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Inverse Synthetic Aperture Radar (ISAR) generates high quality radar images even 

in low visibility. And it provides important physical features for space target recognition 

and location. This thesis focuses on ISAR rapid imaging, scattering center information 

extraction, and target classification.  

⚫ Based on the principle of Fourier imaging, the backscattering field of radar target 

is obtained by physical optics (PO) algorithm, and the relation between scattering 

field and objective function is deduced. According to the resolution formula, the 

incident parameters of electromagnetic wave are set reasonably. The interpolation 

method is used to realize three-dimensional (3D) simulation of aircraft target, and 

the results are compared with direct imaging results. 

⚫ CLEAN algorithm extracts scattering center information effectively. But due to the 

limitation of resolution parameters, traditional imaging can’t meet the actual 

demand. Therefore, the super-resolution Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT) algorithm is used to obtain spatial 

target location information. The signal subspace and noise subspace are orthogonal 

to each other. By combining spatial smoothing method with ESPRIT algorithm, the 

physical characteristics of geometric target scattering center are obtained 

accurately. In particular, the proposed method is validated on complex 3D aircraft 

targets and it proves that this method is applied to most scattering mechanisms. 

⚫ The distribution of scattering centers reflects the geometric information of the 

target. Therefore, the electromagnetic image to be recognized and ESPRIT image 

are matched by the domain matching method. And the classification results under 

different radii are obtained. In addition, because the neural network can extract rich 

image features, the improved ALEX network is used to classify and recognize 

target data processed by ESPRIT. It proves that ESPRIT algorithm can be used to 

expand the existing datasets and prepare for future identification of targets in real 

environments. Final a visual classification system is constructed to visually display 

the results. 

Keywords: Synthetic aperture radar; scattering center; ESPRIT; super 

resolution; radar target recognition
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Chapter 1  Introduction 

1.1 Research background and motivation 

Due to the continuous evolution of signal processing technology, the radar image 

is becoming more and more refined. When the incident frequency is high frequency, 

the scattering target is equivalent to the distribution of multiple independent scattering 

centers, and the target energy is approximately the energy sum of scattering centers. 

During radar imaging, the geometric parameters of scattering center represent the 

structural information of radar target. ISAR [1] acquires the spatial distribution of 

scattering centers and obtains structural characteristics such as orientation, shape and 

size.  

Multi-dimensional imaging and imaging refinement are two major requirements 

for ISAR development. Radar imaging is gradually expanded from one-dimensional 

(1D) to 3D. The 1D image is like the vector sum projected on the radar ray by the target 

scattering center echoes obtained by wideband radar signal. The distance between 

scattering center and the radar is projected onto 1D plane. On this basis, two-

dimensional (2D) image is obtained by adding azimuth feature. It is of great 

significance for the development of target recognition. The 2D distribution of the target 

is obtained by the relative movement and the signal transmitted broadband. However, 

both 1D image and 2D images are affected by the attitude of the target and limited by 

the resolution [2]. To solve this problem, pitch information is added and objects display 

in 3D space. By improving the pitching resolution, the height information is obtained 

without being affected by the attitude of the object.  

 High resolution means rich target characteristics. The traditional Range-Doppler 

(RD) method achieves high resolution by increasing the synthetic aperture time and 

signal bandwidth. However, RD algorithm has the following limitations. Firstly, it 

needs to put forward higher requirements for the system. The imaging time of non-

cooperative targets is limited and the data acquisition is passive. Secondly, when the 
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imaging angle is too large, scattering centers will produce large distance migration. It 

causes image distortion and resolution reduction [3]. Therefore, researchers begin to 

consider super-resolution algorithms. The essence of this algorithm is signal processing. 

Compared with the fuzzy image obtained by Fourier method at low resolution, super-

resolution algorithm obtains fine images without limiting resolution parameters and 

increasing imaging accumulation time. Multi-signal Classification (MUSIC) [4] and 

ESPRIT [14] are both iconic methods. Compared with MUSIC, ESPRIT does not need 

to search spectrum peaks one by one, and it greatly reduces the complexity. For the 

ESPRIT method, radar signals are calculated by eigen decomposition of covariance 

matrix. It breaks the Rayleigh limit and makes the mean square error of parameter 

estimates to approach the Cramér–Rao bound. This method has good parameter 

estimation ability and is of great significance for automatic recognition of ISAR images 

in the future.  

1.2 Progress in research at home and abroad 

1.2.1 Inverse synthetic aperture radar imaging technology 

Wiley first proposed the concept of Synthetic Aperture Radar (SAR) in 1951. In 

1957, Willow Run laboratory at the University of Michigan obtained the world's first 

SAR image. The concept of ISAR imaging was basically put forward at the same time 

as SAR. In the early 1960s, Willow Run Laboratory proposed RD technology [5-6]. 

And it successfully realized the imaging of space orbit targets. This marks that the 

development of ISAR imaging technology has entered the stage of practical 

application. Subsequently, Westinghouse successfully achieved tracking and ISAR 

imaging of space orbiting targets. In 1970, Lincoln Laboratory of Massachusetts 

Institute of Technology developed the world's first long-range high resolution 

broadband imaging radar and it called DARPA-Lincoln C-Band Observables Radar. 

ISAR images of low-Earth space orbit targets like satellites were obtained [7-8]. Chen 

and Andrews et al. carried out research on ISAR imaging of aircraft targets by ground-

based radar in 1978. According to the characteristics of the radar system, ISAR imaging 
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processing was divided into translational compensation and RD imaging. The 

translational compensation was divided into envelope compensation and phase 

compensation, and the corresponding processing methods were proposed [9-10]. In the 

early 1980s, ISAR images of non-cooperative maritime ship targets were obtained by 

The US Naval Laboratory and Texas Instruments [11]. In terms of imaging algorithm, 

Chen proposed the range-instantaneous doppler algorithm and adopted the joint time-

frequency transform technology to solve the imaging problem of complex moving 

targets [12-13]. It indicated that the ISAR algorithm and system research have entered 

the stage of rapid development. 

The earliest research of radar imaging technology in China began in 1986. Beihang 

University began to build electromagnetic scaling models for targets like aircraft. And 

they carried out relevant measurements of electromagnetic scaling ratio and scientific 

experiments of turntable imaging. The 23rd Institute of the 2nd Aerospace Academy 

successfully developed China's first long-range imaging radar with 400 MHz 

bandwidth in 1993. Three years later, due to the implementation of the "Ninth Five-

Year Plan" electronic pre-research plan, the Key Laboratory of Radar Signal Processing 

of Xidian University carried out researches on real-time radar imaging. Researchers 

systematically studied translational compensation and maneuvering target imaging 

principle. The 23rd Institute of the 2nd Aerospace Academy successfully extended the 

working bandwidth of ground observation radar to 800 MHz in 2006. In 2008, the 

working bandwidth of the all-polarization ground imaging radar was extended to 1 GHz 

by the 14th Institute of China Light and Power Group. ISAR imaging technology is 

developing continuously in our country, but there is still a certain gap with foreign 

technology. 

1.2.2 Super resolution imaging algorithm 

High resolution means high image quality. In the early 1990s, a large number of 

super-resolution algorithms were proposed for ISAR imaging. The classical subspace 

algorithm MUSIC was first proposed by Schmidt et al. in 1979 [4]. The principle was 

to use matrix eigenspace decomposition. Based on the orthogonal property of signal 
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subspace and noise subspace, spatial spectral function was constructed to find spectral 

peak. Parameter estimation performance was superior. But this method needed to search 

spectral peaks one by one and stored the array flow matrix, thus it caused heavy 

computation. To solve this problem, ESPRIT algorithm was proposed by Roy et al in 

1986 [14]. According to the subspace rotation invariance of the received data, signal 

parameters were directly calculated by the generalized eigenvalues of autocorrelation 

matrix. Compared with MUSIC, it had better robustness and lower operation 

complexity. TLS-ESPRIT algorithm was proposed later and it improved the 

performance of spectrum estimation by increasing part of calculation. Mathews et al 

published UCA-ESPRIT in 1994 and Zoltowski et al proposed 2D U-ESPRIT 

algorithms in 1996. These methods were applicable to uniform circular arrays [15] and 

realized automatic pairing of azimuth and elevation estimation. In order to accurately 

obtain 2D Direction-of-Arriva (DOA) estimation and the incident wave frequency, 3D 

Unitary ESPRIT was proposed by Haardt et al in 1997[16]. In 1999, Liu et al published 

the virtual 2D ESPRIT algorithm [17]. It had the advantages of lower requirements for 

signal sub-array, small computation and high accuracy. However, this method only 

estimated a small number of scattering centers at the same time. In 2005, Feng et al 

used 1D unitary ESPRIT algorithm to obtain high resolution ISAR images [18], but this 

algorithm only applied super-resolution technology in one direction. In 2013, the 

single-shot 2D ESPRIT algorithm was proposed by Wang et al [19]. An equivalent 

covariance matrix was constructed through the data generated by a single shot in this 

algorithm. In 2016, Liu et al proposed an extended ESPRIT based on dynamic phase 

compensation technology. ESPRIT was extended as an alternative method for the DOA 

estimation of arbitrary arrays except for MUSIC [20]. Zhang et al applied convex 

optimization algorithm to spectrum estimation in 2020 [21]. The anti-noise 

performance of traditional LS-ESPRIT algorithm was improved, and the higher 

resolution was taken into account. 
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1.3 Main content of the thesis research 

This thesis is mainly divided into three parts. Fast ISAR imaging, scattering 

centers extraction by ESPRIT algorithm, and image classification. 

