where the group is surrounded with a “good” block on the other side and a “bad” block on the 

other, the near-good block nearest to the bad block is treated as a delimiter of the good and 

bad block area. If there is no near-good block, but the blocks are labelled as “short”, the 

whole group is labelled as “bad”.  

Pomikálek (2011, p. 55, 66) also notes the importance of detecting duplicate content in web 

corpora. According to them, duplicate texts can cause duplicate concordance lines or bias in 

results of statistical analysis of the corpus since the frequencies of the words and expressions 

of the duplicate part is inflated. They define a duplicate being often generated, copy-pasted 

and non-independently created text, whereas naturally repeated text such as some expressions 

in interactive discussion are part of natural text and are thus not duplicates.  



15 
 

Trafilatura (Barbaresi, 2021) is another rule-based method for boilerplate removal that 

combines jusText and readability-l.xml10 libraries and adds its own rule-based filters and 

content heuristics of top of them. In addition to the main text content, Trafilatura also extracts 

some metadata that can be useful in linguistic analysis. Extracted metadata includes the title 

of post, the title of blog, the date of publication, URL, the author as well as categories and 

tags if available (Barbaresi, 2016).  

Even though the rule-based methods have been somewhat successful, some approaches make 

use of machine learning in the boilerplate removal. Some recent applications utilize deep 

neural networks. Web2text11 (Vogels et al., 2018) is a machine learning based boilerplate 

removal method that uses convolutional neural networks and hand-picked features to classify 

the blocks of text nodes in the HTML document. Similarly to Pomikálek (2011), Vogels et al. 

(2018) treat the task as a sequence classification problem: the web page can be seen as a 

sequence of blocks of main content and boilerplate. BoilerNet (Leonhardt et al., 2020) is a 

neural sequence labelling model based on HTML tags and text on a web page. Leonhardt et 

al. (2020) also rely on the notion that boilerplate and main content appear in blocks: they use 

LSTM networks to recognize the main content on a web page. I will use this notion in 

building the model for the line-wise classification. 

 

                                                      

10 https://github.com/buriy/python-readability  
11 https://github.com/dalab/web2text  

https://github.com/buriy/python-readability
https://github.com/dalab/web2text


16 
 

4 Artificial Neural Networks in Digital Linguistics 

In this chapter, I’ll briefly introduce neural network systems and their applications in natural 

language processing and present the special case of sequential classification and artificial 

neural networks designed for this task.  

Machine learning can be roughly divided into two categories: supervised and unsupervised 

learning. In supervised machine learning, the given input has a desired output and some kind 

of labelling. This kind of machine learning is used in text classification and question-answer 

tasks, for example. In unsupervised learning, there are no distinct output categories or desired 

results, but the model is used to learn patterns within the data. Unsupervised learning can be 

used e.g., in topic modelling. (Jurafsky & Martin, 2009) In this thesis, I will focus on 

supervised machine learning: the data used in this thesis is line-wise annotated into two 

classes, and the trained model aims to learn to classify the lines into these two classes.  

Artificial neural networks have been widely applied in computational linguistics in tasks such 

as machine translation (Bahdanau et al., 2014; Bawden et al., 2020), text generation 

(Karpathy, 2015; Sutskever et al., 2011) and different kinds of classification tasks (Kim, 

2014; Laippala et al., 2019; Repo et al., 2021; Rönnqvist et al., 2021; Salminen et al., 2020).  

The development of artificial neural networks started already in the 1940s, when McCulloch 

and Pitts (McCulloch & Pitts, 1943) presented a simple computational model imitating the 

neural activity in the human brain. This idea was further developed with Rosenblatt’s 

perceptron (1958), which is a simple artificial neural network that consists of one neuron. It 

tries to replicate the behaviour of a real neuron by taking in the inputs, calculating a weighted 

sum of said inputs and passing it through a threshold function before outputting the result. 



17 
 

 

Figure 4: A visualization of a perceptron 

Figure 4 represents a perceptron: the inputs x1 … xn marked with red and their weights w1 … 

wn are fed into the perceptron cell which calculates the weighted sum and the threshold 

function and puts out the prediction. Depending on the threshold function, the output can be 

e.g., a predicted label or probabilities of different class labels. These kinds of perceptrons can 

be stacked to form a multilayer perceptron, a feed-forward artificial neural network with one 

or more hidden layers in between the input and output layers. In general, if a model has more 

than one hidden layer, it is called a deep neural network. This structure is called feed-forward 

since it handles information in a chronological order. 

Sequence Classification and Sequence-to-Sequence Learning 

In a traditional classification task, it can be assumed that the data is independent and 

identically distributed: all the examples have the same probability of occurring in the data and 

are not dependent on any other data points. An example of a binary classification task could 

be predicting e-mails as “spam” or “not spam”. In this example, there are two possible classes 

and the classification doesn’t consider the surrounding e-mails since the classification doesn’t 

depend on the context: it doesn’t matter whether the previous or following e-mail is spam or 

not to predict the class of the current e-mail.  

The independent and identically distributed data assumption doesn’t hold with sequential 

data, where the data order and context matter. This is the case with many natural language 

applications such as text generation (Karpathy, 2015; Sutskever et al., 2011), machine 

translation (Sutskever et al., 2014), named entity recognition (Luoma et al., 2020) and part-of-



18 
 

speech tagging (Kanerva et al., 2018). Language is naturally sequential: it consists of 

sequences of characters, words, sentences, chapters, etc. Two sequences containing the exact 

same characters can be semantically entirely different: “Sam eats cheese” and “cheese eats 

Sam” are two different phrases with two different meanings. In the context of this thesis, the 

classification of a line within a text depends on the surrounding lines: boilerplate and main 

text content often appear in blocks (Pomikálek, 2011; Vogels et al., 2018). 

Sequence-to-sequence learning is an umbrella term that covers several types of mappings, 

commonly categorized by the length of the input and output as one to many, many to one and 

many to many. One to many maps a single variable into many, an example could be image 

captioning where the algorithm is given a single image and produces a sequence for the 

caption. Many to one produces a single output for a sequence of variables in cases such as text 

classification, where the algorithm is given a sequence of words and it outputs a target class. 

Many to many produces a sequence output out of a sequence input, as in machine translation 

where the input and output might be of different lengths, and sequence labelling such as 

named entity recognition or part-of-speech tagging where the input and output usually are the 

same length. (Karpathy, 2015) In the case of this thesis, the lines are first labelled as many-to-

one: one label per a line of text (a sequence). Afterwards the whole document is given labels 

as a many-to-many task: the input sequence is the last hidden layer of the model resulted from 

the first step, and the output is a sequence of labels for the whole document. 

A Recurrent Neural Network (RNN) is an adaptation of the feed-forward network that can 

model sequential data (Sutskever et al., 2011). It can be thought of as a neural network with 

loops: the information is passed along from a step in the network to the next through the 

hidden state of the RNN cell (Olah, 2015). A visualization of a standard RNN is shown in 

Figure 5. Here, A symbolizes a part of the neural network, xt the input it gets and ht the 

hidden state per time step. At each time step, the RNN cell receives an input, updates the 

hidden state and makes a prediction. Note that even though the input and hidden state change, 

the part of the network stays the same, in a loop. The hidden state stores information from the 

previous time steps and thus uses its “memory” to predict the values of the current input.  



19 
 

 

Figure 5: A visualization of a standard Recurrent Neural Network (Olah, 2015) 

Notice that in Figure 5, information is processed in a chronological order. This makes this 

RNN example a feed-forward RNN. Sometimes it is, however, beneficial to utilize both 

“past” and “future” information. It is possible to attach two RNNs to form a bidirectional 

recurrent neural network (Schuster & Paliwal, 1997) in order to take the future information 

into account. 

Despite its advantages, a standard RNN cell has trouble with its short-term memory and the 

hidden states lose information from the previous steps quite quickly. In addition to this, RNN 

networks are hard to train (Sutskever et al., 2011). The Long Short-Term Memory networks 

(LSTM) (Hochreiter & Schmidhuber, 1997) try to battle the problems with standard recurrent 

neural networks: they are a type of a RNN that are designed to learn long term dependencies 

by including a memory unit to store information from the previous steps. A visualization of an 

LSTM network can be seen in Figure 6. 

 

Figure 6: A visualization of an LSTM network (Olah, 2015) 

In Figure 6, you can see an example of a three-cell excerpt of an LSTM network, where the 

middle cell is described in detail. Similar to the previous example, here xt represents the input 

fed to the network and ht its hidden state per time step. The upmost line of the cell represents 

the cell state that stores information for long periods of time. The cell state is controlled by 

three kinds of gates, here marked by “x”: a forget gate to decide what information is kept, an 



20 
 

input gate to decide which values will be updated, and an output gate to decide the output. All 

of this is connected by four fully connected neural network layers that connect each of the 

neurons to the corresponding ones in the preceding layer, marked by the yellow boxes. 

LSTMs have been successfully used in applications such as text generation (Karpathy, 2015; 

Sutskever et al., 2011), sequence tagging (Huang et al., 2015) and boilerplate removal 

(Leonhardt et al., 2020). 

Due to the sequential nature of natural language, recurrent neural networks have long been a 

standard in computational linguistic analysis (Wang et al., 2019). However, they are 

computationally expensive (Merity et al., 2017; Yang et al., 2017) and can be difficult to scale 

to larger projects. The Transformer model architecture (Vaswani et al., 2017) is based on self-

attention and fully connected layers without recurrence and is thus parallelizable and much 

cheaper to compute.  

In this thesis, I have chosen to combine the Transformer architecture with Long Short-Term 

Memory networks and conduct the labelling process in two steps. 

Language Models and Transfer Learning 

Language models are large-scale probabilistic distributions over words in a language 

(Jurafsky & Martin, 2009) that are widely used in natural language processing tasks. They 

eliminate the need to train huge models every time a new task is needed: you can build upon 

the existing models. In transfer learning, the information learned from a previously trained 

large-scale language model is utilized in training a model aimed for a different task. The new 

model thus builds upon the pre-trained one and naturally, the selection of the pre-trained 

language model affects the results of the task. The representations learned from large-scale 

language models can be effectively fine-tuned for more specific tasks such as register 

classification tasks (Repo et al., 2021; Rönnqvist et al., 2021) or named entity recognition 

(Luoma et al., 2020). 

Recently, the Transformer architecture (Vaswani et al., 2017) is utilized by many of the state-

of-the-art language models such as BERT, Bidirectional Encoder Representations from 

Transformers (Devlin et al., 2018), which is a deep bidirectional language model that has been 

pre-trained with unlabelled data. Monolingual BERT models exist for example in English 

(Devlin et al., 2018), Finnish (Virtanen et al., 2019) and French (Le et al., 2019). Multilingual 

M-BERT hasn’t reached as good results as monolingual models especially with lower-



21 
 

resourced languages (Virtanen et al., 2019), but XLM-RoBERTa that follows Cross-lingual 

Language Modelling (XLM) approach by Lample and Conneau (2019) gains good results 

even compared to a monolingual model (Repo et al., 2021; Rönnqvist et al., 2021).  

Repo et al. (2021) compared the results of a register classification task with multilingual 

mBert (Devlin et al., 2018) and XLM-RoBERTa large (Conneau et al., 2019) and different 

language-specific BERT models (Finnish FinBERT (Virtanen et al., 2019), French FlauBERT 

large (Le et al., 2019), Swedish KB-BERT (Malmsten et al., 2020) and English BERT large 

(Devlin et al., 2018)). Both in the monolingual and cross-lingual setups, the XLM-RoBERTa 

large performed the best when evaluating the performance with a test set. Based on its good 

performance in multilingual settings, I will be using XLM-RoBERTa in this thesis as the base 

for training the line-wise classification models, but to avoid an unnecessarily large model, I 

will use the base version.  

 

 



22 
 

5 Data and Methodology 

In this chapter, I will present the data used in this thesis as well as the experimental setup 

behind the classification task. In addition to this, I will explain the metrics to evaluate the 

performance of the classification models.  

Line-wise Annotated FreCORE and SweCORE 

The majority of the data in this thesis consists of FreCORE and SweCORE (Repo et al., 

2021), French and Swedish Corpora of Online REgisters that follow in the footsteps of CORE 

(Egbert et al., 2015) and FinCORE (Laippala et al., 2019). The corpora are register (genre) 

annotated random samples of Common Crawl (Wenzek et al., 2019) that have been run 

through Trafilatura version 0.3 (Barbaresi, 2020) for boilerplate removal and Onion 

(Pomikálek, 2011) for deduplication. The corpora have been created for automatic 

classification of Internet registers as they are good indicators of linguistic variation and can 

affect the way a text is interpreted.  

As noted in Laippala et al. (2020), the cleanliness level after deduplication and cleaning with 

Trafilatura wasn’t sufficient and thus, the data was further annotated manually into main 

content and boilerplate. The annotations were chosen to be done line-wise in order to optimize 

the level of cleaning: since document level filtering had already been done, a lower-level 

boilerplate annotation was needed, but sentence or token-wise annotation task would have 

been much more time consuming. In this case, a line refers to a segment of text that is 

bordered by line breaks and can thus also be understood in a colloquial sense as a paragraph.  

The main portion of the data used in this study consists of 1 982 French and 2 399 Swedish 

documents of 84 103 (French) / 99 406 (Swedish) manually annotated lines in total. The data 

has been published without the manually annotated boilerplate lines in Repo et al. (2021). In 

addition to the French and Swedish data, small data sets of line-wise annotations in Finnish, 

English, Spanish and German were added in order to train a multilingual model. 

