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CAD-based digital twins are commonly used by operators of process industry facili-
ties to combine 3D models with external information and documentation. However,
often a suitable model does not exist, and the plant operators must instead resort
to laser scans with panoramic photos, which provide little to no metadata or in-
formation about their contents. Reading of equipment tags or other useful text
from these scans could hugely increase their usefulness, as that information could
be used to connect equipment to its documentation and other data. In this thesis,
the feasibility of such extraction as a special case of deep learning text detection
and recognition is studied.

This work contrasts practical requirements of industry with the theory and research
behind text detection and recognition, with experiments conducted to confirm the
feasibility of a potential application. It is found that the task is feasible from both
business domain and deep learning perspectives. In practice, off-the-shelf text de-
tection models generalize very well to the problem but integrating text recognition
to build an end-to-end solution is found to require further work. End-to-end text
recognition models appear promising in research, but rather uncommon in practi-
cal applications. Recent laser scans including color imagery are found suitable for
the task and using them for recognition is found feasible; however, the usefulness
of older scans remains unclear due to their poor quality. Deploying a successful
practical solution is thus possible with modern scans but acquiring such scans may
require collaboration with facility operators.

Keywords: text detection, text recognition, end-to-end text recognition, digital twin,
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1 Introduction

Process industry companies operate and build facilities with a large amount of exter-

nal maintenance, engineering, and operating information. Digital twins, which are

effectively data-integrated 3D models of the facilities, are useful for these companies

as a "one stop shop" that combines data from all their different systems. Cadmatic

Oy provides such solutions to its customers along with its design tools.

However, for many older facilities, corresponding 3D models suitable for the

digital twin purpose either were never made or are not available. This is especially

common for older facilities built in the 20th century. To compensate, a common

practice used to quickly create 3D data from an older pre-existing facility is by

utilizing camera-equipped laser scanners, which produce panoramic images with

depth information, which are then processed to point clouds, consisting of colored

points in 3D space. However, compared to a 3D CAD model, point clouds do

not include any useful domain information and metadata, such as the names and

properties of pieces of equipment displayed in the scans.

With the evolution of deep learning in recent years, major advances have been

made in the field of end-to-end text recognition. With its practical applications in

computer vision, end-to-end text recognition has made automatically reading text

from images depicting natural scenes feasible. Since scanning facilities produces

data resembling 360-degree panorama images, it should be possible to combine these

technologies - directly apply text detection and recognition solutions to the scans
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and gain information about equipment present in them.

Thus, the main purpose of this thesis is to study the feasibility of a machine

learning solution that extracts labels and their positions from panoramic scans of

industrial plants. The tasks of text detection and recognition are discussed sepa-

rately: detection meaning finding text in an image, with text recognition meaning

reading characters out of a tightly cropped image of text.

1.1 Thesis structure

This chapter is the introduction of the thesis. It is followed by Chapter 2, which sets

the background and research questions: it explains the domain background of this

work and seeks to provide a good overview of its goals and requirements - why the

proposed solution is necessary and what special challenges are involved in reaching

it. Parallel to this domain knowledge, Chapter 3 covers the basics of deep learning to

give the reader a light overview of the inner workings of the algorithms described and

utilized in this thesis. Chapter 4 then contains a literature survey of deep learning

research with relevance to the task at hand. Chapter 5 combines the information

of the previous chapters, providing an overview of how academic research relates to

the problem domain, and builds a basic hypothetical architecture for the solution,

with some further questions to be answered in later evaluation of methods. Chapter

6 brings some more insight to the problem with practical experiments, validating

hypotheses from the previous chapter. Chapter 7 discusses these results and builds

an overall view of the thesis as a whole, and lastly, Chapter 8 is the conclusion of

the thesis.



2 Domain background

This chapter covers the starting point of the thesis: the background and reasoning

as to why the subject of reading text from panoramic scans was chosen. Much of the

background information covered in this chapter is not sourced from any academic

research but is rather domain knowledge from personal findings at Cadmatic and

interviews with employees involved with the development of Cadmatic software.

Digital twins, equipment labels, their usefulness and relation to laser scans are

discussed in Section 2.1. This is closely followed by Section 2.2, which provides an

initial starting point for applying computer vision to get useful data out of the scans.

Lastly Section 2.3 covers the final questions that this thesis seeks to answer from a

domain perspective.

2.1 Equipment labels in digital twins

There is no universally accepted precise meaning of digital twin, but it can be broadly

defined as a digital mirroring of a physical entity [1]. In this thesis, digital twin refers

to a 3D software representation of a facility with connections to external systems. In

practice this means a collection of one or several CAD models or scans of the facility,

accompanied with an information management solution that connects parts of the

3D representation to relevant data such as status, design documents and real-time

data.
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Cadmatic’s information management solution in this space, eShare, as seen in

Figure 2.1, is mostly based on 3D models created in Cadmatic or other CAD soft-

ware. The idea is that all of the different systems and items in the facility are

represented by parts of the CAD model, which have useful attributes and metadata.

For example, these attributes can describe which pipeline a pipe section belongs to,

or what system a piece equipment is part of. Embedded in the CAD model itself,

this data is incredibly important when it comes to information management: for

example, if the name of a pump is known, the CAD model of the pump can be

connected to its technical drawings or related sensor data.

Typically, the system works by connecting attributes of the CAD model to doc-

uments and queries to external systems. However, sometimes such models are not

available, and point clouds are used instead for this purpose.

Figure 2.1: Cadmatic eShare is used to view CAD models with connected data
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2.1.1 Point clouds and laser scans

While new facilities are nowadays first designed using CAD tools and the models

then exported for digital twin use, this is a somewhat recent development considering

the age of some of these facilities. In Cadmatic’s experience, for many of the older

facilities a 3D model suitable for information management either was not kept by

the owner after the facility was built, or never existed in the first place. As a result,

Cadmatic’s customers often utilize point cloud and laser scan technologies to create

model-like 3D representations of existing facilities when a suitable model is not

available. An example of a point cloud can be seen in Figure 2.2.

Point clouds, as their name suggests, consist of a very large number of points

in a 3D space. When created by a terrestrial laser scanner, the scanner typically

measures the distances of points from its position and combines that data with

images taken from the same place. This leads to the creation of full-color point

clouds.

Unlike 3D models, point clouds have no domain-relevant metadata: for instance,

Figure 2.2: An example point cloud with red scanner position markers
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there is no easy way to connect a pipe-like group of points to information about

that pipe. This makes point clouds inherently less useful than 3D models, and

ultimately limits the usefulness of information management software when applied

to older facilities.

Historically, many different kinds of laser scans of varying levels of fidelity have

been produced depending on scanner equipment and settings. Some of the scans

are grayscale, while some are colorful; some are extremely high resolution with a lot

of readable small text, while others are of very poor quality. In short, the quality

and type of data varies wildly. However, from recent examples and interviews with

scanner operators, it apppears that modern laser scanners produce full color scans of

enormous resolution, even supporting high dynamic range imaging in a larger than

traditional color space.

2.1.2 Physical equipment labels

According to employees at Cadmatic, it is typical that process industry facility ma-

chinery, equipment, pipes etc. are labeled for identification in some human-readable

way. In practice this means that a small metal plate or tag with some identifying

alphanumeric code is attached to a piece of equipment. Usually, this code is printed

by a machine in a consistent typeface, but in some cases the code may be painted

on or handwritten with a marker.

Extracting the locations and text of these labels in 3D scans would be extremely

useful for information management purposes because it would make it possible to

automatically detect machine locations in the laser scan 3D representation of the

facility, making navigation within the 3D representation and connecting data much

easier. This would bring point clouds closer to 3D models in usefulness, making it

possible to connect external information of equipment to their point cloud represen-

tations.
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Labels are usually somewhat visible in point cloud scans - the smallest and most

faraway signs are unreadable, but close-by plates are often readable. An example

label in a close-up image can be seen in Figure 2.3. A typical problem for scans

like this appears to be coverage: imaging is performed with the goal of covering the

entire facility for simple viewing and not reading text. Thus, even with the newest

equipment the imaging may not be accurate enough for text detection simply due

to the fact that individual scans are too few and far between.

Details of which labels exist as a whole - codes of machines, pipelines, and such

- are usually known as part of the documentation of the facility. Thus, it can be

assumed that a list of known labels exists or can be produced to aid recognition.

More information what kind of labels in terms of size, colors, orientation etc.

could be found out by collaborating with Cadmatic’s customers. While this was not

possible for this thesis, it is an important area of consideration, as different coun-

tries, companies and even facilities have different methods of labeling and tagging

equipment. The usefulness of a partially working solution should be evaluated, as

well as any methods that could help add the missing data in failure cases such as

pictures taken by hand.

At present, it is still unclear which kinds of labels are the most useful within

Figure 2.3: Poor quality label
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facilities for connecting information, or how good the coverage of a facility should

be for the solution to be useful.

2.1.3 Panorama representation

Many point clouds, such as those generated by laser scanning, can be represented

as spherical 360-degree panoramas with depth information. When this depth in-

formation is stored separately, such panoramic point clouds can be stored directly

as pictures using equirectangular projection. An example of this can be seen in

Figure 2.4; note how the upper and lower parts of the image are most distorted.

This representation may be produced directly by the laser scanner’s own software or

other software used for processing point clouds. It is trivial to generate perspective

views, ie. "normal" looking pictures, of these 3D panoramas.

Figure 2.4: An example of an equirectangular panorama. Flattened equirectangular

view on the left, with perspective view on the right.

At the horizon level, an equirectangular projection has relatively little distortion

compared to alternatives such as cube maps. Cube maps map the panorama onto

a cube, which leads to more seams and unpredictable distortion depending on the

orientation of the cube map.

Despite its usefulness and ease of viewing, equirectangular mapping is not perfect

for the purpose of storing panoramas. Because equirectangular mapping sets longi-

tude as the X and latitude as the Y coordinate in the image, the upper and lower
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edges of the image contain a disproportionately high number of pixels compared to

the center of the image, relative to the perspective area they represent. This means

that a large part of the picture is effectively wasted on the top and bottom edges

of the view, which usually do not contain any interesting information. In turn, the

most interesting areas at horizon level use the least pixels compared to their true

size, which is similarly counterproductive.

Regardless of its problems, equirectangular mapping is a commonly used projec-

tion, and representation as pictures makes image-based text detection and recogni-

tion easier to apply to these scans.

2.2 Applying deep learning

Since laser scans can easily be represented as pictures, it is most beneficial to use the

various well-researched image-based methods of computer vision for their analysis.

