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In our increasingly digitized world, the value of data is clear and proved, and many
solutions and businesses have been developed to harness it. In particular, personal
data (such as health-related data) is highly valuable, but it is also sensitive and
could harm the owners if misused.

In this context, data marketplaces could enhance the circulation of data and enable
new businesses and solutions. However, in the case of personal data, marketplaces
would necessarily have to comply with existing regulations, and they would also need
to make users privacy protection a priority. In particular, privacy protection has
been only partially accomplished by existing datamarkets, as they themselves can
gather information about the individuals connected with the datasets they handle.

In this thesis is presented an architecture proposal for KRAKEN, a new datamarket
that provides privacy guarantees at every step in the data exchange and analyt-
ics pipeline. This is accomplished through the use of multi-party computation,
blockchain and self-sovereign identity technologies. In addition to that, the thesis
presents also a privacy analysis of the entire system.

The analysis indicated that KRAKEN is safe from possible data disclosures to
the buyers. On the other hand, some potential threats regarding the disclosure
of data to the datamarket itself were identified, although posing a low-priority risk,
given their rare chance of occurrence. Moreover the author of this thesis elaborated
remarks on the decentralisation of the architecture and possible improvements to
increase the security. These improvements are accompanied by the solutions iden-
tified in the paper that proposes the adoption of a trust measure for the MPC nodes.

The work on the paper and the thesis contributed to the personal growth of the au-
thor, specifically improving his knowledge of cryptography by learning new schemes
such as group signatures, zero knowledge proof of knowledge and multi-party com-
putation. He improved his skills in writing academic papers and in working in a
team of researchers leading a research area.
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1 Introduction

The volume of digital data collected worldwide offers unprecedented business op-

portunities at every level of the data science pipeline: from data collection, to pre-

processing, until analysis and interpretation. There is in particular an increasing

attention for personal data, due to the widespread public adoption of smartphones

and fitness trackers [1] [2] [3].

New health-related data sources are not limited to fitness trackers, but can also

be simple smartphones, whose role has been central for the tracking of COVID-19

cases [4] [5]. Furthermore, advances in machine learning have made possible to infer

medically relevant informations in novel ways. For example, with the possibility

of predicting solid tumors just from blood samples [6] and with the non-invasive

measurement of blood sugar levels, useful for type 2 diabetes patients [7].

Not only can these devices benefit individual users (by providing a history of

health-related recordings), but, when combined together, the data collected from

many of them acquires an entirely new value in itself, this time in the context of

clinical research [8]. However, these opportunities do not come without potential

risks, especially when dealing with highly sensitive datasets, such as medical ones

[9]. In these cases, there is a strong demand for solutions that fully preserve people’s

privacy while also not sacrificing any potential insight that could be gained from the

data collected.

In this direction, solutions have started to emerge in the form of data mar-
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ketplaces. These are online platforms that allow users to monetise the sharing of

datasets of interest, which are typically stored in the cloud. With data marketplaces,

the data collected by entities can be exploited by others instead of being a resource

contributing only to the entities themselves, thus generating value in the world and

creating a new source of revenue. Being privacy a strong concern for medical-related

data, a diverse range of cryptographic protocols is being used by the medical data

marketplaces created so far.

To name some of these datamarkets, we have Medicalchain [10], MyHealthMy-

Data [11], Enveil [12], Wibson [13], and Agora [14]. However, all of these present

some tradeoffs, either on the efficiency side (e.g. by requiring customized encryption

from the marketplace for every single dataset that is processed) or regarding privacy

(e.g. letting the marketplace access the analytics performed on the data).

For example, by leveraging functional encryption, Agora allows data consumers

to carry out calculations on users data without ever getting access to the data itself.

However, the security with regard to the privacy of users against the marketplace

itself is not taken into account.

KRAKEN is a project funded by the European Union that aims to “enable the

sharing, brokerage, and trading of potentially sensitive personal data, by returning

the control of this data to citizens (data providers) throughout the entire data life-

cycle” [15]. The project includes research and development in every aspect needed

for its realisation such as regulations, user experience, system architecture design

and software development.

This thesis presents a privacy preserving architecture proposal for the system

architecture design research area of KRAKEN. The main contributions by the author

of this thesis have been published in the paper: K. Koch, S. Krenn, D. Pellegrino,

and S. Ramacher, “Privacy-preserving analytics for data markets using MPC”, in

"Privacy and Identity Management", M. Friedewald, S. Schiffner, and S. Krenn,



CHAPTER 1. INTRODUCTION 3

Eds., Cham: Springer International Publishing, 2021, pp. 226–246. Specifically, the

contribution of the author influenced every sections of the paper [16] and his main

role consisted in leading the threat modeling and privacy analysis of KRAKEN, i.e.

in systematically assessing the security risks affecting the platform.

Differently from Agora and other earlier marketplaces, the architecture proposed

in this thesis is able to carry out all requested analysis without invasively acquiring

knowledge about users data. The development of this architecture is centered on

three pivotal technologies: multi-party computation (MPC), blockchain and self-

sovereign identity. Multi-party computation is the technology that allows the mar-

ketplace to handle users’ data and perform analytics on them without having access

to the data itself. The blockchain is the component that, together with MPC, pro-

vides decentralisation to the system which is exploited for the decision making. Self

sovereign identity contributes to the privacy of the users, allowing them to demon-

strate their eligibility to purchase access to sensitive datasets without relying on

centralised parties and preserving their privacy by providing the minimum neces-

sary information.

The architecture is followed by a privacy analysis, based on the LINDDUN [17]

methodology, used to evaluate the privacy risks linked to the architecture. "LIND-

DUN is a privacy threat modeling methodology that supports analysts in system-

atically eliciting and mitigating privacy threats in software architectures" [18]. For

this reason it constitutes a suitable candidate to conduct the privacy analysis as the

final purpose of KRAKEN is to preserve privacy.

The rest of the thesis is organized as follows. In chapter 2, the background liter-

ature upon which KRAKEN relies will be discussed. Starting from the basic cryp-

tographic components followed by the concepts of blockchain, self-sovereign identity

and finally of threat modeling technologies, particularly LINDDUN. In chapter 3,

the motivation and the objectives of KRAKEN will be outlined. In chapter 4, the
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architecture of the KRAKEN datamarket will be described in-depth, going through

each component and stakeholder. In chapter 5, the LINDDUN privacy analysis of

KRAKEN will be carried out. Following the construction of the threat tables, the

elicitation, prioritization and finally mitigation of threats will be conducted. In chap-

ter 6 the conclusions will be laid out, summarizing the work done and highlighting

possible future directions.



2 Literature review

In this chapter will be described the literature behind the core components of the

KRAKEN data marketplace architecture [16]. Starting from the basic cryptographic

priors, self-sovereign identity will be discussed, followed by multi-party computation

(perhaps KRAKEN’s main advantage compared to other similar marketplaces) and

finally by LINDDUN privacy analysis.

2.1 Cryptographic building blocks of KRAKEN

The privacy features offered in the KRAKEN architecture depend heavily on cryp-

tography. The main innovative cryptographic mechanisms are three: Multi Party

Computation (MPC), Group signatures, and Zero-knowledge proof of knowledge,

which are described in the following sections.

