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Abstract

Grasses have a beneficial effect on the soil organic matter content, and hence carbon
sequestration of agricultural soils throughout the world. Because grasslands cover one-third of
the land on Earth and meadows and pastures approximately 70% of the world’s agricultural
area, grasses serve as a powerful carbon sink. Meadow fescue is an important perennial
pasture and forage grass in Scandinavia. It has deep roots, rapid growth in spring, high after
growth ability, low straw formation and excellent winter hardiness. It has excellent forage
quality and amount of yield and superior fiber digestibility. Meadow fescue cultivars are often
symbiotic with seed transmitted systemic fungal endophytes (Epichloë uncinata) offering
various benefits for their hosts, for example increased growth and reproduction, and resistance
to herbivores, pathogens and abiotic environmental stresses, and systemic fungal endophytes
thereby enhance the competitive abilities of endophyte-infected plants. In my master’s thesis I
studied the effects of cutting height, residues of glyphosate based herbicides (GHBs) in soil,
sterilized soil and fungal endophyte Epichloë uncinata to aboveground biomass production,
root biomass and chlorophyll content in a greenhouse experiment. To test the importance of
cutting height to grass performance, I assigned grasses to three different cutting treatments:
uncut, cut to the height of 5 cm and cut to the height of 15 cm. Half of the plants were symbiotic
to the fungal endophyte, the other half were endophyte-free. Plants were assigned to three
different soil groups: control, GBH treated and sterilized soil. Cutting height significantly
affected the total aboveground plant biomass, root biomass and chlorophyll content. Uncut
meadow fescues produced the largest total aboveground biomass and root biomass which
were significantly higher compared to total aboveground biomass and root biomass from
grasses cut to 15 cm or 5 cm. The grasses cut to the height of 5 cm had the smallest total
aboveground biomass and root biomass, which were further significantly smaller compared to
grasses cut to 15 cm. Endophyte did not affect the total aboveground biomass, root biomass
or the chlorophyll content of the plants. Meadow fescues produced higher amount of total
aboveground biomass when growing in a sterilized soil compared to control or GBH treated
soil. Root biomass was not significantly affected. Glyphosate residues in the soil decreased
the amounts of total aboveground and root biomass of grasses. Chlorophyll content was
highest in plants growing in sterilized soil. I conclude that to improve the total aboveground
plant biomass and root biomass, the use of GBHs should be avoided and rotational grazing,
in which animals are moved between pastures before they have been eating the grass too low,
should be preferred. This will enable farmers to collect more harvest and sequester more
carbon at the same time.

Keywords: Schedonorus pratensis, Epichloë uncinata, systemic fungal endophyte,
glyphosate, soil sterilization, cutting treatment, grazing, silage
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1 Introduction

1.1 Carbon and soil

Soil carbon sequestration is a key mitigation strategy for rising carbon dioxide concentration in the

atmosphere, and important in improving the fertility and quality of soil. Carbon stored in soils

worldwide exceeds the amount of carbon stored in phytomass and the atmosphere (Jobbágy &

Jackson 2000). There is no consensus of the size of global soil organic carbon stocks, but most

studies report a global soil organic carbon estimate to be roughly 1500 petagrams of carbon to a

depth of 1 meter and 2400 Pg of carbon to 2 meter depth (Pg C: 1015 g or billion tons of carbon)

(Scharlemann et al. 2014; Paustian et al. 2019). Globally agricultural land covers approximately 5

billion hectares, or 38 percent of the global land surface. About 33 percent of this is used as cropland

and 67 percent consist of pastures for grazing livestock (FAO 2020). At the moment agricultural

lands have been seriously degraded by widespread, unsustainable management. Soil quality is

directly linked to food production, food security and environmental quality through its effects of

energy use in food production, greenhouse gas emissions and water quality. Soil quality describes

the capacity of soil to function as a provider of key ecosystem services, such as decomposing organic

matter, supplying and cycling of nutrients for optimum plant growth, filtering water passing through

soil to support clean groundwater, receiving rainfall and storing water for root utilization, and storing

organic carbon for nutrient retention and mitigating greenhouse gas emissions (Franzluebbers 2012;

O’Mara 2012).

Soils growing perennial grasses have high organic matter content and they can contribute to an

agricultural future with high soil quality, and therefore can mitigate greenhouse gas emissions

through soil carbon sequestration and improve a multitude of other ecosystem responses, including

controlling water quality, improving water and nutrient cycling, and supporting biological diversity.

Agricultural soils would benefit from the reintroduction of perennial grasses to regain soil organic

matter and strengthen their capacity for long-term productivity and environmental resiliency

(Franzluebbers 2012). Crop production results in a loss of soil organic carbon due to decreasing

carbon inputs in the soils and by causing soil erosion (Bakker et al. 2004; Kirkels et al. 2014; Doetterl

et al. 2016). Soil erosion affects vegetation growth and biomass production by changing physical

and chemical properties of soil related to soil fertility, such as water holding capacity, nutrient status

and soil depth (Bakker et al. 2004). Intensification of agricultural practices, like ploughing and the

application of agrochemicals and artificial fertilizer, are linked to a reduced soil biodiversity (Tsiafouli

et al. 2014).

Land use, for example whether the area is primary forest, plantation, pasture or growing crop, affects

to the soil carbon levels. Soil carbon stocks increase when area is converted from crop to pasture

https://www.tandfonline.com/author/Scharlemann%2C+J%C3%B6rn+PW
https://www.tandfonline.com/author/Franzluebbers%2C+Alan+J
https://www.tandfonline.com/author/Franzluebbers%2C+Alan+J
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(+19%), from forest to pasture (+8%), from crop to plantation (+18%) and from crop to secondary

forest (+53%) (Guo & Gifford 2002). Soil carbon declines when area is converted from pasture to

plantation (-10%), from pasture to crop (-59%), from forest to crop (-42%) and from forest to

plantation (-13%) (Guo & Gifford 2002). Pasture grasses maintain a cover of vegetation on the soil,

add organic matter on both above- and belowground, and reduce soil temperatures (Brown & Lugo

1990). The annual carbon input to soil from crop residues originates from straw, stubble and surface

debris, and root biomass left in the soil at harvest, root turnover, exudates and secretions (Bolinder

et al. 2002). Perennial grasses have a beneficial effect on the soil organic matter content, and hence

carbon sequestration of agricultural soils throughout the world. This is mostly because of the root

biomass production of perennial forage crops and the absence or reduction of tillage compared to

annual crops (Paustian et al. 1997). Well-managed grasslands can maintain and accumulate soil

carbon and hence contribute to climate change mitigation (Leifeld & Fuhrer 2010; Soussana et al.