The documents were chopped into 50-line segments in order to speed up the model and 

improve the performance with longer documents with the goal of not letting the model see too 

much of the document while making predictions for each block, in case the situation of a line 

in the document would affect the classification. The average length per document is 43 lines 

in the French data, while the majority of the documents are 12 lines or less. Since the data 



23 
 

pre-processing step for the LSTM model chops up the documents into blocks of maximum 50 

lines, this would mean that in general, the model sees the whole document when making 

predictions. There are however a few outliers in the data that are very lengthy: while 95 % of 

the French documents have 140 lines or less, there are some documents that have over 4 000 

lines.  The average length of a document in SweCORE is 41 lines, while the majority of the 

documents are 18 lines or less. This means that most of the Swedish texts are treated as a 

whole. Compared to FreCORE, the Swedish data has fewer very long documents, but a single 

outlier that has 7 411 lines.  

The line-wise annotations were done by several annotators with a background in linguistics 

following a common set of guidelines (see Appendix 1 Line-wise Annotation Guidelines) 

with the goal of accepting the lines that belong to the body of text extracted from a web page 

and rejecting all the lines that don’t add to the text such as generated ads or links and meta 

data. Difficult cases, such as news article titles and headnotes, advertisements within the text 

and text in foreign language were discussed and solved within the group of annotators. The 

decisions might differ from earlier guidelines: for example, references and tables of content 

were treated as main content, as they usually provide information about the text and are 

considered to be typical content in texts that belong to e.g., informative register categories.  

Inter-annotator-agreement is a measure of annotation quality that can be calculated by 

comparing the annotations made independently by different annotators (Artstein, 2017). At its 

simplest form, inter-annotator-agreement can be measured as an accuracy between the labels 

given by two annotators by counting the number of agreements and dividing the number by 

the number of annotations in total. This essentially returns a value between 0 and 1, where 1 

signifies complete agreement. According to Artstein (2017), this might not be the most 

reliable measure to assess the reliability of the annotations: the accuracy doesn’t consider any 

probability of accidental agreement. Another, generally more recommended way of 

calculating inter-annotator agreement is called Krippendorff’s alpha, which takes into account 

the distance between the annotators disagreements and returns a value between -1 and 1, 

where 1 signifies perfect agreement and 0 an agreement level that could be achieved by coin 

toss. In general, values above 0.8 are accepted as reliable, but in lower level agreement is 

acceptable in some cases (Artstein, 2017). 

As the line-wise annotation was divided between two people for the French data and seven 

people for the Swedish data, an inter-annotator-agreement was calculated: a sample of 127 



24 
 

texts (7 241 lines) in French resulted in line-wise accuracy of 0.86 and a sample of 240 texts 

(7 763 lines) in Swedish resulted in 0.80 accuracy between two annotators. Respectively, 

Krippendorff’s alpha is 0.65 for French and 0.55 for Swedish data. This indicates that the 

annotation task wasn’t trivial for human annotators. An example of a text from a genealogy 

portal with multiple disagreements can be seen in Table 2: here, one annotator annotated 

almost all the lines, including the ones that seem somewhat generated or that are duplicates of 

other lines, as main content, whereas the second annotator has annotated these lines as 

boilerplate. The one agreement on boilerplate content is the final line “Kommentar” 

(comments). Table 3 demonstrates the distribution of the lines annotated as main content and 

boilerplate. 

Table 2: Example of a line-wise annotation disagreement 

Annotator 1 Annotator 2 Text 

Main content Boilerplate Rötter - din källa för släktforskning driven av Sveriges 
Släktforskarförbund 

Main content Boilerplate Vet du något om fotografen? Skicka in informationen här 

Main content Boilerplate Tillhör samma album som #199144. Inga anteckningar på fotot. 

Main content Main content Tillhör samma album som #199144. Inga anteckningar på fotot. 

Main content Main content Okänd man. Ur samma album som #37875 från Rossön (Y). 

Main content Main content Bilden föreställer Emilia Lindborg född Westman. Gift med 
#6252 och dotter till #5906. Från album tillhörande Anna 
Lindborg, Gävle (=dotter). 

Main content Main content Bilden föreställer sjökapten Brynolf Lindborg, 1847-1896. Död i 
Torneå. Styrmansexamen i Gävle 1870. Son till #6004. Bild från 
album tillhörande Anna Lindborg, Gävle. 

Boilerplate Boilerplate Kommentar 

 

Table 3: Annotated lines in the data 

 Texts Main content lines Boilerplate lines Lines total 

French 1 982 57 789 (68.7 %) 26 314 (31.3 %) 84 103 (100 %) 

Swedish 2 399 47 960 (48.2 %) 51 446 (51.8 %) 99 406 (100 %) 

Finnish 137 2 480 (58.0 %) 1 797 (42.0 %) 4 277 (100 %) 

English 191 3 360 (54.4 %) 2 812 (45.6 %) 6 172 (100 %) 

Spanish 105 1 536 (50.9 %) 1 482 (49.1 %) 3 018 (100 %) 

German 140 2 529 (73.2 %) 925 (26.8 %) 3 454 (100 %) 

Total 4 954 115 654 (57.7 %) 84 776 (42.3 %) 200 430 (100 %) 

 



25 
 

As we can see from the Table 3, in total 31.2 % of the French and 51.8 % of the Swedish lines 

were boilerplate. Overall, the Swedish dataset contains the largest proportional amount of 

boilerplate (51.8 %), whereas the German dataset contains the least (26.8 %). The boilerplate 

annotation was made slightly easier by using a BERT model12 created with the data released 

in Laippala et al. (2020) to make baseline predictions for the lines. An example of a text with 

the preliminary predictions for the line-wise labels and the corrected line-wise annotations can 

be seen in Tables 4 and 5. 

                                                      

12 https://github.com/sronnqvist/web-text-cleaner  

https://github.com/sronnqvist/web-text-cleaner


26 
 

Table 4: Baseline predictions for line-wise classification 

Predicted 
class Confidence Text 

Boilerplate 0.05146 Klassisk smörgåstårta med lax & räkor | Biggans 

Boilerplate 0.02162 Klassisk smörgåstårta med lax & räkor 

Boilerplate 0.02399 Smörgåstårta med matjessill 

Boilerplate 0.01795 Böcklingtårta med sting 

Boilerplate 0.01128 Biggans klämma 

Boilerplate 0.01730 Biggans fyllda krustader 

Boilerplate 0.02162 Klassisk smörgåstårta med lax & räkor 

Boilerplate 0.05197 Botten: 9 skivor landgångsbröd, 3 skivor per lager 

Boilerplate 0.01696 2st hackade ägg 

Boilerplate 0.01449 2st Böcklingpastejer 

Boilerplate 0.01477 1dl hackad saltgurka 

Boilerplate 0.02917 Garneringskräm: 

Boilerplate 0.01378 1dl finhackad dill 

Boilerplate 0.01515 100g skalade räkor 

Boilerplate 0.02515 2st hackade hårdkokta ägg 

Boilerplate 0.01440 1dl smörgåskrasse 

Boilerplate 0.02181 1 huvud grillsallad 

Main content 0.71449 
Koka, skala och hacka äggen. Blanda Biggans Böcklingpastej med 
créme fraiche 

Main content 0.97894 och gurka. Vänd sedan försiktigt ned de hackade äggen. 

Main content 
0.97492 

Dela laxen i mindre bitar. Blanda majonnäs med senap och den 
förhackade dillen. 

Boilerplate 0.26372 Vänd ned laxen. 

Boilerplate 
0.23866 

Fördela fyllningen mellan de olika bottnarna. Lägg det andra lagret 
bröd åt motsatt 

Main content 
0.86247 

håll från det första så tårtan inte delar sig. Skär kanterna jämna. Stryk 
färskost på 

Main content 
0.69858 

sidorna och ovanpå tårtan. Fäst finhackad dill på kanterna. Garnera 
med laxrosor, 

Main content 0.85052 löjrom, hackade ägg, smörgåskrasse och salladsblad. 

Boilerplate 0.30846 Adress: Musseronvägen 3 

Boilerplate 0.03289 141 23 Huddinge • Box 1097 

Boilerplate 0.01864 Facebook: Besök oss nu » 

 

  



27 
 

Table 5: Manual line-wise annotation 

Predicted 
class Confidence Text 

Boilerplate 0.05146 Klassisk smörgåstårta med lax & räkor | Biggans 

Boilerplate 0.02162 Klassisk smörgåstårta med lax & räkor 

Boilerplate 0.02399 Smörgåstårta med matjessill 

Boilerplate 0.01795 Böcklingtårta med sting 

Boilerplate 0.01128 Biggans klämma 

Boilerplate 0.01730 Biggans fyllda krustader 

Main content 0.02162 Klassisk smörgåstårta med lax & räkor 

Main content 0.05197 Botten: 9 skivor landgångsbröd, 3 skivor per lager 

Main content 0.01696 2st hackade ägg 

Main content 0.01449 2st Böcklingpastejer 

Main content 0.01477 1dl hackad saltgurka 

Main content 0.02917 Garneringskräm: 

Main content 0.01378 1dl finhackad dill 

Main content 0.01515 100g skalade räkor 

Main content 0.02515 2st hackade hårdkokta ägg 

Main content 0.01440 1dl smörgåskrasse 

Main content 0.02181 1 huvud grillsallad 

Main content 
0.71449 

Koka, skala och hacka äggen. Blanda Biggans Böcklingpastej med 
créme fraiche 

Main content 0.97894 och gurka. Vänd sedan försiktigt ned de hackade äggen. 

Main content 
0.97492 

Dela laxen i mindre bitar. Blanda majonnäs med senap och den 
förhackade dillen. 

Main content 0.26372 Vänd ned laxen. 

Main content 
0.23866 

Fördela fyllningen mellan de olika bottnarna. Lägg det andra lagret 
bröd åt motsatt 

Main content 
0.86247 

håll från det första så tårtan inte delar sig. Skär kanterna jämna. Stryk 
färskost på 

Main content 
0.69858 

sidorna och ovanpå tårtan. Fäst finhackad dill på kanterna. Garnera 
med laxrosor, 

Main content 0.85052 löjrom, hackade ägg, smörgåskrasse och salladsblad. 

Boilerplate 0.30846 Adress: Musseronvägen 3 

Boilerplate 0.03289 141 23 Huddinge • Box 1097 

Boilerplate 0.01864 Facebook: Besök oss nu » 

 

In Tables 4 and 5, we can see an example of a recipe text pre and post annotation. The first 

column represents the predicted or annotated class, 1 being main content and 0 boilerplate. 

The second column includes the predicted probability of the line belonging into class 1. The 



28 
 

line of text in question is in third column. According to this example, the BERT model failed 

to recognize 13 out of 19 rows that have been manually annotated as main content. This is 

quite natural since the beginning of the main content in this document perhaps isn’t obvious 

for a non-human annotator. The main content block begins with the title “Klassisk 

smörgåstårta med lax & räkor” and continues with the number of servings and a list of 

ingredients. These kinds of short lines are very similar to many boilerplate examples, but in 

this case, they are a necessary part of the text: we’re dealing with a recipe after all.  

After the ingredients, there is the instructive part with its own problems. As previously noted 

in chapter 3 Boilerplate removal, the HTML marking conventions can vary significantly 

between different websites. Here, for some reason, it seems that the instructions are divided 

across several paragraphs with no regard to the sentence boundaries. This has made the rows 

of text to “stop” unexpectedly and caused some unconventional line breaks.  

Register annotations 

Different registers vary in their linguistic features and how well they can be automatically 

recognized. According to Repo et al. (2021), Informative and Narrative texts are more stable 

in their linguistic features and thus easier to categorize in general, while some categories such 

as Advice texts in Opinion register are much more varied and harder to identify. E-forum 

texts may contain non-standard linguistic structures (Biber & Conrad, 2019) and they are 

often tagged as containing generated text along with Encyclopedia texts and Informational 

Persuasion texts (Laippala et al., 2020). This variation might affect the line-wise classification 

as well: if the texts do not follow a certain structure, it is possible that the line-wise classifier 

won’t perform as well as with texts that are more uniform. 

The register annotation for FreCORE and SweCORE was done by two annotators with a 

linguistic background and following the taxonomy presented in CORE (Egbert et al., 2015), 

where there are eight upper register categories: Narrative, Informative, Opinion, How-to, 

Spoken, Informational Persuasion, Lyrical and Interactive Discussion. These upper registers 

contain several sub-registers, such as News article / blog in the Narrative category. In addition 

to this, the annotation was made richer by allowing the annotators to annotate a text with two 

separate register labels. The data doesn’t include documents that contained only machine 

translated or generated text or “non-text”, as in documents that consist solely of boilerplate. 

An inter-annotator-agreement was calculated for the Swedish (0.84 F1-score) and French 

(0.78 F1-score) annotations. The upper-level register dispersion can be examined in Table 6. 



29 
 

Please note that since one text can have more than one label, the number of labels given 

doesn’t correspond to the number of texts. 

Table 6: Upper-level register dispersion by language in FreCORE and SweCORE 

 
Narrative Informative Opinion How-to 

Informational 
Persuasion 

Interactive 
Discussion Spoken Lyrical 

Texts 
total 

FR 581  547  180  135  596 159 26 9 1 982 

SV 828 778 207 130 583 94 7 8 2 399 

Total 1409 1325 387 265 1179 253 33 17 4 381 

 

 

Figure 7: Register distribution in FreCORE and SweCORE 

As Table 6 and Figure 7 demonstrate, the largest upper register categories in FreCORE and 

SweCORE combined are Narrative, Informative and Informational Persuasion. In FreCORE, 

the three largest categories are quite balanced between Informational Persuasion, Narrative 

and Informative register categories, whereas in SweCORE, the Narrative and Informative 

register categories are much larger than the third largest Informational Persuasion category. It 

should also be noted that the French data contains relatively more texts in Interactive 

Discussion and Spoken categories than the Swedish data. 