2.1.1 Group signatures

Using group signatures [19], a member of a group can demonstrate to someone that

a data exchange is happening with a member of the group itself without revealing

the identity of the member. The receiver of a message can use the group’s public key

to verify that the member that sent the message does in fact belong to the group,

but any other information about the member is protected.

Depending on their functionality, many types of group signature schemes have

been implemented [20]. In cases where a large number of signatures has to be veri-
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fied in a short time (e.g. for Vehicle-to-Vehicle communication), a group signature

scheme has been proposed by Kim et al [21].

Figure 2.1: Principles of Group Signatures Scheme [22].

In a typical group signature setting (such as the one in [19]), there are three

parties involved: the group members, the group manager and an external verifier.

The group manager is in charge of the creation of the group (and of its parameters,

e.g. public key), and subsequently for the admission and removal of users from the

group itself (this is done through the manager’s master key).

Group signatures find use in all those settings where verifiers find acceptable

to only get confirmation about a signer’s group identity (with the underlying as-

sumption that, in case of necessity, the group manager could still get to know the

signer’s individual identity). For example, in conceal organizational structures [23],

e.g. a company that allows its employees to carry out procedures on behalf of itself,

knowing that, should an employee misuse this capability, a manager could immedi-

ately find out the personal identity of the culprit. Other applications [24] include

for example electronic voting schemes [25] and auction protocols [26].

In other situations, however, the presence of a centralized manager can be un-

necessary and moreover undesirable from a privacy perspective. For this reason,
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several works have been done to remove the need for a centralized manager [24].

This is also the case for KRAKEN, in which manager examinations are not

needed, and thus public keys are constructed to prevent any party from knowing

their complementary secret keys. This can be accomplished, for example, by setting

the public key of the revocation manager to the hash value of a random string. A

similar approach has also been taken in Intel’s Enhanced Privacy ID (EPID) system

[27].

2.1.2 Zero-knowledge proofs of knowledge

In our daily life experience, we are used to the fact that in order to prove the truth-

fulness of a particular claim, some information must be revealed about the claim

itself. In 1982, Goldwasser, Micali and Rackoff [28] showed that this is indeed not

necessary, by introducing zero-knowledge proofs of knowledge (ZK-PoK). In these

schemes, a prover is able to ascertain to a verifier about possessing a certain infor-

mation, wthout allowing the verifier to learn anything about the information itself.

There are many potential applications for such proofs, going from authentication

systems [29] [30], to voting schemes [31], e-cash, up to nuclear disarmament [32].

To achieve its goal, a ZK-PoK requires interaction between the verifier and the

prover, with the former challenging the latter until the claim of possessing the in-

formation has been indirectly verified. One can explain an interactive ZK-PoK

with a typical example, in which there are Alice and Bob (two friends), and Bob

is color-blind, but Alice is not. Alice has two billiard balls, one red and one green,

indistinguishable from each other apart from their color. Being color-blind, Bob (in

this situation, the verifier) is skeptical that the two balls are in fact distinguishable,

and Alice (the prover) wants to demonstrate him that they indeed are. The proof is

simple: Alice puts the green ball in one of Bob’s hands, and the red ball in his other

hand. Bob then puts his hands behinds his back, and he can decide if switching
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the red ball with the green one, or leaving them both in their original place. He

then brings his hands out, and Alice can say whether he switched the balls or not.

If Alice would be randomly guessing, she would be correct with probability of 0.5.

Therefore, Bob can simply repeat the experiment n times, and if Alice is always

correct, the probability that she would be so just by guessing would be 2�n. After

some iterations (say, 100), with that probability getting very close to zero, Bob will

convince himself of the difference in the two balls color, despite never gaining any

information on how to distinguish the color himself.

Several zero-knowledge proofs that do not require verifier-prover interactions

have also been proposed, such as non-interactive zero-knowledge proofs (NIZK),

zero-knowledge scalable transparent argument of knowledge (zk-STARK) and zero-

knowledge succinct non-interactive arguments of knowledge (zk-SNARK) [33].In par-

ticular, zk-SNARKs are rapidly becoming popular due to their remarkable compu-

tational performance.

The zk-SNARKs are "succinct" due to their briefness (they are small and are

tipically verifiable in a matter of milliseconds), and they are "non-interactive" be-

cause they necessitate the prover to send just one message to the verifier [34]. To

achieve this, a preliminary phase is required, in which a shared reference string is

generated according to pre-determined rules. This is a particularly delicate phase,

and there is ongoing work on how to make it secure without resorting to at least

partly centralized strategies. The zk-SNARK protocol is central in Zcash [35], a

cryptocurrency focusing on a strengthened privacy compared to Bitcoin or other

alternatives.

2.1.3 Secure Multi Party Computation

Let’s consider the famous Millionaire’s Problem, in which two millionaires want to

know, without revealing their net-worth, who is the richest among them. One can
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reframe this as having two numbers, x and y, and wanting to know whether x > y

without disclosing the values of x and y themselves.

The problem was presented and solved (albeit with exponential cost) by An-

drew Yao in 1982 [36], and it is the first example of secure multi-party computation

(MPC). In MPC, several parties contribute to the computation of some predeter-

mined function (in this case, a simple inequality) with the restriction that each node

cannot acquire any knowledge aside from its own input and from the final output

of the function itself. This makes MPC an attractive choice for cases where data

privacy is important.

Figure 2.2: Comparison of ideal and real simulation settings [37].

But what if some of the parties are malicious? To measure the security of MPC,

one can refer to the work of Canetti [38], where the ideal/real paradigm is defined:

this is still today the standard way to define the security of MPC. In practical terms,

one compares two scenarios: an "ideal" one, where the parties involved in the MPC
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send their input to an independent, incorruptible party, and get back an output, and

a "real" one, where no incorruptible independent party exists, and so the parties

need to jointly follow some protocol. If the most harm that an eventual malicious

agent can do to the system in the real scenario is the same that could be done in

the ideal one, the designed protocol is said to be secure. Several technologies have

been developed to implement MPC, such as oblivious transfer, garbled circuits, and

secret-sharing mechanisms (based on Shamir’s algorithm, see Figure 2.3).

Figure 2.3: A sketch of Shamir’s algorithm [39]. The secret S is splitted in n parts

(one for each participant), and a minimum of k parts is required to reconstruct it

(with k < n).
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2.1.3.1 Comparison with Functional Encryption

Functional encryption (FE) is a scheme similar to a public-key encryption scheme,

in which a user having a decryption key can learn only a specific function of the

encrypted data [40]. No other information about the data is leaked in the process.

In the context of the KRAKEN marketplace, this would make FE a good fit for

allowing the users of the platform to carry out privacy-preserving analysis. However,

a limitation of FE schemes is that they require the broker to encrypt every data batch

according to the specific function that will be computed on it. This factor implies

that the marketplace can have access to the content of the datasets provided by the

data providers, and it is the reason why MPC was chosen.

Table 2.1: Comparing MPC and FE [41].