Specifically, detecting text from these scans can be seen as a special case of text

detection and recognition in natural scenes, which are both established problems

in deep learning. These methods are similar to optical character recognition in

documents but target more challenging pictures.

As this is a new domain application of these methods, there are several technical

challenges and special aspects to the problem that must be sorted and understood

before a viable deep learning solution can be built.

2.2.1 File format and properties

The distortion caused by equirectangular mapping is somewhat problematic, as it

stretches text and thus makes it more difficult to read. At the same time, panorama

images are very large compared to the cropped and scaled images typically used in

computer vision, leading to questions about whether these algorithms operating on
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small images are able to detect extremely tiny text.

Typically, text detection algorithms are optimized for somewhat large text, and

object recognition algorithms target objects that take up considerable space in the

image. In this specific application, however, the text is typically very small and

difficult to detect. In general, detection of small objects is considered a difficult

problem [2]. Thus, focusing on algorithms that excel on small object detection may

be beneficial.

Given the small size of labels, existing scans might be of too low quality for the

purposes of this thesis. This is not necessarily a problem for the final business case

for this technology, as the solution would likely justify scanning the facilities with

better scanner technology, as doing so is a one-time cost, and in many cases new

scans must already be conducted periodically.

While depth data is likely not utilized by any off-the-shelf algorithm, it may

prove useful in detecting whether text is obstructed, whether the surface of the

detected text appears plausible, etc. For instance, large changes in depth could be

used to disqualify certain text locations, or small changes used to detect smooth

planes likely to contain text.

2.2.2 Performance and practicality

While many extensively researched applications of object detection such as self-

driving cars or real time text translation are extremely performance critical, the

application of extracting text from panoramic images is not so. This property adds

a considerable computational advantage for building the model, as detection can be

done at worst on a scale of minutes per image instead of milliseconds. At the same

time, the number of images is limited and not a constant video feed, for example.
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2.2.3 Lexicon and context

A constraint of this specific application of text recognition is that most of the text

instances are not composed of actual words in any language. Instead, the text

instances are alphanumeric codes used to identify equipment within facilities. This

may have an effect on the detection and recognition tasks, as the text is noticeably

unusual: for instance, a method recognizing only English words would be entirely

useless.

In addition to their lack of language, the text instances are short and do not have

any grammatical context. Some methods could use the context of words to deduce

their meaning, similarly to machine translation. This kind of a model would most

likely only cause problems, as for alphanumeric codes grammatical context does not

exist. In addition, any model that typically deals with paragraphs of text may have

trouble with the codes being equivalent to single words.

As noted in Section 2.1.2, the existence of an equipment label list implies a

lexicon of the possible codes to be found in the facility is known. However, this list

of words greatly differs from natural language lexicons, as codes often share prefixes

or other parts, and several different codes may differ by just one character.

2.3 Research questions

Based on the previous background information, this section covers the questions

that the following chapters seek to answer:

When it comes to industrial plants, it is unclear how well labeled different devices

and items are. Valves appear to have small tags that are easily obscured, while larger

elements such as fuse boxes have much larger and easily legible labels. Equipment

labeling varies: some plants have all larger equipment well signified with easily

readable plates, while some simply have hand-written markings with a marker, etc.
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Focusing on the machine printed labels, is detecting and reading them possible even

in theory?

Many existing scans are low resolution and captured at a distance, aiming for

coverage rather than accurate data. How does the quality and distance of a laser

scan affect the accuracy of text detection and recognition? Is it possible to use older,

lower quality scans of facilities, or will we need new ones, or wait for the technology

to improve?

Regarding applicability of current research, how well do state-of-the-art natural

scene text detection and recognition algorithms lend themselves to this task? What

approaches can be taken to combine and modify these methods to improve accuracy

over directly applying previous research, and is this application one where existing

methods and models will transfer easily?



3 Deep learning background

This section explains important machine learning concepts necessary for understand-

ing this thesis. The first section provides a brief overview of machine learning, while

later sections cover more specific key areas of deep learning discussed in this thesis.

3.1 Overview of machine learning

Typically, computer programs are defined in an explicit manner by writing out the

logic of a desired application. In contrast to explicit programs, machine learning

means the study and use of algorithms that come up with ways to make decisions or

predictions on their own without explicit prior definition. By analyzing input data,

a machine learning algorithm learns a model that produces output predictions. [3]

(p. 20)

Machine learning excels at problems where the solution is not known or is un-

feasible to formulate. For example, consider the problem of whether a given image

contains a dog: easy for a human, but difficult to formulate to a computer. As

problems like this can be solved with machine learning, computer vision is one of

its most popular applications.

In this thesis methods of machine learning, and specifically deep learning are

explored for the tasks of text detection and text recognition. The fundamental idea

of a text detection and recognition method is to train a model - an algorithm and

the parameters of said algorithm - on training data, and then use that model to
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predict the location and content of text in previously unseen images. In the tasks

of text detection and recognition, that training data is images where the location

and characters of text are known. This generated model is then used to detect

and recognize text in new images: the ability of this model to make predictions on

unknown data is called generalization.

3.2 Model training

To train a machine learning model for a specific task, a dataset of some kind is

needed. In supervised learning such as that in this thesis, the training data consists

of example input-output pairs which are then divided into different sets based on

their purpose, as displayed in Figure 3.1. The training set is used for training the

model, which in this case is an artificial neural network; the validation set is used for

tuning the adjustable parameters of the network called hyperparameters; the test

set is used to evaluate the model’s final performance [3] (p. 86, 95). Artificial neural

networks are described in more detail in the following section.

In contrast to supervised learning, unsupervised learning means training a model

Training data

used in

Training set Validation set Test set

Model training

divided to

used in

Hyperparameter
tuning

used in

Final evaluation

Figure 3.1: Data division
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based on data without explicit input-output pairs. While such learning is not com-

monly used for text recognition, there are some methods incorporating weakly su-

pervised learning, where the input data is limited or imprecise. For instance, if a

method is trying to detect individual characters, doing so using training data where

labels are word-level as opposed to character-level is weakly supervised learning. [4]

(p. 6, 108-113)

3.3 Artificial neural networks and deep learning

Artificial neural networks are a fundamental concept in machine learning that draws

its inspiration from the nervous systems of living organisms. Like nervous systems

in nature, it too consists of a complex network of neurons that pass signals forward.

[3] (p. 27) Since artificial neural networks are very good at learning complex tasks

and modern graphics processing units have made it possible to process them in

reasonable timeframes, they have been applied to a huge number of tasks, including

computer vision.

In terms of terminology, deep neural networks are neural networks with many

layers of neurons within them. The definition of "deep learning" itself doesn’t require

deep neural networks, but is nowadays used for all kinds of gradient based methods

[5] (p. 261), including those of feedforward neural networks.

3.3.1 Feedforward neural networks

There are many different architectures of artificial neural networks, but the most

historically notable one that most modern neural networks are derivatives of, is the

multilayer perceptron. It is a type of feedforward neural network, which are neural

networks where the connections between neurons do not form a cycle.

A simple multilayer perceptron consists of three layers of neurons: an input layer
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that represents the inputs of the network, an intermediate layer called the hidden

layer, and an output layer representing the output. Each neuron in a layer gets

its input from all the neurons of the previous layer and passes its output on to all

neurons of the next layer. These connections between layers have weights. [5] (p.

138), [4] (ch. 5, 6)

Specifically, the output of any single neuron within the neural network is de-

termined by the weighted sum of its inputs, which are the activation of previous

layer’s neurons, as well as a bias term. These are passed into a non<linear acti-

vation function such as a sigmoid function that determines what the output of the

neuron should be. The weights of the connections between neurons effectively decide

which connections from the previous level matter most for the calculation of that

specific neuron. An example of a multilayer perceptron can be seen in Figure 3.2.

[5] (section 6.1)

In artificial neural networks, training means updating the weights of connections

between neurons, and the neurons’ biases. When the neural network is trained on

training data, a loss function indicating how wrong the network was in its predictions

x1

x2

y1

y2

y3

z1

z2

Input Hidden layer Outputs

wxi,yj
wyj,zk

Figure 3.2: Feedforwad neural network layers
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is evaluated. In order to reduce this error, the weights of the connections need to

be updated in a beneficial way. [5] (section 6.2)

Weights of the neural network are updated using an algorithm called stochastic

gradient descent, utilizing backpropagation. First, the backpropagation algorithm

efficiently calculates the gradient of the error function regarding each weight: in

other words, it figures out what kind of effect changing each weight has to the

overall loss of the network. Next, stochastic gradient descent is used to update the

weights in such a way that the error is lowered, according to the gradient. The

end result of this process is that the training error is reduced, and hopefully the

network’s predictions are closer to expected. A similar algorithm is visualized in

Figure 3.3. [5] (section 6.2), [3] (sections 4.3, 5.9)

3.3.2 Convolutional neural networks

Convolutional neural networks, CNNs for short, are neural networks containing con-

volutional layers. They take advantage of the mathematical operation of convolu-

x0

x

Figure 3.3: An example of gradient descent: the algorithm zigzags towads a local

minimum at the center of the contour lines. Adapted from [6].
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tion, which lends itself well for computer vision tasks. In concept, they are somewhat

inspired by the biological visual cortex of the eye. On a basic level, a convolutional

layer takes a tensor such as an image as input. On this input, convolutional filters

are applied with weights and bias similar to a neuron in a feedforward network,

resulting in an output called a feature map. The convolution can be parametrized

in terms of size - how large the receptive field sliding window is, stride - whether the

convolution should run for every position in the image or skip some, and padding

which allows convolution to continue over the edges. [5] (ch. 12), [4] (ch. 13)

In computer vision tasks, convolutional layers are often used for feature extrac-

tion, stacked one on top of another with different parameters. The feature maps

that these layers produce may then be fed to, for example, a fully connected neural

network that finally classifies the features. One example of such a network can be

seen in Figure 3.4.

In the context of this thesis, convolutional neural networks are used at every

step of a text recognition pipeline, as they are the primary method used to generate

features out of two-dimensional images.