On lower level, the five largest sub-registers in FreCORE are Description with intent to sell (n 

= 367) from Informational Persuasion, News article / blog (n = 232) from Narrative, 

Description of a thing (n = 130) and Encyclopedia article (n = 119) from Informative and 

Discussion forum (n = 110) from Interactive Discussion register categories. In SweCORE, the 

0
100
200
300
400
500
600
700
800
900

FR SV



30 
 

largest sub-registers are Encyclopedia article (n = 507) and Description of a thing (n = 94) 

from Informative, Description with intent to sell (n = 396) from Informational persuasion as 

well as News article / blog (n = 218) and Personal blog (n = 364) from Narrative categories. It 

should be noted that some of these sub-registers make up a great proportion of the upper-level 

category: for example, 65 % of the Informative category in SweCORE consists of 

Encyclopedia articles. Respectively, 65 % of the Informational Persuasion category is made 

up from Description with intent to sell. There are also some language specific differences: the 

Swedish data contains more Personal blog texts whereas the French data contains more 

Discussion forum texts. 

Experimental Setup 

The task at hand is two-fold: the first step is a many-to-one sequence classification task to 

determine a preliminary label for a line, the second is a many-to-many sequence labelling task 

where both the input, a sequence of line embeddings, and output, the final line labels, are of 

the same length. The data consists of sequences of sequences, as in lines of text. Following 

the previous boilerplate removal approaches (Leonhardt et al., 2020; Pomikálek, 2011; Vogels 

et al., 2018), the hypothesis is that a text contains blocks of main content and blocks of 

boilerplate. When each line is given a label, it is presumed that boilerplate lines appear among 

other boilerplate lines and main content lines appears among other main content lines. 

In this study, transfer learning will be utilised by training a multilingual XLM-RoBERTa-base 

(Conneau et al., 2019; Lample & Conneau, 2019) model that has been pre-trained on 2.5TB of 

CommonCrawl data in 100 languages. The model will be first trained with the line-wise 

annotated data to retrieve a preliminary line-wise classification for each line independent from 

the surrounding lines. The data is run through an XLM-RoBERTa classifier with a fully 

connected decision layer on top of the pooled pretrained weights 

In this case, the hypothesis is that by taking into account the surrounding lines, the line-wise 

classification task performance can be improved. To consider both the previous and following 

lines, a bidirectional LSTM layer and a fully connected decision layer are applied to the word 

embeddings retrieved from the last hidden layer of the Transformer model trained in the first 

step. In this step, a dropout of 0.15 is used to prevent overfitting the model. I will refer to this 

second model as LSTM model, although it is also built on top of the XLM-RoBERTa-base. A 

visualization of the full process can be viewed in Figure 8. 



31 
 

 

Figure 8: Line-wise classification model training process 

As you can see in Figure 8, an input of n lines times 512 tokens is fed to the first model. In 

this first step, document boundaries are ignored, and lines are given label predictions 

independently.  Instead of these label predictions, the second model takes the word 

embeddings from the first models last hidden layer as its input. These embeddings are split 

according to the document boundaries unless the document is longer than the separately 

defined maximum number of lines (MAX lines in the figure), in which case the document is 

split into segments that hold the maximum number of lines at most. The input’s sequence 

length is 768 that corresponds to the vocabulary size of XLM-RoBERTa-base. Finally, these 

segments of embeddings are fed into the second model and labelled. 

The XLM-R model is trained with learning rate of 2e-6 that was chosen after training the 

Swedish and French models with a set of learning rates13 and maximum number of lines per 

document of 250. As mentioned in the previous chapter, Line-wise Annotated FreCORE and 

SweCORE, for the LSTM model a maximum number of lines was set to 50 in order to make 

the training lighter computation-wise. This also could prevent the model from learning e.g., 

that boilerplate exists only in the beginning or at the end of a document, especially with 

longer documents. For the LSTM models, the learning rates were chosen individually among 

                                                      

13 {[1..9]e-5, [1..9]e-6, [1..9]e-7} 



32 
 

the same values as with the XLM-R model. Both the XLM-R and LSTM models used 

accuracy as a metric and cross entropy as a loss function. 

The data is split into train, validation and test sets with splits of 0.7, 0.15 and 0.15 

respectively. This split was chosen because it had been used with previous experiments with 

the multilingual data. Note that the data is split by documents, not by line numbers, and it is 

not stratified by registers. This means that the number of lines in a set might not correspond to 

the proportional number of lines in the data and that the register distribution within a set 

might not represent the register distribution in the whole data.  

The code used in this study can be found on Github14 and it is based on transformers 

classifiers by Samuel Rönnqvist15 and Sampo Pyysalo16. The classifier is built with 

Tensorflow 2.4 Keras in Python 3, with libraries Transformers, Sklearn and Numpy among 

others. The computation was made possible by Finnish IT center for science17 and their 

supercomputer Puhti. 

The main metric used in the evaluation is accuracy, on top of which F1-score is used in order 

to be able to compare the results with previous studies. Because the classification only has 

two possible classes, it is easy to calculate the accuracy based on the number of true positives 

(in this case main content lines predicted as main content), true negatives (boilerplate lines 

predicted as boilerplate), false positives (boilerplate lines predicted as main content) and false 

negatives (main content lines predicted as boilerplate). These values can be used to compose 

confusion matrices and different evaluation metrics, described below. 

Accuracy is the proportional amount of correctly predicted labels in the whole data. Precision 

(or sensitivity in binary classification tasks) signifies the proportional amount of correctly 

labelled predictions, in other words the percentage of labels that the model predicted positive 

that actually are positive. Recall tells the proportional amount of positive labels that were 

found in the prediction process. (Jurafsky & Martin, 2009) These metrics are summarized in 

Table 7.  

  

                                                      

14 https://github.com/annsaln/transformers-classifier  
15 https://github.com/sronnqvist/transformers-classifier  
16 https://github.com/spyysalo/transformer-text-classifier  
17 https://www.csc.fi/en/home  

https://github.com/annsaln/transformers-classifier
https://github.com/sronnqvist/transformers-classifier
https://github.com/spyysalo/transformer-text-classifier
https://www.csc.fi/en/home


33 
 

Table 7: Confusion matrix visualisation of different evaluation metrics for binary classification 

 Positive Negative  

Predicted positive True positive False positive precision = 
𝑡𝑝

𝑡𝑝+𝑓𝑝
 

Predicted negative False Negative True negative  

 recall = 
𝑡𝑝

𝑡𝑝+𝑓𝑛
  accuracy = 

𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
 

 

In addition to accuracy, precision and recall, F-score is used to evaluate performance 

especially in cases when the label distribution is unbalanced. It is a weighted harmonic mean 

of precision and recall that can be scaled to favour either precision of recall, but the most 

often used F-score is F1-score that is balanced. (Jurafsky & Martin, 2009) F1-score can be 

calculated with the following formula: 

𝐹1 =
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

This calculates an F1-score for a label. Because the label distribution in my data is relatively 

balanced, I will use accuracy as my main evaluation metric as it is easy to interpret. However, 

since most of the previous applications in boilerplate detection have used F1-score in their 

evaluation, I will also calculate this metric to be able to compare my result with the previous 

achievements. 

I will use statistical tests to compare the performance of different models in two ways: one-

sample t-test for comparing the different builds of the models (XLM-R vs. LSTM) to test 

whether the difference in the means of accuracy in said models is statistically significant and 

one-proportion z-test for comparing different models with the same build.  

 



34 
 

6 Analysis 

This chapter will comprise of  

a. presenting the results of the classification 

b. comparison of the results of the different XLM-R and LSTM models and inspection 

of register-wise performance 

c. error analysis (What does the classifier learn and where it goes wrong?) 

d. discussion of the results. 

Results of the classification 

As mentioned in chapter 5.2 Experimental setup, the first step in the process was to train an 

XLM-R classifier to predict the classes of the lines. This process was repeated to create three 

models: monolingual Swedish and French models and a multilingual model based on all the 

datasets. The multilingual model was trained with all the languages and tested language 

specifically in addition to the overall evaluation. As an experiment, zero-shot models were 

also trained, where the model was tested on a language that wasn’t included in the training 

and validation data. The setup is similar to (Rönnqvist et al., 2021), where the model is 

trained with data that includes all languages but the test language. The classification results of 

said models can be viewed in Table 8, where the top row indicates the tested language and the 

left-most column the tested model. The results present the mean accuracy (M) of three 

repetitive training instances of the model as well as standard deviation (SD). The cells 

representing the LSTM models include the t-value of the one-sample t-test comparing the 

LSTM model with the equivalent XLM-R model: the larger the value, the larger the 

difference between the compared models.  

  



35 
 

Table 8: The classification results of the models (N=3) in monolingual and multilingual settings 

 Swedish French English Finnish German Spanish Multilingual 

Monolingual 
XLM-R 

M = 0.84  

SD = .034 

M = 0.82  

SD = .004 

     

Multilingual 
XLM-R 

M = 0.84  

SD = .002 

M = 0.85 

SD = .020 

M = 0.82  

SD = .044 

M = 0.80  

SD = .020 

M = .70 

SD = .017 

M = 0.69 

SD = .037 

M = 0.84 

SD .011 

Zero-shot 
multilingual 
XLM-R 

M = 0.73  

SD = .008 

M = 0.81  

SD = .015 

M = 0.76 

SD = .018 

M = 0.64 

SD = .267 

M = 0.66 

SD = .513 

M = 0.73 

SD = .099 

 

Monolingual 
LSTM 

M = 0.92  

SD = .001 

t(2) = 26.4 

M = 0.84  

SD = .005 

t(2) = 7.46 

     

Multilingual 
LSTM 

M = 0.88  

SD = .007 

t(2) = 9.98 

M = 0.89  

SD = .004 

t(2) = 32.3 

M = 0.89  

SD = .01 

t(2) = 12.4 

M = 0.86 

SD = .004 

t(2) = 24.3 

M = 0.73 

SD = .016 

t(2) = 2.72 

M = 0.70 

SD = .029 

t(2) = 0.42 

M = 0.88 

SD = .002 

t(2) = 45 

Zero-shot 
multilingual 
LSTM 

M = 0.80  

SD = .004 

t(2) = 25.9 

M = 0.84  

SD = .002 

t(2) = 21.8 

M = 0.71 

SD = .005 

t(2) = -14.8 

M = 0.85 

SD = .002 

t(2) = 228 

M = 0.77 

SD = .02 

t(2) = 9.71 

M = 0.88 

SD = .018 

t(2) = 14.6 

 

 

As seen in Table 8, The mean accuracies are 0.84 for the monolingual Swedish XLM-R 

model and 0.82 for the monolingual French XLM-R model. The overall mean accuracy for 

the multilingual XLM-R model is 0.84, with accuracies of 0.84, 0.85, 0.82, 0.80, 0.70 and 

0.69 for Swedish, French, English, Finnish, German and Spanish. The mean zero-shot 

accuracies for the multilingual model are 0.73, 0.81, 0.76, 0.64, 0.66 and 0.73 for Swedish, 

French, English, Finnish, German and Spanish respectively. A surprising result was that the 

French data tested better with the multilingual XLM-R model than the monolingual French 

one (0.85 accuracy vs 0.82 accuracy) and didn’t suffer much in performance when tested with 

the multilingual zero-shot model. Another observation is that the Spanish test evaluation on 

average improved from multilingual model to the zero-shot setup, where the model hadn’t 

seen said language at all. This could imply that there’s something weird going on with the 

Spanish data. 

Regarding the LSTM model training results found in Table 8, the monolingual Swedish 

LSTM model has a mean test accuracy of 0.92 whereas the monolingual French model has a 

mean test accuracy of 0.84. In multilingual tests, the model was trained and tested with these 

languages together with sample sets of German, Spanish, English and Finnish and the 

performance is similar with total accuracy of 0.88. Zero-shot experiments where the model is 

tested on a language that is not included in the training data have been slightly less successful: 



36 
 

the mean accuracies are 0.80, 0.84, 0.71, 0.85, 0.77 and 0.88 for Swedish, French, English, 

Finnish, German and Spanish. However, it should be noted that the variance in the zero-shot 

tests with the multilingual LSTM model are smaller than with the XLM-R model, indicating a 

more stable performance. 

  

Figure 9: Visualization of the performance of the different models 

From Table 8 and its corresponding visualization in Figure 9, it is clear that the LSTM model 

improves the results from the XLM-R model. The improvement is statistically significant in 

all the models (p < 0.05 with two-tailed one-proportion t-test) except in the multilingual 

model when tested with German and Spanish and with the English test set evaluation in zero-

shot setup, where the XLM-R model performed better than the LSTM model (0.76 mean 

accuracy vs 0.71 mean accuracy, p < 0.05). The greatest jump in performance is with the 

Finnish data in zero-shot setting, where originally a mean accuracy of only 0.64 was reached 

and improved to 0.85 with the LSTM model. Overall, the multilingual model accuracy went 

up from 0.84 to 0.88.  

Similar to the XLM-R model, Spanish data doesn’t suffer in performance when tested in 

multilingual zero-shot setup. In addition to this, the German data tests better with the zero-

shot model than with the multilingual model. This further indicates that there might be some 

problems with the Spanish and German datasets. Like with the XLM-R model, the French 

data tests worse with the monolingual French model than with the multilingual one, this time 

with no drop between monolingual and zero-shot multilingual. Please note that from now on, 

I will refer to the LSTM model performance when discussing these models. A further 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Swedish French English Finnish German Spanish Multilingual

Monolingual XML-r Monolingual LSTM

Multilingual XML-r Multilingual LSTM

Zero-shot multilingual XML-r Zero-shot multilingual LSTM



37 
 

summary of the results can be found in Table 9, where the shown evaluation results are means 

of the three training instances. 

Table 9: Summary of the test evaluation results of the LSTM models 

 Accuracy Main content 
F1-score  

Boilerplate 

F1-score 

F1-score  

 

French monolingual 0.84 0.88 0.72 0.84 

Swedish monolingual 0.92 0.91 0.93 0.92 

Multilingual 0.88 0.90 0.86 0.88 

 

As seen in Table 9, both the French and multilingual model perform better with the main 

content lines, whereas the Swedish monolingual model performs slightly better with the 

boilerplate lines. The greatest difference between the identifying the two labels is with the 

French model, where the F1-score for main content lines is 0.88 and 0.72 for the boilerplate 

lines.  