2.2 Blockchain

The first blockchain was developed in 1991 by Haber and Stornetta [42], to address

the problem of trusted digital time stamping. Their work was directly cited by
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Satoshi Nakamoto [43], when the anonymous inventor first outlined the concept of

bitcoin.

A blockchain is a sequence of records, called blocks, which are connected using

cryptographic techniques. Each block contains some data (in the context of digital

currencies, the transaction data, e.g. the two parties involved and the amount), the

cryptographic hash of the block and the one of the previous block. This design nat-

urally provides resistance to data modifications. Additional security is provided by

the fact that blockchains are not centrally managed, but distributed in a peer-to-peer

network. Each node communicates with others, leading to a constant control over

the blocks of each node and to validating new blocks only if collectively approved.

2.2.1 Types of blockchains

Blockchains can be divided in two main categories:

• Permissionless, or also public blockchains are fully decentralized [44] and

can be accessed by anyone. Examples of this type are practically all existant

digital currencies, such as Bitcoin, Ethereum and Monero.

• Permissioned, i.e. private blockchains, are systems designed to exploit the

blockchain technology within a selected group of entities, excluding unwanted

actors from the system. In a permissioned blockchain the participants to the

consensus are approved by the already present ones. This kind of setting finds

the best application in situations where known parties want to rely on a trusted

entity to intermediate their transactions such as consortia (e.g. KRAKEN).

A permissioned blockchain is considerably more scalable than a public one,

however this comes with a cost in the grade of decentralisation that it provides.
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2.2.2 Consensus mechanisms

Due to the absence of a central authority, to approve some decision (such as the

creation of a new block) blockchains need to employ a different paradigm, which

goes under the name of consensus protocol. Only when all nodes of a blockchain have

accepted the new decision, consensus is reached, and the blockchain gets modified

in the determined way. Many algorithms have been proposed for this task, with the

constraints that, to be valid, they need to be:

1. Decentralized

2. Byzantine fault tolerant (BFT), which refers to a famous 1982 paper [45]. This

practically means that the blockchain, while elaborating consensus, needs to

be resilient to the presence of malicious nodes, which try to manipulate the

process by sending misleading signals to different nodes (e.g. telling to some

node that a decision is valid and to some other nodes that it is not).

The most famous consensus algorithm is the Proof of work (PoW), used, among

others, by bitcoin. In this case, the process of creation of new blocks is commonly

referred to as "mining". Here, multiple parties compete to be the first to solve a

hashcash problem, i.e. finding a hash (in a trial and error way) for the next block

which contains at least a certain number of zeros at beginning. The more zeroes are

required from the blockchain, the harder is to solve the PoW.

2.2.3 Smart contracts

In 1997, long before the advent of digital currencies, the concept behind smart

contracts was proposed by Nick Szabo [46]. At their most basic level, smart contracts

can be described as computer programs stored on a blockchain, of which they inherit

the advantages. Thus, they provide a way for securely carrying out transactions

between parties according to commonly decided rules, which are agreed beforehand
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among the parties involved and are then stated in a contract’s code itself. Several

digital coins support the use of smart contracts, such as Ethereum, that was created

in 2014 [47]. Bitcoin supports smart contracts too, but it is severely limited in this

regard compared to many other cryptocurrencies.

2.2.4 Permissioned blockchain via Hyperledger Fabric

The permissioned blockchain chosen for KRAKEN is Hyperledger Fabric [48], which

stems from Hyperledger [49], a project founded by the Linux Foundation in 2015.

Fabric is a private blockchain, designed to be implemented in business settings: in

fact, in these situations, some of the features of public blockchains (e.g. the fact that

every node in the world sees all the transactions, or the need for expensive consensus

mechanism) can actually become detrimental to the users. Fabric’s architecture is

based on several main tenets [50]:

• Channels, i.e. detached parts of the blockchain, that can be used by a group

of members to carry out transactions invisible to other ones.

• Scalability, as Fabric is built to easily allow the scaling of its nodes number,

while also being optimized for requiring as little resources as possible to process

large amounts of data.

• Modularity. This is perhaps Fabric’s most important characteristic: depend-

ing on the use, most of the network’s components can be removed or added

whenever needed. This allows Fabric to serve the widest possible range of

companies needs.

In january 2020, Fabric 2.0 was released [51], bringing several improvements

especially on the smart contracts and privacy side.
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2.3 Self Sovereign Identity (SSI)

Identity on the web has been handled in many different ways. The most common

one has always been the set up of username and password. However this method

centralises the management of the identities of the users of a certain system. More-

over the data needed for identity verification is shared by the user with every system

that she is interacting with. This represents a considerable privacy concern. An-

other method broadly adopted after this latter one is federated identity. Which

allows systems to directly retrieve from other systems (such as Google, Facebook)

the user’s identifiable information needed for the user registration. This latter reg-

istration mechanism facilitated the registration of users on other systems, however

it did not solve the problem of privacy and represents a single point of failure for

potentially multiple identity theft. A common flaw of both these systems is that

the user has no control over her personal data which means that the operators of

the services she relies on have the technical possibility (although legally regulated)

to use her data in any way without the user awareness.

Figure 2.4: Comparison of different digital identities approaches [52].

To provide a digital identification scheme that would not introduce any interme-

diary between the user data and the 3rd party receiving it, self-sovereign identities
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(SSI) were introduced. To clarify the main concepts underlying SSIs, one can refer

to the following list [53] [54]:

1. Existence. It must exist indepedently from its digital representation.

2. Control. Users must have ultimate control over their digital identities.

3. Access. It should always be possible for users to access their own data.

4. Transparency. Systems and algorithms used to manage a network of identi-

ties must be open and transparent.

5. Persistence. Identities should be long-lasting (ideally, forever, or as long as

the user wants to).

6. Portability. Users identities should be transportable. This increases identi-

ties lifetimes and further guarantees to users full control over them.

7. Interoperability. The same identity should be usable in as many contexts

as possible.

8. Consent. A user permission must be given before identity information can

be used.

9. Minimalization. When giving an identity’s data to accomplish a task, only

the minimum required amount of information should be shared.

10. Protection. Users rights must always be protected when at risk.

2.3.1 Verifiable credentials

A crucial component of any SSI system, verifiable credentials are pieces of informa-

tion that could represent for example identity cards, driving licenses, credit cards

etc, i.e. documents issued by some trusted authority that a user can leverage to
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demonstrate something about herself to a third party without relying on any cen-

tralised system.

Figure 2.5: Basic mechanism behind the exchange of verifiable credentials [55].

Three main subjects are involved in this process:

• Issuers, that release the verifiable credentials to the holders. Examples of

issuers are governments, banks, or educational institutions.

• Holders, that request the credentials from the issuers, and can then use them

to prove some claim about themselves to the verifier.

• Verifiers are any party trying to authenticate a holder’s claim.

2.4 Threat modeling methodologies

Threat-modeling is the process through which a system’s vulnerabilities can be dis-

covered, listed, and prioritized for subsequent interventions. Several threat-modeling

methods are today available, each one with pros and cons for a specific scenario.