Input

Convolution Pooling

Feature extraction Classification

Figure 3.4: Example convolutional neural network
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3.3.3 Recurrent neural networks and others

A considerable downside of feedforward networks is that they have no memory and

thus are incapable of "remembering" things: they simply take an input and produce

an output without regard to what came before or after it in a sequence. Recurrent

neural networks, also known as RNNs are a class of neural network that solve this

problem by processing data sequentially and passing data from one time step to the

next. These networks are thus capable of learning dependencies between different

elements of the sequence. For instance, in the case of text recognition, a word can

be processed letter by letter and data about the previous letters can be passed to

the current letter. The most notable downside of RNNs that many later improved

designs have attempted to fix is that the farther apart elements of the sequence are,

the less likely they are to affect each others’ outputs. [4] (ch. 14) [5] (ch. 13)

One such recurrent neural network architectural component is the Long short-

term memory (LSTM) unit [7]. With a more elaborate design than its predecessors,

it can maintain its hidden state for much longer than a typical RNN. Attention and

transformers are further improvements to RNN-based architectures.

As recurrent neural networks are particularly useful when processing sequential

or time-series data, in the context of this thesis, they are most useful in the task of

text recognition.

3.4 Relevant other applications of deep learning

Some common applications of deep learning are image classification, object detec-

tion and natural language processing. While the applications usually share the

same deep learning basis, each of them takes a different direction in its research

and methodology. These tangentially related technologies build the basis on which

modern text detection and recognition works are built.
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3.4.1 Related technologies

An image classifier takes an image as input and assigns it to one out of several

defined categories. One of the most significant breakthroughs in deep learning was

the 2012 work of Krizhevsky et al. [8] winning the ImageNet image classification

competition by utilizing a deep convolutional neural network. Much of the research

related to deep learning in computer vision since has been based on these same

concepts. [9] (p. 2353)

An object detector, on the other hand, is tasked with finding instances of some

specific object in an image. Typically, this is visualized by drawing a bounding

box on the objects found in the image. This application is closely related to image

classification - in fact, one of the most important object detection works was Girshick

et al. [10] adapting the aforementioned work by Krizhevsky et al. [8] to work in an

object detection context. Object detection itself is closely related to text detection.

[11] (p. 2)

Natural language processing is considerably wider of a concept, and concerns

many subjects related to spoken and written language such as machine translation

or handwriting recognition. Compared to the previous two problems, which are

mainly related to computer vision and thus related to two-dimensional images, many

language processing problems are rather seen as sequence-to-sequence problems. [12]

Most recent improvements to text recognition seem to emerge from this field.

3.4.2 Relation to text detection and recognition

Text detection can be considered a subtask of object detection [13]. As a result, much

of the research on object detection has implications on text detection, and many text

detection methods themselves are adapted directly from object detectors.

Text recognition, however, is closer to a natural language processing task. In

the past, text recognition was typically viewed as a task of separating each word
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into characters and classifying those characters. Nowadays, however, it is mainly

viewed as a sequence-to-sequence task. Many architectures from other sequence-to-

sequence tasks like handwriting recognition are nowadays utilized in text recognition

[13]. CTC, attention and transformers are examples of such architectures that are

covered later in this thesis.

3.5 Evaluation of models

Text detection and recognition methods are evaluated through statistical measures

that quantify their performance. For text detection, the most common statistics

used are precision, recall and F-score.

Precision answers the question "out of all the predictions produced by the model,

how many are true positives". The value is represented as a decimal number. For

instance, if 50 of 100 predictions are correct, the resulting precision value is 0.5.

Recall, on the other hand, represents how many of all instances of the ground truth

are detected. For example, if the ground truth contains 100 instances and 50 are

detected, the resulting recall is 0.5. [4] (p. 294)

Alone, either of these two measures does not fully describe the usefulness of

the model. For instance, high precision numbers can be attained even if almost no

text instances are detected; vice versa, very high recall values can be attained while

producing lots of wrong extra detections. F-score combines these two measures to

one number, calculated as a harmonic mean of precision and recall. As it places an

equal weight to both numbers, it cannot alone represent the usefulness of the model

for all situations, but as a single number it gives a better overview than the two

individual measures. [4] (p. 294-295)

Text recognition is generally measured with a single measure of accuracy, which

is effectively the recognition rate: it represents the fraction of the total instances

that the recognition model output correctly. Another measure that is especially
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used in handwriting recognition is Character Error Rate (CER), which measures

the number of insertions, substitutions and deletions required for the output and

ground truth to match. This is based on Levenshtein distance, which is a simple

edit measure proposed by mathematician Vladimir Levenshtein in 1966 [14]. This

algorithm counts the number of insertions, deletions and substitutions between two

text strings and produces a total number of them. Dividing this distance by the

number of characters results in the character error rate.



4 Related work

Text recognition is probably most familiar to those who have used optical character

recognition tools for scanning paper documents or used license plate readers. End-

to-end scene text recognition is concerned with a task that is a superset of these

problems: reading any kind of text in any kind of setting. Typically finding and

reading text are considered two different problems: text detection and recognition,

with separate research dedicated to each task.

In the last few years, research on text detection and recognition has advanced

significantly with the development of deep learning methods. While previously these

tasks were dominated by entirely or partially handcrafted features and algorithms,

recent methods utilize deep learning from end to end, producing dramatically im-

proved results. With parallel processing becoming more and more accessible, deep

learning is becoming more and more viable for industrial use.

The aim of this chapter is to provide a theoretical background for the thesis as

a whole: a basic literature review of academic research relevant to end-to-end text

recognition. It focuses on methods developed for the separate tasks of detection

and recognition as well as those meant for end-to-end recognition. Almost all of

the text detection and recognition methods described are designed to work on 2D

images from a camera, as that is the most researched and most common real-world

application of these methods. Very little public research exists on applying these

concepts further to panoramas or pictures with additional depth information; thus
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most of the research covered in this chapter ignores those aspects of the problem

and focuses on flat images instead.

4.1 Overview of related work

Scene text recognition methods are divided into three main categories in almost all

of recent research: text detection, text recognition and end-to-end text recognition

which combines the other two [13]. This section explores these three topics and

other relevant research about data and models regarding text and images.

Text detection means finding the position and orientation of text in a picture.

Specifically, this usually means localizing individual words or lines of text within

a picture and fitting a bounding box around each of them. In natural scenes, the

detected words are usually a relatively small part of the whole image. For example,

a picture of a storefront with a sign on top could be used as input for text detection.

Text recognition, on the other hand, means reading text from a cropped image

where text has already been located and correctly identified. In practice text recog-

nition methods are not usually applied on perfectly cropped and rectified images,

as text is always surrounded by some space in the image requiring some kind of

rectification. Still, these images are much tighter cropped than those used in text

detection.

End-to-end methods perform both text detection and recognition - they are

end-to-end in the sense that they take in an image and output the text within

the image. They either combine separate detection and recognition approaches to

one single method or use a unified solution to solve both problems at once. Their

main advantage is being trainable end-to-end, meaning that there is no need for the

training of two separate models. Generally, the sharing of feature maps between the

stages means better integration between the detection and recongition stages, which

should logically lead to better end-to-end performance than combining two separate
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methods.

Figure 4.1 shows the difference between text detection and recognition as con-

cepts. End-to-end text recognition combines both of the two concepts in one.

Most works today focus on either detection or recognition separately. Thus,

developing a useful end-to-end solution requires thorough inspection of research

both in detection and recognition as separate tasks. Some competitive end-to-end

solutions have been proposed, but they largely adapt concepts from the two separate

stages, and less research has been conducted on the process as a whole compared to

the two separate steps. For a more comprehensive history of scene text detection

and recognition, a 2020 survey by Long et al. [13] compiles the most influential

methods and their development.

4.1.1 Choice of research topics

Since many existing papers on text detection and recognition focus on some subset

of the detection or recognition problem such as curved or distorted text, not all of

the them are directly relevant to this specific application of text recognition. For

instance, while curved text is unlikely to appear in the input data of this thesis,

it is one of the main challenges new text recognition research tends to focus on

Figure 4.1: Text detection (left) vs. text recognition as tasks (right)
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[13], [15]. Although typically not included in the domain of scene text recognition,

another example of a very specific application is real time car license plate detection,

where many assumptions can be made about the background, layout, orientation and

contrast of detectable text in the license plate, and strict performance requirements

apply. Thus, methods to solve these specific challenges often rely on assumptions

that do not hold for label detection in facilities. In addition, many proposed solutions

are optimized for performance on a frames-per-second level on some available GPU,

which is not necessary for the purposes of this thesis, as the detection and recognition

are not performed in real time.

One potentially significant difference between current research and the desired

application is that research is focused on "natural scenes" that are generally less

cluttered and simpler than facility interiors, and often on texts much larger than

those of small labels. The dataset images typically include text on large traffic signs

or storefronts, where text is typically large and perhaps more diverse typographically,

while the labels in facilities are typically very small, just large enough to be readable

in the panoramas.

4.2 Text detection methods

Since text detection can be considered a special case of object detection, virtually

all current text detection methods are based on general object detection research on

some level, typically incorporating the newest advances in that field. Many of these

methods draw from bounding box regression -based methods, while some perform

image segmentation. More advanced methods extract text-specific features and take

special properties of text such as the division to characters into account.

Text detection methods are difficult to categorize clearly, as they largely borrow

from each other. First, methods that just adapt bounding box object detectors are

discussed, after which methods doing more elaborate segmentation approaches are
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introduced.

4.2.1 Object detection -based

Typically, an object detection -based detector will encode convolutional feature maps

of the input image and predict the location of text within them using a classifier,

based on which a bounding box is then fitted to the image. These methods’ great-

est advantage is their simplicity: they are well researched and relatively simple to

implement and train end-to-end due to the popularity of object detection research.

To better explain these methods, some background explanation of the popular

methods regarding object detection itself is necessary. The task of object detection

can be defined simply: does a given image contain instances of objects belonging

to some known category of objects, and if so, where in the image are they located

and what is their area [11]. Essentially the task is to label some known categories

of objects within an image, as seen in Figure 4.2.

Modern deep learning -based object detection got its start from the R-CNN

method by Girshick et al. [10]. The idea of the original method is to extract regions

of interest from the image, run those through a convolutional feature extractor, and

use a classifier on the results. These are then merged back to one image by prioritiz-

Figure 4.2: Object detection (bounding box regression) example
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ing higher-scoring regions and then improved with bounding box regression. Later

methods based on this work then improved end-to-end trainability, performance and

many other qualities of the detector [16][17].

Some examples of notable object detectors previously adapted to text recognition

are YOLO of Redmond et al. [18], SSD of Liu et al. [19] and Mask R-CNN [17]. One

of the most significant modern text detectors, EAST, proposed in 2017 by Zhou et

al. [20], uses a similar architecture. Extremely fast and accurate compared to the

state of the art at the time, it used a U-shaped convolutional network [21] which

merges feature maps from different feature extraction levels gradually. While newer

methods may surpass it in performance, its relative simplicity, performance and ease

of implementation has lead to it becoming very popular to re-implement, and several

public and open source implementations are available. TextBoxes++ by Liao et al.