Comparing the results to previous achievements is somewhat tricky due to the different 

format of the data: most of the existing boilerplate removal application work with HTML tags 

and thus cannot be directly applied into this dataset that is in plain text format, where each 

line is labelled either as main content or boilerplate, and that has already been cleaned based 

on the HTML tags. In addition to this, there is no one common evaluation dataset that would 

have been tested with all the other applications. The most common one for evaluation is 

Cleaneval (Baroni et al., 2008) that has been used in evaluation of jusText (Pomikálek, 2011), 

Web2Text (Vogels et al., 2018) and BoilerNet (Leonhardt et al., 2020) resulting in F1-scores 

0.9421, 0.88 and 0.87 respectively. Trafilatura (Barbaresi, 2021) has been evaluated with a 

dataset of web-sourced documents mainly in German reaching 0.914 accuracy and 0.912 F-

score. Barbaresi has used this dataset to evaluate other applications as well: of the ones 

mentioned in this thesis, jusText reaches accuracy of 0.749 and f-score 0.699, suggesting that 

there is some performance loss with this dataset compared to the Cleaneval one. When 

comparing these numbers to the performance of the LSTM models of this thesis, the 

monolingual Swedish model outperforms these numbers and the multilingual model isn’t far 

behind.  



38 
 

Register-wise Performance 

As the different text types can vary greatly in their features, I will further examine the 

linguistic variation’s effect on the line-wise classification performance with FreCORE and 

SweCORE. This part of the analysis is restricted only to the French and Swedish parts of the 

data, since the texts in English, Finnish, Spanish and German do not contain any register 

labels. As noted in Chapter 5, FreCORE and SweCORE differ in their register dispersion. 

Despite the smaller size of the dataset, FreCORE holds more texts in How-to, Informational 

Persuasion, Interactive Discussion and Spoken categories, whereas the larger SweCORE 

contains more Narrative, Informative and Opinion texts. I will examine only the eight upper 

registers: Narrative (NA), Informative (IN), Opinion (OP), How-to (HI), Informational 

Persuasion (IP), Interactive Discussion (ID), Spoken (SP) and Lyrical (LY). 

The different register distribution can influence the performance of the models: the linguistic 

features vary between registers, and for some registers, non-standard language or generated 

text are more typical than for others. For example in Laippala et al. (2020), Discussion forum 

texts, Encyclopedia texts and Informational Persuasion texts were often tagged as containing 

generated text and Biber and Conrad (2019) note that e-forums contain some non-standard 

linguistic structures. In addition to this, some register categories such as Lyrical contain very 

few texts (9 in French and 8 in Swedish), and it can be presumed that the line-wise classifier 

will not perform well with these kinds of texts. Table 10 demonstrates the averaged document 

level test accuracies per upper register category in the monolingual French and Swedish 

LSTM models with standard deviation in parenthesis. 

Table 10: Mean LSTM classification accuracies per upper register category with monolingual models 

 NA IN OP HI IP ID SP LY 

French M = .92 

(.005) 

M = .89 

(.025) 

M = .86 

(.012) 

M = .87 

(.026) 

M = .82 

(.019) 

M = .88 

(.022) 

M = .87 

(.084) 

M = .75 

(.059) 

Swedish M = .93 

(.002) 

M = .93 

(.006) 

M = .95 

(.009) 

M = .90 

(.004) 

M = .88 

(.007) 

M = .97 

(.008) 

M = .95 

(.002) 

M = .45 

(.042) 

 

As shown in Table 10, the monolingual Swedish model performs better (p < 0.05 with two-

tailed one-proportion Z-test) than the French model in all the other upper register categories 

than Lyrical, where the averaged accuracy is considerably higher with the French model. 

Despite FreCORE having more texts in Informational Persuasion, Interactive Discussion and 

Spoken categories, the Swedish model still outperforms the French one. The Narrative 



39 
 

register category however is high in both cases despite the difference in the size of the data. 

This could mean that Narrative texts are in general uniform in their formatting and contain 

little noise.  

Table 11: Mean LSTM classification accuracies per upper register category with the multilingual model  
 

NA IN OP HI IP ID SP LY 

French M = .91  

(.007) 

M = .89 

(.005) 

M = .87  

(.003) 

M = .90 

(.005) 

M = .87  

(.003) 

M = .90  

(.004) 

M = .94 

(.006) 

M = .58  

(.032) 

Swedis
h 

M = .91 

(.003) 

M = .90 

(.011) 

M = .94 

(.001) 

M = .88 

(.002) 

M = .86 

(.003) 

M = .93 

(0005) 

M = .93 

(.006) 

M = .64 

(.023) 

Total M = .91 

(.002) 

M = .90 

(.008) 

M = .91 

(.006) 

M = .89 

(.004) 

M = .86 

(.002) 

M = .91 

(.005) 

M = .93 

(.005) 

M = .60 

(.019) 

 

Table 11 shows that the register-wise accuracies don’t differ that much between the French 

and Swedish texts with the multilingual model. Compared to the results in Table 10, it can be 

seen that with the multilingual model, there is an overall improvement in the French 

document level test accuracies, while a slight decrease in performance with the Swedish texts. 

The Lyrical register category is a clear outlier with few examples in the data and poor 

classification accuracy, but the differences between the French and Swedish monolingual 

models are levelled out in the multilingual model: when the monolingual French model had a 

mean accuracy of 0.75 for Lyrical texts and the Swedish model’s mean accuracy for them was 

0.45, the overall mean average test accuracy in the multilingual is 0.61. 

Error Analysis 

In this sub-chapter, I will further examine the three models and their performance and provide 

a brief analysis of the models’ errors. I will use the best performing LSTM models of the 

three training instances as the base for the examination. 

Monolingual French Model 

As stated in the previous chapter, the monolingual French LSTM model has an overall 

accuracy of 0.84. It performs a little better with main content lines than with boilerplate lines: 

a confusion matrix describing the performance can be viewed in Table 12, where you can find 

the number of predictions that correspond to “true positive” (main content predicted as main 

content), “false positive” (boilerplate predicted as main content), “false negative” (main 

content predicted as boilerplate) and “true negative” (boilerplate predicted as boilerplate) as 



40 
 

well as the corresponding percentages of overall number of predictions and label-wise 

precision and recall values. 

Table 12: Confusion matrix of the monolingual French model test set performance 

 Main content Boilerplate  

Predicted main content 12 837 (58.31 %) 1 726 (7.84 %) Precision = 0.88 

Predicted boilerplate 2 335 (10.61 %) 5 116 (23.24 %) Precision = 0.69 

 Recall = 0.85 Recall = 0.75  

 

As seen in Table 12, precision and recall are 0.88 and 0.85 for main content and 0.69 and 0.75 

for boilerplate with the test dataset. This amounts to F1-scores 0.86 and 0.72 for main content 

and boilerplate, respectively. The test dataset is a bit unbalanced: of 22 014 lines, only 6 842 

lines (31 %) are annotated as boilerplate, whereas 15 172 (69 %) are annotated as main 

content. This is in line with the overall label distribution in the French data: in the whole data, 

31.3 % of the lines are annotated as boilerplate and 68.7 % as main content. This could 

explain the better performance with main content lines with the monolingual model as well as 

the performance improvement when testing the multilingual model with the French data.  

As mentioned in Chapter 5, the documents are chopped into 50-line segments for the LSTM 

model, most of the texts having fewer than 50 lines. In order to further examine the effect of 

the length of the document and the significance of the position of a line, I calculated average 

line-wise accuracies per line number: the times the model predicted a label correctly divided 

by the number of occurrences of said line number in the data. A visualisation of these average 

line-wise accuracies of the predictions made by the monolingual French LSTM model can be 

viewed in Figure 10.   

  



41 
 

 

Figure 10: A graph of average line-wise test accuracy with the monolingual French model 

In Figure 10, it is visible that the average accuracy per line is quite stable with reasonable 

variation up until the 50th line or so. After this, the variation in accuracies grows. This could 

be explained by the small number of documents that contain over 50 lines. Another 

hypothesis is that longer documents differ in quality from the shorter documents: they might 

have more lines of generated text of non-standard language, for example. 

In general, the model performs well enough, but it has trouble with some cases. For example, 

documents that contain lots of generated text often contain more errors in the line-wise 

predictions. Table 13 demonstrates an example of an Informational Persuasion text that 

contains generated text that has been predicted as main content. 

  



42 
 

Table 13: An example of an Informational Persuasion text prediction 

Predicted 
class 

Confidence Annotated 
class 

Text 

Main 
content 

0.81988 Boilerplate {"newsletter-popup-email":{"valueMissing":"L'adresse e-
mail est obligatoire.","typeMismatch":"Entrez une 
adresse e-mail valide.","patternMismatch":"Entrez une 
adresse e-mail valide."},"newsletter-footer-
email":{"valueMissing":"L'adresse e-mail est 
obligatoire.","typeMismatch":"Entrez une adresse e-mail 
valide.","patternMismatch":"Entrez une adresse e-mail 
valide."},"newsletter-email":{"valueMissing":"L'adresse e-
mail est obligatoire.","typeMismatch":"Entrez une 
adresse e-mail valide.","patternMismatch":"Entrez une 
adresse e-mail valide."}} 

Main 
content 

0.74452 Boilerplate SPRING SUMMER 2020 

Main 
content 

0.77610 Boilerplate HOMME FEMME 

Main 
content 

0.79154 Boilerplate WORKWEAR COLLECTION 

Main 
content 

0.70021 Boilerplate SPRING SUMMER 2020 

Main 
content 

0.74098 Boilerplate HOMME FEMME 

Main 
content 

0.75266 Boilerplate WORKWEAR COLLECTION 

Boilerplate 0.47736 Main 
content 

Livraisons standard gratuite 

Main 
content 

0.67874 Main 
content 

BE BRAVE #stayhome 

Main 
content 

0.82889 Main 
content 

Chères toutes et tous, Pour faire face à cette situation 
difficile, l’ensemble de nos boutiques en France ont été 
fermées. Le site internet reste évidemment ouvert et 
pour toute commande la livraison en France est gratuite. 

Main 
content 

0.59804 Main 
content 

DIESEL ❤ YOU 

Boilerplate 0.37388 Main 
content 

Nous avons prolongé notre période de retour: 30 jours 

 

In this example, the annotator has annotated the main content being the last five lines of the 

document informing the customer about the changed delivery and return protocols of a web 

store. Before these lines, the document contains a few lines of generated text, a list of links 

and a generated error message, that have all been predicted as main content. Even though the 

model’s confidence on a line being main content is the highest on the line that actually is main 

content (and in fact the majority of the whole text), it is almost as sure of a line that contains 

the json-format error message being main content.  



43 
 

Another common case of misclassified lines can be seen in Table 14, where there is an 

example of a Discussion Forum text. 

Table 14: An example of a Discussion Forum text prediction 

Predicted 
class 

Confidence Annotated 
class 

Text 

Boilerplate 0.18945 Boilerplate Suivez-nous : ForumEspace achatAvisPetites 
annoncesTestsActualitéGuidesInterviewsChroniquesCult
ure Guitare 

Boilerplate 0.32788 Main 
content 

Qui a d�j� travaill� chez europ assistance??? Auteur 

Boilerplate 0.16132 Main 
content 

Inscrit le: 04 Oct 03 

Main 
content 

0.75944 Main 
content 

Je ne sais pas vraiment en quoi cela consiste pour les 

boulots �tudiants. 

Boilerplate 0.47713 Main 
content 

quels sont les diff�rents crit�res � avoir? 

Boilerplate 0.13512 Boilerplate Haut Evaluer ce post : 0 cryfingers 

Boilerplate 0.07891 Main 
content 

Inscrit le: 04 Oct 03 

Boilerplate 0.40243 Main 
content 

pk vous regardez mais vous r�pondez pas????? 

Boilerplate 0.10623 Boilerplate Haut Evaluer ce post : 0 tombordo 

Boilerplate 0.09376 Main 
content 

Inscrit le: 27 Nov 04 

Main 
content 

0.52989 Main 
content 

Nous sommes une famille d'h�telier, et l'�t� on a de 

temps en temps affaire � europe assistance... 

Main 
content 

0.73537 Main 
content 

Une des branches possibles est sans doute le standard 

t�l�phonique, avec la prise en charge du sinistr� ( 
recherche de logement, envoie de taxi etc) 

Boilerplate 0.13822 Boilerplate Haut Evaluer ce post : 0 cryfingers 

Boilerplate 0.08643 Boilerplate Inscrit le: 04 Oct 03 

 

In this example, there are several problems regarding the quality of text: there are some 

encoding errors as well as some non-standard language. The annotators decided to include 

publishing dates of comments on a Discussion Forum in main content to better distinguish the 

comments between different authors. The model, however, doesn’t usually predict them as 

main content. In addition to this, some of the comments are also predicted as boilerplate. 



44 
 

Monolingual Swedish Model 

As mentioned in Chapter 6.1., the monolingual Swedish LSTM model has a 0.92 overall 

accuracy. Further inspection of the model’s performance can be viewed in Table 15 where 

you can find the number of predictions that correspond to “true positive” (main content 

predicted as main content), “false positive” (boilerplate predicted as main content), “false 

negative” (main content predicted as boilerplate) and “true negative” (boilerplate predicted as 

boilerplate) and the corresponding percentages of overall number of predictions and label-

wise precision and recall values. 

Table 15: Confusion matrix of the monolingual Swedish model test set performance 

 Main content Boilerplate  

Predicted main content 4 928 (41.37 %) 482 (4.05 %) Precision = 0.91 

Predicted boilerplate 461 (3.87 %) 6 040 (50.71 %) Precision = 0.93 

 Recall = 0.91 Recall = 0.93  

 

The Swedish monolingual model performs better with boilerplate lines with precision and 

recall 0.93, but the main content performance isn’t far behind with precision and recall of 

0.91. The model’s F1-scores for boilerplate and main content are 0.93 and 0.91 respectively. 

The Swedish test dataset has 11 911 lines total, of which 6 522 (55 %) are boilerplate and 

5 389 (45 %) main content. This is in line with the label distribution in the Swedish data as a 

whole, even though the test set leans a bit more towards boilerplate. A graph visualizing the 

model’s average accuracies per line can be viewed in Figure 11. 