2014; LaCanne & Lundgren 2018; Poeplau et al. 2018).

The soil is where most terrestrial plants start their growth, and home to a diverse community of

microbes and animals. The soil is the source of most beneficial microbes that colonize the

rhizosphere, and that are key players in plant immunity and overall plant performance (Bulgarelli et

al. 2013). Soil microbes provide plants with key functions, such as enhanced growth via improved

nutrition and suppression of soil pathogens (Pieterse et al. 2016; Raaijmakers & Mazzola 2016). An

important soil service is also the protection of above-ground plant tissues against pests and diseases

(Bardgett & Wardle 2010; Mariotte et al. 2018). Plants provide the organic carbon for the

decomposers and the resources for root-associated organisms, for example root herbivores,

pathogens, and symbiotic mutualists (Wardle et al. 2004). Decomposers break down dead plant

material and thereby regulate plant growth and community composition by determining the supply of

available soil nutrients. Root-associated organisms and their consumers influence the quality,

direction, and flow of nutrients and energy between plants and decomposers (Wardle et al. 2004).

The complexity of soil foodweb is essential to maintain high rates of ecosystem function. Activities

that contribute belowground biodiversity losses, such as loss of taxa and trophic levels, cause a

reduction in foodweb complexity and the capacity of soils to perform ecosystem functions (Wall et

al. 2015).

1.2 Removing biomass from perennial grass fields

Grasses can tolerate repeating disturbance well, because by their evolution they have adapted to it.

For example pastures are continually grazed, and lawns and fields are mowed. In addition grass

breeding has increased for example to the forage yields and regrowth, and improved resistance

against pests and pathogens (Saari et al. 2010). In addition to the fast regrowth, grasses can tolerate

https://link.springer.com/article/10.1007/s11104-020-04532-1#ref-CR53
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16385#nph16385-bib-0006
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16385#nph16385-bib-0043
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16385#nph16385-bib-0048
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16385#nph16385-bib-0003
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16385#nph16385-bib-0032
https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.16385#nph16385-bib-0059


3

grazing also because of their underground storage organs, basal meristems and tillering capacity

(Huitu et al. 2014).

Herbivores alter carbon and nitrogen inputs to the soil by changing the quality and quantity of organic

inputs (for example herbivore dung and plant litter), by decreasing biological nitrogen fixation through

the consumption of legumes, and through changes in soil conditions, like temperature and moisture

(Bardgett & Wardle 2003; Pineiro et al. 2010), which in turn have an impact in soil microbial

communities and activity (Bardgett & Wardle 2010). Greater microbial activity increases litter

decomposition rates and carbon respiration and also carbon transfer into slow-cycling forms of

carbon, for example microbial necromass (Lange et al. 2015; Sokol & Bradford 2019), which further

increases the potential for carbon sequestration under grazing. Under eutrophied conditions

herbivores promote soil carbon and nitrogen storage in grasslands (Sitters et al. 2020).

The negative effect of defoliation on growth rate or final biomass is typically less than proportional to

the removal of live biomass. Sometimes it can even be positive (McNaughton et al. 1983). When

defoliated plants can partially or fully compensate for the removal of biomass, the response is known

as compensatory regrowth (Ferraro & Oesterheld 2002). The magnitude how much grasses can

compensate defoliation, are dependent on evolutionary mechanisms, for example coevolutionary

history with big vertebrate grazers (Vail 1992), nutrient levels (Georgiadis et al. 1989; Alward & Joern

1993; Ferraro & Oesterheld 2002), carbon allocation (Briske et al. 1996), recovery conditions

(Oesterheld & McNaughton 1988; Ferraro & Oesterheld 2002) and light environment (McNaughton

1992). In addition defoliation can affect to the root growth and belowground carbohydrate reserves,

decreasing root biomass (Holland et al. 1996; Thornton & Millard 1996) and belowground growth

rate (Oesterheld 1992).

A species of animal, frequency and severity of grazing, method of prehension, treading, excreta

deposited on pastures, and saliva deposited on plants during grazing influence to the plants that are

grazed. These animal factors can cause substantial changes in the persistence, productivity, and

botanical composition of the sward and the regrowth rate of plants following grazing. The extent of

leaf-tissue removal, the accumulation of dead material, canopy structure in relation to light

interception, the microenvironment within the canopy, species composition of the sward and the

general physiological well-being of plants will be altered by the intensity and frequency of grazing

(Matches 1992). Saliva of grazing animals might have an important role for increasing grass growth

(Reardon et al. 1974; Gullap et al. 2011). Grazing intensity of pastures should be regulated to

maintain adequate leaf area for maximum plant growth rates throughout the grazing season

(Matches 1992). Meadow fescue has been shown to have a bigger regrowth if it is cut from the height

of 9 cm instead of 3 cm (Virkajärvi 2003).

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15023#gcb15023-bib-0007
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15023#gcb15023-bib-0060
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15023#gcb15023-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15023#gcb15023-bib-0044
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.15023#gcb15023-bib-0074
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1.3 Meadow fescue (Schedonorus pratensis)

Meadow fescue [Schedonorus pratensis (Huds.) P. Beauv syn. Festuca pratensis (Huds.) and

Lolium pratense (Huds.)] is an important forage grass in temperate and cold climates.  It is perennial

and has height of 40-100 cm. It grows as a tuft formation, has rapid growth in spring, high after

growth ability and low straw formation. Meadow fescue has an excellent winter hardiness and forage

quality. Meadow fescue tends to be outcompeted from multispecies grasslands, because its

competitive ability is relatively low. Meadow fescue can cross-breed with tall fescue, perennial

ryegrass (Lolium perenne) and Italian ryegrass (Lolium multiflorum) (Fjellheim & Rognli 2005; Brink

et al. 2010; Saari et al. 2010; Rao & Rognli  2014; Rikkinen 2014). Meadow fescue is a viable

alternative for example to tall fescue and orchardgrass in managed intensive rotational grazing

systems because of its comparable yield and superior fiber digestibility. Meadow fescue has higher

nutritional quality than for example tall fescue (Schedonorus arundinacea) or orchardgrass (Dactylis

glomerata). (Brink et al. 2010). Both cattle and horses prefer meadow fescue in their diet (Allen et

al. 2013).

