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Self-identifying codes, self-locating dominating codes and solid-locating dominating 

codes are three subsets of vertices of a graph G to locate vertices. The optimal size 

of them is denoted by γ 

S I D ( G ) , γ 

S LD ( G ) and γ 

D LD ( G ) . In the master thesis, we 

mainly discuss their lower bound problem in families of graphs. 

In the first section, we briefly describe the background of the study and some related 

questions. 

In the second, third and fourth section, we show some basic definitions, concepts 

and examples related to self-identifying codes (SID), self-locating dominating codes 

(SLD) and solid-locating dominating codes (DLD) in rook’s graphs. 

In the fifth section, we first introduce some known results of lower bounds of open- 

locating dominating codes in cubic graphs and then in the sixth section we present 

some new results about the lower bounds of self-identifying codes, self-locating dom- 

inating codes and solid-locating dominating codes in cubic graphs. 
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1 Introduction 

Locating-dominating codes and identifying codes are two code subsets used to find 

out where anomalies occur in a network. But both have their limitations. When 

there are multiple anomalies in the network, they cannot correctly determine the 

location. In order to ensure that the entire network is working correctly, we need 

to monitor every location in the network, and a detailed algorithm of a locating 

method can be found in [2] and [15]. But how to maximize the use of resources and 

use the fewest detectors to monitor the network needs to be considered, and the 

smallest cardinality of locating-dominating codes and identifying codes are called 

optimal. We use γ with qualifiers to denote the smallest number of elements in 

locating-dominating codes and identifying codes in each network. 

Locating-dominating codes are tightly connected to identifying codes, some- 

times they were considered in the same paper. The concept of locating-dominating 

code was first researched by Slater (see [14], [19]). The research on optimal 

locating-dominating codes later has been deeply studied, for example, Seo and 

Slater found a lower bound and an upper bound of open-locating dominating 

codes in trees and infinite grids [1], [17], and later introduced three new locating 

sets, redundant open-locating-dominating codes (RED:OLD(G)), detection open- 

locating-dominating codes (DET:OLD(G)) and error open-locating-dominating 

codes (ERR:OLD(G)) [9], [18]. Moreover, lower bounds of three new locating meth- 

ods in cubic graphs were found and verified in [5], [16] and [17]. Moreover, re- 

cently, lower bounds of redundant locating-dominating codes (RED:LD(G)), detec- 

tion locating-dominating codes (DET:LD(G)) and error locating-dominating codes 

(ERR:LD(G)) were determined in [10]. 

Karpovsky et al. first introduced identifying codes (see [19]) and they have been 

widely researched, including in the rook’s graph [4], in binary Hamming spaces [7] 

and in Cartesian products [3]. In addition, identifying codes were developed into 

t -robust 1-identifying codes in [6]. Moreover, there exist research on the complexity 

of identifying codes in graphs [8] 

To overcome the weakness of locating only one irregularity, self-identifying codes 
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were discovered. Self-identifying codes enabled a new s -tolerant identifying collec- 

tion to check for network failures [12]. Recently, two new locating methods, self- 

locating dominating codes and solid-locating dominating codes were discovered and 

a lower bound of them was determined in the rook’s graph and the binary Hamming 

spaces [11], [13]. 

In this master thesis, because self-locating dominating codes and solid-locating 

dominating codes are still newly discovered locating methods, we want to find out 

the lower bounds of self-identifying codes, self-locating dominating codes and solid- 

locating dominating codes in the cubic graphs using the ideas of lower bounds in 

previous locating methods such as identifying codes and locating-dominating codes. 

Our method is similar to a method in self-identifying codes, self-locating dominat- 

ing codes and solid-locating dominating codes in [13] and to a method of detection 

locating-dominating codes in [16]. First, from the definition of these locating meth- 

ods and cubic graphs, we find some restrictive conditions for them in cubic graphs. 

Then we divide them into multiple situations for discussion and finally get a con- 

densed conclusion. 
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2 Identifying code 

Suppose that we have a simple and undirected graph G = ( V ( G ) , E ( G )) = ( V , E ) . 

The set V illustrates all of the positions of vertices in G and the set of E means 

the connection between two vertices. The open-neighbourhood of a vertex u is 

denoted by N ( u ) and it means all of the vertices adjacent to u . In addition, the 

closed-neighbourhood of vertex u is denoted by N [ u ] = { u } ∪ N ( u ) . In addition, 

a nonempty set C of V , which is a set that has sensors in it, is called a code, and 

its elements are called codewords. In order to show which sensor is monitoring the 

vertex u , we use 

I ( u ) = N [ u ] ∩ C = I ( C ; u ) . 

Similarly, for a subset U of V , the identifying sets of U is denoted as follows: 

I ( U ) = 

⋃︂ 

u ∈ U 

N [ u ] ∩ C = 

⋃︂ 

u ∈ U 

I ( C ; u ) = I ( C ; U ) . 

In this section, we will introduce identifying codes and self-identifying codes. We 

will also introduce some examples to make it easier to understand relevant concepts. 

2.1 Identifying code 

First we will introduce some basic concepts of identifying codes. 

Definition 2.1. The code C ⊆ V is an identifying code (ID) of G if for any two 

vertices u, v ∈ V , we have I ( C ; u ) ̸ = ∅ and 

I ( C ; u ) ̸ = I ( C ; v ) . 

From the definition, it is easy to realize that identifying code works correctly 

if there is only one irregularity in the network at the same time. In other words, 

identifying code can locate at most only one irregularity correctly. 

For a graph, there can be many identifying codes and the identifying codes with 

the smallest cardinality | C | are called optimal identifying codes and the cardinality 

| C | is denoted as γ 

I D ( G ) . 

Example 2.2. As showed in Figure 1, v4 

, v5 

, v6 

∈ C and obviously C is an 

identifying code of the graph G . The code C = { v4 

, v5 

, v6 

} is also an optimal 

3



 

Figure 1: Identifying code in G. 

I ( C ; v1) = { v4 

} I ( C ; v2) = { v5 

} I ( C ; v3) = { v6 

} 

I ( C ; v4) = { v4 

, v5 

} I ( C ; v5) = { v4 

, v5 

, v6 

} I ( C ; v6) = { v5 

, v6 

} 

Table 1: I ( C ; v ) for each vertex in Figure 1. 

identifying code of the graph. Indeed if there is only 2 vertices in C , there is only 

at most 4 possibilities for each vertex,{ ∅ , { vx 

} , { vy 

} and { vx 

, xy}}. No matter 

which two vertices belongs to C , it always has two vertices that have the same 

neighbourhood in the set C or for some vertex u ∈ V , I ( C ; u ) = ∅ . 