45 
 

 

Figure 11: A graph of average line-wise test accuracy with the monolingual Swedish model 

As seen in Figure 11, the Swedish monolingual model’s average accuracies per line are quite 

high overall, averaging between 0.825 and 1. There is a drop in the average accuracy of the 

first lines of the documents in the test set, otherwise the line-wise accuracies hover over 0.85 

and with documents containing over 150 lines averaging to 1. Compared to the French model, 

the monolingual Swedish model’s performance with longer documents seems much more 

stable. 

In general, the model performs very well. As with the French, the most notable performance 

fail is with texts that contain non-standard language, the most notable category being Lyrical 

texts: they are few in the whole data. Table 16 shows an example of a Narrative and Lyrical 

hybrid text, where the narrative parts are mostly correctly predicted, but the classification fails 

with the Lyrical part. 

  



46 
 

Table 16: An example of a Narrative and Lyrical hybrid text classification 

Predicted 
class 

Confidence Annotated 
class 

Text 

Main 
content 

0.68182 Main 
content 

Den jag kunde va 

Main 
content 

0.66489 Boilerplate Den jag kunde va (Till Björn Afzelius) 

Main 
content 

0.97430 Main 
content 

Jag träffade Björn Afzelius första gången sommaren 
1970. Vi spelade i Hoola Bandoola Band tillsammans 
till 1976 när bandet upplöstes. Vi bodde i samma hus 
först på Föreningsgatan och senare på 
Rönneholmsvägen i Malmö tills Björn flyttade till 
Göteborg 1977. Från 1982 när vi för första gången 
spelade ihop igen i TV-programmet "Måndagsbörsen" 
till 1996 när vi återförenade Hoola gjorde vi hundratals 
spelningar tillsammans. Vi uppträdde i Sverige, 
Danmark, Norge, Finland och på Färöarna men också i 
Italien, Nicaragua och Kuba. 

Main 
content 

0.97268 Main 
content 

Vi semestrade tillsammans med våra familjer. Vi åt och 
drack. Vi pratade politik, affärer och kärlek. Vi 
skrattade. Vi grälade. Vi stod varandra kort sagt 
mycket nära. 

Main 
content 

0.95364 Main 
content 

1997 i september kom Björn ner till Malmö från 
Göteborg och berättade att han hade fått lungcancer. 
När han hade åkt tillbaka skrev jag "Den, jag kunde 
va". Jag spelade den för honom nästa gång vi sågs. 
Han bad mig spela den på hans begravning. Det 
gjorde jag. (Kommentar från "Sånger i tiden", 2001) 

Boilerplate 0.48057 Main 
content 

Den jag kunde va på persiska Över vida oceaner 

Boilerplate 0.49381 Main 
content 

emot fjärran horisonter 

Boilerplate 0.18734 Main 
content 

över hav och kontinenter 

Boilerplate 0.33198 Main 
content 

genom skymningar och dagrar 

Boilerplate 0.48876 Main 
content 

har vi färdats med varandra 

Boilerplate 0.08250 Main 
content 

Vi har vandrat samma vägar 

Boilerplate 0.07195 Main 
content 

Vi har burit samma bördor 

Boilerplate 0.09718 Main 
content 

Vi har sett mot samma stjärnor 

Boilerplate 0.07243 Main 
content 

Vi har sjungit samma sånger 

Boilerplate 0.11121 Main 
content 

Vi har delat samma drömmar 

Boilerplate 0.06379 Main 
content 

Genom månader och år 



47 
 

Predicted 
class 

Confidence Annotated 
class 

Text 

Boilerplate 0.24108 Main 
content 

Du är med mej alla dar 

Boilerplate 0.26582 Main 
content 

Du är den, jag kunde va 

Boilerplate 0.15710 Main 
content 

Som broar över djupen 

Boilerplate 0.21554 Main 
content 

som skuggor under träden 

Boilerplate 0.22675 Main 
content 

har vi varit för varandra 

Boilerplate 0.14627 Main 
content 

Vi har delat samma minnen 

Boilerplate 0.13315 Main 
content 

Vi har burit samma längtan 

Boilerplate 0.20377 Main 
content 

Vi har sett med samma ögon 

Boilerplate 0.25278 Main 
content 

Vi har trott på samma löften 

Boilerplate 0.30443 Main 
content 

Och ingenting kan splittra oss 

Boilerplate 0.43768 Main 
content 

och ingenting kan söndra oss 

Boilerplate 0.48884 Main 
content 

och ingenting kan slita oss isär 

Boilerplate 0.35388 Main 
content 

Skuggor kanske slukar oss 

Boilerplate 0.46116 Main 
content 

Sorger kanske tvingar oss på knä 

Boilerplate 0.45233 Main 
content 

Men ingenting i världen 

Main 
content 

0.68628 Main 
content 

kan lösa våra band 

Main 
content 

0.68112 Main 
content 

Du är med mej där jag är 

Main 
content 

0.75827 Main 
content 

Du är med mej vart jag ser Du är med mej alla dar 

Main 
content 

0.79766 Main 
content 

Du är den, jag kunde va 

 

The model consistently misclassifies the lyrical lines that have some non-standard language in 

addition to the lyrical form. Another non-standard language example where the model fails is 

comments in a blog post, where the blog post part consists solely of a playlist (a list of songs 



48 
 

and their performers). This example can be seen in Table 17. Due to the length of the blog 

post on the first line, it has been abbreviated. 

Table 17: An example of the line-wise classification of a blog text with comments 

Predicted 
class 

Confidence Annotated 
class 

Text 

Boilerplate 0.39953 Main 
content 

Beat Happening - Revolution Come and Gone The 
Velvet Underground - After Hours Melody Dog - Don't 
Worry Baby Slow Down Tallahassee - U R Grace U R 
Knight School - Pregnant Again Stereolab - The Light 
That Will Cease To Fail The Horrors - Sea With A Sea 
Phil Wilson - It's A Rainy Day ‒ ‒ 

Boilerplate 0.46052 Main 
content 

3 comments: 

Boilerplate 0.15503 Main 
content 

Vad fan, dansar ni tryckare på era fester. Vad är 
Malmö för ett ställe egentligen? Stadshotellet i Tranås, 
änna... 

Boilerplate 0.18776 Main 
content 

Dom hånglar juh! 

Boilerplate 0.16956 Main 
content 

På dansgolvet! Vad är det, gymnasiedisco!? 

Boilerplate 0.05223 Boilerplate Post a Comment 

 

As we can see from Table 17, all the annotated main content lines in this example have been 

predicted as boilerplate. This is understandable for the first line that contains the blog post, 

because it consists of song listings only. For some reason, the model’s confidence on this line 

is higher than for the comments following it, even though these lines contain natural 

language. The language is non-formal, however, which could mean that the model has 

problems with non-standard Swedish in general. 

Multilingual Model 

As already noted in Chapter 6.1, the multilingual model has an overall accuracy of 0.88. Like 

with the analysis of the monolingual models, a further inspection of evaluation can be viewed 

in Table 18 that includes the confusion matrix of the model performance, that is the number of 

true positives (main content predicted as main content), false positives (boilerplate predicted 

as boilerplate), false negatives (main content predicted as boilerplate) and true negatives 

(boilerplate predicted as boilerplate), and their corresponding percentages of the all the 

predicted labels. In addition to this, the table includes calculated precision and recall for both 

main content and boilerplate. 



49 
 

Table 18: Confusion matrix of the multilingual model test set performance 

 Main content Boilerplate  

Predicted main content 19 571 (52.51 %) 1 840 (4.94 %) Precision = 0.91 

Predicted boilerplate 2 627 (7.05 %) 13 230 (35.50 %) Precision = 0.83 

 Recall = 0.88 Recall = 0.88  

 

The multilingual test set has 37 268 lines in total, of which 15 070 (40 %) are boilerplate and 

22 198 (60 %) main content. Approximately the same distribution as in the whole data, with a 

slight bias towards main content lines. The model performs better with main content with 

precision of 0.91 and recall of 0.88. The recall for boilerplate lines is also 0.88, and precision 

0.83. The model’s F1-scores are thus 0.91 for main content and 0.86 for boilerplate. Overall, 

looking at the numbers, the model performs better than the monolingual French one, but 

slightly worse than the monolingual Swedish one. A visualisation of the line-wise 

performance can be viewed in Figure 12. 

 

Figure 12: A graph of average line-wise test accuracy with the multilingual LSTM model 

Similar to the corresponding graph of the French monolingual model, the variance in the 

average accuracies grows with the line numbers, and there is also a small drop with the first 

lines of the documents. 



50 
 

Classification-wise, there is no significant improvement from the earlier examples where the 

monolingual models fail the worst. In addition to this, there is poor performance with the 

Spanish and German test sets. This can partly be explained by the poor quality of the texts 

included: there are some texts in the Spanish and German test sets that are composed of 

generated text and / or non-text, as in text that is not natural language. The model naturally 

doesn’t perform well with these kinds of texts. The model also doesn’t recognize duplicate 

generated lines within a document as boilerplate, which makes it perform poorly with 

documents that contain lots of duplicate content such as the example in Table 19. In this 

example, every main content line is followed by an exact duplicate line that has been 

annotated as boilerplate, but the model has predicted all the lines as main content. 

Table 19: An example of a text with duplicate lines 

Predicted 
class 

Confidence Annotated 
class 

Text 

Main 
content 

0.98526 Main 
content 

Hola MarisolPink! Te escribo des USA para felicitarte por 
tus recetas pradisimas y faciles y a la vez preguntarte si 
tienes alguna receta para hacer tostadas rojas, tipo las 
de la marca la mision o algo por el estilo. Te agradezco 
de antemano por tu tiempo y tu ayuda. Atte. : Jesus R 
Mendoza 

Main 
content 

0.99219 Boilerplate Hola MarisolPink! Te escribo des USA para felicitarte por 
tus recetas pradisimas y faciles y a la vez preguntarte si 
tienes alguna receta para hacer tostadas rojas, tipo las 
de la marca la mision o algo por el estilo. Te agradezco 
de antemano por tu tiempo y tu ayuda. Atte. : Jesus R 
Mendoza 

Main 
content 

0.99737 Main 
content 

lo felicito son recetas muy fáciles y además baratas, ya 
que para estos tiempos la mayor parte de la gente no 
contamos con muchos recursos 

Main 
content 

0.99769 Boilerplate lo felicito son recetas muy fáciles y además baratas, ya 
que para estos tiempos la mayor parte de la gente no 
contamos con muchos recursos 

Main 
content 

0.99507 Main 
content 

HOLA SUSY: ME FASCINA TODAS LAS COSAS QUE 
HACES, SON MUY SENCILLAS Y FÁCILES DE HACER, 
ME GUSTA MUCHO TU CREATIVIDAD Y TU 
SENCILLES, DIOS TE BENDIGA, DESDE CÚCUTA 
COLOMBIA, ABRAZOS DESDE LA DISTANCIA 

Main 
content 

0.99453 Boilerplate HOLA SUSY: ME FASCINA TODAS LAS COSAS QUE 
HACES, SON MUY SENCILLAS Y FÁCILES DE HACER, 
ME GUSTA MUCHO TU CREATIVIDAD Y TU 
SENCILLES, DIOS TE BENDIGA, DESDE CÚCUTA 
COLOMBIA, ABRAZOS DESDE LA DISTANCIA 

Main 
content 

0.99540 Main 
content 

Hola soy nueva en tu pagina, y te quiero comentar que 
estan padrisimas las recetas que hasta ahorita eh visto, 
muy faciles y riquisimas.... felicidades. Sra. Olivia Rosas 



51 
 

Predicted 
class 

Confidence Annotated 
class 

Text 

Main 
content 

0.99390 Boilerplate Hola soy nueva en tu pagina, y te quiero comentar que 
estan padrisimas las recetas que hasta ahorita eh visto, 
muy faciles y riquisimas.... felicidades. Sra. Olivia Rosas 

Main 
content 

0.98825 Main 
content 

CHEF VITORIA BRANDA Hace ya tiempo dió en el 
programa de Televisión la receta de unas galletas de 
clara de huevo con nuez, muy faciles, podría ser tan 
amable y mandarmela receta, me robaron mi recetario. 
Gracias de antemano. Elsa Ruy. Mexico, D. F. 

Main 
content 

0.96968 Boilerplate CHEF VITORIA BRANDA Hace ya tiempo dió en el 
programa de Televisión la receta de unas galletas de 
clara de huevo con nuez, muy faciles, podría ser tan 
amable y mandarmela receta, me robaron mi recetario. 
Gracias de antemano. Elsa Ruy. Mexico, D. F. 

Discussion 

Based on the previous hypothesis of boilerplate and main content occurring in blocks, 

sequential labelling seemed like a good solution to boilerplate detection. The hypothesis holds 

true: the addition of sequential LSTM model improves the line-wise classification results 

reached by the XLM-R model. In nearly all cases the LSTM performs better than the XLM-R 

model, the only exception being zero-shot tested English, where the performance dropped 

when tested on the multilingual model that wasn’t trained with English data. 

Comparing the results to the previous research is somewhat complicated due to the different 

format of the data. Note that this data has already been run through Trafilatura Version 0.3 

(Barbaresi, 2020) for boilerplate removal, and the remaining data still contains a number of 

boilerplate lines. When looking at the numbers, monolingual Swedish LSTM model 

outperforms the previous research and the monolingual French model and multilingual model 

aren’t far behind. A more accurate comparison could be achieved by e.g. converting the 

CleanEval (Baroni et al., 2008) dataset into plain text form. In this case, it would be assumed 

that the blocks in the dataset annotated as main content don’t contain any boilerplate and vice 

versa. 