1.4 Systemic fungal endophyte Epichloë uncinata

Meadow fescue’s fungal endophyte Epichloë uncinata [(W. Gams, Petrini & D. Schmidt) Leuchtm. &

Schardl syn. Neotyphodium uncinatum] subsists entirely on the host’s resources, and the fitness of

an endophytic symbiont depends on the fitness of the host plant. The host, meadow fescue, receives

various benefits, for example increased growth and reproduction, and resistance to herbivores,

pathogens and abiotic environmental stresses, which thereby enhance the competitive abilities of

endophyte-infected plants (Saikkonen et al. 2004; Lehtonen et al. 2005). Epichloë uncinata

endophytes in meadow fescue plants are producing loline alkaloids which are known to have

detrimental effects on invertebrates (Hume et al. 2009; Jensen et al. 2009; Popay et al.  2007; Popay

et al. 2009; Patchett et al. 2011), but have not known effect on grazing mammals (Schardl et al.

2007). However, female voles have been shown to suffer from weight lost because of loline alkaloids

(Huitu et al. 2014). The genotype of meadow fescue affects the amount of alkaloids and fungal mass

in the host (Cagnano et al. 2020). There are several combinations and concentrations of alkaloids,

and their presence is dependent on for example environmental conditions (Spiering et al. 2005).

Systemic fungal endophytes cannot exist without its grass host (except as a cultured mycelia on

artificial media), because they need the host grass for supply for nutrients and water and

dissemination through seeds of the host plant to the next plant generation. Systemic Epichloë

endophytes grow internally and intercellularly throughout the above-ground tissues of the host plant

and into the developing inflorescences and seeds (Saikkonen et al. 2004; Lehtonen et al. 2005). The

coiled hyphae of fungal endophytes do not penetrate the plant cells (Cheplick & Faeth 2009).

https://www.tandfonline.com/author/Cagnano%2C+G
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Epichloë uncinata reproduces asexually via the plant seeds. The fitness of the symbiotic endophyte

is totally dependent the fitness of the grass host. Epichloë uncinata provides benefits to its host, such

as competitive advantage against other plants, and higher shoot and root dry weight comparing to

endophyte-free meadow fescues. Extensive root system is a vital characteristic for drought

avoidance, and most likely increases persistence of endophyte-symbiotic meadow fescue under

drought and when competing with other species (Malinowski et al. 1997; Malinowski & Belesky 2000;

Saari et al. 2010). The symbiosis between Epichloë uncinata and meadow fescue can range from

antagonistic to mutualistic depending on the genetic match of the fungal endophyte and the host

grass, and also environmental conditions (Ahlholm et al. 2002; Saikkonen et al. 2004; Saikkonen et

al. 2010). Nutrients are vital for the mutualism between meadow fescue and Epichloë uncinata.

When resources are limited, endophyte-symbiotic meadow fescue produces fewer tillers and seeds,

and has lower total biomass and lower root mass compared to endophyte-free meadow fescue

(Ahlholm et al. 2002). The positive effect from the endophyte to the grass host is strongest in the

environments where nutrients are not a limiting factor, e.g. often in the agroenvironments (Saikkonen

et al. 2006; Cheplick & Faeth 2009; Saikkonen et al. 2013). Endophyte infection affects host’s

morphology, chemistry and physiology. It alters for example leaf rolling, photosynthesis, nutrient

uptake, water-use efficiency, hormonal changes and root morphology (Malinowski & Belesky 2000;

Morse et al. 2007; Cheplick & Faeth 2009). Study with perennial ryegrass has shown, that endophyte

infection interacts with levels of lipids, carbon and nitrogen, amino acids, magnesium, organic acid,

chlorogenic acid, nitrogen availability to alter nitrate and water soluble carbohydrates (Rasmussen

et al. 2008).

Endophyte-symbiotic meadow fescues may survive better in salinity-stress environments compared

to endophyte-free meadow fescues (Sabzalian & Mirlohi 2010). Fungal endophyte helps also to

prevent virus infections in its host grass, probably by deterring of herbivorous insects, which carry

plant viruses (Lehtonen et al. 2006). It has been shown that endophyte infection increases root hair

length and decreases root diameter in tall fescue grasses. That may increase root surface area for

water and mineral acquisition (Malinowski & Belesky 1999).

Endophyte-symbiotic meadow fescue has more panicles, greater reproductive shoot mass and

higher total seed mass than endophyte-free meadow fescue, but this is context dependent. Plant

genotype (e.g.cultivar) and environmental conditions (e.g. nutrients) are affecting to outcome of the

symbiosis (Wäli et al. 2008). The total biomass of endophyte-symbiotic meadow fescue

monocultures was 89% higher than endophyte-free meadow fescue monocultures in high nutrient

conditions (Dirihan et al. 2014). The effect of the endophyte on the annual herbage yield of the

meadow fescue monocultures varies between the cultivars (Takai et al. 2010). On the other hand,

in pastures growing multiple grass species, when meadow fescues have been young, their fungal

endophytes have not increased their ability to compete with other grass species and against

https://www.sciencedirect.com/science/article/pii/S0167880912004355?casa_token=Di3t2FyAOdEAAAAA:_kwvc5wOEEjm06rYtlOaBwMdZEf_yfljKYC7sSAVPfbm_5s7ax5Fr-0qkZ_iFcsNXIeIOut2#bib0005
https://www.sciencedirect.com/science/article/pii/S0167880912004355?casa_token=Di3t2FyAOdEAAAAA:_kwvc5wOEEjm06rYtlOaBwMdZEf_yfljKYC7sSAVPfbm_5s7ax5Fr-0qkZ_iFcsNXIeIOut2#bib0170
https://www.sciencedirect.com/science/article/pii/S0167880912004355?casa_token=Di3t2FyAOdEAAAAA:_kwvc5wOEEjm06rYtlOaBwMdZEf_yfljKYC7sSAVPfbm_5s7ax5Fr-0qkZ_iFcsNXIeIOut2#bib0165
https://www.sciencedirect.com/science/article/pii/S0167880912004355?casa_token=Di3t2FyAOdEAAAAA:_kwvc5wOEEjm06rYtlOaBwMdZEf_yfljKYC7sSAVPfbm_5s7ax5Fr-0qkZ_iFcsNXIeIOut2#bib0165
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herbivores, but in older pastures and ungrazed fields fungal endophytes have increased grasses

ability to compete with other grass species and against herbivores (Saari et al. 2010; see also Fuchs

et al. 2016; Fuchs et al. 2017; Hewitt et al. 2020.)