Among popular methods, there is STRIDE, developed by Microsoft [57]. The

name is an acronym for the six possible threats that method seeks to identify:

Spoofing identity, Tampering with data, Repudiation threats, Information disclo-

sure, Denial of service, Elevation of privilege. There is then PASTA (Process for
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Table 2.2: Comparison of 12 most common TMM strenghts and weaknesses [56].

Attack Simulation and Threat Analysis), which is broader in scope and can even be

applied to non-coding scenarios [58].

Then, LINDDUN, which is a threat modeling methodology for systematically

analyzing privacy threats in software architectures [18]. It is partially inspired

from STRIDE: threats are analyzed along the categories linkability, identifiabil-

ity, non-repudiation, detectability, disclosure of information, unawareness, and non-

compliance. On top of the threat analysis, it offers mitigation strategies to handle

the identified threats.

2.4.1 LINDDUN

To probe the KRAKEN’s vulnerability to privacy threats, the chosen methodology

was LINDDUN [17], which focuses on privacy aspects and thus was the best fit for
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the usage case. The LINDDUN framework consists in several subsequent steps [59]:

1. The first step is the creation of a model of the system for which privacy threats

must be elucidated. In particular, LINDDUN requires this model to be a data-

flow diagram (DFD) i.e. a scheme for information flow composed by four types

of building blocks (processes, data flows, data stores, external entities) [18].

2. Second, potential threats are assigned to each of the elements of the DFD.

Each of the four DFD building blocks is subject to different threat risks, with

an overall total of seven threat categories – which can be easily remember

using the aconym LINDDUN itself (linkability, identifiability, non-repudiation,

detectability, disclosure of information, unawareness, and non-compliance)

3. The third step is composed of several phases. Initially, using threat tree pat-

terns, a refinement of the threats is carried out. Then, assumptions (about

the trustfulness of the architecture elements) are documented. Finally, threats

themselves are also documented using a threat description template.

4. Next, a risk assessment is carried out to prioritize the identified threats.

5. In the fifth step, strategies to resolve (or at least mitigate) the threats are

outlined.

6. Finally, the devised mitigation strategies are mapped into concrete privacy

requirements that will have to be included in future development iterations.



3 Brokerage and Market platform

for personal data (KRAKEN)

A data marketplace is a system where data can be exchanged between users. There

are many kinds of data marketplaces, KRAKEN in particular “aims to enable the

sharing, brokerage, and trading of potentially sensitive personal data, by returning

the control of this data to citizens (data providers) throughout the entire data lifecy-

cle” [15]. Data marketplaces can be implemented in different ways. The most simple

is a totally centralised system, the system would collect data from data providers

and provide the same data to the data consumers either by buying and reselling or

by acting as a broker. This model works under a technical standpoint, but presents

a set of problems derived by its centralisation. The marketplace has access to all

the data coming from the users and the eventuality of misuse of this data depends

solely on the marketplace. This includes disclosure of information to third parties,

incorrect computation performed on special kinds of data products such as analytics

computations and others.

The KRAKEN marketplace aims to be decentralised and privacy preserving by

design. This is accomplished thanks to the combination of three main technologies

that in the KRAKEN project are identified as the three pillars: a decentralised

marketplace, Self Sovereign Identity (SSI), and a toolbox of cryptographic primitives

for privacy-preserving computation. The marketplace itself will let individuals and
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institutions to trade access to personal data in a privacy preserving way.

By exploiting these pillars, the marketplace can offer three types of data prod-

ucts: Batch data products (consisting in the transfer of datasets), real time data

products (consisting of real time data streams) and Analytics data products (a data

product offering analytics computations on one or more datasets performed in a

privacy preserving way). This thesis describes the Analytics data product use case.

The Blockchain is the decentralised element that brings power to the users.

The users will have the same experience as with traditional marketplaces, but with

the difference of a decentralised decision making mechanism powered by blockchain

technology. Thanks to its decentralised nature, the marketplace can be considered

a trustless intermediary between data owners and data consumers.

Self Sovereign Identity is the pillar that in KRAKEN is exploited to manage

identities of data owners and data consumers through Verifiable Credentials. This

pillar is essential for the marketplace as the decision making needs to work on the

authentic input provided by verifiable credentials to check the eligibility of the users.

The toolbox of cryptographic primitives is the pillar used to manage exactly the

personal data of the users. The marketplace is always unaware of the content of the

data being exchanged between users. This is guaranteed for most of the data prod-

ucts types available on the marketplace, however in the case of the “Analytics data

product”, the marketplace needs a trustless privacy preserving system to perform

statistics on user’s datasets. This kind of system is provided, together with other

cryptographic primitives, by the Multi Party Computation (MPC) technology. The

architecture designed in the paper [16] and described in this paper tackles specif-

ically the way KRAKEN will handle the “Analytics Data Product” by exploiting

MPC.



4 Architecture for privacy

preserving analytics

As outlined in [14], any valid datamarket must comply with at least two require-

ments:

• Data privacy: it must be guaranteed that the procedure will not leak any

information about the data, to anyone (apart from the data analysis results

provided to the buyers)

• Output verifiability: the datamarket must also guarantee that the data

analysis results are truthful (i.e. not altered) and accurate.

For the time being, we do not take into account the atomicity of payments [14]

as our architecture would need privacy preserving payment methods (that would

be integrated with it). On the other hand, data privacy must be guaranteed right

from the start. In particular, data owners must always be capable of specifying (if

needed) which kind of analysis can be safely run on the data, and which kind of

data consumers can be granted permission to purchase and access their data. The

architecture delineated in the rest of this chapter was designed starting from these

requirements.

A bird’s eye view of the architecture is depicted in Figure 4.1. The pipeline

starts from device manufacturers, who build the instruments that will acquire
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Figure 4.1: Overview of KRAKEN’s architecture.

the data. The manufacturers provide these instruments with a group signing key

which will serve to link the collected data to the device that it was collected from.

Data collection is carried out by data owners, who should also decide which

analytics can or cannot be performed on their datasets. Together with this infor-

mation, the data is uploaded in the cloud ( a cloud storage provider is needed

for this), and can be requested by the data consumers, who request for specific

computations.

If the request aligns with the data owners indications, computation is performed

on computation nodes, through a MPC procedure. The role of the KRAKEN

market place is to handle the registration of data owners and consumers and
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Figure 4.2: KRAKEN cryptographic architecture overview [16].

manages listings of available data sets. The information is stored on an internal

blockchain and database. The Architecture proposed in the paper and summarised

in the image 4.1 includes all of these elements, that are described in more detail in

the following sections.

4.1 Users

Users are divided in two categories: data owners and data consumers. In the fol-

lowing paragraphs will be described these two different categories, their interests in

joining the platform and the derived requirements for the architecture.

4.1.1 Data owners

The data owners are the sellers of the platform. They own the raw datasets and

their interest in joining the platform consists in selling analytics about their data in

a privacy preserving way. This means that the architecture must comply with the

following requirements:

• No one other than the data owners is able to know the original data;
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• No analytics functions other than the ones allowed by the data owners can be

performed on users data on the platform;

• The results must be sold to eligible buyers exclusively;

• The eligibility of data consumers must be checked with institutional level cer-

tificates in a privacy preserving way;

• All the above must be performed in a trust-less environment.