The main research contents are as follows:  

The relation between electromagnetic field data by PO method and imaging 

function is deduced. The traditional Fourier interpolation method is used to reconstruct 

objects in 3D space, and the results of direct imaging are compared. 

High resolution ISAR images are obtained based on 3D ESPRIT algorithm. The 

ESPRIT algorithm is extended from one dimension to three dimensions. Meanwhile the 

results are compared with Fourier imaging in all dimensions. In particular, we use 

complex aircraft models to validate the algorithm and ESPRIT is applicable to most 

scattering mechanisms. The comparison results of ESPRIT algorithm and CLEAN 

algorithm under 2D condition are given. The results show ESPRIT has the advantages 

of high precision, high resolution and strong robustness to noise. Reconstructed images 

provide important features for the automatic target recognition of SAR.  

Then SAR target recognition based on neighborhood matching method is 

proposed.  2D ESPRIT obtains the characteristics of scattering centers. The 

neighborhood matching method is used to match the reconstructed image and ESPRIT 

image, and the type of target is judged by similarity. In addition, the dataset is obtained 

by ESPRIT method and the improved ALEX network is used to extract image features. 

The recognition rate of aircraft target simulation images reaches 99.22%, and the 

recognition rate of mixed data also reaches 99.39%. The generated database is 

conducive to the aircraft recognition in future. And the aircraft target classification 

system is established to display the classification results visually. 

1.4 Chapters arrangement of the thesis 

This thesis studies the process from radar data imaging to SAR image recognition. 

This thesis consists of five chapters, and contents are arranged as follows. 

In the first chapter, the background and significance of the research are introduced. 
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Current situation of ISAR imaging algorithm and super-resolution imaging algorithm 

are investigated. 

The second chapter begins with SAR imaging model. Imaging principle is 

analyzed and resolution formula is deduced. At the same time, the traditional Fourier 

transform imaging is extended to from one dimension to three dimensions. The radon 

transform is used to project 3D image to three dimensions. 

In the third chapter, the CLEAN algorithm is used to extract scattering centers 

from 2D aircraft images first. Then the super-resolution algorithm ESPRIT is 

introduced. Simulation results in 1D, 2D and 3D cases are given.  Under the same 

parameter settings, the processed results of CLEAN algorithm and ESPRIT algorithm 

are given. Simulation results show that ESPRIT provides specific physical information 

for each scattering center and is not bound by resolution parameters. By changing the 

parameters, the electromagnetic characteristics are easily obtained at various angles. 

This method provides a dataset for subsequent identification. 

The fourth chapter mainly introduces radar target recognition methods. Using 

neighborhood matching method to recognize 2D target electromagnetic image. The 

target is identified according to the matching degree of scattering centers. Besides, the 

improved ALEX network is used to classify and recognize the scattering images 

generated by ESPRIT. Besides, the aircraft target classification system is constructed 

to display the classification results intuitively. 

In the fifth chapter, the summary and prospect of this thesis. 
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Chapter 2  ISAR Imaging Principle 

2.1 Introduction 

ISAR achieves high quality imaging of some long-range non-cooperative objects 

like missiles. The imaging principle is that the radar decomposes the target motion 

direction to form a virtual synthetic array and uses the large aperture of the synthetic 

array to improve the resolution. Therefore, the formation of ISAR array is influenced 

by the change of target's heading, speed, attitude and other factors. For target 

recognition, 3D objects contain much more information than 2D images. Therefore, it 

is necessary to study ISAR 3D imaging technology.                                                                                                                                                                                                                                                                                                                                               

2.2 ISAR imaging model  

During ISAR imaging, the radar does not move while the observed target 

moves. The target displacement is divided into radial displacement and transverse 

displacement. Azimuth direction refers to the direction perpendicular to the track in the 

surveying belt, and range direction refers to the direction along the radar in the 

surveying belt. On the plane's 2D turntable, the azimuth direction and the range 

direction are perpendicular to each other. 

The movement of the target relative to the radar is equivalent to the motion of the 

turntable. ISAR imaging can be built on a 2D turntable imaging model, as shown in 

Figure 2.1. Assuming that the target is moving uniformly, the relative motion between 

the target and the radar is divided into rotational component and translational 

component. We suppose object has a reference point. Target translation means that the 

reference point moves along the target trajectory, and the overall attitude of the target 

relative to the radar remains unchanged. The rotation variable means that the point on 

the target rotates around the reference point [22]. 
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(a)                         (b) 

Figure 2.1 ISAR turntable imaging model. (a)Target rotation model, (b) Point target trajectory 

2.2.1 Resolution 

Resolution is an important parameter to measure image quality. Range resolution 

represents the minimum distance to distinguish two targets in the same azimuth. High 

resolution depends on whether radar transmits wideband signals. Azimuth resolution 

refers to the ability to distinguish the minimum azimuth difference between two targets 

at the same distance. It depends on the velocity of scattering centers and is obtained by 

calculating the doppler resolution. The Figure 2.2 shows a schematic of range 

resolution and azimuth resolution in 2D imaging [23].  

 

Figure 2.2 Range distinction and azimuth distinction diagram 

The distance between the radar and each scattering center is different. Therefore, 

each scattering center reflects the echo signal with different time. Positions of scattering 

centers are distinguished by time delay, and it's called range resolution. The range 

resolution represents the different distance information of scattering centers on the 
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target. 

We suppose the radar sends a pulse signal, and signal is defined as [23]: 

 ' '

0( , ) cos(2 ) tS t t cf t=               (2.1) 

where, 

                 
' '

'- 
2 2

T T
t t −  

't   represents time, t   represents pulse center, 
'T   represents pulse width and 

0f  represents carrier frequency. We assume that the radar sends rectangular envelope 

pulses with constant amplitude. For ease of understanding, the constant amplitude and 

phase are ignored. Then the echo signal is:  

' '

0

2 ( )
( , ) cos[2 ( )]                        t

r t
S t t f t

c
 = − (2.2) 

where, 

' '
' 2 ( )

- 
2 2

T r t T
t t

c
 − −   

In formula 2.2,   represents the scattering coefficient of scattering centers, c  

represents the speed of light, and ( )r t   represents the distance between different 

scattering centers and radar. 

Let 
't t = − ,   is the delay relative to t . The above formula is expressed as: 

        ' '

0

2 ( )
( , ) cos[2 ( )]                             t

r t
S t t f t

c
 = − (2.3) 

where, 

'2 ( )
 

2

r t T

c
 −   

In formula 2.3,   is fast time and t  is slow time. We can see that the echo 

pulses of scattering centers at different distances are centered on different values  . 

Thus, scattering centers at different distances are distinguished by different time delays.  

The range resolution r  is inversely proportional to the signal bandwidth B . 

The formula is: 

javascript:;
javascript:;
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'

                                                 
2 2

r

cT c

B
 = = (2.4) 

According to the above formula, the range resolution is determined by the signal 

bandwidth. The larger the bandwidth, the higher the resolution. 

As shown in Figure 2.1(a), when the target moves clockwise, each scattering 

center has different velocity and this corresponds to different doppler values. The line 

between the center and the radar is called the axis. The scattering centers on the axis 

have no radial motion relative to the radar, so the doppler frequency is 0. Scattering 

centers on both sides of the axis have positive doppler value or negative doppler value. 

The farther away from the axis, the greater the doppler value of scattering centers. By 

Fourier transform, echoes of different range units are converted to doppler domain. The 

transverse distribution of the target is obtained by distinguishing different doppler 

values.  

In Figure 2.1(b), in the time interval between two radar signals, the rotation angle 

of the target is  . One of the scattering centers rotates from P  to 1P , then the 

longitudinal displacement is:  

sin( ) sin( )

      sin (1 cos( ))                           

p p p

p p

y r r

x y

  

 

= − −

= − − −
       (2.5) 

Where, the coordinate of P is ( , )p px y , and cos , sinp p p px r y r = = . The phase 

change of sub-echo caused by longitudinal displacement py  is: 

          

4

4
      [ sin (1 cos( ))]                             

p p

p p

y

x y







 



= −

= − − − −

(2.6) 

When    is very small, sin    and cos 1   . Then the formula 

changes to: 

                       
4

                                                    p px


 


=

(2.7) 

Through the analysis of the above equation, we conclude that the phase difference 
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p  of the two observed target echoes is proportional to the transverse distance px . 

There is a phase difference 
4

exp( )pj x





 between the two echoes, and the phase 

change is shown as doppler change. The larger the px  , the larger the doppler 

frequency value of this scattering center. It shows that the echo doppler values of 

scattering centers at different transverse distances are not the same, and it provides the 

conditions to distinguish these scattering centers.  

We assume that M  echoes are received in the imaging process, then the total 

rotation angle is M = . The transverse distance difference of two scattering centers 

is supposed as x , thus the total phase difference of their echoes is: 

                          
4

                                           M x


 


= (2.8) 

Fourier transform is used as doppler analysis. if 2M    , two points are 

distinguished. So, the azimuth resolution a  is: 

                                                                                 
2

a





=



(2.9) 

In formula 2.9, The azimuth resolution is inversely proportional to the angle 

difference. And 2D images are obtained by Fourier transform twice. 