1.5 Glyphosate based herbicides

Today glyphosate based herbicides (GBHs) are globally the most used herbicides

(Luonnonvarakeskus 2019; Uusi-Kämppä 2019). Glyphosate, N-(phosphonomethyl) glycine, has

been in use extensively the past 40 years. It was introduced for weed control in agricultural

production fields in 1974 (van Bruggen et al. 2018). Glyphosate is a non-selective, systemic, post-

emergence herbicide, and it acts as an inhibitor of the enzyme, 5-enolpyruvylshikimate-3-phosphate

synthase (EPSPS), in the shikimate pathway (Duke & Powles 2008). Shikimate pathway is a

metabolic pathway plants use for the biosynthesis of aromatic amino acids (Gill et al. 2017). Besides

plants shikimate pathway is found in many microbes (Leino et al. 2020). Scarcity of the enzyme

leads to the deficiency of aromatic amino acids, which in turn affects various metabolic functions of

the plant and causes the plant to wither (Tu et al. 2001). Glyphosate depletes pools of compounds

needed for carbon fixation, which causes a general disruption of the organism’s metabolism (Duke

& Powles 2008). In addition usage of glyphosate can affect negatively to chlorophyll levels of plants,

even when the plants are glyphosate-resistant (Zobiole et al. 2012). In 2018 1261 000 kilograms of

glyphosate based herbicides were applied on Finnish fields. GBHs are frequently used for weed

control before establishing new perennial grass fields in Finland. GBHs can be sprayed after the

harvest in the autumn or before sowing in the spring (Luonnonvarakeskus 2019; Uusi-Kämppä

2019).

Intensive glyphosate use has led to the selection of glyphosate-resistant weeds and microorganisms

(Powles & Preston 2006). There are also reported health effects in animals associated with chronic,

ultra-low doses related to accumulation of glyphosate and its breakdown product aminomethyl

phosphonic acid (AMPA) in the environment (Shushkova et al. 2009; van Bruggen et al. 2018).

Glyphosate’s half-life in soil ranges from 2 to 215 days, and an aquatic half-life ranges from 2 to 91

days (Giesy et al. 2000; Grunewald et al. 2001; Vera et al. 2010). Glyphosate degrades primarily by

microbial processes to AMPA. AMPA, like glyphosate, is very water soluble, and it degrades slower

than glyphosate (Grunewald et al. 2001). AMPA’s half-life  in soil ranges from 60 to 240 days, and

an aquatic half-life is similar than glyphosate’s aquatic half-life (Giesy et al. 2000; Bergstrom et al.

2011). AMPA degrades to inorganic phosphate, ammonium and CO2 (Borggaard & Gimsing 2008).

AMPA’s degradation process can result a substantial increase of total phosphorous in aquatic

systems (Vera et al. 2010). Glyphosate adsorbs to clay and organic matter, which slows its

https://link.springer.com/article/10.1007/s11356-016-7425-3#ref-CR38
https://link.springer.com/article/10.1007/s10311-017-0689-0#ref-CR44
https://link.springer.com/article/10.1007/s10311-017-0689-0#ref-CR122
https://link.springer.com/article/10.1007/s11356-016-7425-3#ref-CR38
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0035
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0041
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0092
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0041
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0035
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0008
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0092
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degradation by soil microorganisms, and leads to accumulation in soils over time (Banks et al. 2014;

Sviridov et al. 2015; Okada et al. 2016).

Glyphosate and AMPA inhibit antioxidant enzyme activities and induce the accumulation of reactive

oxygen species (ROS), which result to physiological dysfunction and cell damage (Gomes et al.

2016). Glyphosate and AMPA decrease photosynthesis. Glyphosate increases chlorophyll

degradation, and AMPA disturbs biosynthesis of chlorophyll (Gomes et al. 2016). Even sublethal

glyphosate concentrations in plants, for example from residues in soil or water, decrease plant

resistance to pathogens. Infection by Fusarium species is often more severe in fields treated by

glyphosate before planting compared with untreated control fields (Kremer et al. 2005; St. Laurent

et al. 2008; Kremer & Means 2009; van Bruggen et al. 2015). Besides reduced plant resistance,

indirect effects of glyphosate and AMPA to the health of plants are possible through changes in the

endophytic and rhizosphere microbiome (Kremer et al. 2005; Kuklinsky-Sobral et al. 2005; Berg et

al. 2014; van Bruggen et al. 2016), because many microbes are sensitive to glyphosate (Leino et al.

2020). Soil microbes play diverse and critical role in soil systems and plants performance (Aislabie

& Deslippe 2013; Wall et al. 2015; Wagg et al. 2019).

Surfactants and other adjuvants are added to commercial glyphosate formulations to enhance their

efficacy. Commercial GBH formulations can be more toxic than pure glyphosate due to the toxicity

and action of the surfactants and other adjuvants used (Giesy et al. 2000; Edginton et al. 2004;

Bringolf et al. 2007; Mesnage et al. 2012; Moore et al. 2012; Sihtmäe et al. 2013). For example the

Roundup® formulation is more toxic than glyphosate or AMPA for all taxa tested (Giesy et al. 2000).

1.6 The aims and hypothesis of this study

Grasses have evolved to tolerate high pressure from vertebrate grazers. In agricultural fields

perennial grasses are used in pastures for animals grazing or cut for animals as a form of hay or

silage. I chose meadow fescue for my study species, because it is commonly used in Finnish

pastures and silage fields, and has not been studied as often as for example tall fescue or perennial

ryegrass. GBH are commonly used herbicides in Finland for example in autumn when finishing the

pasture or silage field or crop field before sowing it again. However, the effects of glyphosate

residues in the soil on the growth and biomass production of meadow fescue have not been studied

before. To better understand whether the effect of GBH in soil on meadow fescue plants is connected

to its antimicrobial effect on the soil biota, I added sterilized soil as a treatment, where the soil biota

is destroyed.

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-microorganism
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0065
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0980
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0720
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/enzyme-activity
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reactive-oxygen-species
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reactive-oxygen-species
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0365
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0365
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0365
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0465
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0960
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0960
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0460
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0150
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0465
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0505
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0110
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0110
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0155
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0035
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0028
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0013
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0064
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0067
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0035
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Grass for silage or hay is cut usually low, ca. 5-8 cm height from the soil surface. In this study I

decided to compare uncut meadow fescue biomass production to cutting heights 5 cm and 15 cm

from the soil surface.

My study questions are:

1. Does the endophytic fungus affect biomass production of meadow fescue under cutting treatment?

2. Does cutting height affect the total green biomass production, root biomass and chlorophyll

content of meadow fescue?

3. Does soil treatment with GBH and the presence of the endophytic fungus affect to plants’ total

green biomass production, root biomass and chlorophyll content?

My first hypothesis is that endophytic fungi have a positive effect for growth and recovery after the

cutting treatment based on their mutualistic nature. In addition my hypothesis is that endophyte-

symbiotic grasses will produce more chlorophyll than grasses that are endophyte-free.