All the models fail with generated text and duplicate lines within a text. These are general 

tendencies that need improvement. The data set is quite small and all the variations of 

language probably won’t be present. This is evident already in the register dispersion in the 

French and Swedish datasets: the whole data contains only 17 texts annotated as lyrical. It 

should also be noted that the evaluation is based on test sets that haven’t been stratified by 

register: they may contain a different distribution of internet registers than the training and 



52 
 

validation sets. In addition to this, there is no indication on how the models perform with 

unseen languages other than the zero-shot tests. These however don’t include any languages 

written with other than the Latin alphabet and the only language outside the Indo-European 

language family is Finnish, which does perform relatively well.  

As with deep learning models in general, this model is not an exception in that it is not the 

lightest in computational efficiency. When choosing the method for boilerplate removal, one 

should consider if the possible performance gain is worth the additional computational cost 

(in comparison with e.g., Trafilatura (Barbaresi, 2021)), especially if the corresponding 

HTML documents are available. 



53 
 

7 Conclusion 

The goal of this thesis was to find solutions to improving the quality of Internet-sourced data 

that is not in HTML format, as is the case with many existing Web corpora. Web-sourced 

material may contain substantial amounts of boilerplate: generated text, lists of links etc. that 

are not useful for further linguistic analysis, and it is a necessary step to clean the data of this. 

In addition, it is necessary to find methods to improve the job done by the existing boilerplate 

cleaning methods, that might leave some noise behind.  

The data used in the training is a manually annotated sample of FreCORE and SweCORE 

sampled from Common Crawl and annotated for their register as well as smaller sets of 

random samples of English, Finnish, German and Spanish Common Crawls. The annotations 

were done per line: each line of text was annotated as either boilerplate or main content. In 

total, the French dataset consists of 84 103 lines, the Swedish dataset of 99 406 lines and the 

multilingual dataset of 200 430 lines. FreCORE and SweCORE also include annotations for 

register classes per text. It should be noted that the training data doesn’t contain texts that are 

fully generated or machine translated.  

For the boilerplate detection, I trained a sequential classifier to label main content and 

boilerplate lines in a plain text document. The training process was done in two steps:  first, 

train a XLMR-RoBERTa model to label lines as main content and boilerplate and second, use 

the last hidden layer from this model to train a sequential labelling model with a Long-Short-

Term-Memory (LSTM) network layer in order to take the surrounding lines into 

consideration. This process was done to train three different kinds of models: monolingual 

models for Swedish and French data, a multilingual model trained with Swedish, French, 

English, Finnish, German and Spanish data as well as experimental zero-shot multilingual 

models that were tested with an unseen language. These LSTM models are treated as the final 

product of the training. 

Out of the two architectures examined in this thesis, the LSTM models outperform the models 

trained on top of the XLM-RoBERTa. The results of the evaluation of the LSTM models are 

close to the previous boilerplate detection applications. The monolingual Swedish model 

outperforms most of the existing models with mean accuracy of 0.92 (SD = 0.001), the 

monolingual French and multilingual models reach mean accuracies of 0.84 (SD = 0.005) and 

0.88 (SD = 0.002). The highest evaluation score any previous application has got is 



54 
 

Trafilatura’s 0.914 accuracy (Barbaresi, 2021), but straight comparison is impossible due to 

the different nature of the data format. Trafilatura, as well as the other boilerplate removal 

applications discussed in this thesis, is trained and evaluated on DOM elements in HTML 

documents, while the data used in this thesis is line-wise annotated plain text. 

The approach provided in this thesis offers an alternative or addition to HTML-based 

boilerplate removal: these models are able to differentiate between boilerplate and main 

content based on textual context only. This means that it is possible to process previously 

retrieved web corpora that do not have their HTML source documents or that have been 

treated with boilerplate removal applications that have for some reason or another not been 

successful enough. The multilingual tests provide hope that the multilingual model is 

somewhat generalizable, and that multilingual training for boilerplate removal is possible and 

perhaps even beneficial.  

The results are however not perfect: the models have problems especially with texts with lots 

of generated text and registers that are not common, such as lyrical, and they don’t generally 

recognize duplicate lines within text. Increasing the amount of data could be a way to reach 

better results as this is quite a little dataset for deep learning. In addition to this, some smaller 

subsets (Spanish, German) were clearly somewhat faulty to begin with and didn’t yield good 

results in evaluation.  

These models are evaluated only on French, Swedish, English, Finnish, Spanish and German, 

so there is no indication on how they will perform with languages outside the ones used in 

this study. This should be further examined with e.g., annotated datasets in other languages to 

evaluate the multilingual model’s generalizability. It would also be essential to further 

evaluate the model’s performance compared to others with datasets such as CleanEval 

(Baroni et al., 2008), this would however require some additional annotation. Another point to 

be examined could be the variance within the line-wise accuracies in the models’ predictions: 

it is not clear, why the average accuracy differs so much after a certain point.  



55 
 

References 

Abadji, J., Suarez, P. O., Romary, L., & Sagot, B. (2022). Towards a Cleaner Document-

Oriented Multilingual Crawled Corpus. http://arxiv.org/abs/2201.06642 

Artstein, R. (2017). Inter-annotator Agreement. In N. Ide & J. Pustejovsky (Eds.), Handbook 

of Linguistic Annotation (pp. 297–313). Springer Netherlands. 

https://doi.org/10.1007/978-94-024-0881-2 

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning 

to Align and Translate. 3rd International Conference on Learning Representations, ICLR 

2015 - Conference Track Proceedings, 1–15. http://arxiv.org/abs/1409.0473 

Baker, P. (2006). Using corpora in discourse analysis. In Continuum discourse series. 

Continuum. 

Baker, P. (2009). Contemporary corpus linguistics. Continuum. 

https://login.ezproxy.utu.fi/login?url=http://site.ebrary.com/lib/uniturku/Doc?id=104273

69 

Barbaresi, A. (2016). Efficient construction of metadata-enhanced web corpora. 7–16. 

https://doi.org/10.18653/v1/w16-2602 

Barbaresi, A. (2019). The Vast and the Focused: On the need for thematic web and blog 

corpora. Proceedings of the Workshop on Challenges in the Management of Large 

Corpora (CLMC-7) 2019, 29–32. 

Barbaresi, A. (2020). Generic web content extraction with open-source software. Proceedings 

of the 15th Conference on Natural Language Processing, KONVENS 2019, 267–268. 

Barbaresi, A. (2021). Trafilatura: A Web Scraping Library and Command-Line Tool for Text 

Discovery and Extraction. Proceedings of the 59th Annual Meeting of the Association for 

Computational Linguistics and the 11th International Joint Conference on Natural 

Language Processing: System Demonstrations, 122–131. 

https://doi.org/10.18653/v1/2021.acl-demo.15 

Barbaresi, A., & Lejeune, G. (2020). Out-of-the-Box and into the Ditch? Multilingual 

Evaluation of Generic Text Extraction Tools. Proceedings of the 12th Web as Corpus 

Workshop, May, 5–13. https://aclanthology.org/2020.wac-1.2 

Baroni, M., Chantree, F., Kilgarriff, A., & Sharoff, S. (2008). CleanEval: A competition for 

cleaning web pages. Proceedings of the 6th International Conference on Language 

Resources and Evaluation, LREC 2008, 638–643. 

Bawden, R., Di Nunzio, G. M., Grozea, C., Jauregi Unanue, I., Jimeno Yepes, A., Mah, N., 



56 
 

Martinez, D., Névéol, A., Neves, M., Oronoz, M., Perez-de-Viñaspre, O., Piccardi, M., 

Roller, R., Siu, A., Thomas, P., Vezzani, F., Vicente Navarro, M., Wiemann, D., & 

Yeganova, L. (2020). Findings of the WMT 2020 Biomedical Translation Shared Task: 

Basque, Italian and Russian as New Additional Languages. In Proceedings of the Fifth 

Conference on Machine Translation (pp. 660–687). Association for Computational 

Linguistics. https://www.aclweb.org/anthology/2020.wmt-1.76 

Biber, D., & Conrad, S. (2019). Register, genre, and style. Cambridge University Press. 

Biber, D., Conrad, S., & Reppen, R. (1998). Corpus linguistics : investigating language 

structure and use. In Cambridge approaches to linguistics. Cambridge University Press. 

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., 

Ott, M., Zettlemoyer, L., & Stoyanov, V. (2019). Unsupervised Cross-lingual 

Representation Learning at Scale. CoRR, 31–38. https://doi.org/10.18653/v1/p19-4007 

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep 

Bidirectional Transformers for Language Understanding. NAACL HLT 2019 - 2019 

Conference of the North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies - Proceedings of the Conference, 1(Mlm), 

4171–4186. http://arxiv.org/abs/1810.04805 

Egbert, J., Biber, D., & Davies, M. (2015). Developing a bottom‐up, user‐based method of 

web register classification. Journal of the Association for Information Science and 

Technology, 66(9), 1817–1831. https://doi.org/10.1002/asi.23308 

Gatto, M. (2014). The web as corpus : theory and practice. Bloomsbury. 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 

9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF Models for Sequence Tagging. 

http://arxiv.org/abs/1508.01991 

Jantunen, J. H. (2018). Homot ja heterot Suomi24:ssä: analyysi digitaalisista diskursseista. 

Puhe Ja Kieli, 38(1), 3–22. https://journal.fi/pk/article/view/65488/32762 

Johansson, M., Kyröläinen, A.-J., Ginter, F., Lehti, L., Laippala, V., & Krizsán, A. (2018). 

Opening up #jesuisCharlie anatomy of a Twitter discussion with mixed methods. Journal 

of Pragmatics, 129, 90–101. https://doi.org/10.1016/j.pragma.2018.03.007 

Jurafsky, D., & Martin, J. H. (2009). Speech and language processing : an introduction to 

natural language processing, computational linguistics and speech recognition. In 

Prentice Hall series in artificial intelligence (2nd ed). Prentice Hall. 

Kanerva, J., Ginter, F., Miekka, N., Leino, A., & Salakoski, T. (2018). Turku Neural Parser 



57 
 

Pipeline: An End-to-End System for the CoNLL 2018 Shared Task. Proceedings of the 

CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal 

Dependencies, 133–142. https://doi.org/10.18653/v1/K18-2013 

Karpathy, A. (2015). The Unreasonable Effectiveness of Recurrent Neural Networks. Andrej 

Karpathy Blog. https://karpathy.github.io/2015/05/21/rnn-effectiveness/ 

Kilgarriff, A. (2007). Last Words: Googleology is Bad Science. Computational Linguistics, 

Volume 33, Number 1, March 2007. http://aclweb.org/anthology/J07-1010 

Kim, Y. (2014). Convolutional neural networks for sentence classification. Proceedings of the 

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 

1746–1751. 

Laippala, V., Kyllönen, R., Egbert, J., Biber, D., & Pyysalo, S. (2019). Toward Multilingual 

Identification of Online Registers. Proceedings of the 22nd Nordic Conference on 

Computational Linguistics, 292–297. https://www.aclweb.org/anthology/W19-6130 

Laippala, V., Rönnqvist, S., Hellström, S., Luotolahti, J., Repo, L., Salmela, A., Skantsi, V., 

& Pyysalo, S. (2020). From Web Crawl to Clean Register-Annotated Corpora. 

Proceedings of the 12th Web as Corpus Workshop, 14–22. 

Lample, G., & Conneau, A. (2019). Cross-lingual Language Model Pretraining. Advances in 

Neural Information Processing Systems, 32. http://arxiv.org/abs/1901.07291 

Le, H., Vial, L., Frej, J., Segonne, V., Coavoux, M., Lecouteux, B., Allauzen, A., Crabbé, B., 

Besacier, L., & Schwab, D. (2019). FlauBERT: Unsupervised Language Model Pre-

training for French. LREC 2020 - 12th International Conference on Language Resources 

and Evaluation, Conference Proceedings, 2479–2490. http://arxiv.org/abs/1912.05372 

Lehti, L. (2013). Genre et ethos : des voies discursives de la construction d’une image de 

l’auteur dans les blogs de politiciens. In Thèse de doctorat. Université de Turku. 

http://urn.fi/URN:ISBN:978-951-29-5556-5 

Leonhardt, J., Anand, A., & Khosla, M. (2020). Boilerplate Removal using a Neural Sequence 

Labeling Model. The Web Conference 2020 - Companion of the World Wide Web 

Conference, WWW 2020, 226–229. https://doi.org/10.1145/3366424.3383547 

Luoma, J., Oinonen, M., Pyykönen, M., Laippala, V., & Pyysalo, S. (2020). A broad-coverage 

corpus for Finnish named entity recognition. Proceedings of the 12th Language 

Resources and Evaluation Conference, May, 4615–4624. 

https://aclanthology.org/2020.lrec-1.567 

Malmsten, M., Börjeson, L., & Haffenden, C. (2020). Playing with Words at the National 

Library of Sweden -- Making a Swedish BERT. http://arxiv.org/abs/2007.01658 



58 
 

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous 

activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. 

https://doi.org/10.1007/BF02478259 

Olah, C. (2015). Understanding LSTM Networks. Colah’s Blog. 

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Partington, A. (2013). Patterns and meanings in discourse : theory and practice in corpus-

assisted discourse studies (CADS). In Studies in Corpus Linguistics. John Benjamins 

Publishing Company. 

Pomikálek, J. (2011). Removing boilerplate and duplicate content from web corpora. PhD En 

Informatique, Fakulta Informatiky. 