2.3 Conventional interpolated Fourier imaging 

The point of the PO method [24-25] is the integral formula of Stratton-Chu 

scattering field. The PO method determines the surface induced current of the target 

according to the incident field. The scattering field is represented by the integral of the 

induced current, and it simplifies the calculation process of the scattering field. This 

method divides the target surface into several surface elements, and these elements are 

equivalent to the ideal smooth plane. The current of the target surface is equal to the 

sum of the current of the surface elements in the illuminated area. Final the scattering 

field is obtained. The PO method is based on three assumptions [26-28]: 

(1) The induced current on the surface of the scatterer is only determined by the 
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region which is directly irradiated by the incident electromagnetic wave. And the 

induced current only exists in the illuminated area. The induced current of each surface 

element is independent of each other and there is no current continuity. 

(2) Far-field approximation. The radius of curvature on the surface of the object is 

larger than the wavelength of incident wave, and the scatterer is electrically large. 

(3) Tangent plane approximation. The current distribution at the plane is equal to 

the current distribution at the infinite tangent plane. 

The first hypothesis is true if the second hypothesis is true. 

Therefore, the scattering field ( ) ( )s
E r  expression of PO method is directly set as 

the current integration of the illuminated area on the surface of the object [24]: 

( ) ( ) ( ) ( ) ˆ '0
PO

ˆ ˆ ' '                             
4

lit

ikr
s ik r

S

ikZ e
E r dS r J r e

r

−
=   

rr r (2.10) 

Where, litS   represents the illuminated area of the scatterer surface, k  

represents the wave number, and 0Z  represents the wave impedance of free space. r  

is the position vector of the observation point, and it includes the amplitude coefficient 

r   and the unit direction r̂  . 'r   is the position vector of any point located on the 

illuminated area litS . ( )ˆ 'rn  is the surface normal vector. The surface induced current 

POJ  is written as: 

( ) ( ) ( )( )

PO
ˆ' 2 ' '                                        iJ r r H r= n (2.11) 

We substitute ( )( ) ( )

0

1
ˆ'i i

iH r E
Z

= r  into the scattering field formula and obtain 

the expression: 

( ) ( ) ( )( ) ( ) ( )ˆ ˆ '( )0 ˆ ˆ ˆ ˆ' '               
2

i

lit

ikr
ik rs i

i

S

ikZ e
E r r E dS r e

r

− −
=    

r r
r r n r (2.12) 

Setting the direction of electric field polarization as p̂  . The following scalar 

scattering field pE  expression is obtained: 
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( ) ( ) ( )( ) ( ) ( )ˆ ˆ '( )0ˆ ˆ ˆ ˆ ˆ ˆ' '    
2

i

lit

ikr
ik rs i

p i

S

ikZ e
E E r r E dS r e

r

− −
  =     
 

r r
= p p r r n r (2.13) 

Since global scattering is the sum of surface element scattering, the integrand is 

the target function ( )'O r : 

( ) ( )( ) ( )( )( )ˆ ˆ ˆ ˆ ˆ' ' '                    i

iO r r E S r =     
 

p r r n r (2.14) 

Where, ( )( )'S r  is the impulse function. It is used to express whether the plane 

element is in the bright region litS . That is: 

( )
0, '

'                                   
0, '

lit

lit

r S
S r

r S

= 

 

(2.15) 

Then the scattering field formula is obtained： 

( ) ( ) ( ) ( ) ( )ˆ ˆ '0ˆ ' '              
2

i

lit

ikr
ik rs

p

S

ikZ e
E E r O dS e

r

− −
 =  r r

r r
= p (2.16) 

Let the vector ( )ˆ
îk k= −r r , the above equation is expressed as 

( ) ( ) ' 30 ' '                      
2 lit

ikr
i r

p
S

ikZ e
E k O r e d r

r

− −


k
= (2.17) 

We can see that the scattering field ( )pE k  collected in the wavenumber domain is 

the 3D Fourier transform form of the objective function ( )'O r  . Therefore, after 

obtaining the scattering field ( )pE k , the estimation ( )'O r  of the objective function 

( )'O r   is obtained through the inverse Fourier transform. And 

ˆ ˆ ˆ ˆˆ ˆ, ' ' ' 'x y zk xk yk zk r xx yy zz= + + = + +  is substituted： 

( )
( )

( ) ( ) ( )' ' '

3

0

1 2
ˆ', ', ' , ,     

2

x y zi k x k y k zs

x y zikr

r
O x y z E k e dk dk dk

ikZ e


 



+ +
= 

− p (2.18) 

It is the objective function estimation of ISAR imaging. 

Traditional ISAR imaging is to sample backscattering field ( )s
E   in multi-

frequency and multi-angle. Then the inverse Fourier transform is applied to the 

scattering matrix in wavenumber field to obtain the image. For ISAR image ( ), ,I x y z , 
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we assume that the frequency f  , azimuth    and pitching angle   . Sampling 

matrix of the scattering field is ( ), ,sE k    and /k c= . The imaging formula is 

as follows:  

( ) ( ) 1 1 1, , { , , }                     sI x y z FT FT FT E k  − − −  =   (2.19) 

Since the Fast Fourier Transform (FFT) has to be performed on uniform data, 

interpolation of the scattering field matrix is required. 

2.3.1 Two-dimensional interpolation imaging 

In Figure 2.3, the original electromagnetic field data is obtained by uniform 

sampling in frequency-angle domain. But when it is converted to wavenumber domain, 

it becomes non-uniform data.  

       

(a)                          (b) 

Figure 2.3 2D scattering field sampling. (a) k −   field uniformly sampled (b) 
x yk k−   field 

nonuniform sampling 

The prerequisite of Fourier imaging is that electromagnetic field data is uniform. 

Thus, the traditional interpolation method is to interpolate the scattered field data 

( ),sE k   and divide the uniform grid in the corresponding coordinate x yk k− . Then 

mapping the divided uniform grid back to the field k −  . After interpolation, the 

uniform scattered field ( ),s

x zE k k  is obtained in x yk k−   coordinate system. Then 

FFT imaging is performed.  

The nearest neighbor interpolation, bilinear interpolation and interpolation of 

natural adjacent points are commonly methods to interpolate scattered field data. Their 



Chapter 2 ISAR Imaging Principle 

 15 

 

principle is to estimate the pixel value by using the information weight of the nearby 

points to be interpolated. Principles of three interpolation methods are described below 

[29].  

(1) Nearest neighbor interpolation 

Nearest interpolation is to find the point closest to the unknown point and directly 

assign the value to the interpolated point.  

The coordinates of the four pixels around the interpolation point ( ),S x u y u+ +  are 

supposed as ( ) ( ) ( ) ( ), 1, 1, 1 , 1x y x y x y x y+ + + +、 、 、  respectively. Distances between the 

point S  and the four pixels are 1 2 3 4, , ,d d d d  respectively. Then the pixel values of 

the point S  is shown in the formula:  

( ), ( , )                                     if x u y u f x y+ + = (2.20) 

Where, i   represents the minimum distance under the condition 

/ min( , 1,2,3,4)j ji d d j= = . The result of nearest neighbor interpolation is shown in 

Figure 2.4.  

 

Figure 2.4 Nearest field interpolation 

Nearest neighbor interpolation algorithm is simple and the calculation time is short. 

However, its disadvantages are that the interpolation effect is not ideal and it is easy to 

cause blocking effect and sawtooth phenomenon.  

(2) Bilinear interpolation 

Instead of using only one point value, the principle of bilinear interpolation 

algorithm is to linearly weighted the pixel values of the four points adjacent to the 

unknown pixel points and assign the final value to the point to be 
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interpolated. Compared with the previous method, this method improves the block 

effect to a certain extent. 

The coordinates of the four points around the interpolation point ( ),S x u y u+ +  

are respectively supposed as ( ) ( ) ( ) ( ), 1, 1, 1 , 1x y x y x y x y+ + + +、 、 、  . Then the pixel 

values of the interpolation point are: 

( ) 1 2 3 4, ( , ) ( , +1) ( +1, ) ( +1, +1)      f x u y u m f x y m f x y m f x y m f x y+ + = + + + (2.21) 

In this formula, 1 2 3 4, , ,m m m m  respectively represent the weight coefficients of 

four known points. As shown in the figure below, the pixel values of point A  and point 

B   are calculated by linear weighting of the pixel values of four known points 

respectively. 

 

Figure 2.5 Bilinear Interpolation 

(3) Interpolation of natural adjacent points 

The principle of this method is based on a set of Thiessen polygons. When a new 

data point is added to the data set, the Tyson polygons are modified. And the average 

weight of the adjacent points is used to determine the weight of the points to be 

interpolated. And it is proportional to the target Tyson polygon. At the same time, the 

natural adjacent interpolation method does not extrapolate isolines at the convex 

positions of the data points, such as the contours of the Tyson polygon. 

For 1D case, we use the sphere model to verify the accuracy of the algorithm. 1D 

simulation of three spheres has been considered. The positions are 0m, 2m and 4m 

respectively. The azimuth is 60°. The frequency range is from 9.7 GHz to 10.3 GHz, 

with 128 points. Results are as follows. We can see that the positions of the three spheres 

javascript:;
javascript:;
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are accurate and prominent. 