[22] is another similar well regarded text detector. Based on their earlier work called

TextBoxes, it is based on the SSD object detector [19].

While these methods are very simple, efficient and well researched, their de-

tection does not work very well for arbitrarily shaped or long text compared to

segementation-based methods [13]. Most current bleeding edge research is more

complex and text-specific in nature. Still, these methods seem very popular in

practice due to their simplicity and competitive detection results.

4.2.2 Segmentation -based

In segmentation-based methods, typically the different areas of an image containing

text are detected on a pixel level and processed into separate text instances. This is

arguably a better method than the previously described region-based text detection

methods, as a fundamental property of text is that it can be split into several parts

- for instance, a sentence can be split into words - and the remaining parts are still

considered text. While general object detection treats blocks of text as objects,
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segmentation treats text as more of a class of content within the image.

Figure 4.3 showcases an example of object segmentation, differing from bounding

box regression in Figure 4.2. In this case a car is separated from its background on

a pixel level.

Segmentation of text may happen on different levels. The most basic level of

segmentation is text segmentation, in which each pixel is classified as text or not

text. More complex methods may find character or multi-character segments within

text, closer to multi class segmentation.

Baek et al. [23] propose a method called CRAFT, which performs character

level segmentation. It localizes and groups individual characters within images into

text instances. However, this is somewhat challenging as real-world datasets have a

word-level rather than character level data, requiring weakly supervised learning.

The Textsnake method proposed by Long et al. [24] represents text as a sequence

of overlapping discs that are joined together. The algorithm specializes at detecting

free form and distorted text instances. It works by first segmenting the image to

find text regions, and then fits a center line and discs to each instance.

As another example of segmentation, Wang et al. propose a Pixel Aggregation

Figure 4.3: Image segmentation example: the "car" part of image in red, with

background in blue.
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Network [25] that specializes in arbitrary shaped text. It uses a lightweight back-

bone and utilizes "Feature Pyramid Enhancement Modules", extracting multi-level

features.

SegLink by Shi et al.[26] uses the SSD object detector by Liu et al. [19] to detect

text segments, between which it predicts links to connect them as instances.

4.3 Text recognition methods

The purpose of text recognition is to convert a tightly cropped image of text, such as

the output of a text detection algorithm, to a sequence of characters. How well the

image is cropped before being fed to text recognition varies - on the hand-labeled

academic datasets the space in each text instance may be minimal, while object

detectors often produce much more varied results.

As text is read from one side to the other, the input data of text recognition

can be considered sequential: text consists of sequences of words, words consist of

sequences of characters, and characters consist of sequences of lines of pixels. There

are several neural network architectures specifically focusing on sequential data, and

many can be applied to text recognition as a result.

4.3.1 Overview of recognition architectures

There are several relevant network architectures from other domains that frequently

appear in text recognition research. These are often related to recurrent neural

networks seen in machine translation and other natural language processing tasks,

as text recognition is seen as a sequence-to-sequence problem. [13]

Probably the most common text recognition-related architecture from natural

language processing is the encoder-decoder architecture, which uses one RNN to

encode the input sequence to a vector, which is then decoded by another RNN.
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Originally the work of Sutskever et al. [27], this architecture comes from machine

translation.

An evolution of the encoder-decoder architecture is the addition of the atten-

tion mechanism, which was first described by Bahdanau et al. [28] for machine

translation. It allows better modeling of dependencies and alignment between two

sequences, as each element of the input sequence produces its own context vector

rather than a single common one. This improves the network’s ability to "remember"

elements of the sequence farther away from the current output, and "pay attention"

to previous relevant parts of the sequence. Attention is also very commonly used in

text recognition, and builds an especially strong implicit language model.

Transformers, as introduced by Vaswani et al. [29], improve again upon attention.

Transformer-based models, instead of relying on an encoder-decoder model, base

the entire architecture on the attention mechanism itself. Transformers have been

recently adapted to text recognition by Xue et al. [30].

In a text recognition application, all of these RNN-based methods learn depen-

dencies between different parts of the input text image. This means that not only

do they learn which part of the image stands for each letter, but they also learn de-

pendencies between characters within a single word. This is useful for recognition of

natural language text, as it allows for better construction of words. For this reason,

RNN-based models are considered to contain an implicit language model.

For a decent overview of the landscape of modern text recognition, in 2019 Baek

et al. [31] compiled a benchmark of recent deep learning models for text recognition

and pointed out problems with the methodology of previous text recognition model

comparisons, such as the inconsistency of datasets used for training. They reduce

most text recognition methods to one simple pipeline of transformation, feature

extraction, sequence modeling, and prediction.
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4.3.2 Character level features

Character level methods generally attempt to divide the word of the input image to

a sequence of characters, and then classify those characters individually. Especially

many of the early conventional text recognition methods were based on character

segmentation or detection [13]. While not generally used today on its own, using

character level information has several benefits over word level data, most notably

language independence. For the particular task covered in this thesis, this property

is important.

A considerable practical problem in the implementation of character segmen-

tation methods is that most existing text detection and recognition datasets have

word-level annotations. This means that character positions must be somehow in-

ferred using weakly supervised learning rather than the supervised learning that is

possible in word-level methods.

Some modern methods work on a character level. Char-Net by Liu et al. [32],

for instance, uses a character level encoder. It encodes features on both word and

character level, introducing a bespoke recurrent RoiWarp layer and using character

level attention. Liao et al. [33] on the other hand utilize a semantic segmentation

network with a character-level attention mechanism. It appears that character-level

features are generally not used as commonly as they once were, as most have adopted

a word level encoder-decoder architecture instead [13].

4.3.3 Word level features

Word level features are typically extracted using methods developed for sequential

data. These sequence-to-sequence methods do not view text as a problem of classi-

fying individual characters but recognizing pieces of text as sequences that map to

certain words. This means that they are almost always language-specific, as their

word detection greatly depends on their dataset.
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Within the four stage pipeline by Baek et al. [31], transformation normalizes the

input against inconsistent orientations and translations of text according to Spatial

Transformer Network by Jaderberg et al. [34] Feature extraction is then used to

produce feature maps from the input, typically using a convolutional or recurrent

neural network classifier backbone. Sequence modeling considers the sequentiality

of text to predict characters based on each other instead of individually. Lastly,

encoder-decoder based prediction, typically using Attention or CTC, is performed.

CTC stands for Connectionist Temporal Classification [35]. It is a sequential

decoding model that can map inputs and outputs regardless of their alignment and

is often employed in other sequential tasks such as audio or handwriting processing.

What this means is that CTC is able to assign labels to sequences that are not

segmented where character locations and boundaries are not clear or known. It has

been used in several algorithms, such as that by Shi et al. [36].

Attention, on the other hand, comes from the field of neural machine transla-

tion [28]. It learns alignment between the input and output sequences, where the

attention mechanism helps ensure the passing of data between steps of the encoder.

Attention has been utilized by several methods, such as that by Cheng et al. [37]

When used, it creates a stronger implicit language model than a typical RNN-based

recognition model, as it learns stronger relationships between different parts of the

input sequence. This property reflects its strength in machine translation tasks. In

addition, Xue et al. [30] adapted transformers, which improve upon attention, for

text recognition.

4.4 End-to-end text recognition methods

End-to-end text recognition, also known as end-to-end text spotting, usually com-

bines detection and recognition algorithms to one solution. There are two main

kinds of end-to-end methods: those consisting of two separate model steps and
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those consisting of one step with two integrated stages. Systems with two separate

models first detect text using one model, crop images out of the source image and

then run recognition on the cropped images. This makes the two steps entirely sep-

arate and not end-to-end trainable. Meanwhile, one-step methods instead input the

feature maps from the detection step to the recognition step, creating an end-to-end

trainable single model. Recent research on end-to-end text recognition is focused on

the latter method, while separate methods appear to be more common in practical

applications based on the number of blog posts, public models and works like that

of Mai et al. [38].

4.4.1 General end-to-end text recognition

One of the most significant recent end-to-end text detectors is FOTS by Liu et

al. [39]. It combines an EAST-like detection branch with a new rectifying step

called RoIRotate and lastly a CTC recognition branch, providing a single end-to-

end trainable model. Another notable method is Mask TextSpotter by Lyu et al.

[40] which uses a Region Proposal Network [41] to feed a Fast R-CNN [41] bounding

box regression branch and a mask branch for word and character segmentation.

CharNet by Xing et al. [42], not to be confused with the previously mentioned

Char-Net text recognition method, is another end-to-end solution. It uses a similar

ResNet backbone to FOTS, but instead uses separate character recognition and

text detection branches. The basic idea is that one branch recognizes characters in

the image while the other detects lines of text. The character segmentation -style

approach suffers from the same problems as other character segmentation methods,

namely the fact that character-level training data is rare and thus weakly supervised

learning must be deployed.
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4.4.2 License plate recognition

License plate recognition is one of the areas of research that end-to-end text recog-

nition has been applied to. From the point of view of this thesis, license plate

recognition is interesting because it is arguably an easier version of the equipment

label detection problem. Exactly as in the label task, license plate recognition does

not deal with words of any language, but alphanumeric codes consisting of Latin

characters. In comparison, however, license plate text instances are bound to be

more homogenous in terms of background, size and typeface, and plate recogni-

tion systems are subject to stricter runtime performance bounds. These systems

are likely useful for this thesis, as they are practical implementations of text de-

tection/recognition that can be deployed on their own rather than purely academic

exercises that only concern a part of the full end-to-end pipeline.

Some modern license plate recognizers use a method similar to encoder-decoder

based text recognition methods [43][44]. Many methods, especially older ones, use

character segmentation instead, which very few new text recognition models adopt

compared to the encoder-decoder architecture and its derivates [13].

4.5 Adaptation to small text

Since text detection adapts methods from object detection, it makes sense to study

small object detection to find out how the small size of text could affect model

performance. The definition of small object detection varies, but one common defi-

nition originating from the COCO dataset [45] defines small objects as those under

32x32 pixels in size. Compared to general object recognition tasks, adapting models

especially to small objects studied comparatively little, as most mainstream models

focus on objects that consist of a larger area of the image.

In their review, Tong et al. [2] found that current deep learning methods used
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for small object detection are still quite far from humanlike performance despite

being useful for a multitude of applications. They note a distinct lack of datasets

and models specifically crafted for this task. They cover some common approaches

to the problem, such as feature pyramids, which are also commonly used in text

detection.