Repo, L., Skantsi, V., Rönnqvist, S., Hellström, S., Oinonen, M., Salmela, A., Biber, D., 

Egbert, J., Pyysalo, S., & Laippala, V. (2021). Beyond the English Web: Zero-Shot 

Cross-Lingual and Lightweight Monolingual Classification of Registers. EACL 2021 - 

16th Conference of the European Chapter of the Association for Computational 

Linguistics, Proceedings of the Student Research Workshop, 183–191. 

http://arxiv.org/abs/2102.07396 

Rönnqvist, S., Skantsi, V., Oinonen, M., & Laippala, V. (2021). Multilingual and Zero-Shot is 

Closing in on Monolingual Web Register Classification. Proceedings of the 23rd Nordic 

Conference on Computational Linguistics (NoDaLiDa), 157–165. 

https://aclanthology.org/2021.nodalida-main.16 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and 

organization in the brain [Article]. Psychological Review, 65(6), 386–408. 

https://doi.org/10.1037/h0042519 

Salminen, J., Hopf, M., Chowdhury, S., Almerekhi, H., & Jansen, B. (2020). Developing an 

online hate classifier for multiple social media platforms. Human-Centric Computing 

and Information Sciences, 10(1), 1–34. https://doi.org/10.1186/s13673-019-0205-6 

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE 

Transactions on Signal Processing, 45(11), 2673–2681. 

Stemle, E. (2010). The KrdWrd CANOLA Corpus – Gathering Training Data for Sweeping 

Web Pages. 1–17. 

Sutskever, I., Martens, J., & Hinton, G. (2011). Generating text with recurrent neural 

networks. Proceedings of the 28th International Conference on Machine Learning, 

ICML 2011, 1017–1024. 

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural 



59 
 

Networks. Lausanne, EPFL, 2366. https://doi.org/10.5075/epfl-thesis-2366 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & 

Polosukhin, I. (2017). Attention Is All You Need. Advances in Neural Information 

Processing Systems, 2017-Decem(Nips), 5999–6009. http://arxiv.org/abs/1706.03762 

Virtanen, A., Kanerva, J., Ilo, R., Luoma, J., Luotolahti, J., Salakoski, T., Ginter, F., & 

Pyysalo, S. (2019). Multilingual is not enough: BERT for Finnish. 

http://arxiv.org/abs/1912.07076 

Vogels, T., Ganea, O.-E., & Eickhoff, C. (2018). Web2Text: Deep Structured Boilerplate 

Removal. http://arxiv.org/abs/1801.02607 

Wang, C., Li, M., & Smola, A. J. (2019). Language Models with Transformers. 2019 16th 

International Computer Conference on Wavelet Active Media Technology and 

Information Processing, ICCWAMTIP 2019, 249–253. 

https://doi.org/10.1109/ICCWAMTIP47768.2019.9067534 

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary, V., Guzmán, F., Joulin, A., & Grave, 

E. (2019). CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data. 

LREC 2020 - 12th International Conference on Language Resources and Evaluation, 

Conference Proceedings, 4003–4012. http://arxiv.org/abs/1911.00359 

  

  



60 
 

Appendices 

Appendix 1 Line-wise Annotation Guidelines 

Main content: 

- Body of text(s) 

- titles 

- Info about the author or the site/organization (incl. Contact information) 

- Comments  

- Discussion forums, comments: info about the author (posted by... etc); if this kind of 

information is lacking, any text (e.g., signatures, ranking, rating [4.0 stars out of 5.0] 

etc.) that can be used to separate the posts from each other is marked as ok 

- News site front pages or similar: excerpts from the articles + their titles 

- Lists that are part of the text  

- In discussion forums, the most important parts to retain are WHO + WHAT (incl. 

Previously published messages that are being replied to) +WHEN (NB. this means 

that repetition is ok in discussion forums) 

- If a line ends with e.g., ‘Leave a comment’, ‘Continue reading’, ‘See full summary’ 

these are kept and the entire line is marked ok (i.e., no cutting of lines) 

- Links within a text and that are part of a text are ok (e.g., “Join our community today!” 

with the first three words constituting a hyperlink and the entire phrase being a part of 

the entire text) 

- Wikipedia: ‘[edit]’ etc. 

- Wikipedia: all the parts that feature in the list of contents and layout-wise are part of 

the body of the text are ok, meaning that e.g., External links and See also are ok 

- Poster and date of posting in e.g., Community Blogs 

- Junky-looking lines with non-junky information (such as date and/or author) that 

might be informative for the understanding of the text 



61 
 

- Repetitive text that is part of the body of text, or (almost) the same text appears twice, 

on the actual website 

- Table of Contents ok if they describe the main text of the page (and the main text is 

included) 

- Captions within a text (e.g., in a news text) 

- Wikipedia change logs → both versions ok 

- Short news text listings (title + headnote) are ok if they consist of 2 or more sentences  

 

Boilerplate: 

- Lists of links (old posts, related, web store product listings, discussion forum topics 

etc) 

- Generated “buttons” or meta information about the site 

- Texts about cookies, the site platform (e.g., “this site was built with WordPress”), 

JavaScript, copyrights etc 

- (unrelated/generated) Ads 

- Requests to comment, share, follow, download, etc 

- Headers if titles in text 

- if the main title for the text appears in the body of text and in the header, the header is 

considered as junk since it usually includes other meta information as well. However, 

if the only title for the text appears in the header, it is saved. 

- Repetitive text (if the same “ok” line appears more than once) 

- The first line is annotated ok, the second (repetitive) one as junk 

- Hotel texts (incl. Lists, terms and conditions) 

- Short excerpts of other texts  



62 
 

- if the main body of text is complete: e.g., news article + excerpts from related articles 

-> related excerpts are junk. If there isn’t a visible main body of text, the excerpts are 

treated as ok, including their titles. 

- If there are several different (seemingly) complete texts, they are all ok 

- Discussion forums: information about the poster (admin, ‘ranking’ according to 

number of posts etc.) 

- Hyperlinks in the end of a Wikipedia text 

- Pronunciation sites 

- Wikipedia: side banners (e.g., boxes with information about a species) 

- Labels/keywords/tags 

- Word conjugations in Wiktionary 

- Table of Contents of a book when the text itself not included 

- A text consisting of captions only (e.g., stock photos) 

- Captions that are illogically placed in a text (e.g., after a text as a chunk) 

- # + ‘tag’ (e.g., #politics) 

- Incoherent text 

- In (product) reviews, e.g., Amazon, “the most useful positive/negative comment” is 

junk, if the same post appears later in the text, i.e., it appears twice 

- Short news article listings (title + headnote) if they’re under 2 sentences per text 

  



63 
 

Appendix 2 Suomenkielinen lyhennelmä 

Automatisoidut hakuohjelmat kuten Common Crawl (Wenzek et al., 2019) keräävät vapaan 

internetin sivustoja valtaviksi aineistoiksi, joita voidaan hyödyntää kielitieteellisessä 

ja -teknologisessa tutkimuksessa. Ongelmana tämänkaltaisissa aineistoissa on se, että ne 

sisältävät usein generoitua tekstiä ja metatietoja, jotka saattavat vääristää lingvistisen 

analyysin tuloksia (Laippala et al., 2020). Tärkeä askel verkkoaineistojen keruussa onkin 

niiden siistiminen, mutta sitä dokumentoidaan usein harmillisen vähän (Kilgarriff, 2007). 

Olemassa olevat sovellukset eivät aina ole riittäviä, ja jo kertaalleen putsattu teksti saattaa 

sisältää ylimääräistä generoitua tekstiä (Laippala et al., 2020). Tämän opinnäytetyön 

tavoitteena on kouluttaa koneoppimismalleja tunnistamaan tämän kaltaista tekstuaalista 

”hälyä” eli vakiotekstiä (engl. boilerplate) leipätekstin lomasta sekä vertailla mallien 

suorituskykyä keskenään ja aiempien toteutusten kanssa. Lisäksi aion tarkastella 

tekstivariaation ja monikielisyyden vaikutusta mallien suorituskykyyn. 

Teoreettinen viitekehys 

Vapaa internet tarjoaa valtavan määrän tekstiaineistoja, joita on mahdollista käyttää 

kielitieteellisessä tutkimuksessa: aktiivisia verkkosivuja on yhteensä 1,9 miljardia 

tammikuussa 2021. Tällaisia aineistoja voidaan hyödyntää esimerkiksi korpuslingvistisessä 

tutkimuksessa, kuten diskurssianalyysissä (Partington, 2013), mutta niiden avulla voidaan 

myös analysoida jonkin tietyn ryhmän kielen käyttöä ja piirteitä (Biber et al., 1998). 

Perinteisesti kielitieteellinen korpus edustaa jotain tiettyä osa-alaa kielestä, kuten tekstilajia, 

aikaikkunaa tai käyttötapaa (Baker, 2009). Koko Internetin edustaminen yhdessä korpuksessa 

eroaa tästä monin tavoin. Internetin tekstiaineistot ovat erittäin vaihtelevia sekä laadultaan että 

sisällöltään (Barbaresi, 2021), eikä koneellisesti haettujen korpusten sisältöä usein tunneta 

ennen niiden annotointia (Barbaresi, 2019; Laippala et al., 2020). Lisäksi koneellisesti haettu 

aineisto saattaa sisältää duplikaatteja, konekäännöksiä ja metatietoa kuten linkkilistoja, 

sivustojen muotoilua sekä hakupalkkeja. Tällaisen ”ylimääräisen” tekstin suodattaminen 

verkkoaineistoista on välttämätöntä, mikäli halutaan laadukkaita tekstiaineistoja (Barbaresi, 

2021; Kilgarriff, 2007). 

Vakiotekstin (eng. boilerplate) poistaminen on olennainen osa verkkoaineistojen 

luomisprosessia (Barbaresi, 2021). Karkeasti verkkoaineistojen sisältö voidaan jakaa kahteen 



64 
 

kategoriaan: leipätekstiin18 ja vakiotekstiin (Pomikálek, 2011; Vogels et al., 2018). 

Vakiotekstiksi määritellään yleensä ”ei-informatiiviset osat verkkosivun leipätekstin 

ulkopuolella”19 (Pomikálek, 2011), ja siihen lukeutuu esimerkiksi navigaatiopalkit, linkkilistat 

ja mainokset. Kahtiajako vakiotekstin ja leipätekstin välillä ei kuitenkaan ole aina 

yksinkertaista: esimerkiksi julkaisuun yhteyteen liitetty tiivistelmä voidaan näkökulmasta 

riippuen tulkita joko vakiotekstiksi tai leipätekstiksi. Vaikka yleisesti hyväksyttyä rajausta 

vakiotekstin ja leipätekstin välille ei ole, suuntaviivaa antavat erinäiset annotointiohjeistukset 

kuten CleanEval (Baroni et al., 2008) sekä KrdWrd (Stemle, 2010). 

Useimmat olemassaolevat vakiotekstinpoisto-ohjelmat hyödyntävät verkkosivujen HTML-

koodia, jonka avulla voidaan eritellä verkkosivujen eri osaset myös silloin, kun eri sivujen 

HTML-käytänteet eroavat toisistaan (Barbaresi, 2021). Esimerkiksi verkkosivun leipäteksti 

on usein jaettu kappaleisiin (paragraph), joita merkitään notaatiolla <p> … </p>. On 

kuitenkin otettava huomioon, että koska HTML-käytänteet vaihtelevat verkkosivustojen 

välillä suuresti, on hankalaa kehittää yleistettävissä olevaa mallia (Barbaresi, 2021).  

On olemassa sekä sääntöpohjaisia (Barbaresi, 2021; Pomikálek, 2011) että koneoppimiseen 

pohjautuvia (Leonhardt et al., 2020; Vogels et al., 2018) vakiotektinpoisto-ohjelmia. 

Esimerkkinä sääntöpohjaisesta ohjelmasta, jusText (Pomikálek, 2011) jakaa ensin HTML-

tiedoston sen koodissa esiintyviin pätkiin, ja luokittelee ne joko hyväksi, huonoksi, lyhyeksi 

tai melkein hyväksi tekstiksi20 pätkän sisällön ja pituuden perusteella. Näiden luokittelujen 

perusteella teksti jaetaan vakiotekstiin ja leipätekstiin sillä periaatteella, että leipätekstiä 

(”hyvä”) rajaa ulommaiset ”hyvä” tai ”melkein hyvä” -lohkot, ja sen ulkopuolelle jäävä teksti 

luokitellaan vakiotekstiksi. Pomikálek huomauttaakin, että useimmiten vakioteksti ja 

leipäteksti esiintyvät keskenään lohkoissa. Tätä huomiota hyödyntää myös LSTM-verkkoihin 

perustuva BoilerNet (Leonhardt et al., 2020).  

Neuroverkkoja on hyödynnetty laajalti luonnollisen kielen käsittelyssä esimerkiksi 

konekääntämisessä (Bahdanau et al., 2014; Bawden et al., 2020), tekstin koneellisessa 

tuottamisessa (Karpathy, 2015; Sutskever et al., 2011) ja erilaisissa luokittelutehtävissä (Kim, 

2014; Laippala et al., 2019; Repo et al., 2021; Rönnqvist et al., 2021; Salminen et al., 2020). 

Neuroverkot pyrkivät jäljittelemään ihmisaivojen toimintaa laskennallisin menetelmin 

                                                      

18 Engl. main content, oma käännös 
19 “non-informative parts outside of the main content of a Web page”, oma käännös 
20 Good, bad, short, near-good 



65 
 

(McCulloch & Pitts, 1943). Yksinkertainen sovellutus neuroverkosta on Rosenblattin 

perseptroni (Rosenblatt, 1958), joka koostuu yhdestä neuronista, joka laskee neuronille 

syötetyille muuttujille painotetun summan ja määrittää tuloksen (engl. output) raja-

arvofunktion perusteella. Tulos voi olla esimerkiksi ennustettu luokka. Tämänkaltaisia 

perseptroneja voidaan yhdistää monikerroksiseksi perseptroniverkoksi (engl. multilayer 

perceptron). 