 

(a)                             (b) 

Figure 2.6 1D FFT imaging. (a) Spheres model, (b) 1D Range result 

For 2D case, aircraft with 10m*4m*0.7m in Figure 2.6 is simulated. Parameters 

are: Frequency range is from 9.7 GHz to 10.3 GHz; azimuth angles are from -1.5° to 

1.5°; and sampling numbers are 128*128. 

The imaging results are shown in Figure 2.7: 

 

(a) 

 

   (b)                         (c) 
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      (d)                         (e) 

Figure 2.7 2D imaging. (a) Aircraft Model, (b) Bilinear interpolation imaging, (c) Direct imaging, 

(d) 1D distance image profile comparison, (e) 1D azimuth image profile comparison 

The running time of FFT imaging is 0.22s, while the running time of direct 

interpolation is 3.46s. The calculation time of fast interpolation is much less than that 

of direct calculation. Both images show characteristics of the aircraft well, but the 

generated images still have many sidelobes. Therefore, adding window function to 

filter the signal. If the signal is directly truncated with rectangular window, frequency 

leakage will occur. Therefore, non-rectangular window is added to improve frequency 

leakage. Generally, hamming window greatly attenuates the image sidelobe, and the 

peak attenuations of the main lobe and the first lobe reach 40dB. The Hamming window 

equation is defined as [30]: 

0 0

2
( ) (1 ) cos( ),    0 n N-1                         

1

n
w n a a

N


= − −   

−
(2.22) 

where,  

0 0.53836a =  

Adding hamming window to the above 2D images. In Figure 2.8, we can see that 

energy reduction and the sidelobe of the image is much less. 
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(a)                           (b) 

      

(c)                            (d) 

Figure 2.8 Image with hamming window. (a) Bilinear interpolation imaging, (b) Direct imaging, (c) 

1D distance image profile comparison, (d) 1D azimuth image profile comparison 

2.3.2 Three-dimensional interpolation imaging 

Compared with the 2D images, 3D images increase the resolution in pitch angle 

and obtain the spatial height information of each scattering center. Similarly, 3D 

electromagnetic field data also needs uniform interpolation, and the interpolation model 

is shown in Figure 2.9: 
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(a)                               (b) 

Figure 2.9 3D scattering field sampling. (a) k  − −   field uniformly sampled (b) 

x y zk k k− −  field nonuniform sampling 

In projection-patch theory, the common 2D image is generated by the projection 

superposition of the 3D image on a certain plane, while the 1D direction is generated 

by the projection superposition of the 2D image on the azimuth. Radon transform is 

used to reduce dimension [31-32], and the formula is: 

                                                projO o d



−
=  (2.23) 

In formula 2.23, 𝜌 is the integral path. In general, radar images contain distance 

direction. In the operation from 2D image to 1D range image, 𝜌 is perpendicular to the 

range direction. And in the dimensionality reduction operation from 3D image to 2D 

image, 𝜌 is perpendicular to the imaging plane. We introduce the 3D discrete radon 

transform: 

1 1 1
° °

0 0 0

( , , ) [ cos(90 ) sin(90 )]           
L M N

proj

l m n

O o l m n m n   
− − −

= = =

= − + − + (2.24) 

Where, ° °[0 180 )  ，  is the dip angle of the image plane. And it is superimposed 

along a straight line 
° °= cos(90 )+ sin(90 )m n  + +  . When 

°=0  , the projected 

image is the most common radar imaging situation, frequency-azimuth scanning 2D 

image. When 
°=90  , the projected image is a frequency-pitch scanning 2D 

image. When 𝜌 takes an arbitrary value, it means that vertical and distance scans follow 

this direction. Therefore, we obtain 2D images under different poses through the 
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projection of 3D images on different planes.  

In order to verify the feasibility of ISAR 3D imaging technology based on Fourier 

transform, we conduct a simulation experiment.  Aircraft is 3m*1.1m*0.2m, frequency 

center is 10 GHz, the bandwidth is 1.5 GHz, the azimuth sampling range is -4.31° to 

4.31°, the elevation angle range is 80.69° to 89.31°, and the total number of samples is 

60*60*60. Figure 2.10 is the results of interpolation imaging. And Figure 2.11 is the 

results of direct imaging. 

 

 

(a)                          (b) 

 

(c)                           (d) 

Figure 2.10 3D interpolation imaging. (a) 3D spatial imaging, (b) X-Y plane projection, (c) X-Z 

plane projection, (d) Z-Y plane project 
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(a)                              (b) 

  

(c)                              (d) 

Figure 2.11 3D direct imaging. (a) 3D spatial imaging, (b) X-Y plane projection, (c) X-Z plane 

projection, (d) Z-Y plane projection 

Both methods accurately reconstruct the plane's 3D structure. The difference is 

that the time of Fourier rapid imaging is 351.77s less than that of direct imaging and it 

improves calculation speed. 

2.4 Conclusion 

This chapter describes the principle of radar imaging first, and deduces the formula 

of azimuth resolution and range resolution. Then, the scattering field formula is derived 

by PO method. The relation between scattering field and 3D target imaging function is 

deduced. The interpolation method is introduced to realize the conversion from non-

uniform data to uniform data. According to the simulation method, the 2D Fourier 

imaging and 3D Fourier imaging of the aircraft model are successfully realized. The 

corresponding direct imaging results are also given for comparison. 



Chapter 3 3D Scattering Center Extraction Based on ESPRIT Algorithm  

 23 

 

Chapter 3  3D Scattering Center Extraction Based on 

ESPRIT Algorithm 

According to high frequency scattering theory, when the target size is very large 

relative to the radar transmitting signal wavelength, the scattering echo of the target is 

equivalent to the coherent synthesis result of multiple independent strong scattering 

sources. These strong scattering sources are usually referred to as scattering 

centers. Radar target recognition is mainly to identify unknown targets by analyzing the 

backscattering field of the target. Extracting the characteristic parameters of these 

scattering centers and establishing a reasonable scattering center model is always a 

research hotspot in the field of radar target reconstruction. 

In general, FFT imaging is a convenient method to obtain target images. Classical 

CLEAN algorithm is used to extract scattering center of the image, and it is 

computationally effective. But the resolution is limited by radar parameters settings like 

bandwidth and center frequency. The scattering centers parameters are determined 

within the Fourier resolution unit. Then various high-resolution algorithms are 

proposed to solve this problem. Among them, MUSIC algorithm and the ESPRIT are 

the most prominent. But MUSIC algorithm requires exhaustive search spectrum and it 

is time consuming. ESPRIT algorithm uses the characteristic structure of 

autocorrelation matrix to obtain the signal eigenvalue. And it extracts scattering center 

locations by phase delay information. Therefore, ESPRIT algorithm does not require a 

search process and is efficient [33]. 

3.1 CLEAN algorithm  

3.1.1 Principle 

In the early 1990s, Ling et al proposed the CLEAN method of ray tracing to extract 

the scattering centers in ISAR images [34] and used the extracted scattering center 

information to reconstruct ISAR images. CLEAN is an iterative deconvolution image 
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processing algorithm with high robustness, as well as a fast greedy search algorithm. 

The deconvolution process of image is the inverse of the convolution process. The 

location and amplitude of the scattering center are extracted from the given convolution 

image. In the mth  iteration, the point with the current highest amplitude is found. Its 

position and amplitude are recorded as ( ),m mx y  and mA  respectively. A new ISAR 

image is obtained by subtracting this point contribution from the current image. Then 

continuing to search for the next peak value. The iterative process is simplified as 

follows: 

( ) ( ) ( )1
,                   

m m

R R m m mI I A h x x y y
+
= − − − (3.1) 

Where, 
( )m

RI  is the image at mth  iteration, and   is the parameter controlling 

the stability of iteration and 0 1   [35]. In the process of iteration, the energy of 

the original image has been decaying so as to ensure good convergence. There are three 

common convergence criteria for iteration: 

(1) The ratio of the remaining image energy to the original image is less than a 

certain value. The value usually is 10%. 

(2) The number of scattering centers reaches the theoretical maximum estimation. 

(3) The amplitude of the scattering center is lower than the theoretical minimum. 

We end up with a series of scattering centers ( ) ( ) ( )( )1 1 1 2 2 2, , , ,..., ,M M MA x z A x z A x z  

as an equivalent model to the target. To some extent, the number of scattering centers 

represents the sparsity of the ISAR images.  

3.1.2 Results 

F35 aircraft model is simulated. Parameters are: Frequency is from 9.5 GHz to 

10.5 GHz; azimuth angle is from -2.87° to 2.87°; and sampling numbers are 128*128. 

In Figure 3.1, taking 90%, 70% and 50% energy to reconstruct the image respectively. 
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(a)                              (b) 

          

(c)                               (d) 

Figure 3.1 CLEAN image. (a) FFT Image, (b) 90% energy reconstruction, (c) 70% energy 

reconstruction, (d) 50% energy reconstruction 

We can see the main features of the aircraft target have been preserved. But the 

CLEAN algorithm still requires FFT image as input, this algorithm is affected by image 

resolution. And the ray tracing method is not applicable to the signal collected by the 

frequency conversion radar. Therefore, the super-resolution algorithm based on 

ESPRIT is proposed. 