4.1.2 Data consumers

The data consumers are the buyers of the platform, and their interest in joining the

platform consists in buying results of analytics computation performed on the data

owners dataset.

Thus, the architecture is also subject to the following requirements:

• The analytics must be performed on datasets whose provenance is guaranteed;

• The analytics must be performed correctly.

4.2 Device manufacturers

The device manufacturers have the role of producing the devices that will be used to

collect the records of the measurements of users. These measurements will constitute

the datasets to be analysed. The importance of these actors in the architecture is

motivated by the requirement of data provenance. To ensure the quality of the

raw data, users will need to use devices provided with an hardware feature to sign

collected data with a key belonging to a publicly known group signature schema.
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4.3 Blockchain

The Blockchain is one of the two decentralised element of the architecture. The role

of this component is to allow transactions happening between data owners and data

consumers. The transactions allowance depends on:

• The policies set by the data owner at the moment of data registration;

• The credentials owned by the data consumer (that have not been revoked) at

the moment of the transaction;

• And on the regulations that the specific transaction needs to comply with in

the nation of the data owner and the nation of the data consumer.

The transactions are mediated by the backend that receives them from the users.

4.4 Backend

This component has multiple roles:

• Storage for user credentials and data products catalog;

• Frontend provider for users;

• API to receive requests from data owners and data consumers;

• Webhook to alert the MPC network of new data products transactions and

the blockchain to forward request of allowance of transactions.

4.5 Frontend

The Frontend is the software running on the user system (laptop or smartphone).

This component has multiple roles:
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• Provide features to the users in the form of UI tools to allow them to pro-

vide the platform with their SSI credentials, perform the registration on the

platform, browse the data catalog, publish and buy data products and other

features (such as account page, etc...);

• Send requests to the backend;

• Perform encryption and decryption of the results;

• Other actions related to data product publication described in the section

4.12.3.

4.6 MPC network

The MPC network is the element of the architecture that performs the privacy

preserving analytics computation. This network is composed by the MPC nodes.

This component has multiple roles:

• Receive messages from the backend to trigger analytics;

• Receive messages from the data owners to get the location of their encrypted

shares of the datasets to be analysed;

• Retrieve datasets from the cloud storage of the data owners.

• Send analytics results to data consumers.

The role of this component is empowered by the fact that the nodes, to perform

their operations, receive information that must not be shared with the other nodes.

For this reason, to every MPC node is associated a keypair. The public key of every

MPC node is considered a public information, well known by the software running

on the user’s system.
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The keypairs of n MPC nodes are defined in this way:

Np1, Np2, ...Npn�1, Npn are the public keys of the nodes.

Ns1, Ns2, ...Nsn�1, Nsn are the secret keys of the nodes.

The MPC nodes will belong to well known organisations that are supposed to

behave correctly. However the network is secure against malicious behaviour of a

subset of its components. This security depends on the security settings that can

be tuned to the point of needing just one honest MPC node to ensure that no

unexpected operations are performed. However, the more secure is the network, the

less scalable it becomes. On the basis of this, in the paper we assumed that at least

one MPC node is always honest.

4.7 SSI agent

The SSI agent is the software component responsible for the management of iden-

tities in KRAKEN. It will connect and communicate with the agents of the users’

SSI wallets. The roles of this component are:

• Receive requests from the backend;

• Query the SSI blockchain;

• Establish DID connections with the SSI wallets of the users;

• Issue credentials and receive proofs of credentials from users.

4.8 SSI credential issuers

The SSI credentials issuers are the entities that provide the credentials to the users.

A credentials issuer is an entity that could belong to institutions, companies or other

kind of entities that can state a certain characteristic of a person. A typical example



4.11 REQUIREMENTS AND ASSUMPTIONS 29

in the KRAKEN case is the need to demonstrate the membership in a research center

or an hospital to buy the access to a data product. The research center/hospital SSI

credentials issuer would have to release a certificate to the member. The member

will then use this certificate on the platform to perform the purchase. This entity

is considered a trusted party as an assumption.

4.9 SSI wallet

The SSI wallet is an application running on the user’s smartphone. This application

includes an SSI agent that will be used to establish a DID connection with the

KRAKEN SSI agent 4.7.

The SSI wallet will store the SSI credentials released to the user and present

them to KRAKEN. Depending on the operation performed on the platform, the

wallet will also present SSI credentials to KRAKEN.

4.10 Cloud storage

The Cloud will be used by the KRAKEN users to store the encrypted datasets. The

storage is not specific; the users can freely decide to use any cloud storage system

until the access to the dataset is public and can be performed through a link. This

component will receive the datasets to store from the users and provide the datasets

to the MPC nodes. A peculiar characteristic of this component is that the datasets

are never retrieved by any component except the MPC network.

4.11 Requirements and assumptions

In the previous sections have been identified requirements and assumptions of the

KRAKEN platform:
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REQUIREMENTS:

1. No one other than the data owners is able to know the original data;

2. No analytics functions other than the ones allowed by the data owners can be

performed on users data on the platform;

3. The results must be sold to eligible buyers exclusively;

4. The analytics must be performed on datasets whose provenance is guaranteed;

5. The analytics must be performed correctly;

6. The eligibility of data consumers must be checked with institutional level cer-

tificates in a privacy preserving way;

7. All the above must be performed in a trust-less environment.

ASSUMPTIONS:

1. At least one MPC node is honest;

2. The credentials issuers are considered trusted parties.

4.12 Actions

These are the three typical data flows.

4.12.1 User registration

User registration is performed exploiting SSI technology. The actors involved are the

user, the backend and the SSI credentials issuer. The steps to perform this action

are the following:
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• The user receives one or more SSI credentials from the organisations he belongs

to. The details of this operation depend on the specific organisation issuing

the credentials, that is considered a trusted party as an assumption.

• The second step is the request for registration on KRAKEN. To do this, the

user will establish a DID connection with the backend agent and present his

credentials.

• Once the Agent confirms the validity of the credential consulting the SSI

blokchain, the credential is saved in the credentials storage;

• The last step consists in providing to the user a group signing key to be able

to sign messages on behalf of the group of users of the marketplace without

risking to reveal his identity. The specific use of this key is exposed later in

this chapter.

4.12.2 Data collection and pre-processing

The collection of the data records is a process that happens on a user’s device. This

device can be of any kind and can register any kind of data, the only requirement

is the hardware feature of signing every record with the device’s group signing key

Ugs.

4.12.3 Data registration

To publish the dataset on the marketplace, the user needs to preprocess the data

because of the requirements previously described (4.11). The steps to perform this

action are the following:

• Data collection (4.12.2);

• Login
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• Filling of the metadata such as title, description, image, etc...;

• Set up of the policies that will govern the criteria used by the blockchain to

select eligible buyers;

• Preparation of the dataset for SMPC computation. This step consists in split-

ting the dataset in a number of shares equal to the number of nodes that have

been deployed to run the MPC network.

• Encryption of the shares using MPC nodes public keys.

• Signing of every share using the group signing key Ugs;

• Signing of the allowed functions using the group signing key;

• Storage on a cloud storage chosen by the data owner of a bundle of all the

pre-processed dataset with signatures.