My second hypothesis is that cutting height affects the growth, green biomass production and root

biomass production. I predict that cutting at 5 cm height will decrease grass after growth, the total

aboveground and root biomass compared to grasses cut to a height of 15 cm. In addition I predict

that cutting height and the presence of endophytic fungus affect the chlorophyll content of the plants.

My third hypothesis is that GBH and sterilized soil treatments decrease the total aboveground

biomass and root biomass. Furthermore, I predict that growing in GBH treated soil and sterilized soil

decreases the chlorophyll content of the plants compared to the control plants.



9

2 Material and methods

2.1 Study design and treatments

Meadow fescue seeds used for the study were collected in the previous year (2020) from meadow

fescue plants with known endophyte status, that grew on an experimental field at the Ruissalo

Botanical Garden in Turku. Seeds were checked for the endophyte status before they were used. 3-

5 seeds from each plant were placed over night into an Eppendorf tube containing 1 ml of liquid

(made by 0.9 ml of water, 0.1 ml of ethanol and 0.025 g of Sodium hydroxide). Next day, seeds were

rinsed with tap water, then slightly crushed and microscopically analyzed. In endophyte-symbiotic

plants the endophytic fungal hyphae was detected between the embryonic cells (Figure 1).

Figure 1. Epichloë uncinata hyphae between embryonic cells of the meadow fescue seed

Seeds from seven endophyte-symbiotic plants (E+) and seven endophyte-free (E-) plants were used

in this study. Seeds from the seven E+ grasses were pooled, and similarly seeds from the seven E-

plants were pooled before randomly selected sowing. Seeds were sown on 21.04.2021 to two

planting trays that were filled with Kekkilä Garden Viherkasvimulta planting soil and watered. Each

potting tray consisted of 260 units, and each unit was sown with 3-5 seeds. Units were thinned to

one seedling on 04.05.2021. Both trays had 130 units with E+ seeds and 130 units with E- seeds

that were randomly chosen from seed mixtures (Figure 2). The trays were covered with transparent

plastic to keep the moisture in until the seeds germinated.
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Figure 2. Meadow fescue seedlings growing on the trays

The soil used for planting the seedlings was collected from a long-term field experiment, which had

been established in 2013 at the Botanical Garden of Ruissalo (Helander et al. 2019). The soil type

of the field was medium clay. Before collecting the soil it was treated with lime (Tarhurin

Puutarhakalkki, 10 kg/100 m2, which had been spread in every spring on the field) and was tilled on

21.04.2021. The soil had been treated with a permitted dose of Roundup Gold® (450 g/l

isopropylamine glyphosate salt, application rate: 6.4 l/ha) that had been applied twice per year (in

the spring and in the autumn) since the year 2014. The control soil received the same amount

sprayed tap water without Roundup® application. The last treatments before collecting the soil for

this study were done on 29.04.2021.

The nutrient values of the soil were (based on an analysis made in 2016): pH 6.2 mg/l, phosphorus

4.2 mg/l, kalium 250 mg/l, calcium 1900 mg/l, magnesium 570 mg/l, sulfur 10.6 mg/l, zinc 2.74 mg/l,

copper 7.5 mg/l, manganese 15 mg/l (Viljavuustutkimus 2016).

Soil for the pots from the experimental field was collected on 11.05.2021. Soil was collected from

the area treated with GBH (glyphosate based herbicide, in this case Roundup®) and from the control

(C) area. Part of the soil from the control area was heat-sterilized (S) in an autoclave (120 °C for 20

minutes). Soil was put in 1.5 liter pots which were put on three separate tables (one table for control

pots, one for glyphosate pots and one for sterilized pots) to prevent contamination. Meadow fescue

seedlings were transferred to the pots on the same day (11.05.2021). There were 60 pots of GBH

soil, 60 pots of control (C) soil and 60 pots of sterilized (S) soil, each group contained 30 E+ seedlings
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and 30 E- seedlings. After the first clipping treatment the grasses were placed on the same table in

a random order to guarantee similar environment (Figure 3).

Figure 3. Meadow fescues from the different soil treatments, endophyte statuses and cutting treatments on
the table in a random order

Plants were grown in a greenhouse with ambient light and temperature (20-26 °C). On 25.05.2021

the pots were weeded. High amount of weeds were growing in the GBH treated pots. Control pots

had fewer weeds, and sterilized pots none. I also replaced dead plants (6 GBH and 1 control). Early

stages of the study 5 grasses growing in GBH treated soil (8.3% of all grasses growing in GBH

treated soil) and 1 grass growing in control soil died (1.7% of all grasses growing in control soil).

Four of the dead plants died on the GBH group were from 5 cm cutting treatment (6.7% of all grasses

growing in GBH treated soil), 1 was from the group that was cut from the height of 15 cm. The only

dead plant in the control group was from 5 cm cutting treatment. Pots were weeded again on

06.06.2021, and GBH pots contained a high amount of weeds. Meadow fescues on GBH pots were

smaller and thinner than meadow fescues on control and sterilized pots (personal observation).

Unlike control and sterilized pots, GBH pots contained moss growth. Pots were regularly watered to

avoid drought stress. Plants were grown in a greenhouse chamber until harvest of the aboveground

biomass on 08.09.2021 (Figure 4).
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Grasses were cut with normal scissors to the height of 5 cm and 15 cm (Figure 4). The cutting height

was measured with a soft tape measurer. Grasses were cut on 18.06.2021, 09.07.2021 and

05.08.2021.

Figure 4. Ending the experiment by harvesting the green biomass

2.2 Biomass and chlorophyll content sampling

To study the effects of glyphosate residues in soil as well as soil sterilization treatment on plant

performance the following plant parameters were recorded. The length of the longest leaf from

meadow fescues was measured, the amount of tillers was counted and the SPAD value was

measured on three occasions 17.06.2021, 08.07.2021 and 04.08.2021. The SPAD meter (Soil Plant

Analysis Development) measures the difference between the transmittance of a red (650 nm) and

an infrared (940 nm) light through the leaf, which enables the estimation of the amount of chlorophyll

present on the leaf. The first assessments were carried out on sunny days; 17.06.2021 the air

temperature outside was between 19°C and 22°C (in the greenhouse warmer) (Foreca 2021),

08.07.2021 the air temperature outside was between 21 °C and 25 °C (in the greenhouse warmer)

(Foreca 2021), the third assessment on 04.08.2021 was carried out when it was a cloudy and partly

rainy, when outside temperature was between 15 °C and 18 °C (Foreca 2021). The last day when

SPAD values were taken (06.09.2021) the weather was mostly cloudy and temperature between

+14 °C and +17 °C (Foreca 2021).
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The SPAD (Minolta SPAD-502Plus meter) evaluations were taken on three randomly chosen leaves

per plant, whereby the meter was placed randomly on leaf mesophyll tissue. Three SPAD readings

were taken per plant and averaged to provide a single SPAD value. Diurnal chloroplast movements

in response to light, affecting the degree of heterogeneity in the chlorophyll distribution, and therefore

the SPAD values, should be minor, because all SPAD-measurements were conducted during 10:00-

16:00 o’clock.