Meanwhile if in the network there are two or even more irregularities existing in 

the network, then from the alarms, we can not determine where is the correct place 

that needs to be fixed. For instance in Figure 1, if v1 

, v2 

, v3 

have irregularities, all 

v4 

, v5 

, v6 

will alarm and we can not distinguish whether it is the problem of v5 

or 

v1 

, v2 

, v3. It is easy for us to be mistaken which vertices go wrong. 

2.2 Self-identifying code 

In order to solve the above problem, self-identifying codes were introduced. 

Definition 2.3. A code C ⊆ V is a self-identifying code (SID) of G if the code 

C is an identifying code of G and for all u ∈ V and U ⊆ V such that | U | ≥ 2 it has 

I ( C ; u ) ̸ = I ( C ; U ) 

For a graph, there can be many self-identifying codes and the self-identifying codes 

with the smallest cardinality | C | are called optimal self-identifying codes and the 
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Figure 2: The Petersen graph. 

cardinality | C | is denoted as γ 

S I D ( G ) . 

Example 2.4. In the Petersen graph in Figure 2, by the definition, we sum- 

marize all of the vertex neighbourhoods in C and get the Table 2, which implies 

that the codes with black contour form a self-identifying code of the graph G . In 

addition, C is also a minimal self-identifying code of the graph. Let us now verify 

that. 

First suppose that in the figure 2, we remove any vertex from the set C (there 

are two cases), 

(i) Vertex which we removed is the neighbourhood of v1 

or v6, for example v5 

is 

removed now, then I ( C ; v1) = { v2 

} and it obviously conflicts to the definition. 

(ii) Vertex which removed is not the neighbourhood of any of them. For instance, 

we remove v3 

from the set C . This makes that I ( C ; v2) = { v2 

, v7 

} . It is easy to see 

that it violates the Definition 2.3. 

Hence, C is a minimal self-identifying code in graph G , 

Next we discuss why 8 is also the minimum size. Now suppose that 7 is the 

minimum size of SID in the Peterson graph. We have already seen above that if two 

vertices are adjacent and both of them are not in C , we can not remove any other 

vertex. So the 3 vertices not in C should not be adjacent to each other. Hence now 

in Figure 2, first we select v1, then v2, v5 

and v6 

are not in C . For other 6 vertices, 
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no matter which one we select, there always exists vertex that does not satisfy 

the definition of SID. For example, now v1 

, v3 

/ ∈ C , this gives I ( C ; v2) = { v2 

, v7 

} , 

I ( C ; v7) = { v2 

, v7 

, v9 

, v10 

} and I ( C ; v2) ⊆ I ( C ; v7) . Hence it is impossible to find 

even two vertices not in C that are not adjacent in Figure 2. 

So C is also optimal, so we get γ 

S I D ( G ) = 8. 

I ( C ; v1) = { v2 

, v5 

} I ( C ; v2) = { v2 

, v7 

, v3 

} 

I ( C ; v3) = { v2 

, v3 

, v4 

, v8 

} I ( C ; v4) = { v3 

, v4 

, v5 

, v9 

} 

I ( C ; v5) = { v4 

, v5 

, v10 

} I ( C ; v6) = { v8 

, v9 

} 

I ( C ; v7) = { v2 

, v7 

, v9 

, v10 

} I ( C ; v8) = { v3 

, v8 

, v10 

} 

I ( C ; v9) = { v4 

, v7 

, v9 

} I ( C ; v10) = { v5 

, v7 

, v8 

, v10 

} 

Table 2: I ( C ; v ) for each vertex in Figure 2. 

Theorem 2.5. ([11][12][13]) For self-identifying codes, there are three equivalent 

conditions for it. 

(i) For all u ∈ V and U ⊆ V such that | U | ≥ 2 we have 

I ( C ; u ) ̸ = I ( C ; U ) . 

(ii) For all distinct u, v ∈ V , we have I ( C ; u ) \ I ( C ; v ) ̸ = ∅ . 

(iii) For all u ∈ V we have I ( C ; u ) ̸ = ∅ and ⋂︂ 

c ∈ I ( C ; u ) 

N [ c ] = { u } . 

Proof. We only show that the last claim follows from (i) and (ii). For (iii) suppose 

that set C is a self-identifying code, but there exist u , v such that 

⋂︁ 

c ∈ I ( C ; u ) 

N [ c ] = 

{ u, v } . So we get I ( C ; u ) ⊆ I ( C ; v ) which means we select U = { u, v } and I ( C ; v ) = 

I ( C ; U ) (a contradiction with definition of SID). Hence (iii) follows from (i) and (ii).
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3 Locating-dominating code 

When a detector itself can report not only 0 or 1 to detect its neighbour, but also 

the sensor itself can distinguish whether the problem occurred on itself and report 2. 

This means that when irregularity occured on the neighbour of a detector, it sends 

1 and on itself 2, otherwise 0. This provides a new method of locating vertices. 

3.1 Locating-dominating code 

Locating-dominating codes are one of the earliest codes for locating vertices and 

first we will talk about it. 

Definition 3.1. The code C ⊆ V is locating-dominating code (LD) of G if for 

any two vertices u , v ∈ V \ C , we have I ( C ; u ) ̸ = ∅ and 

I ( C ; u ) ̸ = I ( C ; v ) . 

A locating-dominating code C with the smallest possible cardinality | C | is called 

optimal and for this LD, | C | is denoted as γ 

LD ( G ) . 

Example 3.2. In Figure 3, v2 

and v5 

form a locating-dominating code C of 

the graph G , since I ( C ; v1) = { v2 

} , I ( C ; v3) = { v5 

} and I ( C ; v4) = { v2 

, v5 

} . 

Meanwhile, C is also the optimal locating-dominating code of G . Because there are 

5 vertices, if only one vertex belongs to C , obviously other four vertices can not have 

different neighbourhoods in C . 

3.2 Self-locating dominating code and solid-locating domi- 

nating code 

Self-locating dominating codes and solid-locating dominating codes are two new 

locating methods recently developed from locating-dominating codes. 