• Publication request to the Backend.

4.12.4 Data analysis request

To make a purchase on the platform, the user needs to perform the following steps:

• Login

• Browse catalog to find datasets of interest;

• Declare the function to be evaluated on the data;

• Send purchase request to backend;

• User’s policies check on the blockchain and approval (if not approved, stop);

• The backend communicates to the MPC network the new computation request;
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• The MPC network retrieves the data from the user’s cloud storage. Specif-

ically, every node fetches its own share and all the nodes fetch the allowed

functions and signatures;

• The MPC nodes analyze these information, verifying the validity of the data

signatures and that the requested function is allowed for the computation

(according to the data owner’s policy).

• The shares are decrypted using the nodes’ private keys, then the network

verifies that the shared signatures are valid and calculate the output (encrypted

with the consumer’s public key) to provide to the data consumer.

• The data consumer receives the output of the computation. In addition to

this, a guarantee that the analysis was performed correctly and that the inputs

verification was successful.



5 LINDDUN Privacy analysis

This section is based on the author’s contributions in a published research paper

[16]. As already explained in section 2.4.1, LINDDUN allows to take into account

architectural privacy aspects, and in particular it does so early on during the de-

velopment lifecycle [18]. In this chapter, the steps leading to LINDDUN privacy

analysis of KRAKEN’s architecture are reported. Following the standard procedure

[59], the paper starts by outlining the data-flow diagrams (DFDs) corresponding to

KRAKEN’s most important user actions, which are: (1) User registration, shown

in Fig 5.1, (2) Data availability registration, in Fig 5.2, and (3) Perform data

analysis, also in Fig 5.2.

Figure 5.1: DFD for the user action of registering. [16]
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Figure 5.2: DFD for the user actions of registering data and performing data anal-

ysis. The legend is as in Fig. 5.1 [16]

More specifically, and for easier interpretability, every DFD is split in two parts,

corresponding, respectively, to the actual personal data flow (from its uploading up

to its analysis results) and to the flow of information, i.e. all the complementary

data required for the user actions to be completed. Finally, the components of each

DFD are mapped to LINDDUN threat categories, the threats are prioritized for

intervention, and mitigation strategies are proposed.
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5.1 Tables of threats

Following LINDDUN mapping template [17], The elements of each DFD is mapped

to the seven threat categories: Linkability, Identifiability, Non-repudiation, Detectability,

Disclosure of information, Unawareness, Non-compliance. DFDs contain different

element types, which are subject to different kinds of threats, as shown in Table 5.1.

Table 5.1: Mappig LINDDUN components (privacy threats) to DFD element types:

E=Entity, DF=Data Flow, DS=Data Store, P=Process (from [59]).

Thus, one has to first identify all the elements composing each DFD, and then

outline its possible threats in a threat table. The outcome is reported in table 5.2

(user registration), in table 5.3 (registration of data availability) and in table 5.4

(performing data analysis).

Note that in these tables some threats that according to the LINDDUN baseline

should be highlighted, are not. This is because we can make some considerations

and assumptions (that will be laid out in the next section 5.2) that are specific to

KRAKEN’s architecture. The threat Non-compliace can also be excluded for several

DFD elements: for the data and information flows (due to the adoption of TLS),

for the Data Stores (due to the data-minimization principle) and, finally, also for

processes (as KRAKEN does not deal with any personal data). The MPC network

is a decentralised and consequently trusted entity. For this reason no threat was

assigned to it.
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Table 5.2: LINDDUN’s threat table of the 1 st user action [16], performing user

registration. An 7 in a cell indicates a privacy threat for the corresponding threat

target. Cells labeled by “Ax” are no threats because of the indicated assumptions.

Table 5.3: LINDDUN’s threat table of the 2nd user action [16], performing reg-

istration of data availability. An 7 in a cell indicates a privacy threat for the

corresponding threat target. Cells labeled by “Ax” are no threats because of the

indicated assumptions.
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Table 5.4: LINDDUN’s threat table of the 3rd user action [16], performing data

analysis. An 7 in a cell indicates a privacy threat for the corresponding threat

target. Cells labeled by “Ax” are no threats because of the indicated assumptions.

5.2 Elicitation of threats

The choice of which threats (among all the theoretically possible ones) should be

targeted and which ones should not can be aided by making assumptions. More

precisely, and as stated in the LINDDUN tutorial [59], "assumptions are explicit or

implicit choices to trust an element of the system (e.g., human, piece of software) to

behave as expected". The following list shows the four assumptions that have been

made in the paper [16]:

Assumption 1. Trusted SSI credential issuer. An eventual collaboration

between the KRAKEN backend and the credential issuer could reveal to the backend

the real identity of the users. This assumption is necessary to prevent the kraken

backend to link real identities with users. In a real world scenario, this assumption

could be enforced by multiple security measures such as designing the issuer as a

distriburted party that adopts threshold cryptography or through regular audits.
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Another safety measure would be to inform users of the risk of KRAKEN collab-

orating with the credential issuer to reveal real identities so that they could check

the legal relationship between the two entities before using the service.

Assumption 2. The MPC network requires a minimum of one honest

node. The protocol version adopted in the MPC network in KRAKEN is the

strongest in terms of security, which means that only one honest node is needed

to avoid security breaches. With this setting, having at least one honest MPC

node prevents any malicious actor to access the computation results or the original

datasets. To operate, the MPC network needs the participation of every node, so to

prevent the actions just described, the only honest node would just need to refuse

participating to preserve the security of the system. A mitigation of the risks related

to this assumption is to carefully select the participants in the MPC network. The

nodes could be even more than the three required for the protocol to function and

the choice on which ones to adopt can be delegated to the user. For special cases,

one of the MPC nodes needed for a computation could be even deployed in the data

owner’s facility to have the guarantee that at least one node is honest.

Assumption 3. Every communication happening between two entities

not belonging to the same trust domain happens through transport-layer

security (TLS) This assumption regards any kind of communication happening

between entities in different trust domains. We assume that the only possible leak

of information that could happen during these communications is the metadata as

the rest of the information transferred is protected by TLS.

Assumption 4. Trust boundaries are implemented in a secure way

and any entity that is violated by a malicious actor is considered in total

control of the actor. This assumption can be considered also a simplification for

the analysis. It considers corrupted systems to be totally corrupted and excludes

partial corruptions of systems. With this assumption in place, any trust domain
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violated by a corrupted actor makes the trust domain in her total control.

5.2.1 Mapping LINDDUN’s Privacy Threats to the DFDs.

In the following, will be enumerated (following the "LINDDUN" acronym itself) and

outlined the threats discovered with the threat tables in the paper [16].

Threat1 (Linkability in one or more storages). An insider of KRAKEN

links data coming from the catalog, credentials, policies or purchases storages.

Assets, stakeholder, threats: Linking different users or different information of

the same user could lead to gain more information about users than expected.

Primary misactor: An internal user that has access to the data storages of the

backend and/or of the internal blockchain.

Basic flow: (1) The insider gains specific information by querying the data store.

(2) The obtained set of information can be linked.

Preconditions: The user has updated the system with some informations or is at

least registered.