4.6 Adaptation to panoramas

While there is not much research on end-to-end text recognition on panoramas,

there is some relevant research involving general object detection. Applying object

detection to 360-degree imagery suffers from one large problem: both models of

most existing methods and the datasets used to train their models assume a per-

spective view rather than a 360-degree view. The two most common intuitive but

flawed solutions to these problems are either to apply the algorithm directly onto

the distorted equirectangular image or to generate many perspective-correct views

of the panorama and process them individually. The first of these solutions is cheap

in terms of computing power, but may yield bad results due to image distortion,

especially near the most distorted top and bottom parts of the images; the second

takes distortion into account but needs much more computing power.

Yang et al. [46] combine these methods by running object detection on multiple

overlapping stereographic projections. Better ways to handle panoramas have been

suggested by Su and Grauman [47][48] regarding models for transforming networks

trained on planar data to work on panoramic data.

One interesting similar application of 2D computer vision on panoramas is the

bullseye detector by Mai et al. [38] In their research, panoramas from ships are used

to detect "bullseyes" which are rather large signs with text on them, very similar

to this thesis. In their case, cube maps were used instead of an equirectangular

projection. They used EAST for text detection and Tesseract for text recognition.
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4.7 Synthetic training data

When it comes to having little to no training data, it is possible to automatically

generate large datasets for end-to-end text recognition as described by Gupta et al.

[49] in their work on SynthText. In SynthText, a large dataset of images without text

is taken, and text is then inserted on top of the images to generate a large dataset

of natural images with known text and labels. Many models are pretrained with

their synthetic dataset and reportedly produce decent results - even if the dataset

still requires finetuning with better, more realistic data for specific use cases. While

the SynthText dataset itself is often used by many text detection and recognition

methods, the generation algorithm itself is not. Based on this information, it ap-

pears that this work could also be adapted for different purposes with different text

typefaces and transformations.



5 Applying research to the domain

This chapter covers the technologies introduced in Chapter 4 and assesses how they

fit the requirements and details covered in Chapter 2. The overall architecture of a

potential solution is discussed first as a whole, after which subsequent sections go

into more detail about each step of the solution and the challenges and proposed

solutions regarding them based on literature.

5.1 Overall architecture

The goal of the method as a whole is to find the locations of known texts from

data produced by laser scanners, specifically alphanumeric codes consisting of Latin

characters. As covered previously in Chapter 4, image-based methods should be

first chosen over any 3D data or point cloud-based methods due to the popularity

of relevant research and the inherent two-dimensionality of text.

Within image-based end to end text recognition, the options then are to choose

either separate text detection and text recognition steps, or a combined end-to-end

text recognition method sharing features between the stages. Based on literature

surveyed previously in Chapter 4, a combined model should perform better when

trained end-to-end on training data accurately representing the scenario. However,

most of existing practical methods and research are based on separate detection and

recognition steps. As noted in Chapter 4, end-to-end models appear promising in

their research results yet seem much rarer and less commonly used. This makes
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comparing the two types of architecture difficult as a whole: the one-step option

should be better in theory, but it is difficult to find practical solutions compared to

the two-step option. Thus, the focus of this thesis is on two separate steps.

As a sufficient amount of domain-specific training data is not available, the de-

tection and recognition models rely on training on standard datasets. For quick

experimentation, the available methods are typically distributed with pretrained

models deriving from these datasets. This means that the models have been already

trained on some dataset - typically one that is much larger and more generic than if

one was compiled from facilities with tags in them. How well these common detec-

tion and recognition models generalize to the facility data at hand is unclear. It is

known that their performance can be improved with additional training: finetuning

the model with manually labeled data that better corresponds to the target.

The initial idea is to utilize a standard model for both detection and recognition

steps. At this point, the greatest challenge is finding models with satisfactory per-

formance, and making them work together efficiently. Then, later, the models could

be trained further with domain specific data once acquired.

Once a text instance is extracted from an image, it must be processed and paired

somehow with an item on the list of possible labels, which we can assume exists based

on Chapter 2. With such a list, it is possible to utilize a filtering step that selects

the most likely label out of the known labels list, but only if the recognition output

is close enough to the exactly correct sequence. Once the label text is known, this

is then fed to the last part which localizes the text and its position in the three-

dimensional panoramic point cloud - however, this last part seems trivial and is

algorithmically out of scope for this thesis.
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The overall initial architecture of the problem solution, as seen in Figure 5.1,

thus consists of four processing steps: text detection and thus localizing the text,

text recognition which means reading the found text, filtering text instances, and

lastly outputting the final match and its location.

Text detection  Cropped text
instances

Text
recognition

Rough text
and location

Post-process
and filter

Clean text
and location

Laser scan
images ...

Figure 5.1: Overview of a text recognition pipeline

5.2 Text detection

As covered previously in Chapter 4, there are many different types of text detection

methods. Most should be valid for this task, as the text instances to be detected

should be short codes, which resemble single words which are a common case in

general text detection. There is no need to be able to process, for example, longer

paragraphs or entire pages of text that might exist in other applications like docu-

ment OCR.

Typically research on text detection is conducted on the same few academic

datasets. These collections of images usually contain text in "natural scenes", which

means text found in city streets, for example. While this is a very different environ-

ment to the interior of a facility, with many different types and orientations of text,

there are also similarities - both concern pictures taken with a camera rather than

a scan of a document as one might see in document OCR, for example.

Most of the text instances found in the facility data are on a horizontal level,

and on a flat background. Some text instances, such as those on pipelines or tanks,

may be sideways or on a curved surface. Therefore, methods which produce simple

bounding boxes as their detection results will likely yield decent results, but methods

capable of operating on more complicated instances should be preferred if possible.
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5.3 Text recognition

While in principle most text recognition methods should be fit for the purpose, the

most fitting text recognition methods should be ones that do not contain an im-

plicit or explicit language model, as in the encoder-decoder models using attention.

Many of the state-of-the-art methods most accurate on benchmark datasets are able

to reach such high performance by essentially "skimming" words like this, as the

language model corrects for any small mistakes. Such a property is likely not useful

for this task, as the target data is not in English or any other language. As a result,

methods that excel on these datasets likely would possibly not generalize very well

to the target data.

Although the text is not of any language, the lexicon of the recognition step is

known from the list of possible labels. As a result, there is no need for the algorithm

to output exactly correct text. Especially with character-level predictions, it should

be possible to evaluate how likely each word on the list is to map to each word found

in the panoramas. If such character-level predictions do not exist, it is still possible

to treat the output as a black box and take the output words and compare their

similarity.

5.4 Filtering and post-processing

The purpose of the filtering and post-processing step is to inspect the recognized

text instances and process relevant texts while discarding irrelevant or erroneous

ones.

A typical problem with an end-to-end text recognition pipeline is that some

output characters get easily confused with optically similar ones: the letter "O"

might become the number "0", the letter "I" gets mixed up with the lowercase "l"

and so on. In addition, sometimes the recognition model misses letters or inserts
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additional ones. This means that if one wants to find a known text from an image -

for example, one from an equipment list - the text matching algorithm must accept

a degree of error, designed with awareness of "similar" looking texts. The easiest

and most basic solution for this problem is using some kind of edit distance. Edit

distance, as mentioned in Chapter 3, is part of the character error rate measurement.

Edit distance can be utilized without touching the internals of the algorithm

at all, treating it as a black box. However, for models that output character-level

predictions, it may be useful to also analyze those predictions rather than the output

word.

5.5 Training data

In this section methods of transforming data to improve the method are discussed.

Typically, deep learning methods do not require a great deal of manual preprocessing

unlike traditional methods when it comes to the data itself. Rather, most of the

effort is spent on acquiring, labeling and synthesizing more training data.

5.5.1 Utilization of depth data

For an application of text detection and recognition, the availability of depth data

is highly unusual. The only relevant application of depth data in end-to-end text

recognition is that in SynthText [49], as mentioned previously in Chapter 4, where

depth data generated from original images is utilized to improve the placement of

text on them for augmentation purposes.

Theoretically depth data could be used in a few different ways: as a part of

the input data of the text detection algorithm, thus including it in the detection

model itself, or in a more conventional way in postprocessing, using it to filter out

text instances with large amounts of depth variance, for example. Using depth
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data as input for the text detection algorithm could be useful, as smooth and even

surfaces are more likely to contain text compared to surfaces with great variance,

and the algorithm could well utilize this information for more accurate predictions if

given good training data. This further highlights the problem of not having proper

training data fit for the task.

As text is inherently two-dimensional, the third dimension provided by depth

data is likely not very relevant for text recognition, unlike general object detection

where it could be very beneficial for detecting three-dimensional objects. Still, it is

possible that a detection model could learn what kind of surfaces the labels tend to

be on, and even in the text recognition phase it might be useful input indicating

when the detected text box is badly placed, what kind of transformation might have

to be applied to detected text to straighten it out, or whether the area is useful at

all. Given the rarity of depth data, none of these potential applications have been

researched comprehensively.

5.5.2 Dataset

Ideally the training data for a task such as this would be a large collection of labeled

panoramas that are identical to those the model is intended to be used on. However,

in this specific use case, the data format is very specific and extremely difficult

to gather a sizable dataset for, as there is no simple way to collect an entirely

representative dataset of the problem without consulting tens of customers for their

data and hand-labeling it all. As a result, automatic data generation should be

utilized along the customer data.

Based on manual inspection of existing customer data, the most significant po-

tential problem with laser scans is the quality of text within them. Since the labels

are often very small and the scans are not originally meant for reading signs and

text, the resulting cropped pictures of text acquired from the detection step are
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often too poor in quality to be recognized properly by a human.

In practice the quality and sparsity of scans taken from facilities is a problem

that could be largely solved by commissioning new scans with better equipment.

Based on interviews with Cadmatic’s employees, given the value that a potential

solution would bring, the costs associated are likely reasonable business-wise. It is

very rare that the text to be detected is truly too small to be found in a scan taken

at short range. Even using non-panoramic pictures or entirely different hardware

for the task is considered viable.

5.5.3 Augmentation

It is possible to generate synthetic data for the purpose of training the model. As

mentioned previously in Chapter 4, the synthetic text generation algorithm Syn-

thText as described by Gupta et al. [49] requires depth and segmentation maps

produced based on the images. In this case, interestingly, real depth maps can be

utilized for such an algorithm for generating synthetic training data.