Definition 3.3. A code C ⊆ V is self-locating-dominating (SLD) of G if for any 

vertex u ∈ V \ C , we have I ( C ; u ) ̸ = ∅ and ⋂︂ 

c ∈ I ( C ; u ) 

N [ c ] = { u } . 
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Figure 3: The graph G of examples 3.2 and 3.5. 

A self-locating-dominating code C of the graph G with the smallest possible cardi- 

nality is called optimal and for such SLD, | C | is denoted as γ 

S LD ( G ) . 

Definition 3.4. A code C ⊆ V is solid-locating dominating (DLD) of G if for 

any two vertices u, v ∈ V \ C , we have 

I ( C ; u ) \ I ( C ; v ) ̸ = ∅ . 

A solid-locating-dominating code C of a graph G with the smallest possible 

cardinality is called optimal and the number | C | of such DLD is denoted as γ 

D LD ( G ) . 

Example 3.5. In Figure 3, { v1 

, v2 

, v3 

, v5 

} is not only a self-locating dominating 

code C of the graph G , but also a solid-locating dominating code. If for a self- 

locating dominating code, there are only three codewords in set C , by this graph 

symmetry, there are three cases, { v1 

, v2 

, v3 

} , { v1 

, v3 

, v5 

} or { v1 

, v4 

, v5 

} . No matter 

which subset with cardinality of 3 is chosen, it can not satisfy definition of self- 

locating dominating code. Hence it is optimal self-locating dominating code but not 

optimal solid-locating dominating code. For the code set { v2 

, v3 

, v4}, we have Table 

3 as below. 

I ( C ; v1) = { v2 

, v3 

} I ( C ; v5) = { v3 

, v4 

} 

Table 3: Optimal solid-locating dominating code of figure 3. 

If there exists an DLD in Figure 3 with cardinality of 2, such as { v1 

, v3 

} , { v1 

, v4 

} 
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or { v1 

, v5 

} , there always exists two vertices not in C , such that I ( C ; u ) \ I ( C ; v ) = 

∅ . Hence, { v2 

, v3 

, v4} is the optimal DLD in Figure 3. From here, we get the idea that 

if a set C is a self-locating dominating code, then it must also be a solid-locating 

dominating code and γ 

D LD ( G ) ≤ γ 

S LD ( G ) . 

The paper [13] provides a rather constructive result and later we always use these 

two theorems below to find the lower bounds of SLD and DLD in cubic graphs. 

Theorem 3.6. ([13]) If G = ( V , E ) is a connected graph with n ≥ 2 , the code 

C ⊆ V is self-locating-dominating if and only if for all distinct u ∈ V \ C and v ∈ V 

we have 

I ( C ; u ) \ I ( C ; v ) ̸ = ∅ . 

Proof. We prove here only the only-if-side of the claim. Suppose that there exist two 

vertices u ∈ V \ C and v ∈ V and I ( C ; u ) \ I ( C ; v ) = ∅ . This means for codewords 

in I ( C ; u ) , we have 

{ u, v } ⊆ 

⋂︂ 

c ∈ I ( C ; u ) 

N [ c ] . 

Hence, it is a contradiction to the definition of SLD.

 

Theorem 3.7. ([13]) Let G = ( V , E ) be a connected graph on at least two 

vertices. A code C ⊆ V is solid-locating-dominating if and only if for all u ∈ V \ C 

we have I ( C ; u ) ̸ = ∅ and ⎛ ⎝ 

⋂︂ 

c ∈ I ( C ; u ) 

N [ c ] 

⎞ ⎠ \ C = { u } . 

Proof. We prove here only the only-if-side of the claim. Suppose that there exists 

u ∈ V \ C such that ⎛ ⎝ 

⋂︂ 

c ∈ I ( C ; u ) 

N [ c ] 

⎞ ⎠ \ C = { u, v } . 

This implies that I ( C ; u ) \ I ( C ; v ) = ∅ (contradict to definition).

 

By definition of SID, SLD and DLD, we get the following corollary. 
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Corollary 3.8. If the set C is a self-identifying code, then it must also be a 

self-locating dominating code and γ 

S LD ( G ) ≤ γ 

S I D ( G ) and if the set C is a self- 

locating dominating code, then it must also be a solid-locating dominating code and 

γ 

D LD ( G ) ≤ γ 

S LD ( G ) . 
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4 Some known results about locating-dominating 

code in rook’s graphs 

First, we will introduce some basic concepts of the rook’s graph. Rook’s graph can 

be considered as a rook move on a chess board and the Cartesian product of graphs 

of completed graphs G1 

and G2. Suppose the chess board has x columns and y rows 

and there are two graphs G1 

= ( V ( G1) , E ( G1)) and G2 

= ( V ( G2) , E ( G2)) , then 

the rook’s graph constructed by G1 

and G2 

are G1 

× G2 

= ( V ( G1) × V ( G2) , E ) . 

Two vertices u = ( x1 

, y1) and v = ( x2 

, y2) are connected if and only if x1 

= x2 

and 

y1 

y2 

∈ E ( G2) or y1 

= y2 

and x1 

x2 

∈ E ( G1) , such as Figure 4 is G1, Figure 5 is G2 

and 6 is the rook’s graph formed by Figures 4 and 5. The K row and H column of 

the graph is denoted by Rk 

= {( xi, yk) | i =1, 2, 3,..., n } and Ch 

= {( xh, yj) | j =1, 

2, 3,..., m }. Then we focus on the lower bound of five locating-dominating codes 

ID, SID, LD, SLD and DLD in rooks graphs. 

For the size of γ 

I D ( G ) and γ 

S I D ( G ) in the rook’s graph is found in [3], [4] and 

[11]: 

γ 

I D ( G ) = 

⎧ ⎨ ⎩ 

m + ⌊ 

n

 

2 

⌋ , m ≤ 

3 n

 

2 

, 

2 m − n, m ≥ 

3 n

 

2 

, 

γ 

S I D ( G ) = 2 m, m ≥ n, 

and for locating dominating code in [13]: 

γ 

LD ( G ) = 

⎧ ⎨ ⎩ 

m − 1 , m ≥ 2 n, 

⌈2 n +2 m

 

3 

− 1 ⌉ , 2 n − 1 ≥ m ≥ n. 

As for SLD and DLD we have the following results. 