DFD elements: Credentials storage, Catalog storage, Policies storage, Purchases

storage, Cloud storage.

Remarks: This threat could lead to identification. When applied to the creden-

tials storage, the probability is much lower as credentials have a high level of mini-

mization of information.

Threat 2 (Identifiability in one or more storages). An insider of KRAKEN

identifies one or more users in a set of data coming from one or more storages. Assets,

stakeholder, threats: The identity of the user must be unknown in the KRAKEN.

Primary misactor: An internal user that has access to the data storages of the

backend and/or of the internal blockchain.

Basic flow: (1) The insider gains specific information by querying one or more

data stores. (2) The obtained set of information can be linked and can lead to
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identification of one or more users.

Preconditions: The user has updated the system with some information or is at

least registered.

DFD elements: Credentials storage, Catalog storage, Policies storage, Purchases

storage, Cloud storage.

Threat 3 (Detectability of data existence). The user uploads the data on

the cloud without publishing on KRAKEN, revealing the existence of data.

Assets, stakeholder, threats: The detection of the existence of the data must

take place at the will of the user.

Primary misactor: The cloud or an external actor.

Basic flow: The misactor checks periodically the cloud storage until the data is

uploaded.

DFD elements: Cloud storage

Threat 4 (Detectability in communication between different trust do-

mains). An internal/external actor can detect user actions by listening to re- quests.

Assets, stakeholder, threats: The detectability of user actions is not expected

outside of the scope of the interested actors.

Primary misactor: A skilled internal/external actor that has access to the net-

work of the user and can inspect user’s packets.

Basic flow: (1) The misactor intercepts packets between a user and KRAKEN.

(2) Whenever a packet is sent, an action has been detected.

DFD elements: All the data flows between two different trust domains.

Remarks: This threat disclosure of information is not expected as the commu-

nication happens through TLS.

Threat 5 (Linkability of IP addresses in communication between dif-

ferent trust domains). An internal/external actor can link different events to the

same user by listening to user’s requests.
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Assets, stakeholder, threats: Any information that can be gained by linking user

actions are not expected to be known by anyone except the user.

Primary misactor: A skilled internal/external actor that has access to the net-

work of the user and can inspect user’s packets.

Basic flow: (1) The misactor intercepts packets between a user and KRAKEN.

(2) Whenever a packet is sent, IP addresses are collected. (3) The misactor links

packets with the same IP.

DFD elements: All the data flows between two different trust domains.

Remarks: This threat disclosure of information is not expected as the commu-

nication happens through TLS.

Threat 6 (Linkability of IP addresses in communication between dif-

ferent trust domains leads to identifiability). An internal/external actor can

identify users by linking different events to the same IP by listening to user’s requests.

Assets, stakeholder, threats: User’s identity and any information that can be

gained by linking user actions are not expected to be known by anyone except the

user.

Primary misactor: A skilled internal/external user that has access to the net-

work of the user and can inspect user’s packets and knows or can link to an IP

address the user’s identity.

Basic flow: (1) The misactor intercepts packets exchanged between a user and

KRAKEN. (2) Whenever a packet is sent, IP addresses are collected. (3) The

misactor links packets with the same IP. (4) The gained information, together with

any information that can link the IP to a user (e.g., insecure traffic with other

systems) leads to the identification of the user.

DFD elements: All the data flows between two different trust domains.

Threat 7 (Non-repudiation of encrypted data). The cloud storage cannot

repudiate that encrypted data is available.
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Primary misactor: Data stores which do not handle data access properly.

DFD elements: Cloud storage (data store; user action (UA) 2/3).

Threat 8 (Non-repudiation of communication between different trust

domains). An entity cannot repudiate that he sent a message to another entity

within a different trust domain.

Primary misactor: An external user that has access to the network of the user

and can inspect user’s packets.

DFD elements: All data flows between two different trust domains.

Threat 9 (Unawareness of the data owner). First, a data owner provides

data for which he is not allowed, such as by national law. Second, a data owner does

not take care of the defined analysis policies/permissions, such that a con- sumer

could learn something about the owner based on the analysis result. For example,

if an owner allows an analysis without any other owners in addition (aggregated

analysis), then, e.g., an average would reveal the actual data.

Primary misactor: A data owner making data available.

DFD elements: Data owner (entity; UA 2).

Threat 10 (Non-deletion of data in cloud storage). The data owner is not

aware that the cloud storage is in possession of his data.

Primary misactor: A cloud storage not deleting user’s data.

Basic flow: (1) The data owner requests the cloud storage to delete his data. (2)

The cloud storage does not delete the data. (3) The data owner is not aware that

the data is stored on the cloud storage.

DFD elements: Data owner (entity; UA 2).

5.3 Prioritization of threats

Before tackling the identified threats, it is practically useful to rank them by the

urgency with which they need to be addressed, also known as priority. This quantity
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Table 5.5: Threat prioritization depending on likelihood and impact [16].

results from the likelihood and impact of a given threat. The degree of intensity of

these two parameters is ranked with the values: "low", "medium" and "high".

The likelihood is a result of the easiness of accomplishing a given threatening

action and the gain of the threatening actor. The impact is given by the severity

of a successful attack for the user. Depending on the threat, its value is outlined in

table 5.7.

The table 5.5 describes how the priority is derived from the combination of the

intensities of likelihood and impact. The table 5.6 lists the intensities of likelihood

and impact applied to every threat and the implied priority value. The following list

contains the reasons presented in the paper [16] for the assigned values of likelihood

and impact of every threat.

• Linkability in one or more storages. In this threat the likelihood value

is medium as even if the misactor needs to be an insider, exploiting more

than one storages leads to better outcomes in trying to link user’s data. The

impact is medium as the threatened asset is the linkability of user’s data, that

if combined with identifiability reveals which users performed certain actions.

• Identifiability in one or more storages. The likelihood value is low as the

misactor would need more information other than the ones contained in the

KRAKEN system to identify one or more users. The impact is high as the

threatened asset is the identity of users that is considered high priority asset.



5.3 PRIORITIZATION OF THREATS 45

Table 5.6: Overview of threat prioritization [16]. Threats that are not effective due

to our assumptions are not included in the table.

• Detectability of data existence. The likelihood is medium as the threat-

ened information is public by default. The misactor could be an external

user without any specific capability that needs to know by other means that

the specific data is destined to KRAKEN. In the case where the misactor is

the cloud storage that may know the identity of the user, the cloud storage

would still need to know by other means that the specific data is destined

to KRAKEN. In a hospital scenario, If a patient decides to adopt the hospi-

tal’s cloud system, the hospital could make assumptions on the content of the

dataset by linking the detection of the dataset existence with information re-

lated to the patient. However, this situation is highly unlikely as the user can

choose any cloud system without relying on the hospital’s one. The impact is

low as the data is always encrypted, existence of data may be detected, but

the data itself does not leak.
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Table 5.7: Overview of the impact value of the different threats.

• Detectability in communication between different trust domains.

The likelihood value is low as the misactor is an external skilled individual

that has access to the network of the user or to the KRAKEN network. The

impact is low as the threatened asset is the detectability of user actions, which

is considered a low-priority asset.