The fresh cut aboveground biomass parts from the cutting treatment plants (5 cm and 15 cm) were

weighed on 18.06.2021, 09.07.2021 and 05.08.2021. After weighing the cut biomass was dried in

oven at 65 °C for at least 48 hours and weighed again to get the dry weight. The scale used for

weighing was same every time, Mettler Toledo AX204.

The experiment was concluded for 17 weeks after planting (06.-10.9.2021). The green biomass was

cut and the fresh biomass was weighed, then leaves were dried and weighed again to gain the dry

weight. Roots were carefully separated from the soil by rinsing them gently in water until they were

clean. After washing, roots were dried with paper towels and weighed, then dried in the oven in the

same manner as the leaves (at 65 °C for 48 hours in the drying oven) and weighed again.

I tested the effects of clipping and endophyte status, as well as their interaction term on total

aboveground biomass, root biomass and chlorophyll content (SPAD value) via Analysis of Variance

(ANOVA), before applying Tukey’s Posthoc test comparing single treatments. Same response

variables were analyzed with soil treatments and endophyte status as predictor variables. Total

aboveground biomass was correlated with root biomass and a curve was fitted to the graph.

Statistical analyses (ANOVA and correlation) were done in R.
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3 Results

3.1 Effect of cutting height and endophyte status on plant parameters

Cutting height significantly affected the total aboveground plant biomass, root biomass and

chlorophyll content of the meadow fescue plants (Table 1). Symbiotic endophytic fungi did not affect

the biomass or chlorophyll content in any of the treatments.

Table 1. ANOVA summary table of plant responses to cutting treatment, endophyte treatment and their
interaction term.

Response

variable

Effector variable Df F p

Total

aboveground

biomass

Cutting 2.168 75.74 <0.0001

Endophyte 1.168 0.160 0.690

Cutting*Endophyte 2.168 0.795 0.453

Root biomass Cutting 2.168 110.1 <0.0001

Endophyte 1.168 2.056 0.154

Cutting*Endophyte 2.168 0.437 0.647

Chlorophyll

(SPAD)

Cutting 2.168 38.35 <0.0001

Endophyte 1.168 3.374 0.068

Cutting*Endophyte 2.168 1.395 0.251

Uncut meadow fescues produced the largest total aboveground dry biomass, which was significantly

higher compared to total aboveground dry biomass from grasses cut to 15 cm or 5 cm. The grasses

cut to the height of 5 cm had the smallest total aboveground dry biomass, which was further

significantly smaller compared to grasses cut to 15 cm (Figure 5). Similarly uncut meadow fescues

produced a largest root dry biomass, which was significantly higher compared to root dry biomass

from grasses cut to 15 cm or 5 cm (Table 2). The grasses cut from the height of 5 cm had the smallest

root dry biomass, which was further significantly smaller compared to grasses cut to 15 cm (Figure

6). In addition uncut meadow fescues had the biggest chlorophyll content, which was significantly

higher compared to the chlorophyll content from grasses cut to 5 cm. Uncut meadow fescues did not

have significantly bigger chlorophyll content compared to the chlorophyll content from grasses cut to

15 cm (Table 2). The grasses cut from the height of 5 cm had the smallest chlorophyll content, which

was further significantly smaller compared to grasses cut to 15 cm (Figure 7).
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Figure 5. Total aboveground biomass was significantly different between the cutting heights (0= uncut, 5 cm,
15 cm), but was not affected by endophyte symbiosis. Letters indicate significant differences following
Posthoc Tukey’s tests (Table 2).

Figure 6. Root biomass was significantly different between the cutting heights (0= uncut, 5 cm, 15 cm), but
was not affected by endophyte symbiosis. Letters indicate significant differences following Posthoc Tukey’s
tests (Table 2).
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Figure 7. Chlorophyll content measured as SPAD was significantly different between the cutting heights (0=
uncut, 5 cm, 15 cm), but was not affected by endophyte symbiosis. Letters indicate significant differences
following Posthoc Tukey’s tests (Table 2).

Table 2. Results from a Posthoc Tukey’s test testing pairwise comparisons of plant parameters between the
clipping treatments.

Total aboveground dry biomass T p

Uncut Cut 5 cm 12.197 <0.0001

Uncut Cut 15 cm 4.232 0.0001

Cut 5 cm Cut 15 cm 8.008 <0.0001

Dry root biomass

Uncut Cut 5 cm 14.232 <0.0001

Uncut Cut 15 cm 10.609 <0.0001

Cut 5 cm Cut 15 cm 3.797 0.0006

Chlorophyll (SPAD)

Uncut Cut 5 cm 7.911 <0.0001

Uncut Cut 15 cm 0.867 0.661

Cut 5 cm Cut 15 cm 7.030 <0.0001
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3.2 Effect of soil treatment and endophyte on plant parameters

Soil treatment significantly affected the total aboveground biomass (Table 3). Plants produced higher

amount of total aboveground biomass when growing in a sterilized soil (S) compared to control (C)

or glyphosate based herbicide treated (G) soil (Figure 8). Grasses growing in sterilized soil also had

bigger leaf area compared to control or GBH group. Root biomass was not significantly affected even

though there was a trend to higher biomass in the sterilized soil treatment (Table 3). Chlorophyll

content measured as SPAD values were highest in plants growing in sterilized soil (Figure 9), but

significantly different only in comparison to control plants (Table 4).

Table 3. ANOVA summary table of plant responses to soil treatment, endophyte treatment and their
interaction term

Response

variable

Effector variable Df F p

Total

aboveground

biomass

Soil treatment 2.168 8.461 0.0003

Endophyte 1.168 0.032 0.859

Soil*Endophyte 2.168 0.182 0.834

Root biomass Soil treatment 2.168 2.433 0.090

Endophyte 1.168 0.654 0.420

Soil*Endophyte 2.168 0.568 0.568

Chlorophyll

(SPAD)

Soil treatment 2.168 4.392 0.013

Endophyte 1.168 2.552 0.859

Soil*Endophyte 2.168 0.226 0.834
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Figure 8. Total aboveground biomass was significantly different between soil treatments (C= control, G=
glyphosate based herbicide, S= sterilized), but was not affected by endophyte symbiosis. Different letters
indicate significant differences following Posthoc Tukey’s tests (Table 4).