The usefulness of augmented training data for this purpose is not known, how-

ever. In most papers, it seems the SynthText dataset is used to generate a baseline

model which is then finetuned with an industry dataset. Whether augmented data

is useful for finetuning remains unclear, as the dataset used for finetuning should

most closely resemble the real input data.

5.6 Further questions

Based on these findings, a few questions are raised that could be answered by prac-

tical experiments.

First, is it possible to attain good results with out-of-the box text detection and

recognition methods? In principle, most text detection methods should be applica-
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ble to the task, yet a subset of recognition methods, namely those without strong

language models, should be effective. How should those methods be configured and

combined?

Second, is small text a problem for text detection methods? In the past, consis-

tently detecting small objects has been problematic for object detectors. Perhaps

the same holds true for text. Most of the data consists of very small text instances.

Last, as for building a practical solution, which parts of building a practical

solution are most likely to be problematic? What should be the focus of continued

development?



6 Experiments with pretrained

models

This chapter is about practical trials and experiments conducted to ensure that

solving the problem is realistic, and to assess how accurate current methods poten-

tially are at the facility text recognition task. These insights should be useful in

determining how to continue development further after the thesis. The experiments

performed are mostly based on a small custom dataset of flat images with labeled

text instances, and out-of-the-box pretrained models.

First, some initial experimentation is covered, attempting to discover the nature

of the problem; then, different methods related to the step of text detection are

explored with analysis on their results, especially regarding changing the confidence

threshold; lastly, methods related to text recognition are covered with some analysis

as to what challenges lie in combining the two separate steps.

6.1 Initial experiments and problem discovery

The initial period of experimentation focused on problem discovery and quick eval-

uation of out-of-the-box solutions. In this phase, the main purpose of the work was

to understand the general state of text detection and recognition at the moment,

as well as gauge the practical difficulty of the problem. Some of the most popu-

lar individual methods were thus applied to the test images in order to gain first
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insights.

Initial attempts to utilize text recognition were conducted using Tesseract OCR

[50], which is an optical character recognition system in development since the 1980s

primarily meant for text documents, recently mainly worked on by Google. Both

conventional OCR methods as well as models based on deep learning are included

in the software, with various options on how to segment the text and which model

to use. When an attempt was made to use it as an end-to-end solution on a few

"easy" handpicked loosely cropped pictures of text, the results were very poor - only

the simplest text instances were recognized in any degree, and the examples that

were had tons of mistakes. It became clear at this point that Tesseract could not be

used in a "plug and play" fashion for the desired purpose, and that it would require

configuration based on the provided user manual [51]. Even when different settings

such as alternative segmentation modes and models were tried, no meaningful results

could be obtained unless the text was unusually large in size and laid on a solid

background. Thus, it seemed Tesseract was especially sensitive of background clutter

as well. As a result, no further experiments were conducted. Tesseract has been

mainly developed for scanning documents, and even its more modern LSTM models

do not seem to generalize well to more complex images containing text.

Next, a pretrained model [52] of EAST [20] was evaluated for the text detection

step. The original idea was to combine the EAST detector with Tesseract as the

recognition algorithm to form an initial script for end-to-end experiments. A similar

setup is used by Mai et al. [38] In this application Tesseract, despite not being good

for the end-to-end task, was assumed to be able to produce better results when

fed tighter cropped and perhaps preprocessed text instances, as there were many

examples online of this being attempted successfully. In the end, when combined,

many text instances were detected in a promising manner by EAST, but Tesseract

OCR operating on them still did not produce convincing results. This implied that
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"basic" text detection was likely easily workable, while better and more elaborate

methods would be required for recognition.

Some small initial experiments was also conducted on available pretrained end-

to-end and detection models, mainly FOTS [39] and PGNet [53]. The basic results

of these trials were that many text instances were detected and even recognized

somewhat accurately, confirming that some useful degree of end-to-end accuracy

should be attainable with more recent and elaborate technologies. PGNet’s results

were especially promising on oddly shaped and rotated text instances, which make

accurate detection and recognition quite difficult.

Similar to Tesseract, a brief attempt was made with the pretrained recognition

models from the GitHub repository [54] of the text recognition comparison compiled

by Baek et al. [31]. Again, the initial results seemed very poor as much of the text

in the dataset images is of very low resolution and did not seem worth pursuing.

Evaluating models from the MMOCR repository [55] produced similarly poor results.

The main learnings of initial experiments were that deep learning -based text

detectors looked promising in general, but whether they could produce bounding

boxes of sufficient accuracy remained unclear. Text recognition, on the other hand,

remained an open question, and understanding the reasons for its continued failure

could be key for implementing an end-to-end solution. Conventional and most pop-

ular recognition methods would likely not perform well enough, and rather a closer

study of state-of-art methods would be necessary to attain acceptable results.

It also seemed that the lack of domain-specific training data could become be

a significant limitation, as deep learning methods require a large amount of repre-

sentative training data to realize their full potential. This meant that development

would need to be focused on out-of-the box pretrained models, existing datasets and

possibly augmented data.
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6.2 Test dataset and analyzing old scans

Some existing laser scan data from Cadmatic’s customers was briefly analyzed re-

garding whether or not the data seemed good enough for text detection and recogni-

tion. While the specifics of that data are confidential and cannot be shared as part

of this thesis, this analysis concerns panoramas scanned from more than 15 facilities

over many years. The criteria for acceptance were as follows: any included image

had to be in color, text must be visible in the image, and the found text must be

human-readable.

When these criteria were applied to the data, recent high-resolution imagery was

found to be most suitable for text recognition, with older scans less likely to be

included. By far the most common reasons for non-inclusion of older scans were

poor quality and lack of readable text instances; the former problem also worsens

the latter. In a few cases, the scan seemed monochrome without color data; while

text detection from these scans might be possible given sufficient resolution, they

were left out of scope due to their obsolescence and likely future irrelevance.

It was found that when it comes to existing, older scans, this selection criteria

easily weeds out the vast majority of laser scans. While this result seemed initially

concerning, it was quickly discovered that laser scans produced by modern scanners

could be much higher quality than the old data lead on. These insights about mod-

ern laser scans were verified through interviews with Cadmatic’s parent company’s

employees responsible for performing these laser scans and inspecting examples of

scans they had performed: the resolutions of scans could be the likes of 10,000 x

20,000 pixels with HDR imaging, as opposed to older ones closer to a scale of 2,000

x 4,000.

Out of these feasible panoramas, a small hand-picked custom dataset was com-

piled as a test set, containing 22 screenshots and 94 hand-labeled text instances.

These images are perspective projections taken from panoramas, mostly consisting
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of signs and labels of small text in typical scenarios. Most of the images contained

several instances of text.

6.3 Text detection

With the dataset compiled, several out-of-the-box text detection models were com-

pared to get a basic understanding of which methods would be most fitting for the

use case. These models were tried out-of-the-box pretrained on standard datasets,

most of the models coming from MMOCR [55] which includes several text detection

models, but a public implementation of EAST [52] was also evaluated. This gave

some of the methods quite an uneven playing field, as the same datasets had not

been used for training all of the models. As showcased on the study on text recog-

nition by Baek et al [31] for instance, this kind of inconsistency can quickly lead to

totally invalid comparisons when it comes to evaluating the relative performance of

different methods. As such, this data should probably not be used to aid in def-

initely choosing a specific model, but rather which models are most promising for

further trials, and whether the task is feasible at all.

6.3.1 Methodology

Detecting text instances is somewhat different compared to detecting objects, as any

instance of text consists of smaller instances of text. For example, a paragraph may

contain several sentences, themselves containing several words, which themselves

contain letters. Text is more of a class of content within the image than a specific

object. Therefore, given an area of text, it can be argued that there are multiple

different but equally correct ways to detect the text instances: multiple ground truth

text instances may be detected as one instance, and one ground truth instance may

be detected as multiple. Both of these ways to handle multiple words could result in
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valid detections as seen in Figure 6.1. As a result, there are many different methods

of scoring text detection, several which are covered and improved upon by Liu et al.

[56]. However, in this case, an extremely simple if somewhat flawed method is used

for this comparison due to its simplicity:

1. A prediction is considered valid if ground truths cover more than half of the

prediction box area. Predictions which fall outside of this criterion are consid-

ered false positives. This means that if over 50% of the covered area is text,

the detection is considered valid.

2. A text instance is considered detected, if valid ground truths cover more than

half of its area. Any text instances satisfying this rule are considered true

positives. Instances with no detections are considered false negatives.

There are a few reasons as to why this detection criteria, which combines one-

to-many detection and many-to-one detection, is useful. First, it allows for a quick

binary classification of both the detections and the ground truths. This makes it easy

to quantify the performance of the methods in an easily understandable manner: for

instance, accuracy and recall are easily calculable. A second upside is that it allows

for the evaluation of ensemble methods, as additional detection boxes from different

methods can be added to the result without much downside.

This set of detection criteria however does have several shortcomings as well.

For instance, methods which detect multiple lines of text as one instance will receive

the same score as methods which have more granularity in their detection, despite

Figure 6.1: Example of two correct ways to label the same text
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the difference in real world usefulness, as most recognition methods work on the

assumption the input text is in form of a line. Such a failure case is showcased in

Figure 6.2, where one prediction "detects" two text instances while covering neither

sufficiently.

A related downside of this detection scoring is that it is not affected by the

accuracy of the produced bounding boxes beyond the initial filtering; the detections

are not scored based on their usefulness. These criteria also do not take multiple

detections of the same text instance into account.

Still, almost none of the text in the custom dataset is laid out multiline, and

when looking over the detections, none of the methods seem to fall into these traps

in any significant way.

While each method was evaluated with an out-of-the-box model, all of the meth-

ods also included an adjustable confidence threshold parameter that would filter

out the less likely detections. Experiments were mainly conducted with the default

setting of this parameter (0.5), but different settings were also compared in some

cases. In addition to the detection rate, the sizes of detected and undetected text

instances were also output and compared to each other to get an idea about whether

text size is a relevant problem for detection models.

Figure 6.2: Two ground truths (red) can be erroneously "detected" by one prediction

(blue).
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All of the models used are listed in Table 6.1. Each model was run on the same

set of images and scored based on the aforementioned criteria. These methods come

with a common adjustable parameter - confidence threshold, which is used to discard

instances less likely to be text.