3.2 Three-dimensional ESPRIT algorithm 

3.2.1 Three-dimensional signal model 

In high frequency, the target backward electromagnetic field information is 
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equivalent to the information sum of N  scattering centers [36]. When the transmitted 

incident wave is incident on the target at the frequency nf , the echo signal is defined 

as [37]: 

k

1

( ) exp( 2 ) ( )                         
N

n k

k

X n r j f t w n
=

= + (3.2) 

The initial frequency of transmission wave is 0f , the frequency step is f  and 

there are N  frequencies. Then the echo signal is expressed as: 

k 0

1

k 0

1

( ) exp( 2 ( ) ) ( )

         [ exp( 2 ( ) )]exp( 2 ) ( )               

N

k

k

N

k k

k

X n r j f n f t w n

r j f t j n ft w n



 

=

=

= +  +

=  +




(3.3) 

Let kB   replaces k 0exp( 2 )kA j f t   and kP   replaces exp( 2 )kj n ft   . We 

get the general form of signal:  

k

1

( )                                   
N

k

k

X n B P w PB w
=

= + = + (3.4) 

Where,  1 2x  x  ... xNsX =  is the array matrix receiving matrix, 

   1 2  ... 1 exp(2 ) ... exp(2 ( 1) )Ns k s kP p p p ft N ft= =   −   and  1 2 s ... 
T

NB b b b=  are 

the signal data matrix.  1 2 s ... 
T

Nw w w w=  is the noise matrix. 

For the 3D situation, the target motion is decomposed into three mutually 

orthogonal dimensions. The coordinate of the kth   scattering center is set as 

k k k( , , )x y z .   When the incident frequency is f , the array element echo is stated as: 

1

4
( , , ) exp( ( cos cos sin sin sin )) ( )     

N

k k k k

k

X f A j f x y z w n
c

      
=


= + + + (3.5) 

kA   represents reflection parameter, cos cos sin sin sink k k kd x y z    = + +  

represents distance between scattering center and the origin,   represents azimuth 

angle,   means pitching angle, and ( )w n  means zero-mean Gaussian white noise. 

Since the data under all attitude angles cannot be processed, the data need to be 
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discretized in three directions first. The frequency sampling point is fN  , then 

1 0 1 1[   ... ]
fn Nf f f f −=  . The number of azimuth sampling is N  , then 

2 0 1 1[   ... ]n N
    −= . The number of pitch angles is N , then 3 0 1 1[   ... ]n N

    −= . 

After discretely sampling, data is transformed to cartesian coordinate system for 

data reconstruction. The discrete non-uniform data is transformed into uniform data by 

interpolation method described in chapter 2 in wavenumber field. As shown in Figure 

3.2: 

 

Figure 3.2 Reformatting radar data 

After data resampling and uniform interpolation, the signal becomes: 

1 21 2 3 3 1 2 3

1

4
( , , ) exp( ( )) ( , , )            

N
x y z

k n k n k n k

k

X n n n A j f x f y f z w n n n
c=


= + + + (3.6) 

where, 

1 2 3cos cos sin sin sinx y z

n n nf f f f f f    = = =， ，
 

3.2.2 Three-dimensional ESPRIT method based on spatial smoothing 

High-resolution method focuses on the analysis of the signal autocorrelation 

matrix. When the autocorrelation matrix is full rank, the scattering centers are separated 

accurately. Spatial smoothing method is used to eliminate the influence between 

different scattering centers. And increasing the number of observations does not affect 

the rank. The basic form of spatial smoothing method is as follows [38-39]: 
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Figure 3.3 1D spatial smoothing method 

(1)  x(2)       ...      x(N-L+1)

(2)  x(3)       ...      x(N-L+2)

   .        .         .                       

   .        .                .         

( )  ( 1)     ...     x(N)

P

x

x

Y

x L x L

 
 
 
 =
 
 
 + 

            (3.7) 

Where, L   represents the size of spatial smoothing window. This matrix is 

obtained by moving 1N L− +   windows over the original signal X  . In general, the 

length of L  is from / 2N   to 2 / 3N  . By the spatial smoothing method, the 

autocorrelation matrix of the signal is obtained: 

1
( )                                      H H

P P P

obs

R E Y Y Y Y
N

=  =  (3.8) 

The eigenvectors of the autocorrelation matrix are divided into signal subspace 

corresponding to large eigenvalues and noise subspace corresponding to small 

eigenvalues. The ( 1)L N L − +  order autocorrelation matrix is expressed as: 

2 2

s         s

H H H

P P p s s n nR S W AR A I E E E E = + = + = + (3.9) 

The rank of the signal subspace [40] will have N  non-zero eigenvalues. The last 

1L −  row of matrix Y  is set as 1Y  , and the first 1L −   row of matrix Y  is set as 

2Y . Then there is a phase difference between two submatrices. As shown in Figure 3.4, 

1Y  and 2Y  have the following relationship: 

2 1                                     Y Y= (3.10) 

where, 

1 2[exp( 2 ) exp( 2 ) ... exp( 2 )]Ndiag j ft j ft j ft =   
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Figure 3.4 Subarray phase difference 

This formula reflects the rotation invariance between the array flow patterns of 

two subarrays. Because { } { }sspan E span Y=  , there is only a unique non-singular 

matrix T . We can get: 

1 1

2 2

{                                            
s

s

E YT

E Y T

=

=
(3.11) 

Therefore, 2 1s sE E =  is obtained, and we deduce that 1 2s sE E +=  [41]. The 

diagonal element of   is set as   , thus the location of 1D scattering center is 

deduced according to the following formula: 

( )4
exp( )                                       x

n nj f x
c



 = (3.12) 

When extending to 3D situation, it needs to consider smoothing direction sequence 

and scattering centers coordinates pairing. And the rest is consistent with the 1D 

method. According to the research in literature [42], there are three the scanning 

sequence methods 1 2 3{1,2,3}, {2,3,1}, {3,1,2}ord ord ord= = =  . As shown in Figure 

3.5. 

 

Figure 3.5 3D space smoothing method 
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The following is the Hankel matrix for spatial smoothing along the X-axis [43-44], 

and it is the same methods in other directions. 

1 2 1

2 3 2

1

         ...      

         ...      

   .        .         .                         

   .        .                .         

       ...          

x x x

N L

x x x

N L

x

x x x

L L N

Y Y Y

Y Y Y

Y

Y Y Y

− +

− +

+

 
 
 
 =
 
 
 
  

         (3.13) 

where, 

m

y (m,1)   y (m,2)      ...           y (m,T-P+1)

y (m,2)   y (m,3)       ...          y (m,T-P+2)

   .                  .         .

   .                  .                .         

y (m,P)   y (m,P+1

x x x

x x x

x

x x

Y =

)    ...          y (m,T)x

 
 
 
 
 
 
 
   

D(m,1,k)   D(m,2,k)        ...          D(m,R-Q+1,k) 

D(m,2,k)   D(m,3,k)        ...          D(m,R-Q+2,k)

( , )    .                  .                .

   .                  .                       .

xy m k =

         

D(m,Q,k)   D(m,Q,k)          ...          D(m,R,k)

 
 
 
 
 
 
    

Therefore, three scanning matrices are obtained by scanning the rearranged signals 

in different order. The coordinates information of hyperspace scattering center in each 

dimension are obtained successfully. The calculation formula of scanning matrix is as 

follows: 

( ) ( )    1,2,3                             ordk ordk

ordk s sF V V k+= = (3.14) 

Because we need to match the 3D coordinates, the diagonalization matrix F  is 

derived through the linear combination of the three matrices. The unique non-singular 

matrix T  is obtained through the diagonalization transformation: 

31 2 ( )( ) ( ) 1

1 2 3                     
ordord ordF a F a F a F T DT−= + + = (3.15) 

where, 

1 2 3 1a a a+ + =
 

Therefore, we can get 
1k kord ord

TF T −=   . The diagonal element of 
kord   is 

javascript:;
javascript:;
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also set as 
1..{ }kord

n n N =
. Locations are estimated by: 

1

2

3

( )

( )

( )

4
exp( )

4
exp( )                                    

4
exp( )

ordx

n n

ordy

n n

ordz

n n

j f x
c

j f y
c

j f z
c








 =


 =


 =

(3.16) 

Locations can’t distinguish the scattering center well in complex model. It needs 

to add amplitude information to assist judgment. The least square method is used to 

estimate the amplitude of scattering centers. The calculation formula is [45]: 

1( )                                                   H HA G G G E−= (3.17) 

where, 

1

2

exp( 4 ( ) / )

exp( 4 ( ) / )
( )

              ...

exp( 4 ( ) / )

1,2,...,

i

i

i

b i

jf k r c

jf k r c
G r

jf k r c

i m

−  
 

− 
 =
 
 

−  

=  

3.2.3 Sources number estimation 

When the number of estimated sources is equal to the number of scattering centers, 

the performance of the algorithm is in the best state. The information theory methods 

that the Akaike Information Criterion (AIC) [46-48] and the Minimum Description 

Length (MDL) [49-50] are the classical algorithms in source estimation. The principle 

is that signal source numbers are calculated by examining the similarity of small 

eigenvalues. The information theory method based on AIC and MDL criteria [51] 

combines the logarithmic likelihood function composed of arithmetic and geometric 

mean of eigenvalues and different penalty functions and gives an estimate of the 

number of sources by minimizing this combination. 