Theorem 4.1. ([13]) 

γ 

S LD ( G ) = 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

m, m ≥ 2 n, or n = 1 , 

2 n, 2 n ≥ m > n ≥ 2 , 

2 n − 1 , m = n > 2 , 

4 , n = m = 2 . 
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Figure 4: G1 

= K4 

.

 

Figure 5: G2 

= K3 

. 

Proof. First for a vertex v = ( xi 

, yj) in a graph if | I ( v ) | = 1 , then the set S obviously 

can not be a SLD. 

(i) Then if | I ( v ) | = 2 and they are not in the same rows or columns, then I ( v ) 

= {( xi, yj1), ( xi1 , yj)} ( i1 

̸ = i , j ̸ = j1), there must be another vertex u = ( xi1 

, yj1) 

such that I ( S ; v ) \ I ( S ; u ) = ∅ . 

(ii) If | I ( v ) | ≥ 2 , and I ( v ) in the same column or row, then it is easy to see that 

N ( v ) ∩ S belongs to Ci 

or Rj. 

(iii) If | I ( v ) | ≥ 3 , and I ( v ) are not all in the same column or column, suppose 

I ( v ) = { ( xi 

, yj1) , ( xi 

, yj2) , ( xi1 

, yj) } , v is the only vertex in the intersection of these 

three three vertices. 

From above, we get the idea that for each vertex that does not belong to S , it 

needs at least three codeword neighbours and they should not in the same column 

or row. In other words, in order to make each vertex not in S to have | I ( v ) | ≥ 3 , 

in each row and column there must be at least one codeword. 
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Figure 6: Rook’s graph formed by G1 

and G2.

 

Figure 7: Optimal SLD in K2 

× K3. 

For the first case, when m ≥ 2 n , because each row needs at least one code 

word, hence γ 

S LD ( G ) ≥ m . Now S = { ( xi 

, yj) | i − j ≡ 0 (mod m ) } has m vertices, 

this implies that every row has at least one codeword, and because m ≥ 2 n , which 

means each column, there are at least two codewords. This implies that for each 

non-codeword, at least it has three codeword neighbours not all in a same row or 

column. 

Then when 2 n ≥ m > n ≥ 2 , if for SLD set S, | S | ≤ (2 n − 1) , then (2 n − 1) 

codewords means one column will have only one codeword and by m > n , at least 

two rows with only one codeword. Hence for the two vertices in the column with only 
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Figure 8: Optimal SLD in K4 

× K4. 

one codeword and rows with only one codeword, at least one of them u = ( xi 

, yj1) 

and v = ( xi 

, yj2) is a non-codeword. Now suppose that u / ∈ S , then | I ( u ) | = 2 and 

by above (i), we get if | S | ≤ 2 n − 1 , S can not be a SLD. Hence for 2 n ≥ m > n ≥ 2 , 

γ 

S LD ( G ) ≥ 2 n. 

We omit the proof of the upper bound, but the code S in Figure 5 ( K2 

× K3) attains 

the lower bound 2 n when n = 3 . 

For the third case, let m = n > 2 and suppose set S is an SLD with cardinality 

of at most (2 n − 2) . It means that two rows and columns has only one codeword 

or for one row (column) with no codeword. Hence there exists a vertex u such that 

| I ( u ) | = 2 and by above (i) and (ii), S can not be an SLD. Hence for m = n > 2 , 

γ 

S LD ( G ) ≥ 2 n − 1 . 

We omit the proof of the upper bound, but the code S in Figure 8( K4 

× K4) is 

an optimal SLD with cardinality 2 n − 1 , when n = 4 . 

For the last case, when m = n = 2 , if there is only three vertices in S , then for the 

non-codeword u , it has only two codeword neighbours v and w and the intersection 

of v and w has another vertex x ∈ S , which shows that ( I ( u ) ∩ S ) \ ( I ( x ) ∩ S ) = ∅ .
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Theorem 4.2. ([13]) 

γ 

D LD ( G ) = 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

m, m ≥ 2 n ≥ 4 , or n = 2 , 

2 n, 2 n > m > n ≥ 2 , 

2 n − 1 , m = n > 2 , 

m, m > n = 1 . 

Proof. Suppose that | S | < m − 1 , then we know that at least one row Ri 

that has no 

vertices. Now for vertex u = ( x1 

, yRi
) , I ( u ) ∩ S ⊆ Cx1 . This implies for other non- 

codeword vertex v ∈ Cx1 , ( I ( v ) ∩ S ) \ ( I ( u ) ∩ S ) = ∅ . Hence we get a conclusion 

that if if there is a column or row without codeword, then S can not be an DLD of 

size less than m ( n − 1) . In addition, by Corollary 3.8, γ 

D LD ( G ) ≤ γ 

S LD ( G ) . For 

m ≥ 2 n ≥ 4 , we get γ 

D LD ( G ) ≥ m . 

When 2 n > m > n ≥ 2 , suppose that set S is DLD with cardinality 2 n − 1 , 

which means there are at least three rows and one column with only one code- 

word. Let us illustrates the rows with only one codeword { R1, R2,..., Rp} and 

the columns with one code word { C1, C2,..., Cq} and codewords on them are 

showed as 

(︁
xhj 

, yj 

)︁
( xi 

, ysi) (1 ≤ i ≤ q , 1 ≤ j ≤ p ) , respectively. Now let a codeword 

u = ( xk 

, ysk) (1 ≤ k ≤ q ) is in the intersection of column with one codeword and row 

with only one codeword. Then at least there exist one vertex v = ( x1 

, ysk) / ∈ S . Now 

I ( v ) ∩ S = { ( x1 

, ys1) , ( xk 

, ysk) } and 

⋂︁ 

s ∈ I ( v ) ∩ S 

N [ s ] = { v , ( xk 

, ys1) } . Because column 

Ck 

has only one codeword and both v and ( xsk , y1) are not in S , thus S can not be 

a DLD set. 