• Linkability of IP addresses in communication between different trust

domains. This threat depends on the same actions and actor needed to

perform the previous one, so the likelihood is the same. The impact is medium

as the threatened asset is the linkability of user’s data, that if combined with

identifiability reveals which users performed certain actions.

• Linkability of IP addresses in communication between different trust

domains leads to identifiability. This threat depends on the same actions

and actor needed to perform the previous one, so the likelihood is the same.

The impact is high as the threatened asset is the identity of users that is

considered high priority asset.

• Non-repudiation of encrypted data. As cloud-storage providers usually

use unguessable file links, the likelihood for this threat is low. The impact is

low as one cannot identify the receiver of the ciphertext recover its content.
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• Non-repudiation of communication between different trust domains.

Similar as for detectability of communication, likelihood and impact are low.

• Unawareness of the data owner. The likelihood value is low as the personal

data provided belongs to the user and therefore it is her own interest to provide

data that does not affect her in terms of non compliance with regulations.

Moreover (for the second case) the outcome of publishing the analysis of a

dataset without a pool of other user’s datasets would not be appealing for a

possible buyer. The impact is high as the threatened asset is the personal

information of users that is considered high priority asset.

• Non deletion of data in cloud storage. The likelihood value is low as

the outcome of performing this action would lead the cloud storage to have

an encrypted dataset that is not possible to consume in any way. Because of

Assumption 2, the cloud storage cannot collaborate with the MPC nodes to

unveil the data as at least one of them is honest. The impact is low as the

threatened asset is the unawareness of users that is considered low priority.

5.4 Mitigation of threats

The set of mitigations identified and listed in the paper [16] are hereby exactly

reported:

• Linkability in one or more storages. To mitigate the threat on the SSI

storage side, on registration phase the system can request to the user the

minimum set of credentials required to allow the user to get registered and

do not lead to linkability/identification. To mitigate the threat on the other

storages, the system can display a suggestion to user saying to non include

any identifiable information before the publication of any product.



5.5 PRIVACY ANALYSIS OUTCOME 48

• Identifiability in one or more storages. This threat depends on the pre-

viously described threat “Linkability in one or more storages”, the mitigation

applied in that threat mitigate consequently also this one.

• Linkability of IP addresses in communication between different trust

domains. To avoid the misactor to understand that the communication is

happening with KRAKEN, avoiding linkability and resulting identifiability,

onion routing (like Tor [60]) can be used.

• Unawareness of the data owner. The mitigation can be implemented

on the user’s frontend side in two complementing ways. First, the system

provides thorough documentation that explains potential risks when offering

certain data sets for data analytics. Second, based on the type of data and

the acceptable function families, privacy metrics [61] are displayed to make

the user aware of any risks. Thereby, the system is able to warn the user, e.g.,

before allowing the computation of an average but where the user’s input is

the only considered data set.

5.5 Privacy Analysis Outcome

The privacy analysis was part of a cyclic methodology of continuous improvements.

At every cycle, threats were discovered through the analysis and became the inputs

for the planning of the next cycle.

There are some main threats and solutions derived from this approach. The

distinction of the data flows in information flow and personal data flow was a key

improvement to focus the architecture around the protection of different kinds of

data. Specifically, it is noticeable in the current DFDs that the personal data of

the users is never handled by any entity in a not encrypted manner and that only

the data consumers eligible to access data providers’ data actually access the data.
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The direct interaction of the user with the platform could have led to identifiability

threats and this is what primarily moved the decision of adopting group signatures.

Through this kind of signature the user accomplishes the same purposes with more

privacy. The remaining of the collected threats are relative to unique elements of

the architecture and require modifications that influence their internal functioning.

The mitigations identified suggest the adoption of practices like data minimisation

and documentation and privacy tool to provide to the data owner.



6 Conclusions and Future Work

In this thesis was outlined an architecture proposal for the KRAKEN marketplace,

explained the technologies that enable it and reported the privacy analysis that

validates it. The architecture allows a data marketplace to compute analytics on

datasets without ever knowing inputs and outputs of the computations. In this way

users can profit from the usage of their data in a totally privacy preserving way and

with the security of a decentralised system. This is thanks to the cryptographic tools

adopted to build its core components and the decentralised technologies adopted for

the decision making.

Some observations need to be done on the security, privacy and decentralisa-

tion aspects of the system. The MPC network is the privacy preserving decen-

tralised intermediary between data providers and data consumers. The privacy of

the data is secured by the decentralisation of the MPC network whose consensus

algorithm can tolerate a minimum of one honest node to work properly. However

the decision making regarding the data consumers that can access a data product

depends on the permissioned blockchain. A permissioned blockchain (such as the

one adopted in KRAKEN: Hyperledger Fabric) can adopt a variety of consensus

algorithms that have a malicious nodes tolerance threshold considerably lower than

the MPC network. With these considerations it is possible to conclude that the se-

curity guarantees provided by the MPC network are valid in the specific context of

transactions happening between the users allowed by the blockchain. However con-
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sidering blockchain and MPC network together, the security guarantees are of the

entire system are the ones of the weakiest point that in this case is the blockchain.

Another weak point is the lump sum payment model. The architecture does

not provide the possibility for data providers to receive payments directly for every

time their data products are used by data consumers. This is due to the cur-

rently available payment methods that do not provide full privacy when performing

transactions. A solution could be to rely on a centralised exchange with bank-level

privacy on transactions or adopt one of the currently available privacy preserving

cryptocurrencies such as Monero [62] and Zcash [35].

The LINDDUN analysis describes a set of threats related to the privacy of users.

All of the threats do not regard the disclosure of the data providers datasets with

the exception of one: "Unawareness of the data owner" 5.3. However, this threat

is generated by risks related to the purpose for which a user decides to use the

marketplace for. The purpose is the analytics computation on their data. The

highest priority threats have very low probability and for each of them mitigations

have been found. Moreover, the fact that the marketplace stores just the minimal

amount of essential metadata, makes the threats even more mitigated.

The possible future work exposed by the paper [16] indicates the possibility of

creating privacy preserving proofs for the executed computations. As an addition

to that, the author of the thesis identified other points that could be improved

in the current architecture. Even if the architecture exploits decentralisation on

certain elements to ensure security and privacy, some features that are used also

by the decentralised systems are centralised. One of them is the SSI Agent in the

backend of the marketplace. SSI is a technology that exploits decentralisation to

allow certified communication between two centralised parties. However in this

case, users interact with a decentralised system. The consequence is that the MPC

network and the blockchain need to trust the SSI agent for users certification.
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Another centralisation point of the architecture regards the communication be-

tween blockchain and MPC network. The two are currently communicating through

the backend that intermediates every message exchanged between them. This im-

plies that the MPC network needs to trust the backend on any information claimed

to be coming from the blockchain and the other way around.

To realise a sufficiently decentralised system, the architecture could be modified

by joining the nodes of the MPC network and the nodes of the blockchain. In this

way, every MPC node would be able to consult directly the ledger for any information

needed from the blockchain. Moreover, with an agent in every node, every node of

the network would be independent in verifying verifiable credentials not needing to

trust anymore a single SSI agent.
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