Figure 9. SPAD value was significantly different between soil treatments (C= control, G= glyphosate based
herbicide, S= sterilized), but was not affected by endophyte symbiosis. Different letters indicate significant
differences following Posthoc Tukey’s tests (Table 4).



19

Table 4. Results from a Posthoc Tukey’s test testing pairwise comparisons of plant parameters between the
soil treatments.

Total aboveground dry biomass T p

Sterilized soil Control 2.744 0.018

GBH Control 1.350 0.370

GBH Sterilized 4.050 0.0002

Chlorophyll (SPAD)

Sterilized Control 2.774 0.017

GBH Control 0.461 0.899

GBH Sterilized 2.262 0.064
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Figure 10. Correlation between root biomass and total aboveground biomass showing that higher root
biomass is connected to higher aboveground plant biomass

Correlation between root biomass and total aboveground biomass shows that higher root biomass

is connected to higher aboveground plant biomass (Figure 10). However, small root system can

result in relatively large plants, which is displayed in the steep slope at low root biomass values.
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4 Discussion

4.1 Effect of cutting height, soil treatment and endophyte status on plant
parameters

My results support the hypothesis that grass management practices impact the carbon sequestration

and storage potential of pastures. Cutting height significantly affected to the total above ground plant

biomass, root biomass and chlorophyll content of the meadow fescues. The grasses cut to height of

5 cm produced 95.24% less total aboveground biomass, 322.23% less root biomass and had 32.98%

lower chlorophyll content compared to the meadow fescues cut to 15 cm height. The uncut meadow

fescues produced clearly the highest total biomass and root biomass; the uncut meadow fescues

had 3.51% more total aboveground dry biomass than meadow fescues cut to 15 cm height, 50.58%

more total aboveground dry biomass than meadow fescues cut to 5 cm height, and 67.48% more

root biomass than meadow fescues cut to 15 cm height, and 92.30% more root biomass than

meadow fescues cut to 5 cm height. Uncut meadow fescues had 37.0% higher chlorophyll content

compared to the meadow fescues cut to 5 cm height, and 3.03% higher chlorophyll content

compared to the meadow fescues cut to 15 cm height. My results are in concordance with my

hypothesis and supported by the resource allocation hypothesis (Oesterheld 1992; Holland et al.

1996; Thornton & Millard 1996). Grasses have a capability to recover well after defoliation, but cutting

too low and too often results in poor regrowth rates. After being eaten or cut, grasses need to take

strength for growing from the roots, which means that part of the roots will die. If this resource

allocation is experienced often, plant does not have viable roots for regrowth and it dies (Oesterheld

1992; Holland et al. 1996; Thornton & Millard 1996). Similarly to in high total aboveground biomass

production in uncut plants, their chlorophyll content was high. Plants have reduced ability to capture

energy and carbon needed for photosynthesis when a herbivore eats leaf tissue or if part of the plant

is cut away (Gurevitch et al. 2006), which in turn leads to a decreased chlorophyll content and growth,

as noticed especially with grasses cut to 5 cm height.

Perennial grasses have high organic matter content and they can mitigate greenhouse gas

emissions through soil carbon sequestration and improve other ecosystem responses, water quality,

nutrient cycling, and support biological diversity (Franzluebbers 2012). Cutting grasses for silage or

animals grazing on pasture diminish momentarily the amount of green biomass. My results

demonstrate that cutting too low leads to poor regrowth rates and small biomass. If cut or let animals

to graze grass too low, it is harder for the grass to recover and it does not sequestrate as much

carbon as it would when leaves are longer. Grazing intensity of pastures should be regulated to

maintain adequate leaf area for maximum plant growth rates throughout the grazing season

(Matches 1992).

https://www.tandfonline.com/author/Franzluebbers%2C+Alan+J


22

Against my prediction endophyte status did not significantly affect the total aboveground plant

biomass, root biomass and chlorophyll content of the meadow fescue grasses. Usually symbiotic

endophytes offer various benefits for their hosts, for example increased growth and reproduction,

and resistance to abiotic environmental stresses (Saikkonen et al. 2004; Lehtonen et al. 2005).

Growing in a greenhouse might have affected the results at least partly. Because the grasses were

not experiencing a competition pressure from other plants, they could use all nutrients, light energy

and moisture by themselves, so endophytic fungus did not provide advantage to their host grass. In

addition the beneficial effect of endophytes is often still missing in younger plants (Fuchs et al 2017b).

The positive effect from the endophyte to the grass host is strongest in the environments with plenty

of nutrients (Saikkonen et al. 2006; Cheplick & Faeth 2009). I did not add any fertilizers during the

growing season, and during watering some nutrients might have flushed away, and that might be

one reason why grasses did not benefit the positive effects of endophytes.

Meadow fescues growing in sterilized soil grew much better than grasses growing in control or

glyphosate treated soil. From early on the grasses growing in the sterilized soil group were bigger

and more robust than in the other groups, and they produced higher amount of total aboveground

biomass and had higher chlorophyll content compared to two other groups. Grasses growing in

sterilized soil had 57.98% more total aboveground dry biomass than grasses growing in control soil

and 190.54% more total aboveground dry biomass than grasses growing in glyphosate based

herbicide treated soil. Meadow fescues growing in sterilized soil had 20.38% more root dry biomass

than grasses growing in control soil and 58.18% more root biomass than grasses growing in

glyphosate based herbicide treated soil. Grasses growing in sterilized soil had 12.59% higher

chlorophyll content than grasses growing in control soil and 10.23% higher chlorophyll content than

grasses growing in glyphosate based herbicide treated soil. Based on these figures, having residues

of glyphosate based herbicides in soil will decrease harvest of meadow fescue. In addition the death

rate of grasses growing in GBH soil was elevated compared to other groups (8.3% death rate in

GBH group, 1.7% death rate in control soil and 0% death rate in sterilized group). My results

emphasize the importance of soil health and suggest that the use of GBH decrease the resilience of

agricultural systems.

One explanation for the good growth of grasses growing in sterilized soil might be that during the

sterilization in the autoclave, the killed biota has turned into a good fertilizer and has given an

advantage to the grasses growing in the sterilized soil. There are examples of that on previous

studies as well, where grasses performed better when growing in sterilized soil (e.g. Hines et al.