From above we get for each vertex v = ( xi 

, yj) in the intersection of columns 

( Ci) and rows ( Rj) and I ( v ) = { ( xi 

, ysi) , 

(︁
xhj 

, yj 

)︁
} , in order to satisfy DLD def- 

inition, ( xhj
, ysi) must belong to S . Now let letter a be the number of different 

rows that codewords ( xi, ysi) occupy and b showed the number of different columns 

codeword ( xhj
, yj) occupy. Thus each intersection of them ( xhj

, ysi) must belong 

to S . Meanwhile when there are columns or rows have codewords more than 2, 

such as c , then it is easy to see that there will be ( c − 2) rows or columns with one 

codeword. Hence there are at least (3 + q + ( b − 2) a ) rows with one codeword and 
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at least (1 + p + ( b − 2) a ) columns with one codeword. Then we get an equality 

p + q ≥ (3 + q + ( b − 2) a ) + (1 + p + ( b − 2) a ) , 

which implies 

p + q ≥ p + q + 2 , 

which is a contradiction. Hence, when 2 n > m > n ≥ 2 , γ 

D LD ( G ) = 2 n . 

Then for case m = n > 2 , suppose | S | ≤ 2 n − 2 , it means at least 2 rows and 

2 columns with one codeword ( p, q ≥ 2) . Meanwhile, b, c ≥ 1 , so we get the same 

equation as above. Hence when m = n ≥ 2 , γ 

D LD ( G ) = 2 n − 1 . 

When n = 2 , if | S | < m , then there at least one row without codeword ( Rj). 

Now suppose v = ( xhi 

, yj) and we select a non-codeword u = ( xhi 

, yj2) in the same 

column of v . It is easy to see that I ( S ; u ) \ I ( S ; v ) = ∅ . This means | S | = m. 

When m > n = 1 , it is easy to see that the graph is complete graph, all of 

the vertices are connected to each other. If | S | ≤ m − 2 , there are at least two 

non-codewords and they have the same neighbours, which means S is not a DLD 

set.
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5 Lower bound of fault-tolerant OLD in cubic graph 

5.1 Cubic graph 

This master thesis mainly focus on cubic graphs later. So first we will introduce 

some basic concepts about cubic graphs and show some known results about other 

locating methods in cubic graphs. 

In a graph G, if all vertices in it has three neighbours, then this graph is called a 

cubic graph (also called a 3-regular graph). Let us denote that the number of edges 

incident with v by deg ( v ) and the whole set of edges of the graph by E . By the 

handshaking lemma, the sum of the degrees must equal twice of the whole edges E , 

∑︂ 

v ∈ V 

deg ( v ) = 2 | E | . 

In a cubic graph, we get 

3 | V | = 2 | E | . 

So it must have an even number of vertices and there are many famous cubic graphs, 

such as the Petersen graph, the Heawood graph and the Möbius–Kantor graph as 

showed in Figure 2 and 9. 

5.2 Three types of OLD 

Before discussing about the open-locating dominating codes in detail, first we will 

introduce the basic definition and concepts of open-locating dominating codes. 

A set S ⊆ V is called k -distinguished if for any two vertices u, v ∈ V , | N ( v ) ∩ 

S \ N ( u ) ∩ S | + | N ( u ) ∩ S \ N ( v ) ∩ S | ≥ k . 

A set S ⊆ V is called k#-distinguished if for any two vertices u, v ∈ V , | N ( v ) ∩ 

S \ N ( u ) ∩ S | ≥ k or | N ( u ) ∩ S \ N ( v ) ∩ S | ≥ k . 

Definition 5.1. A set S is called an open-locating dominating code (OLD(G)) 

if N ( v ) ∩ S ̸ = ∅ for all v ∈ V and for every vertex u, v ∈ V 

N ( u ) ∩ S ̸ = N ( v ) ∩ S . 
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Figure 9: Heawood graph. 

By the definition, a set S is an OLD if and only if every pair of vertices is 1- 

distinguished. OLD(G) usually denotes the optimal open-locating dominating code 

in a graph G and in infinite graphs, OLD%(G) represents the minimum density. 

Lower bounds of several fault-tolerant OLD in cubic graphs has been widely 

researched. The lower bound of OLD in cubic graphs has been proved to be OLD(G) 

≥ 

n

 

2
. When a detector has a problem and cannot transmit information to the control 

point, we still want to know exactly which detector has irregularity. At this time we 

require the redundant OLD-set. Later in order to overcome another kind of failure, 

device detection capability failed but is still transmitting, Slater introduced a new 

set - DET:OLD(G)-set and determined that under certain conditions DET:OLD(G) 

≥ 

6 n

 

7 

. In addition, there is a fault-tolerant OLD that allows all transmission errors, 

such as the value from detector is wrong. This type of OLD set is called an error 

OLD-set, denoted as ERR:OLD(G). Then we would present more definitions about 

OLD(G), RED:OLD(G), DET:OLD(G) and ERR:OLD(G). 

Theorem 5.2. ([17]) If G is a cubic graph with n vertices, then 

O LD ( G ) ≥ 

n

 

2 

. 

Theorem 5.3. ([17]) In the hexagonal grid, OLD%(G) = 

1

 

2
. 

Proof. Because the infinite hexagonal grid is symmetrical, we can divide the infinite 

hexagonal grid into each small area and treat each hexagon as a rectangle, as shown 
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Figure 10: OLD%(G) = 

1

 

2 

for the hexagonal grid. 

in Figure 10. In total, the vertices in the figure are divided into blue and black. The 

blue vertices ensure that each vertex has unique and nonempty N ( v ) ∩ S . Similarly 

it can also considered as black vertices uniquely located and dominated blue ones. 

This means that OLD%(G) ≤ 

1

 

2
. By theorem 5.2, we get that OLD%(G) ≥ 

1

 

2
. 

Hence for hexagonal grid, OLD%(G) = 

1

 

2
.

 

Definition 5.4. A set S is called a redundant open-locating-dominating 

(RED:OLD) code if S is a open-locating-dominating code and for all vertex v ∈ S , 

S − { v } is also an open-locating-dominating code. In infinite graph, RED:OLD%(G) 

represents the minimum density. 

Theorem 5.5. ([9], [20]) For a RED:OLD, it must hold for all vertices that, at 

least they should be 2-dominated and for each pair of them are 2-distinguished. 

Proof. Suppose that S is a RED:OLD, now we select one vertex u ∈ S and delete 

it, by definition 5.1 and 5.4, S − { u } is still a RED:OLD and is 1-distinguished for 

all vertices. Hence for all the vertices that are dominated by u ∈ S , they are at least 

2-dominated and each pair are 2-distinguished.

 

Theorem 5.6. ([16]) If a graph G is a cubic graph and C4-free, then the whole 

vertex set V is a RED:OLD-set. 