Model name Training set Source

DRRG CTW1500 [55]

DBNet IC15 [55]

FCENet CTW1500, IC15 [55]

Mask R-CNN CTW1500, IC15, IC17 [55]

PSENet CTW1500, IC15 [55]

TextSnake CTW1500 [55]

janzd-east IC15+13 [52]

Table 6.1: List of models evaluated, with their sources
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6.3.2 Results and analysis

The recall of the methods with confidence threshold set 0.01 was compared first,

as seen in Figure 6.3. In this case, it seemed that FCENet, TextSnake, EAST and

especially Mask R-CNN performed the best when using a low confidence threshold,

all of them scoring over 50 detections on one of their variants. However, especially

TextSnake and Mask R-CNN produce a very notable amount of disjointed false

positive areas despite their high detection rates. Overall, these results indicate that

text detection methods have strong potential for this task, even without domain-

specific training data.

With the thresholds set low, the results imply that extremely high detection

rates can be attained at the cost of even higher false positive rates. As adjusting the

confidence threshold affects both the rate of true and false positives, the choice of a

good confidence threshold value will depend on how detrimental false positives are
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to end-to-end recognition as a whole both in terms of performance and recognition

errors.

Adjusting the confidence threshold

Figure 6.4 displays the effect that changing the confidence threshold has on recall.

This subset of models has been chosen to showcase how differently the threshold can

affect different models: Mask R-CNN, an object detection -derived model, scales all

the way down to 0.01, while the others seem mostly unaffected after threshold 0.4-

0.5. Generally, it can be seen that if the model scales like Mask R-CNN, the default

setting of 0.5 is by no means optimal for reaching maximum recall. As long as

false positives can be dealt with, much better results could be attained with lower

thresholds.

Many methods seem entirely unaffected by thresholds lower than 0.5. Some of
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these methods, such as DRRG, have internal thresholds or other parameters which

do not act on the level of the entire detection. Similar parameters can probably be

adjusted for those methods to get results better matching those of Mask R-CNN,

but for the sake of simply studying feasibility, individual methods were not studied

in such detail.

F-score, a measure that gives equal weight to precision and recall, can be used

to measure how confidence threshold affects the results as whole. Figure 6.5 shows

an example of how changing the confidence threshold affects precision, recall and

F-Score all at once, in this case for Mask R-CNN, and how choosing the right value

clearly depends on false positive tolerance as high recall values are accompanied

with low precision.

Because in this specific application it is assumed an equipment list exists and

can be used to filter the resulting text, having wrongly labeled text instances is not

considered a huge detriment to the model. By far the largest downside would be

the addition of hundreds of useless text instances that could possibly slow down the

processing time.
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Using an ensemble method

As an experiment as to whether these methods are generally detecting the same or

different text instances, a small experiment on the possible effectiveness of ensemble

learning was performed. Several methods were combined to one ensemble. The

models chosen were the highest performing models at a threshold of 0.5 - Mask

R-CNN CTW, FCENet CTW and TextSnake primarily. When combined to an

ensemble, the collection of models beat each individual model in recall while losing

precision, although not as badly as Mask R-CNN CTW at 0.01 threshold. These

results can be seen compared to Mask R-CNN in Figure 6.6.

It was found that most instances found by low-recall methods would find the same

text instances as the high-recall ones, with combining them only raising the total

toll of true positives by few to none. However, when combining the best methods in

the 50-70 detections range out of 94, a result over 80 appears to be attainable with

an ensemble as long as hundreds of false positives are acceptable or possible to filter
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out somehow. These results indicate that combining several different methods to an

ensemble may lead to slightly higher detection counts than using a single method.

Dataset selection

The models displayed large differences in their performance depending on which

dataset they were trained on. No specific universal "best match" dataset could be

determined from these results, as which dataset behaved best varied, but CTW1500

and IC17 datasets performed especially well compared to IC15. This data is incon-

clusive, as many other datasets or a combination of them could be used for training.

An example of direct dataset comparison is shown in Figure 6.7, where Mask R-CNN

produced best results with the two aforementioned datasets.
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Figure 6.7: Comparison of Mask R-CNN results on different datasets
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6.3.3 Breakdown by size

In Figure 6.8 EAST, Mask-RCNN, TextSnake and the ensemble method are repre-

sented as distributions of text instance size in pixel area, with true positives and false

negatives shown separately. These results indicate that the smaller text instances

tend to be more difficult to detect as large false negatives seem rare. Therefore, small

text detection still remains an important part of solving text detection in facilities.

The ensemble method failure cases are those that are not detected by any method

of the ensemble. It can be seen that the distribution of undetected text instances is

much different and on a lower range than that of the text boxes in general.

These results indicate that small text detection is still problematic in modern

text detection approaches when using standard datasets of text. It also implies

that for such data where small text instances are very common, special measures

should be taken to improve small text detection. This is especially true for public

pretrained text detection models which are trained on academic datasets that tend

not to include small text instances.
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6.3.4 Possible improvements

The greatest limitation of the models themselves was the requirement of using pre-

trained models due to a lack representative training data of the problem domain.

A dataset of labels within an industrial plant simply does not exist; even simple

information about how these facilities look inside is not openly shared information

but had to be acquired through interviews and reviewing data from Cadmatic’s cus-

tomers. Thankfully, any pictures of text in varied and cluttered scenes are likely

good enough for a detection training dataset that would produce decent results when

applied to facility data.

While the algorithms find many text instances, combining data from multiple

algorithms requires some kind of processing, as simply taking the box output is not

good enough. Non-maximum suppression [11] (p. 40) is a common approach taken

to combine detection boxes to one instance, but whether or not this is suitable for

text is unclear.

The dataset did not contain any vertical text instances, although study of other

Cadmatic materials suggests those do exist in facilities. Since the text instances

were horizontal, detection performance on rotated text could not be assessed. Some

detection methods are supposedly better at detecting different orientations of text,

producing irregular-shaped detection areas rather than bounding boxes [13]. In this

use case, as the processing time is not badly constrained, the same image can be

processed in several rotations from the very beginning.

The results do not measure the detection boxes’ suitability for text recognition.

The detections output by the models are significantly less accurate than the ground

truth boxes and datasets typically used for measing recognition models. Poorly

cropped detection boxes would lead to lower end-to-end accuracy due to more errors

in recognition phase.
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6.4 Text recognition

Like text detection, text recognition was also evaluated. The idea of text recognition

experimentation is similar to that of text detection: inspect state-of-art and industry

standard methods and evaluate the results.

First, the significance of preprocessing is discussed as the intermediate step be-

tween detection and recognition - what kinds of processing could be applied to

detection outputs to increase the likelihood of recognition success. After that, some

publicly available methods are tried on the custom dataset mentioned previously,

and the results are analyzed. Finally, some ideas are offered as to how to improve

the results.

6.4.1 Preprocessing

As a separate step preceding text recognition, text detection outputs text instances

which are effectively coordinates of 2D boxes containing text. Before being fed to

the text recognition method, these boxes have to be properly extracted out of the

image, rectified and/or otherwise preprocessed to reduce distortion and irrelevant

data that may worsen recognition accuracy.

End-to-end methods can also have such rectifying steps between the detection

and recognition branches. FOTS [39], for example, includes a bespoke built-in

method, RoIRotate, taking this into account.

Conventional models like Tesseract are heavy on image preprocessing. Tesseract

does thresholding internally, trying to binarize the input image [57]. Similar prepro-

cessing steps may be useful for deep learning models, especially if the preprocessing

makes newly encountered examples appear more like training data.

In this phase of experimentation, custom preprocessing was not deployed between

the detection and recognition phases although some text recognition models include

such methods.
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6.4.2 Initial experimentation

The initial experimentation covered many different kinds of text recognition models.

Most modern text recognition models follow an encoder-decoder architecture, which

tend to learn rather strong language models. In theory, it should be best to use a

model that does not learn implicit assumptions about language. However, sequence-

to-sequence models that learn language information are clearly the state of the art at

the moment, as they produce best results on typical text, and as such consist most of

the evaluation. In this phase, text instances directly output from a detection method

were used - specifically those output by Mask R-CNN in the previous sections.

Preliminary experiments indicated that this time that pretrained models within

MMOCR [58] would not produce sufficient results on text instances, as most of

the text instances fed to the models did not at all resemble their ground truth

counterparts. This result was surprising, given the high accuracy of the models on

academic datasets.

Models from the previously mentioned GitHub repository [54] of Baek et al. [31]

were also evaluated in this phase, with the models achieving similar performance

to MMOCR. However, it was notable that rather often the implicit language model

learned by the model was attempting to read the alphanumeric codes as English

language words instead.

Results of text recognition on text instances output directly by the detector

seemed very poor - almost always entirely unrecognizable. Although these results

were not recorded in a statistical manner, it was clear from manual evaluation that

utilizing the recognition models as-is on data output by the detector would not be

viable. The bounding boxes from the detection step would likely need to be more

accurate, or require some kind of preprocessing for improved performance; thus,

later experiments were conducted with hand-labeled text instances instead.
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6.4.3 Text recognition comparison

A second comparison was conducted in order to gain statistical insights about the

viability of recognition assuming perfect detection results. Its findings could help

pinpoint whether the poor results of the previous experiments are caused by the in-

accuracy of detection or the recognition models themselves, and to evaluate whether

there are notable differences in the accuracy of older and newer methods on real-

world data. The used methods are listed in Table 6.2 with their original training

datasets and sources.

The models of CRNN [55] and Tesseract [50] were chosen to represent the older

technologies often used in practice. They contain LSTM-based models, which were

common previously before the attention mechanism became popular. In direct

comparison, SVTR [59], ABINet [55], Master [55] and TPS-ResNet-BiLSTM-Attn

(TRBA) [54] are chosen to represent technology closer to the current state-of-the-

art, deploying attention- and transformer-based models. All of these models are

measured using publicly available code and pretrained models. Most of them are

trained with the same few synthetic datasets.

As the results of initial experiments were poor, a more rigorous experiment

setup was created to measure text recognition methods. First, a cleaner recog-

Model name Pretrained Dataset/Settings Source

Tesseract v4 Default settings [50]

CRNN (MMOCR) Syn90k [55]

SVTR (PaddleOCR) MJSynth, SynthText [59]

ABINet (MMOCR) Syn90k, SynthText [55]

MASTER (MMOCR) Syn90k, SynthAdd, SynthText [55]

TPS-ResNet-BiLSTM-Attn MJSynth, SynthText [54]

Table 6.2: List of recognition models evaluated, with their sources
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nition dataset was created based on the detection dataset utilized in the previous

section, with ground truths directly cropped out of the images rather than being

extracted by a detection model. Then, the produced text instances were fed to

the recognition models, with a case-insensitive Character Error Rate and recogni-

tion rate (accuracy) measured from the model output in comparison to the ground

truth.