The specific operation is as follows. We suppose that signal ( )X n  consists of m  

complex sinusoids plus white noise and its length is M . The maximum delay of its 

autocorrelation function is set as 1P −  . The autocorrelation matrix of its p p
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dimension has P  characteristic values and it arranges in order 
1 2 ... p     . 

The equation of the AIC is expressed as: 

     
( )

( ) 2 ( ) ln[ ] (2 )             
( )

g m
AIC m N P m m P m

a m
= − + − (3.18) 

The equation of the MDL is expressed as: 

( ) 1
( ) ( ) ln[ ] (2 ) ln                  

( ) 2

g m
MDL m N P m m P m N

a m
= − + − (3.19) 

where, 

1

1

1

( )

1
( )

p
p i

i
i m

p

i

i m

g m

a m
p m





−

= +

= +

= 

=
−


 

In formula 3.18 and formula 3.19, when i   increases from 0 to 1P −  , m 

corresponding to minimum AIC(m) and minimum MDL(m) is the optimal number of 

signal source. The first term of the formula is obtained directly from the logarithmic 

likelihood function, and the second term is the penalty factor. 

However, direct use of AIC and MDL criteria to estimate the number of sources is 

prone to overestimation, and the performance of conductance estimation is degraded. 

According to literature [52], SSAIC and SSMDL methods based on spatial smoothing 

method are obtained. They improve the probability of correct estimation. Formulas are 

as follows: 
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(3.20) 

Where, k   represents scattering center estimation, L
M   represents the number 

of eigenvalues,    represents the eigenvalue and N   represents sample number of 

quick beats. 
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3.2.4 Results 

In this section, we use extensive models to analysis algorithm and all of them are 

simulated by full-wave algorithm. 1D simulation of three spheres has been considered. 

The positions are 0m, 5m and 13m respectively. The azimuth is 60°. The frequency 

range is from 9.7 GHz to 10.3 GHz, with 128 points.  

      

(a)                                 (b) 

   

(c)                                 (d) 

Figure 3.6 One dimension on three spheres. (a) Spheres model, (b) When SNR=30, the location of 

scattering points, (c) Judged source number, (d) RMSE under different SNR 

Figure 3.6(b) shows the scattering centers locations extracted by IFFT and ESPRIT 

methods, but ESPRIT algorithm is relatively more accurate. In Figure 3.6(c), the x  

coordinate that corresponds to the minimum of the function is the optimal scattering 

number and 3x = . Both SSAIC and SSMDL get accurate estimation. As shown in 

Figure 3.6(d), during the change of SNR from 0 to 50, RMSE of ESPRIT tends to 0 

faster. ESPRIT has robustness to noise. 
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For 2D case, aircraft with 10m*10m*1m is simulated. Parameters are: Frequency 

range is from 9.7 GHz to 10.3 GHz; azimuth angles are from -1.5° to 1.5°; sampling 

points are 128*128. 

 

 

(a) 

   

(b)                                 (c) 

Figure 3.7 Estimation of aircraft model, (a) Aircraft model, (b) Compared scatters extracted by 

ESPRIT with image by Fourier Transform, (c) 2D locations extracted by ESPRIT with amplitude 

In Figure 3.7(b), the size of circle means amplitude. ESPRIT method performs 

well on extracting scattering centers of aircraft in Figure 3.7(c). Fourier radar image 

exists side-lobes, and ESPRIT method gets more detailed features. 

For a scale reduced model of the aircraft is simulated in 3D case. Parameters are: 

Frequency range is from 9.5 GHz to 10.5 GHz; azimuth angles are from -2.87° to 2.87°; 

elevations are from 82.13° to 87.87°; Sampling points are 30*30*30. Wherein, the 

Radon transform is used to transform 3D image to the X-Y plane, X-Z plane and Y-Z 

plane.  
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(a)                               (b) 

 

(c)                                (d) 

Figure 3.8 Scattering center estimation of 3D aircraft model, a) X-Y plane projection, b) X-Z plane 

projection, c) Z-Y plane projection, d)3D locations extracted by ESPRIT with amplitude 

Figure 3.8 shows the resolution of 3D Fourier image is reduced due to the 

bandwidth and it can’t well indicate the model features. 3D-ESPRIT method is not 

affected by the resolution, and the scattering field information is clearly expressed after 

the amplitude information added. 

Thent we compare the CLEAN method and ESPRIT method. Complex aircraft 

model shows in Figure 3.9 is used to verify the algorithm. The aircraft model is 

7m*6m*1m. Table 3.1 shows the parameters setting in FEKO software. And table 3.2 

shows different results under different resolutions of two methods. When bandwidth is 

2 GHz, the resolution is 0.075m. When bandwidth is 1 GHz, the resolution is 0.15m. 

We use traditional linear FFT method to generate image. Several experiments have 

shown that when the threshold is set as 70% energy of FFT image, the CLEAN 

algorithm works best for this aircraft model. ESPRIT method is used to extract 
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scattering centers and reconstruct image. Results are shown in Table 3.2:  

 

Figure 3.9 Aircraft model 

 

Table 3.1 Parameters.  

Target Parameter Values 

Frequency Center 0f  
10 GHz 

Elevation Angle 80° 

Frequency Samples 128 

Angular Samples 128 

B 9 GHz ~11 GHz Azimuth Angle -5.77°~5.77° 

B 9.5 GHz ~10.5 GHz Azimuth Angle -2.87°~2.87° 

 

Table 3.2 Results under different resolutions 

Method/B B=2 GHz B=1 GHz 

 

 

FFT Image 

  

 

 

CLEAN 
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ESPRIT 

  

 

We can see when the resolution is small enough, both CLEAN algorithm and 

ESPRIT algorithm extract aircraft features well. But when the bandwidth is reduced by 

half, there are many sidelobes around the aircraft target extracted by CLEAN algorithm. 

And it cannot clearly display the aircraft characteristics. However, ESPRIT still 

accurately extract target centers at the same resolution. Therefore, compared with the 

CLEAN algorithm, ESPRIT algorithm is more flexible and suitable for various 

environments of radar targets.  

3.3 Conclusion 

In this chapter, the ESPRIT algorithm is extended from one dimension to three 

dimensions and the simulation results of each dimension are given. The algorithm is 

verified from simple model to complex model, and locations of scattering center are 

accurately extracted. The amplitude of scattering center is calculated by the least square 

method. Comparison results of CLEAN and ESPRIT are also given. It proves ESPRIT 

has the advantages of not being limited by parameters and high stability. 

Simulation results show that the ESPRIT method extracts specific physical 

information for each scattering center. In addition, the electromagnetic characteristics 

of various aspects are easily obtained by changing the parameters. Therefore, scattering 

center model is an effectively method to provide target database. And it is helpful to 

solve the problem of radar database scarcity. 
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Chapter 4  Scattering Image Recognition and 

Matching 

Accurate classification of SAR images is beneficial to obtain military strategic 

advantage. The significance of electromagnetic simulation imaging is to provide a 

flexible and reliable target feature library for recognition system. This chapter uses 

domain matching method and neural network method to identify the simulation datasets. 

To some extent, the spatial distribution of scattering centers represents the attitude 

of the image. The corresponding relationship between scattering centers and the image 

is shown by the domain matching method. Maximum likelihood method and newton 

iteration method [53] are used to estimate the scattering center parameters of the image 

to be recognized. Images are reconstructed according to the matching situation. And the 

similarity criterion is introduced as the discriminant criterion to estimate the similarity 

between SAR image and reconstructed image. This method is more simple and more 

effective than one-to-one matching of scattering centers. 

In recent years, neural networks have made great achievements in image 

recognition. The improved Alex network is used to comprehensively learn the features 

of image generated by ESPRIT. The result shows that the classification rate of the 

simulation aircraft reaches 99.22%. Adding measured data into database, the rate 

reaches 99.39%. Then the corresponding visual interface is constructed to display the 

classification results intuitively. 

4.1 Domain matching method based on AML 

4.1.1 AML algorithm 

Approximate Maximum Likelihood (AML) is a statistical method for estimating 

parameters based on maximum likelihood principle. It was first proposed by the 

German mathematician Gauss in 1821. The detailed algorithms are given. For the unary 

real-valued variable x, the gaussian distribution is defined as: 
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Where, 1 2( , ,..., )T

Nx x x x=  shows N  observations of variable x , and each 

observation is assumed to be extracted independently from the gaussian distribution. 

The mean   and the variance 2  of the distribution are unknown. 

So the joint probability of the data is： 
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Here we use maximum likelihood estimation to calculate the parameters of the 

gaussian distribution. The logarithmic likelihood function is： 
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Substituting the distribution function, and the logarithmic likelihood function 

becomes: 
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The partial derivatives of the likelihood function are shown in follows: 
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The solution of μ is obtained from the first equation: 
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Formula 4.6 is substituted into the second equation, and the solution to 2  is: 
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In general, parameter estimation of the maximum likelihood method generally 
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includes the following steps:  

(1) Finding the likelihood function. Calculating the log-likelihood function of the 

distribution according to the probability density function. 