Proof. Select u, v ∈ V and because the graph is C4-free, if distance between u and 

v is 1, at least, u and v have two different neighbours to each other respectively as 
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Figure 11: d ( u, v ) = 1 .

 

Figure 12: d ( u, v ) = 2 . 

showed in Figure 11. At least, u and v have two different neighbours to each other 

which means they are 2-distinguished. In Figure 12, we can see it is almost the 

same case for d ( u, v ) = 2 . As for the case when d ( u, v ) ≥ 3 , obviously they have 

at least 6 different neighbours to each other. Hence, by Theorem 5.5, we get V is a 

RED:OLD-set of cubic graph G which is C4-free.

 

Theorem 5.7. ([18]) If a graph is a r -regular graph, then RED:OLD(G) ≥ 

2 n

 

r 

and for the infinite hexagonal grid, RED:OLD%(G) = 

2

 

3
. 

Proof. Let G is a r -regular graph and S is RED:OLD(G), by Theorem 5.5 for each 

vertex u ∈ V , | N ( u ) ∩ S | ≥ 2 . Hence RED:OLD(G) ≥ 

2 n

 

r 

. 

Now suppose G is a infinite hexagonal grid as showed in Figure 13. Let vertex set 

in the line x that satisfy x ≡ 0 or 1 (mod 3) belong to S . Now for any vertex u ∈ V , 

N ( u ) ∩ S = { v , w } . We can not find another vertex y such that N ( y ) ∩ S = { v , w } . 

Hence at least v or w is distinguished from u to y . Similarly, there exist a vertex 

that distinguished from y to u . So RED:OLD%(G) ≤ 

2

 

3 

and by Theorem 5.7, we 

get RED:OLD%(G) = 

2

 

3
.

 

Definition 5.8. A set S is called detection open-locating-dominating (DET:OLD) 
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Figure 13: RED:OLD%(G) = 

2

 

3 

for the hexagonal grid. 

if every vertex is at least 2-dominated and each pair of them is 2#-distinguished. 

DET:OLD%(G) denotes the minimum density of the subset in infinite graph. 

Observation. By definitions 5.5 and 5.8, we get that if a set S is DET:OLD(G), 

it must also be a RED:OLD. So for r -regular graph, DET:OLD(G) ≥ RED:OLD(G) 

≥ 

2 n

 

r 

. 

Theorem 5.9. ([18]) For the infinite hexagonal grid, DET:OLD%(G) = 

6

 

7 

. 

Proof. (i) First assume that u is not in S , as illustrated in Figure 14 ( a small part 

of the infinite hexagonal grid, vertex with black circle illustrated v ∈ S ). Now u and 

w are two vertices that belong to V \ S . Now N ( u ) ∩ S = { v4 

, v6 

} . It is clear that 

for the vertex that is adjacent to u , such as v4, v6 

and w , | N ( u ) ∩ S \ N ( w ) ∩ S | ≥ 2 . 

For another vertex v that is not adjacent to u and not adjacent to v4 

and v6, 

| N ( u ) ∩ S \ N ( v ) ∩ S | = { v4 

, v6 

} . Symmetrically, v also has two distinct neighbors. 

If v is adjacent to v4 

or v6, such as v2, v7, vertices like v2, v7 

has three neighbours 

in S , so for these vertices | N ( v2) ∩ S \ N ( u ) ∩ S | = 2 . 

(ii) If u ∈ S , it has two cases. The first case is | N ( u ) ∩ S | = 2 . Suppose 

N ( u ) ∩ S = { v1 

, v2 

} , this means that for all vertices that are not adjacent to v1 

and v2, they are 2#-distinguished with u. For vertices in N ( v1) ∪ N ( v2) , such as 

v3 

( v3 

̸ = u ), because | N ( v3) | = 3 , this makes u is 2#-distinguished with v3. For 

the second situation, when | N ( u ) ∩ S | = 3, no matter which vertex v we select, it 

always has | N ( u ) ∩ S \ N ( v ) ∩ S | ≥ 2 . In this part, there are 14 vertices and 12 
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Figure 14: A small part of the infinite hexagonal. 

vertices in S . 

Hence, we get that for a infinite hexagonal grid, DET:OLD%(G) ≤ 

6

 

7
. 

Now suppose u / ∈ S and u = (0,0), the three vertices adjacent to u is (1,0), (-1,0), 

(0,1) and they must be 2-dominated by set S , which means the six vertices (1,-1), 

(2,0), (-1,-1), (-2,0), (-1,1) and (1,1) must belong to S . The distance between u and 

these vertices is 2. In addition, as for (0,1) and (1,2), N ((0,1)) = {(0,0), (-1,1), 

(1,1)}, because u / ∈ S and (1,1) ∈ N ((1,2)), so in order to satisfy DET:OLD, (0,2) 

and (2,2) must belong to S , which means vertices with a distance of 4 must belong 

to S as well. So DET:OLD%(G) ≥ 

6

 

7
. 

Now we complete the proof that in hexagonal grid, DET:OLD%(G) = 

6

 

7
.

 

Observation. Let N 

k ( v ) denote the set of vertices x with a path of length k from 

x to v . If set S is an DET:OLD and u / ∈ S , N2 ( v ) ⊆ S and N4 ( v ) ⊆ S . 

Theorem 5.10. ([16]) A cubic graph has an DET:OLD if and only if it is a 

C4-free graph. For a C4-free cubic graph, we have DET:OLD(G) ≥ 

6 n

 

7 

. 

Proof. Suppose that there is a cycle of length 4 in the cubic graph G and the four 

vertices are u , v , w , x . Because N ( u ) ∩ N ( w ) = { v , x } , this means | N ( u ) ∩ S \ 

N ( w ) ∩ S | < 2 and | N ( w ) ∩ S \ N ( u ) ∩ S | < 2 . 

In addition, if there is no cycle of length 4 in the graph, suppose u is adjacent 

to v , then let N ( u ) = { v , w , x }. Because G is C4-free, v can not adjacent to either 
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w or x and we have | N ( u ) ∩ S \ N ( w ) ∩ S |≥ 2 . If u is not adjacent to v , let N ( u ) 

= { w , x , y } and v can not adjacent to more then one of them. Since if v connect to 

more than two of them, for example, w and x , then u , v , w and x form a cycle of 

length 4. 