Edellämainitut perseptronit ovat eteenpäinkytkettyjä neuroverkkoja (engl. feed-forward neural 

network), jotka eivät ota kielen kontekstia huomioon. Luonnollinen kieli kuitenkin noudattaa 

järjestystä muun muassa kirjainten, sanojen ja lauseiden suhteen, ja asioiden merkitys on 

usein riippuvainen kontekstista: esimerkiksi sanajärjestyksellä voidaan muuttaa virkkeen 

merkitys täysin. Kielen sisäinen järjestys tulee ottaa huomioon, kun kehitellään malleja 

esimerkiksi tekstin koneelliseen tuottamiseen, konekääntämiseen, nimettyjen entiteettien 

tunnistamiseen tai sanaluokkien jäsentämiseen. Tätä varten kehitettiin ajatus 

takaisinkytketyistä neuroverkoista (engl. recurrent neural network), sovellutus 

eteenpäinkytketystä neuroverkosta, jossa tietoa kulkee askeleelta toiselle (Olah, 2015). 

Pitkäkestoinen lyhytkestomuisti -verkot (engl. long short-term memory networks, LSTM) 

(Hochreiter & Schmidhuber, 1997) ovat edelleen sovellutus takaisinkytketyistä 

neuroverkoista, joissa on muistiyksikkö tiedon kuljettamiseen pitempien sekvenssien yli. 

Eduistaan huolimatta takaisinkytketyt neuroverkot ovat usein kalliita kouluttaa, jonka vuoksi 

niitä voi olla hankalaa skaalata suurempiin projekteihin. Transformer-mallien arkkitehtuuri 

toimii ilman takaisinkytkentää ja on täten laskennallisesti tehokkaampi (Vaswani et al., 2017). 

Aineisto ja metodologia 

Tämän opinnäytteen aineisto pohjautuu FreCORE ja SweCORE -aineistoihin (Repo et al., 

2021), jotka ovat rekisteri (genre) -annotoitu otanta Common Crawlista. Aineisto on 

deduplikoitu Onionin avulla sekä siitä on jo kertaalleen poistettu vakiotekstiä Trafilaturalla 

(versio 0.3) (Barbaresi, 2020). Aineiston rekisteriannotointi seuraa englanninkielisen CORE:n 

rekisteriluokittelua, jossa tekstit jaetaan kahdeksaan ylärekisteriin: kerronnallinen (Narrative), 

informatiivinen (Informative), mielipiteellinen (Opinion), ohjeistava (How-to), puhuttu 

(Spoken), informatiivinen vaikuttaminen (Informational Persuasion), lyyrinen (Lyrical) sekä 

vuorovaikutteinen (Interactive Discussion). Nämä yläkategoriat jakautuvat vielä useisiin 

alarekistereihin: esimerkiksi Uutiset kuuluvat kerronnalliseen ylärekisteriin, tietosanakirja-



66 
 

artikkelit informatiiviseen kategoriaan. Aineisto ei sisällä tekstejä, jotka ovat selkeästi 

konegeneroituja tai -käännettyjä tai jotka sisältävät pelkästään vakiotekstiä. 

Koska aiemmista vakiotekstinpoistoyrityksistä huolimatta aineistoon oli jäänyt ylimääräistä 

generoitua tekstiä ja muuta metatietoa, joten se päädyttiin annotoimaan vielä riveittäin 

vakiotekstiin ja leipätekstiin. Rivillä tarkoitetaan tässä tapauksessa rivinvaihtoihin rajautuvaa 

tekstinpätkää, kansantajuisesti voitaisiin siis useimmiten puhua kappaleesta. 

Yhteensä aineistossa on 1 982 ranskankielistä ja 2 399 ruotsinkielistä tekstiä, jonka lisäksi 

aineistoon on otettu mukaan pienet erät englannin-, suomen-, saksan- ja espanjankielistä 

riviannotoitua dataa monikielisiä kokeiluja varten. Kaiken kaikkiaan aineisto kattaa 200 430 

riviä tekstiä, joista 57,7 % on annotoitu leipätekstiksi ja 42,3 % vakiotekstiksi. 

Riviannotoinneille on ranskan- ja ruotsinkielisten osuuksien suhteen laskettu kahden 

annotoijan välisten annotointien yhdenmukaisuus tarkkuutena (ranska 0,86; ruotsi 0,80) sekä 

Krippendorffin alphana (ranska 0,65; ruotsi 0,55). Nämä luvut viittaavat siihen, että tekstin 

luokittelu vakiotekstiin ja leipätekstiin on haastavaa myös ihmiselle.  

Rakennettavan koneoppimismallin tavoitteena on antaa luokiteltavan tekstin rivien luokille 

leimat siten, että ympäröivä konteksti (ympäröivät rivit) otetaan huomioon. Tätä 

lähestymistapaa tukevat aiemmat tutkimukset (Leonhardt et al., 2020; Pomikálek, 2011), jossa 

vakiotekstin ja leipätekstin todettiin esiintyvän useamman kappaleen lohkoissa. Mallin 

rakentamisessa hyödynnetään transfer-oppimista kouluttamalla jo olemassa oleva XLM-

RoBERTa- kielimallia riviannotoidulla datalla. Koulutus on kaksivaiheinen: ensin 

koulutetaan malli, jossa jokaiselle riville ennustetaan luokkaleimat. Tämän mallin viimeistä 

”piilokerrosta” (engl. hidden layer) hyödynnetään seuraavassa askeleessa syöttämällä se 

inputina mallille, johon on lisätty kaksisuuntainen LSTM-kerros. Tämä malli antaa riveille 

lopulliset leimat. 

Tulokset 

Ruotsinkielinen LSTM-malli toimii 0,92 tarkkuudella, ranskankielinen 0,84 tarkkuudella ja 

monikielinen malli 0,88 tarkkuudella. LSTM-mallin suoritus parantui pohjalla olevan XLM-R 

-mallin suorituksesta: ruotsinkielisen mallin tarkkuus oli 0,84; ranskankielisen 0,82 ja 

monikielisen 0,84. Tämä tulos on tilastollisesti merkitsevä (p < 0,05). Lisäksi mallien 

suoristusta arvioitiin zero-shot-testeillä, joissa monikielinen malli koulutettiin aineistolla, joka 

ei sisältänyt dataa testiaineiston kielellä. Näissä mallin suoritus oli enimmäkseen huonompi 



67 
 

kuin monikielisellä mallilla, mutta esimerkiksi ranskan testitulos oli verrattavissa yksikielisen 

mallin suoritukseen. Espanjan- ja saksankielisten aineistojen testitulokset taas olivat 

korkeammat, mitä ne olivat monikielisen mallin kanssa. Tämä saattaa viitata siihen, että 

näissä aineistoissa on joitain systemaattisia ongelmia. 

Helpottaakseni vertailua aiempiin tuloksiin laskin malleille myös F1-scoret, jotka ovat 0,84 

ranskankieliselle mallille, 0,92 ruotsinkieliselle mallille ja 0,88 monikieliselle mallille. 

Verrattuna aikaisempiin tuloksiin, kouluttamani mallit suoriutuvat samankaltaisesti muiden 

vastaavien sovellusten kanssa, ruotsinkielinen malli jopa edeltäjiään paremmin. Vertailu on 

kuitenkin hankalaa, sillä toisin kuin käyttämäni aineisto, useimmat olemassa olevat 

toteutukset hyödyntävät vakiotekstin poistossa HTML-koodia. Työssäni käsittelemistäni 

sovelluksista Trafilatura ohittaa sekä ranskankielisen että monikielisen LSTM-mallin 

suorituksessaan F-scorella 0,912, mutta jää hieman jälkeen ruotsinkielisen mallin 

suorituksesta.   

Koska kielellinen variaatio saattaa vaikuttaa riviluokitteluihin, LSTM-mallien suorituskyky 

arvioitiin myös rekisterikohtaisesti. On otettava huomioon, että koska rekisterien hajonta 

aineistossa ei ole tasaista, voi mallien suorituskyky eri rekisterien välillä vaihdella suurestikin. 

Esimerkiksi lyyrisiä tekstejä on koko aineistossa vain kourallinen, joten on luonnollista, ettei 

malli kykene ennustamaan riviluokkia niille yhtä hyvin kuin esimerkiksi uutisteksteille, joita 

on aineistossa satoja. Yleisesti ottaen ruotsinkielinen malli ennustaa luokkia paremmin kuin 

ranskankielinen malli kaikkien paitsi lyyrisen rekisterin suhteen. Parhaiten se suoriutuu 

Mielipide, Puhuttu ja Informatiivinen vaikuttaminen -kategorioihin lukeutuvien tekstien 

suhteen. Ranskankielisen mallin parhaiten onnistuneet rekisterit ovat Narratiivinen, Mielipide 

sekä Informatiivinen vaikuttaminen.  

Ranskankielinen malli tunnistaa leipätekstin paremmin kuin vakiotekstin (F1-scoret 0,86 ja 

0,72). Tämä saattaa johtua siitä, että ranskankielisestä aineistosta vain noin kolmannes riveistä 

on annotoitu vakiotekstiksi. Tämä voi myös selittää sen, miksi ranskankielisen testiaineiston 

evaluointi monikielisellä mallilla oli yksikielistä mallia korkeampi. Mallilla on vaikeuksia 

luokitella rivejä sellaisista teksteistä, joissa sitä on paljon suhteutettuna leipätekstiin. 

Esimerkiksi keskustelufoorumiteksteissä malli usein ennustaa enemmän rivejä vakiotekstiksi, 

mitä on annotoitu. Lyhyissä mainosteksteissä taas malli saattaa ennustaa leipätekstiksi 

sellaisetkin rivit, jotka ovat tosiasiassa linkkejä tai muuten generoitua tekstiä. 



68 
 

Ruotsinkielinen malli ennustaa vakiotekstiä paremmin kuin leipätekstiä (F-scoret 0,93 ja 

0,91). Testiaineisto on tasaisemmin jakaantunut näiden kahden luokan välille kuin 

ranskankielinen aineisto ja vastaa hajonnaltaan koko ruotsinkielistä aineistoa. Yleisesti ottaen 

malli toimii hyvin. Kuten aiemmin kuitenkin jo todettiin, sillä on haasteita Lyyristen tekstien 

kanssa, mikä näkyy erittäin selkeästi testiaineiston esimerkkejä tarkastellessa: malli ennustaa 

lähes kaikki tekstin lyyriseen osuuteen kuuluvat rivit vakiotekstiksi. Myös muunlainen 

normista poikkeava kieli on mallille hankalaa. Esimerkiksi blogipostauksen yhteydessä olevat 

kommentit, jotka sisältävät epäformaalia kieltä ennustetaan vakiotekstiksi.  

Monikielinen malli tunnistaa leipätekstin paremmin kuin vakiotekstin (F1-scoret 0,91 ja 

0,86). Ranskankielisen mallin tavoin sillä on hankaluuksia paljon generoitua tekstiä 

sisältävien tekstien kanssa. Kuten aiemmin todettiin, malli ei suoriutunut kovin hyvin 

espanjan- ja saksankielisten testiaineistojen kanssa. Tämä saattaa osin selittyä sillä, että 

kyseiset aineistot sisältävät tekstejä, joissa on pelkästään generoitua tekstiä. Lisäksi 

monikielisessä testiaineistossa oli jonkin verran tekstejä, jotka sisälsivät tekstinsisäisiä 

duplikaattirivejä, jotka malli luokitteli säännönmukaisesti leipätekstiksi.  

Malleilla oli siis ylipäänsä vaikeuksia generoidun tekstin, norminvastaisen kielen ja 

tekstinsisäisten duplikaattien kanssa. Tässä on muutama selkeä kehityskohde tulevaisuuden 

tutkimuksia varten. Käyttämäni aineisto on verrattain pieni, ja monikielisistä testeistä 

huolimatta on vaikeaa sanoa, kuinka hyvin mallit ovat yleistettävissä kielille, jotka eivät ole 

indoeurooppalaisia tai jotka eivät käytä latinalaisia aakkosia.  

Yhteenveto 

Tässä opinnäytetyössä koulutin ranskankielisen, ruotsinkielisen sekä monikielisen 

koneoppimismallin luokittelemaan tekstitiedoston rivejä leipätekstiksi ja vakiotekstiksi. 

Kaikki kolme mallia suoriutuvat tehtävästään suhteellisen hyvin, ruotsinkielinen malli jopa 

ylittää suorituskyvyssään aiemmat sovellukset. XLM-R mallin tulosten pohjalta rakennettu 

LSTM-malli paransi luokittelutuloksia: tämä vastaa hypoteesia siitä, että järjestystä 

noudattava neuroverkko soveltuisi vakiotekstin tunnistamiseen, sillä vakioteksti ja leipäteksti 

usein esiintyvät omissa lohkoissaan. 

Mallit eivät kuitenkaan toimi virheettä, joten tulevaisuudessa olisi hyvä kiinnittää huomiota 

aineiston laajentamiseen siten, että malleja voitaisiin kehittää mahdollisia kompastuskohtia 

silmällä pitäen. Malleilla on hankaluuksia norminvastaisen ja generoidun kielen kanssa, joten 



69 
 

tällaista aineistoa lisäämällä voitaisiin saada parempia tuloksia. Lisäksi olisi hyvä kerätä 

aineistoa myös tässä opinnäytetyössä käytettyjen kielten ulkopuolelta mallien 

yleistettävyyden varmistamiseksi.  


	1 Introduction
	2 Web as Corpus
	3 Boilerplate Removal
	Definition
	Approaches to Boilerplate Removal

	4 Artificial Neural Networks in Digital Linguistics
	Sequence Classification and Sequence-to-Sequence Learning
	Language Models and Transfer Learning

	5 Data and Methodology
	Line-wise Annotated FreCORE and SweCORE
	Register annotations

	Experimental Setup

	6 Analysis
	Results of the classification
	Register-wise Performance
	Error Analysis
	Monolingual French Model
	Monolingual Swedish Model
	Multilingual Model

	Discussion

	7 Conclusion
	References
	Appendices
	Appendix 1 Line-wise Annotation Guidelines
	Appendix 2 Suomenkielinen lyhennelmä