2017). Grasses can cope in poor soils, and they might not need a big microbiome around them,

since they are regularly growing on yards, road verges and other nutrient poor areas, where also

microbes are scarce (Rikkinen 2014; Wagg et al. 2019). In addition harmful pathogens might have
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lived in the soil and died during sterilization, so they did not affect to the grasses growing in sterilized

soil (van der Putten & Peters 1997).

Biomass production of plants depends on energy supplied by photosynthesis. Grasses growing in

sterilized soil had bigger leaf area and were able to acquire more sunlight and carbon, so they had

larger amount of chlorophyll compared to control group and GBH group (even though only

comparison between sterilized and control groups were significant). Glyphosate can affect the

carbon sequestration and contribute to smaller leaf area and biomass. Decreased shoot and root

biomass due to growing in GBH treated soil likely occurred because of decreased photosynthesis

rate, disrupted growth hormone biosynthesis, or lower nutrient accumulation (Bott et al. 2008;

Zobiole et al. 2010; Zobiole et al. 2012; Fuchs et al. 2021; Fuchs et al. 2022).

Correlation between root biomass and total aboveground biomass showed that higher root biomass

was connected to higher aboveground plant biomass, but that small root system can result in

relatively large plants. An explanation for that might be that on soils that contain relatively big amount

of nutrients, like agricultural soils usually do, plants do not need to grow big root systems, because

nutrients are easily available on the top soil layer.

4.2 General conclusions

Cutting grass for silage or hay and the practice how animals are grazing are underestimated when

considering pasture management. My results demonstrated that it would be possible to get more

harvest when increasing the cutting height or moving animals to other pasture before they have been

eating the grass too low.

Soil properties may determine grass productivity. My results demonstrated that soil history of

glyphosate use can determine amounts of aboveground and root biomass of grasses. Because

glyphosate is harmful for the plants (Tu et al. 2001; Duke & Powles 2008; Zobiole et al. 2012; Gill et

al. 2017), environment (Giesy et al. 2000; Grunewald et al. 2001; Simonsen et al. 2008; Shushkova

et al. 2009; Vera et al. 2010; Battaglin et al. 2014; van Bruggen et al. 2018) and animals including

humans (Daruich et al. 2001; Dallegrave et al. 2003; Richard et al. 2005; Benachour et al. 2007;

Dallegrave et al. 2007; Benachour and Seralini 2009; Paganelli et al. 2010; Koller et al. 2012;

Mesnage et al. 2012; Samsel & Seneff 2013; Guyton et al. 2015; Bai & Ogbourne 2016; Gill et al.

2018), it should be really thought through if it is absolutely necessary to use it. In addition some

plants have developed resistance against glyphosate (Powles & Preston 2006), in which case

spreading glyphosate does not have an effect to those plants.

https://link.springer.com/article/10.1007/s10311-017-0689-0#ref-CR122
https://link.springer.com/article/10.1007/s11356-016-7425-3#ref-CR38
https://link.springer.com/article/10.1007/s10311-017-0689-0#ref-CR44
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0035
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0041
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0092
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0023
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0021
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0077
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0006
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0005
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0071
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0064
https://onlinelibrary.wiley.com/doi/full/10.1111/jawr.12159?casa_token=YjVRb4QYID0AAAAA%3AS3XVuQbpkLx6pi6KKaC1nuAq0YL30J5kwLy6nBLVDLG_j1o8P_o7RWf8w-QK18qDVw2vOSlvPv6h#jawr12159-bib-0078
https://www.sciencedirect.com/science/article/pii/S0048969717330279?casa_token=YWxsKwujmWcAAAAA:6bUW9kNXIunPMVy4SflVXbWbVFJ5tW2ce8zr5cvLn1S0IcUfUzWaSkOiEAGlCT3RWiEJF5wl#bb0390
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As this is a thesis, my goals were also to learn how to design and conduct a working greenhouse

experiment. Working with plants has its own benefits and restrictions, of which I wanted to learn

more of. While some improvements could be done if planning a similar experiment again, I find the

methods of my one-growing-season experiment appropriate and the results very interesting.

4.3 The larger scale

Rotational grazing, which means that animals are grazing in relatively small paddocks for 1-3 days,

and then there is a break when the grass of that paddock can rest and grow for 20-60 days, enhances

productivity compared to extensive, continuous grazing. Rotational pastures can produce almost

three times as much forage as continuous pastures, and also nutritional quality has been higher on

rotational pastures comparing to continuous pastures (Paine et al. 1999; Oates et al. 2011). In

addition, it has been shown, that higher stocking densities (bigger amount of animals per hectare)

for shorter durations are associated with greater total production per hectare than lower stocking

densities. Higher stocking rate increases the nutritional value of the forage, and less pasture is

wasted due to trampling, fouling, and rejection as stocking rate is high. Using rotational grazing helps

to reduce feed costs and potentially increases profits by reducing overall costs of production (Fales

et al. 1995; Phillip et al. 2001).

Similarly, it would be more beneficial to cut grass for silage higher than conventionally. Then grasses

would have a better regrowing efficiency which increases total harvests. Also roots recover better

when cutting leaves higher. That leads to the better recovery after the defoliation, less loss of plants,

which means less overseeding and longer period before sowing a new pasture or silage crop

(Holland et al. 1996; Thornton & Millard 1996).

Future agricultural policies need to consider how to reverse the loss of soil biodiversity. Climate

change, new biotic stresses brought about by change in ecological balance, and the possible

introduction of new pests, will influence the future of forage grasses. Public attitudes will require

further reductions in synthetic pesticides and residues in primary products (Fletcher & Easton 1997.)

Grasses can be used as a powerful carbon sink, and in addition pastures can be used to recover the

biodiversity of many plant, fungus, microbe, insect, bird and mammal species. When grasses are

not overgrazed, they will recover faster and more complete, they will acquire more nutrients and

water with their bigger root systems, and thereby absorb more carbon from the atmosphere. Since

pastures and silage fields do not need to be tilled yearly but they are perennials, they also storage

more carbon in roots and soil than annual fields do. Although forests store more carbon in total

compared to grasslands, in vulnerable environments driven for example periodic fires, grasslands

might be better carbon storages (Dass et al. 2018). It is environmentally essential to grow pastures,

because they provide important ecosystem services (for example enhanced biodiversity, prevention
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of erosion and nutrient runoffs, serving as carbon sinks, and food production on areas where only

grasses can be grown productively) (Paustian et al. 1997; Jobbágy & Jackson 2000; Guo & Gifford

2002; Soussana et al. 2014; Poeplau et al. 2018). Pastures take around 67% of global land surface,

so taking a proper care of that land would make a real difference to carbon sequestration and

biodiversity.

https://link.springer.com/article/10.1007/s11104-020-04532-1#ref-CR53
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