By the observation, we find that if the set S is an DET:OLD and vertex u / ∈ S , 

vertices at distances 2 and 4 must be in S . The proof of lower bound of DET:OLD 

in C4-free cubic graph is similar with proof of Theorem 5.9. The main idea is that 

when u / ∈ S , we need to assign at least 6 vertices in S to u to guarantee that the 

set S conforms to the definition. 

(i) When N ( u ) = { v , w , x } ⊆ S , because graph is C4-free, it is possible that 

there exist an edge from v to w . Now N ( v ) = { u , w , v1}, N ( w ) = { u , v , w1}, N ( x ) 

= { u , x1, x2}. If y is adjacent to v1, y must be in S, since by observation y ∈ N4 ( u ) 

and u / ∈ S . Meanwhile for the N ( y ) , y1 

is also in S , because y1 

∈ N4 ( u ) and u / ∈ S . 

Hence we get N2( v1) ∩ ( V ( G ) \ S ) = { u } . The same goes for w1 

and its neighbour. 

So we assign v1 

and w1 

to u . Now for x1 

and x2, the first case is that if x1 

is adjacent a 

vertex z / ∈ S , then we consider N ( x2) . N ( x2) = { x , x3, x4} and by x3, x4 

∈ N4 ( z ) , 

we get x3 

and x4 

must be in S . So N ( x2) ⊆ S and N2( x2) ∩ ( V ( G ) \ S ) = { u } . We 

can assign x2 

to u as well. Now for vertex u / ∈ S , it at least needs 6 vertices { v , w , 

x , v1, w1, x2} ⊆ S to ensure S is an DET:OLD. The second case is that N ( x1) ⊆ S , 

then it is clear by observation, N2( x1) ∩ ( V ( G ) \ S ) = { u } and we can assign x1 

to 

u . The Figure 15 illustrated how it goes. If there is no edge between vertices v , w , 

x , then we can directly assign { v , w , x } to u and for the left three vertices, using the 

same method as above, we can assign one vertex from N ( v ) ∩ S , one from N ( w ) ∩ S 

and one from N ( x ) ∩ S . Then we still can assign 6 vertices to u . 

(ii) When N ( u ) = { w , x } ⊆ S , v / ∈ S and N ( v ) = { y , z } ⊆ S , C4-free Graph 

shows that w and x can not be adjacent to either y or z . Now let us denote N ( x ) 

= { u , x1, x2}, N ( w ) = { u , w1, w2}, N ( y ) = { v , y1, y2}, N ( z ) = { v , z1, z2}. If 

suppose x1 

= w1, vertices { x , x1, w , u } form a cycle of length 4 (contradiction). 

In addition if x1 

= y1, then N4 ( u ) = { v } and by observation v should be in S 

(contradiction). So all of the eight vertices { w1, w2, x1, x2, y1, y2, z1, z2} are 

distinct. Now let x3 

∈ N ( x1) and x4 

∈ N ( x3) , then x3 

and x4 

∈ S , since by 
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Figure 15: Graph of case (i) in proof of Theorem 5.10.

 

Figure 16: Graph of case (ii) in proof of Theorem 5.10. 

observation, N4 ( u ) = { x3 

} and N4 ( v ) = { x4 

} . Hence we get N2( x1) ∩ ( V ( G ) \ S ) = 

{ u } . By symmetry N2( x2) ∩ ( V ( G ) \ S ) = { u } , N2( w1) ∩ ( V ( G ) \ S ) = { u } and 

N2( w2) ∩ ( V ( G ) \ S ) = { u } . Hence we can assign { w , w1, w2, x , x1, x2} to vertex 

u as showed in Figure 16. Correspondingly, { y , y1, y2, z , z1, z2} is for v . Then we 

get the inequality 

| S |≥ 6 | V \ S | . 

In total, DET:OLD(G) for a C4-free cubic graph with order n is ≥ 

6 n

 

7 

.

 

Definition 5.11. A set S is ERR:OLD(G) of graph G if and only if for each 

vertex u , N ( u ) ∩ S ≥ 3 and any two vertices u, v ∈ V , 

( N ( u ) ∩ S \ N ( v ) ∩ S ) ∪ ( N ( v ) ∩ S \ N ( u ) ∩ S ) ≥ 3 . 

For results on ERR:OLD(G) and DET:OLD(G), see [16]. 
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6 Lower bounds for optimal SID, SLD and DLD in 

cubic graphs 

In order to find out the lower bounds for SID, SLD and DLD in cubic graphs, we 

should think about how to allocate as many non-codewords as possible to each code- 

word and ensure that the requirements of each locating method are met. Here we 

show some new results about SID, SLD and DLD. In this section, vertices with black 

contour means that vertices belongs to C and blue contour denotes that vertices are 

not in C . 

6.1 Self-identifying code (SID) 

Considering the definition of self-identifying codes, we have carried out the possible 

situation from the most extreme concerning N ( v ) ∩ C , the ideal situation gradually 

increase to the achievable situation. In this part, C denotes a self-identifying code 

set of a graph G and V is the whole vertices set of G . 

Theorem 6.1. Let a cubic graph G on n vertices be such that it admits a 

self-identifying code. We have 

γ 

S I D ( G ) ≥ 

2 n

 

3 

. 

Proof. Let G = ( V , E ) be a cubic graph with | V | = n . Assume that C ⊆ V is a 

self-identifying code in G . We have | N ( v ) ∩ C | ≥ 2 for every v ∈ V. Indeed, if 

| N ( v ) ∩ C | = 1 , say N ( v ) ∩ C = { c } , then I ( c ) \ I ( v ) = ∅ , which is not allowed. 

Similarly, if | N ( v ) ∩ C | = 0, then N ( w ) \ N ( v ) = ∅ for any w ∈ N ( v ) . 

Let us now calculate the number N of pairs ( c, v ) where c ∈ C and v ∈ V such 

that d ( c, v ) = 1 . Since each codeword of C has three neighbours and, and as we 

saw above, | N ( v ) ∩ C | ≥ 2 for every v ∈ V , this gives us the inequality 

3 | C | = N = 

∑︂ 

v ∈ V 

| N ( v ) ∩ C | ≥ 2 | V | , 

and we get 

| C | ≥ 

2 | V |

 

3 

.
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Figure 17: An optimal self-identifying code for a cubic graph with n = 12 . 

Example 6.2. In Figure 17, there are 12 vertices and v1 

, v2 

, v3 

, v4 

∈ V \ C . 