(2) Finding ( )ln L   and likelihood equation. The logarithmic likelihood function 

takes the derivative of the parameter and the derivative tends to zero: 

( )ln
0    (i=1,2,...,m)                                  

i

L 




=


(4.8) 

(3) Getting the maximum likelihood estimation. Solving the equations and getting 

the estimated value of the parameters: 

^ ^

1 2( , ,..., )     (i=1,2,...,m)                              i i nx x x = (4.9) 

4.1.2 Two-dimensional image to be identified 

This section describes the electromagnetic models and the scattering center 

characteristics of three similar aircrafts, F35, F22 and F16. F35 aircraft is 15.47m 

(length) ×10.7m (width) ×4.57m (height), F22 aircraft is 18.9m×13.56m×5.08m and 

F12 aircraft is 16.47m×9.75m×5.43m. In the simulation imaging, three models are 

scaled in the same proportion. 

In the 2D case, the scattering center model is used to parameterize the 

electromagnetic scattering model. Model as follows [54]: 
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where,  

{ } { , , }  i=1...Nk k k kA x y = =  

We can obtain a large number of simulation images through models in different 

poses, it is very flexible. When the pitching angle is 85° and the azimuth angle is 0°, 

Figure 4.1 shows the 2D simulation image and ESPRIT image of various aircraft. The 

location of the scattering center is a good reflection of the geometry information of each 
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target. Similarly, the relation between the simulation image and ESPRIT image of F35 

model at different rotation angles is given. When the attitude of the target changes, the 

spatial distribution of the scattering center also changes. The results show that ESPRIT 

image has strong correlation with electromagnetic simulation image. And it also shows 

the effectiveness of the established 2D electromagnetic scattering model [55]. 

 

     

(a)                   (b)                    (c)  

Figure 4.1 CAD model. (a)F16 model, (b) F22 model, (c) F35 model 

 

 

(a)                     (b)                   (c) 

Figure 4.2 ESPRIT image. (a)F16 model, (b) F22 model, (c) F35 model 

   

(a)                     (b)                   (c) 

Figure 4.3 FFT Images of F35 at different azimuth angle. (a)0°, (b)90°, (c)150° 
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(a)                     (b)                   (c) 

Figure 4.4 ESPRIT images of F35 at different azimuth angles. (a)0°, (b)90°, (c)150° 

4.1.3 Recognition based on domain matching 

Similar to formula 3.2, the measured signal received is equivalent to the sum of 

target signal and noise signal (such as sensor noise). And the noise is gaussian white 

noise. The measurement signal expression is as follows [56]:  

( , ) ( , ; ) ( , )                          D f E f N f  =  + (4.11) 

Fourier transform is used to transform the measurement signal into the image 

domain: 

( ( , )) ( ( , ; ) ( , )) 

( , ) ( , ; ) ( , )                                  

FFT D f FFT E f N f

D x y E x y N x y

  =  +

=  +
(4.12) 

Since the Fourier transform is a linear operation, ( , )N x y   also satisfies the 

properties of gaussian white noise. Therefore, the values of parameter   are estimated 

by ( , ) ( , ; )D x y E x y−  .  

AML method provides a model parameter estimation method based on observed 

data. We use this method to estimate scattering center parameters, such as position and 

amplitude [57-60]. For real SAR data ( , )B f  , the parameter estimation problem of 

the attributed scattering center contained in SAR data is expressed as:   

†

arg min ( )

( ) [ ( )] [ ( )]                        

AML

H

J

J D E D E

 = 

 = −  − 
(4.13) 

Where, D  , ( )E    and N  are vectors obtained by stacking the columns of
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( , )D x y  , ( , )N x y   and ( , ; )E x y   [56]. cov( )  N  and 
†()  mean Moore-Penrose 

pseudo inverse. Because the simulation image generated by the target is composed of 

multiple scattering centers, the scale of attribute parameters to be estimated is large and 

the calculation is complicated. We consider dividing the image into multiple small 

regions. It divides the big problem into small problems and reduces the calculation. 

Watershed algorithm [61] is a classical image region segmentation method. And it 

uses mathematical morphology and topology theory. The principle is to connect the 

pixels with similar positions and similar gray values to form a closed region by 

calculating the gray similarity between adjacent pixels. Thus, this method is used to 

decompose the image to be recognized into several small regions R . Each small region 

contains a very small number of scattering centers. Curve fitting is carried out for each 

region, and the local minimum value is taken at the convergence point of the function 

to achieve maximum likelihood solution for a single scattering center. 

†

arg min ( )

( ) [ ( )] [ ( )]                     

AML

H

J

J R E R E

 = 

 = −  − 
(4.14) 

The domain matching method is used to initially correlate the attribute scattering 

centers of the recognized samples with ESPRIT images. The scattering center extracted 

from the image is the center of the circle, and setting an effective radius R . When the 

scattering center in ESPRIT image is located inside the circle, the match is judged to 

be successful. Then the successfully matched points are extracted to reconstruct the 

image and it is beneficial to standardize the datasets. The flow chart of domain matching 

is shown in Figure 4.5: 

 

Figure 4.5 Flow chart of domain matching 
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The simulation image of F35 is set as the image to be recognized, and the similarity 

is compared with ESPRIT image of F35, F22 and F16 respectively. Figure 4.6 shows 

the matching results under different radii. 

 

     (a) 

 

  (b)                        (c) 

 

(d)                        (e) 

Figure 4.6 The coincidence of F35 simulation image and F35 ESPRIT image under different radii. 

(a)2D simulation image of F35, (b) R=0.2, (c) R=0.3, (d) R=0.4, (e) R=0.5 
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The overlapping scattering centers are extracted and the images are reconstructed. 

          

(a)                              (b) 

           

(c)                              (d) 

Figure 4.7 Reconstructed image of F35. (a) R=0.2, (b) R=0.3, (c) R=0.4, (d) R=0.5 

The figure below shows when 0.3R m= , the radius matching results of F35 image 

with other ESPRIT images:  

 

  (a)                         (b) 

Figure 4.8 The coincidence of F35 simulation image and the ESPRIT images of other aircrafts under 
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different radius. (a) F22, (b)F16 

Similarly, using the overlapping scattering centers to reconstruct image: 

      

     (a)                              (b) 

Figure 4.9 The reconstructed images of different aircrafts. (a) F22, (b)F16 

The matching scattering centers of the model reflect the correlation and differences 

between the image to be recognized and the ESPRIT image.  

Under the same parameters, the similarity between reconstructed image and 

electromagnetic image is calculated to achieve the objects classification. The basic 

similarity is the degree of image correlation between the image to be recognized and 

the image reconstructed by the model, and a certain weight is added to the basic 

similarity. Thus, the similarity criterion is constructed to estimate the correlation 

between the image to be recognized and the reconstructed image.  The similarity 

formula is defined as [55]:  
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(4.15) 

Where, 1M  is the number of reconstructed images and 2M  is the number of 

centers extracted from the image. ( , )r RCor I I  [62] calculates the image correlation 

between the two images. 1g   and 2g   are the gray mean values of rI   and RI  

respectively. Similarity evaluation result is shown in Figure 4.10. 
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Figure 4.10 Similarity comparison 

In above figure, the matching results of other ESPRIT images and F35 image have 

low similarity under the same radius. The scattering centers cannot be matched. 

Therefore, we conclude that the domain matching methods provide a basis for correctly 

distinguishing different types of targets. In addition, the matching value  

basically increases with the radius. But it is necessary to choose a reasonable radius. If 

the matching radius increases infinitely, scattering centers of any model will be in the 

effective radius neighborhood. It will increase difficulty to distinguish targets.  

4.1.4 Conclusion  

In this section, the field matching method is used to match the ESPRIT image and 

the electromagnetic image to be identified. The principle is to extract as much useful 

information as possible from the model to reconstruct the target. And it makes full use 

of the correlation between scattering center distribution and model to identify the 

target. Although the method is not precise enough, compared with the one-to-one 

matching method between scattering centers, the calculation is simple and the matching 

efficiency is greatly improved. And the validity of ESPRIT method in target recognition 

is also proved. 

4.2 Neural network recognition 

Recently, deep learning has been widely concerned by the academic community 

in image classification field. It uses network structure to automatically extract rich 
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feature information layer by layer and effectively solves the problem of difficult feature 

extraction before. 

In this section, simulation data and measured data are processed by ESPRIT 

method. And we take the ESPRIT image as input of the improved ALEX network. The 

importance of ESPRIT method in network identification is highlighted. 

4.2.1 Basic structure of neural network 

Neural networks have the following basic structures: 

(1) Input layer 

The input of CNN network is the 2D image, and image features are gradually 

extracted from low-level to high-level. 

(2) Convolution layer 

The function of the convolution layer is to extract image features. Adopting 

different convolution kernel to convolved with objects, and it will extract different 

feature map with different features. In the process of convolution operation, parameters 

such as stride and convolution kernel size need to be set. One of the properties of the 

convolution kernel is locality. It only focuses on local features, and the degree of local 

depends on the size of the convolution kernel. 