Each vertex has different neighbors in the set C and can be found in Table 4. All of 

vertices u, v ∈ V satisfy the condition I ( C ; u ) \ I ( C ; v ) ̸ = ∅ . Thus S = { u1, u2,..., 

u8} is an SID of the graph G and attains the lower bound. 

I ( C ; v1) = { u1 

, u7 

} I ( C ; v2) = { u2 

, u5 

} 

I ( C ; v3) = { u3 

, u6 

} I ( C ; v4) = { u4 

, u8 

} 

I ( C ; u1) = { u1 

, u2 

, u3 

} I ( C ; u2) = { u1 

, u2 

, u6 

} 

I ( C ; u3) = { u1 

, u3 

, u4 

} I ( C ; u4) = { u3 

, u4 

, u5 

} 

I ( C ; u5) = { u4 

, u5 

, u7 

} I ( C ; u6) = { u2 

, u6 

, u8 

} 

I ( C ; u7) = { u5 

, u7 

, u8 

} I ( C ; u8) = { u6 

, u7 

, u8 

} 

Table 4: Sets I ( C ; v ) for each vertex v ∈ V in Figure 17. 
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6.2 Self-locating-dominating code (SLD) 

In cubic graph, a graph always has a self-locating-dominating code and solid-locating- 

dominating code. In order to get the lower bounds of them in cubic graph, we briefly 

separate each vertex not in C in few cases and get the theorem. 

Theorem 6.3. Let a cubic graph G on n vertices, then we have 

γ 

S LD ( G ) ≥ 

2 n

 

5 

. 

Proof. Let G = ( V , E ) be a cubic graph with | V | = n . Assume that C ⊆ V is a 

self-locating dominating code in G . We have | N ( v ) ∩ C | ≥ 2 for every v ∈ V \ C . 

Indeed, if | N ( v ) ∩ C | = 1 , say N ( v ) ∩ C = { c } , then I ( v ) \ I ( c ) = ∅ , which is not 

allowed. Similarly, if | N ( v ) ∩ C | = 0 , then N ( w ) \ N ( v ) = ∅ for any w ∈ N ( v ) . 

Let us now calculate the number of pairs ( c, v ) where c ∈ C and v ∈ V \ C such 

that d ( c, v ) = 1 . Since each codeword of C has at most 3 non-codeword neighbours, 

and as we saw above, | N ( v ) ∩ C | ≥ 2 for every v ∈ V \ C , this gives us that 

3 | C | ≥ 

∑︂ 

v ∈ V \ C 

| N ( v ) ∩ C | ≥ 2 ( | V | − | C | ) , 

and we get 

| C | ≥ 

2 | V |

 

5 

.

 

Example 6.4. In Figure 18, n = 10 , the code attains the lower bound of SLD 

in cubic graphs. For each vertex, its codeword neighbours are showed as in Table 5 

below. 

I ( C ; v1) = { u1 

, u2 

} I ( C ; v2) = { u1 

, u3 

} 

I ( C ; v3) = { u1 

, u4 

} I ( C ; v4) = { u2 

, u3 

} 

I ( C ; v5) = { u3 

, u4 

} I ( C ; v6) = { u2 

, u4 

} 

I ( C ; u1) = { u1 

} I ( C ; u2) = { u2 

} 

I ( C ; u3) = { u3 

} I ( C ; u4) = { u4 

} 

Table 5: Sets I ( C ; v ) for each vertex v ∈ V in Figure 18. 
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Figure 18: An optimal self-locating-dominating code for a cubic graph with n = 10 .

 

Figure 19: A new type in DLD. 

6.3 Solid-locating-dominating code (DLD) 

By corollary, we have γ 

D LD ( G ) ≤ γ 

S LD ( G ) and γ 

S LD ( G ) ≥ 

2 n

 

5 

, Even though SLD 

is more demanding codes, we show that also 

γ 

D LD ( G ) ≥ 

2 n

 

5 

. 

Let us compare with SLD and DLD in a cubic graph. The main difference is that for 

DLD in a cubic graph, it is possible that for some non-codeword, it may have only 

one codeword neighbour, as showed in Figure 19 (Because in DLD, the comparison 

of adjacent nodes is limited to non-codewords). Thus we get the following theorem. 

Theorem 6.5. Let a cubic graph G on n vertices, then we have 

γ 

D LD ( G ) ≥ 

2 n

 

5 

. 
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Proof. Let G = ( V , E ) be a cubic graph with | V | = n . Assume that C ⊆ V is a 

solid-locating dominating code in G . We have | N ( v ) ∩ C | ≥ 1 for every v ∈ V \ C . 

Indeed, if | N ( v ) ∩ C | = 1 , say N ( v ) ∩ C = { c } , then I ( c ) ∩ ( V \ C ) = { v } . While 

if | N ( v ) ∩ C | = 0 , then N ( w ) \ N ( v ) = ∅ for any w ∈ V \ C . 

Let us now calculate the pairs ( c, v ) where c ∈ C and v ∈ V \ C and N ( v ) ∩ C = 

{ c } , denote the corresponding subsets by C1 

and V1, such that d ( c, v ) = 1 and it is 

obvious that | C1 

| = | V1 

| . This gives us that 

(i) If there exists v ∈ V \ C and | N ( v ) ∩ C | = 1 , then we get 

3 | C | − 2 | C1 

| ≥ 

∑︂ 

v ∈ V \ C 

| N ( v ) ∩ C | ≥ 2 ( | V − C | ) − | V1 

| , 

5 | C | ≥ 2 | V | + | C1 

| , 

| C | ≥ 

2 | V | + | C1 

|

 

5 

. 

And because | C1 

| > 0 , for this case, | C | > 

2 n

 

5 

. 

(ii) If for all vertices v ∈ V \ S , | N ( v ) ∩ C | ≥ 2 . Then we get 

3 | C | ≥ 

∑︂ 

v ∈ V \ C 

| N ( v ) ∩ C | ≥ 2 ( | V | − | C | ) , 

| C | ≥ 

2 n

 

5 

. 

Hence from above two cases, we get 

| C | ≥ 

2 | V |

 

5 

.

 

Now we find that { u1 

, u2 

, u3 

, u4 

} in Figure 18 is not only the optimal self-locating- 

dominating code but also the optimal solid-locating dominating code that attains 

the lower bound. 
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