The convolution input layer of multiple 2D SAR images is assumed as 
k wx R  . 

h   and w   represent the height and width of the images respectively. The specific 

calculation formula is as follows: 

' ' ' ',
1 1

( )                                   
h w

iji j i i j j
i j

y f b W x
+ +

= =

= +  (4.16) 

Where, the input is x   and parameter W   is the weight in each layer, b  

represents the bias term, and ( )f  is a nonlinear activation function. Sigmoid function 

is used and its value range is 0,1. The formula is as follows: 

1
( )                                                

1 x
f x

e−
=

+
(4.17) 

(3) Pooling layer 
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When pooling is applied to the convolution layer, the output of feature vectors will 

be reduced. The result is improved and the over-fitting state is not easy to 

occur. Commonly filter size is 3*3, 2*2, and the stride are 2. Filter size should not be 

too large, otherwise it will lead to information loss. There are two common pooling 

modes, maximum pooling and average pooling. Maximum pooling selects the 

maximum value from all pixels [63]. The maximum pooling function is: 

' ' ' ',1 ,1
max                                 

i j i i j ji k j w
y x

+ +   
= (4.18) 

Average pooling is taking the average of pixel values. The mean pooling function 

is: 

' ' ' ',
1 ,1

                                  
i j i i j j

i k j w

y avg x
+ +

   

= (4.19) 

(4) Full connection layer 

After the input image is convolved and pooled, the original data is mapped to a 

high-dimensional feature space, and more representative features are extracted. The 

obtained 2D feature pattern is drawn into a vector and it is fully connected with the 

output layer [63]. 

(5) Output layer 

The main function of this layer is classification. The feature vector of the whole 

connection layer is classified and identified as the input of the output layer. The output 

value of this layer represents the probability of each category. There are some 

commonly classifiers. Such as Softmax classifier, SVM classifier, decision tree 

classifier, and random forest classifier. 

4.2.2 The improved ALEX network 

As shown in the Figure 4.11, the depth of Alex network is 8-layer structure. The 

first 5 layers are convolution layers and the last 3 layers are fully connected 

layers. There are 60 million learning parameters and 650,000 neurons [64].  It is an 

order of magnitude larger than any previous CNN training. Because ESPRIT image 

features are sparse, we use a small number of convolution layers to extract information. 

And the architecture of our model is shown in Table 4.1 
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Figure 4.11 The structure of Alex network 

 

Table 4.1 Each architecture of our model 

Input Input code 128*128*1 

Firstly Layer 

TranConv1 4*4 

Relu True 

MaxPooling 3*3 

BatchNormalization 

Secondly Layer 

TranConv2 4*4 

Relu True 

BatchNormalization 

Thirdly Layer 

Dropout 0.5 

Linear 

Relu True 

Fourth Layer 

Dropout 0.5 

Linear 

Relu True 

Fifth Layer Linear 

The steps are as follows. We build five aircraft models by FEKO software. And 

parameters are: Incident frequency range is from 9.5 GHz to 10.5 GHz; the pitch angle 

is 80 degrees; sampling numbers are 128*128. And an image is generated every 2 

degrees of azimuth from 0 degree to 180 degrees. Then using data enhancement 
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methods to expand the original data samples and create more data. We use rotation, 

stretching, cutting and other methods to expand the original data samples, so as to have 

a better performance in the training process. 

We put data into the improved ALEX network for training [65].  The learning rate 

is set as 0.003 and dropout is 0.5. The software system adopts the Pytorch experimental 

framework. Based on GPU1080TI hardware environment. There are 1915 images in 

the datasets, of which 80 percent of the data samples (1532 images) are used for training, 

and 20 percent (383 images) for testing, with a consistent number for each category. 

 

Figure 4.12 The result of Alex network 

 

Table 4.2 The recognition result of each aircraft model 

Classes/ 

Numbers      
Accuracy 

 

75 0 0 0 2 97.40% 

 
0 76 0 1 0 98.70% 

 
0 0 76 0 0 100% 

 
0 0 0 77 0 100% 

 
0 0 0 0 77 100% 

Average Accuracy 99.22% 

Accuracy and loss degree are used to evaluate the convergence of the model. In 



Chapter 4 Scattering Image Recognition and Matching 

 52 

 

Figure 4.12, training accuracy basically remains unchanged at the 240th period. 

Therefore, we deduce that the network achieves a stable state and the final accuracy is 

99.22%. Table 4.2 shows the recognition rate of each aircraft model. This highlights 

that the database generated by ESPRIT is well classified in our network. 

To test the effectiveness of recognition under real conditions, we obtain the 

measured data of aircraft model 3 in the microwave anechoic chamber. Parameters are: 

Incident frequency range is 9 GHz to 10 GHz; the pitch angle is 10 degrees; sampling 

numbers are 100*100. And an image is generated every 2 degrees of azimuth from 0 

degree to 360 degrees. Using ESPTIR method to extract scattering centers and also 

using same data enhancement methods to process ESPRIT images, then we get 710 real 

images. And part of the measured images are shown below: 

 

Table 4.3 Measured data processing results of aircraft 3 

FFT Image ESPRIT Image Expanded Image 

   

 

From Table 4.3, we can see FFT image of measured data contains a lot of noise 

and features are not prominent. These unnecessary features will affect the training 

accuracy of the network. For comparison, the ESPRIT algorithm only extracts the 

important characteristics of the target, and each scattering center represents unique 

physical characteristics of the object, such as azimuth information. The effect of 

sidelobe on the network is greatly reduced. Then the measured data and the simulation 

data are put together as the network training set, and our network processing result is:   
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Figure 4.13 The result of mixed data in Alex network 

 

Table 4.4 The recognition rate of mixed data 

Classes/ 

Numbers      
Accuracy 

 

76 0 0 1 0 98.70% 

 
0 76 0 1 0 98.70% 

 
0 0 76 0 0 100% 

 
0 1 0 218 0 99.54% 

 
0 0 0 0 77 100% 

Average Accuracy 99.39% 

Mixed data means adding measured data to the original datasets. The results show 

accuracy of the network is 99.39%. It means that ESPRIT reduces the impact of noise 

in the real environment and realizes high precision extraction of target scattering centers 

characteristics. And it also indicates that the datasets generated by ESPRIT have the 

potential to be effectively identified in the real environment. 

4.2.3 Development of aircraft target classification system 

After obtaining the classification results of five types of aircraft, a visual interface 

is built to show the classification result of neural network more intuitively. This section 
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uses PyQt language to develop the system interface. The visual interface includes four 

main parts. Image import button, image display interface, classification button and 

result display. Importing image of any of the five targets, and this system accurately 

displays its category. 

The visualization result is displayed as follows： 

 

Figure 4.14 The classification system 

4.3 Conclusion 

This chapter mainly introduces the classification methods. The field matching 

method based on AML is introduced first. According to the physical characteristics of 

the scattering center, the ESPRIT image is matched with the 2D image to be recognized 

in different radii. We use the similarity criterion to judge the correlation between the 

electromagnetic image and the reconstructed image. In addition, because neural 

network can extract scattering image features automatically, the datasets of five 

aircrafts generated by ESPRIT are classified by the improved Alex network. And 

corresponding spatial target classification visual interface is constructed to better 

display the classification results. 

javascript:;
javascript:;
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Chapter 5  Summary and Prospect 

5.1 Summary 

Accurate reconstruction and target recognition are always the focus of radar 

research. This thesis first studies the reconstruction of high-resolution image. The high-

resolution algorithm is compared with traditional imaging algorithm, and the 

corresponding database is provided for subsequent target recognition. Next the domain 

matching method and the improved ALEX network are used for electromagnetic image 

classification and recognition. Final the visual interface is constructed to clearly display 

the target classification results. 

From theoretical derivation to simulation practice, the main contributions of this 

thesis are as follows: 

The electromagnetic field data is calculated by PO method, and the 3D image is 

obtained by Fourier transform method. Because the FFT imaging requires the beam 

domain data to be uniform data, the original electromagnetic field data are interpolated 

to achieve the 3D imaging. The results show that FFT method is faster than the direct 

imaging method. 

For the scattering center reconstruction, the CLEAN algorithm is introduced to 

extract the scattering center first. However, due to the limitation of resolution 

parameters, the reconstructed image is distorted to some extent. Thus, the super-

resolution ESPRIT algorithm is proposed. And the comparison results with CLEAN 

algorithm and FFT algorithm are given. This method is of great significance to the 

extraction of scattering centers of complex targets and is suitable for most scattering 

mechanisms. It also provides a database for target identification.  

For target recognition, every scattering center contains rich physical information. 

And it represents the change information of objects. Therefore, the similarity between 

the electromagnetic image to be recognized and ESPTIT image is obtained by using the 

domain matching method. Next, the database processed by ESPRIT method have high 
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accuracy in the improved ALEX network. This shows that ESPRIT plays a positive role 

in target recognition. Final the classification visual boundary is created. 

 

5.2 Prospect 

Electromagnetic imaging technology is a combination of electromagnetic 

simulation and radar imaging technology. Through the combination of electromagnetic 

calculation and signal processing, high precision image is obtained. Based on the 

research results of this thesis, the future work is carried out as follows: 

Firstly, although the 3D ESPRIT algorithm realizes the 3D reconstruction of 

complex objects in space, it has a large amount of computation and slow 

speed. Therefore, a fast parameter estimation algorithm for scattering center model will 

be a key research direction in this field. 

Secondly, the maximum likelihood method and newton iteration method are used 

to estimate scattering centers information, and the calculation are simple and fast. 

However, due to the influence of noise, the main part of the image can’t be accurately 

extracted. This has a negative impact on subsequent target matching. Therefore, the 

accurate estimation of scattering center parameters needs further research. 

Lastly, there are still some problems such as poor classification results in the neural 

network recognition. Radar image recognition methods mostly come from optical 

image recognition methods. We can consider the combination of network and the 

physical characteristics of radar image, and it will improve the identification accuracy. 
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