In this specific experiment, ABINet and SVTR produced the best results at 32.5

and 33.7 CER respectively. As expected, the Tesseract model produced by far the

worst result, 92.9 CER with 0% recognition rate, with others falling in-between.

Even the best model, SVTR, only produced the exact correct result in 28% of cases,

with ABINet and MASTER close behind at 22% and 17% respectively. These results

can be seen in Figure 6.9. Interestingly, SVTR managed a higher recognition rate in

this experiment compared to ABINet despite the two methods’ similar CER results.
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6.4.4 Analysis of the results

At first glance, the results indicate that modern methods produce much improved

results compared to older ones - attention-based models scored much higher than

those using LSTMs, with ABINet and SVTR proving especially strong. Interest-

ingly, ABINet includes an explicit language model, which was an aspect theorized

to detract from recognition results on such non-language labels, yet it was one of the

top performers. It is possible that the language model contributed to its lower recog-

nition rate compared to SVTR, but the difference in results is fairly insignificant

and difficult to judge based on one experiment.

Something to note regarding these results is that equipment labels are often

extremely similar to each other, often differing only by one character. For example,

when an image containing the code "PF01" was fed to the TRBA model, it produced

the prediction of FFOT - optically similar, but entirely different in CER due to the

numbers replaced with English characters. When the best models are compared, the

results of such individual detections can vary greatly: the SVTR model recognizes

"PF01" as "P0OP" while ABINet produces the exact correct prediction.

Therefore, simply studying the CER or recognition rate may not be sufficient in

ensuring that the most important data is retained, but practical trials are required

to ensure that the models can discriminate between similar alphanumeric codes.

Overall, in these experiments detection and recognition models produce decent

results individually as far as academic benchmarking is considered. However, when

realistic detection results are fed to recognition models, their accuracy ends up being

worse than expected. There are a few possible reasons for this.

First, the recognition models have been trained with datasets very dissimilar

to detection results. Their original training data is extremely tightly cropped and

hand-labeled. The accuracy of these bounding boxes is much higher than those

of text detectors, which tend to produce inaccurate detections. This helps explain
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why pretrained models from Baek et al. seemed to have slightly improved results

in comparison to the alternatives, as their models specifically add rectification to

the recognition pipeline. It also explains why FOTS - a method that uses shared

feature maps with an internal rectification step - was earlier able to attain somewhat

promising results despite utilizing an encoder-decoder architecture for recognition

just like the failed separate recognition methods.

Second, it is unclear how well academic datasets and their text generalize to

data from the facility environment. The training datasets are often synthesized or

from environments very different to facilities, with the text instances themselves also

greatly differing from the facilities. Especially notable is that the training datasets

tend to contain text instances that are larger in size but more typographically di-

verse.

6.4.5 Possible improvements

Given the combined results where both detection and recognition steps seem decent

in academic benchmarks on their own but not when combined in practice, the most

likely performance bottleneck is the integration between the two. Most likely the

data passed from detection needs to be processed further for the recognition step to

work correctly. End-to-end recognition methods were not evaluated thoroughly, but

they solve this very problem - there is tight integration between the detection and

recognition parts of the pipeline, and they can be trained end-to-end on the same

dataset.

The largest drawback of this entire approach is the inability to use our own

dataset for training a model. Possibly huge improvements could be attained from

compiling a better labeled dataset of text in industrial plants, and then using that

dataset to train an end-to-end model leveraging modern developments. The syn-

thetic data used for training the recognition could also be modified to appear more
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like text found in facilities.

If a two-step method was preferred instead, best results could most likely be

reached with text recognition methods that contain preprocessing and rectification

steps and are thuss less prone to errors due to inaccurate bounding boxes. At the

very least, the text recognition models should be trained with data that resem-

bles the output of a real text detector rather than the perfectly cropped bounding

boxes often seen in academic datasets. These improvements could be reached by

either generating the training dataset from the output of the detector or augmenting

synthetic errors similar to those of detectors into the training data.



7 Analysis and discussion

The purpose of this chapter is to provide an overview of the results of the thesis and

describe how they should be interpreted: what next steps should be taken, what

aspects of a potential solution should be paid most attention to, and what research

topics could be studied in the future. It presents the main findings of the thesis.

7.1 Practical solution and business case

In terms of the business case, a single glaring problem remains: it is not perfectly

understood how comprehensive coverage of equipment the found text labels provide.

Even if the recognition was perfect, would the resulting solution be useful? There

are a few unanswered questions that contribute to this problem.

The first question is whether the label coverage provided by the laser scans

themselves is good enough. As discussed in Chapter 2, a real facility likely contains

many labels that are not visible in scans: for instance, valve tags, which are mostly

small metallic plates with poor contrast, cannot typically be seen in the images.

Even in cases where labels are "good" in concept, they are often too far away from

the scanner to read. If a more complete ground truth list existed, consisting of the

labels of the entire facility rather than just ones visible in the scans, one could better

assess how many of the required labels are actually visible in the panoramas. At

the moment, it is not possible to estimate how many of the total facility labels are

included in the scans.



7.2 TECHNOLOGICAL BASIS 69

The second question remaining from Chapter 2 is whether the labels that can

be recognized are relevant. While it is clear that only a subset of the facility’s

labels can be read, it is not exactly known how relevant this subset of labels is for

the customers’ use case. In practice, only the text instances with largest size and

highest contrast are visible and human-readable in these scans. Many of these large

texts consist of warning signs and other information that is not useful for human

identification of equipment. If it turns out that the small unreadable valve tags are

more useful than the readable large labels, the usefulness of the solution is clearly

limited.

To answer these questions and gauge how useful a potential solution would be,

customers should be asked to participate in the project. The relevance of text labels

visible in panoramas would be easiest evaluated through a study of several facilities

and their point clouds: for instance, it would be insightful to compare an annotated

map of a facility to the point cloud scans taken from the same plant to see how

well they match. Including people familiar with the customer facilities is vital to

evaluating the solution’s eventual end-to-end usefulness regardless of how good its

eventual technical implementation is.

7.2 Technological basis

As for technology, the right way to deal with panoramic images should be decided.

Panoramas, as described in subsections 2.2.1, and 4.4.6, can be naively processed as

singular large equirectangular images, but depending on the method, this may be

inefficient or even impossible due to their large size. As there is no standard solution

to this problem, it can be approached in several ways: for instance, stereographic

and cube map projections have been previously utilized in text and object detection

in various contexts. Another approach is to take perspective-corrected "shots" out

of panoramas, which can provide with a tradeoff of worse overall processing time for
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easier text detection. On its own, equirectangular projection is especially poor for

labels situated at the top or bottom of the image as detection models are trained

on typical perspective images.

Implementation of the machine learning system should start with the most well

known and most implemented state of art methods. In Chapter 6 EAST and Mask

R-CNN were found to have good detection performance and likely usable out of the

box for this purpose. Text recognition provided much more trouble, with CRNN-

based methods appearing most promising for text recognition.

As noted in Chapter 6, EAST especially appears to be the most commonly

implemented and utilized text detection algorithm based on the number of practi-

cal solutions, blog posts and implementations available online. There are several

open-source and out-of-the-box available models for text detection use. For text

recognition or OCR, a similar "popular model" that generalizes well appears not

to exist. Tesseract is commonly seen in practical contexts, but as it relies heavily

on conventional image processing and is mostly meant for scanning documents, its

performance does not appear to be sufficient. This is especially notable in cases

where the text has poor contrast on a mixed background. Encoder-decoder meth-

ods, including those using attention, were found to be most promising and most

studied based on the research behind them, but meaningful results could not be

attained. However, the results of recent research in this space suggest that attain-

ing decent results is possible with more effort put into customizing the solution. It

should be noted that the used text recognition model should not have a strong ex-

plicit or implicit language model, as those are likely to worsen results on non-English

alphanumeric codes.

It was also found that end-to-end models with recognition architectures similar

to standalone recognition models performed better than separate recognition steps.

This could mean that integrating separate text detection and recognition methods
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is a bottleneck for end-to-end accuracy, and that more research should be conducted

on integrating them together.

Once text has been read to a text form, it is likely to have multiple errors. Its

similarity must be compared to the ground truth, and thus a measure of similarity

must be developed to check which expected text instance it represents. For this

purpose, edit distance is the easiest and most common algorithm. Likely the easiest

type of edit distance would be Levenshtein distance, optionally with some weighting

taking optical similarity into account. More elaborate edit distance schemes may

provide slightly better results.

The work so far indicates that a solution should be technologically feasible, but

implementing a working solution requires more work and practical knowledge of the

topic.

7.3 Possible future research topics

While results with out-of-the-box methods likely will not be satisfactory for the use

case, fortunately there are some promising directions to study to improve the results.

While the detection results are already quite good, they could be improved to

aid recognition. Using a combination of several different methods, or finetuning the

model using facility-specific data should be considered. In Chapter 6, the results

implied that it is especially important for the subsequent more difficult recognition

step that the text boxes output by the detector are accurately cropped and oriented;

thus, improving detection results should always improve recognition results as well.

Logically, the detection step could be also improved using depth data, but this has

not been studied.

On the other hand, if recognition performance is not good enough, this may be

down to several factors. As these models perform very well on academic datasets,

the first thing to do is to study what the differences are between the practical text
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instances and the academic ones, and whether these can be corrected by including

another intermediary step in the recognition pipeline. Like with detection, finetuning

with a dataset specific to labels in facilities could also drastically improve recognition

performance.

In one line of research, these "conventional" separate methods could be evaluated

against end-to-end models that share feature maps. As covered in Chapter 4, recent

end-to-end models are easier to train and are potentially superior in performance in

comparison to separate detection and recognition steps. At the moment, building

a solution with separate detection and recognition steps is easier from a practical

standpoint due to more available implementations.

A constant problem with applying deep learning to this application has been a

lack of training data specific to labels in facilities. One path of research would be

to study whether synthetic generation of training data on top of images with no

text would be useful for this application. The inclusion of depth data in laser scans

should make it easier to superimpose convincing text images.



8 Conclusion

Scanning labels out of panoramic laser scans from facilities is a new application

of end-to-end text recognition. In concept, its purpose is to find the names of

equipment contained in the scans, bringing point clouds closer to CAD 3D models in

their usefulness in connecting to external data in information management software.

End-to-end text recognition is a subfield of deep learning combining the tasks of

text detection and recognition. Text detection and recognition themselves borrow

elements from several other areas of machine learning, such as object detection and

natural language processing. Research on the individual subjects is very widely

available, yet very little of it is specific to practical combined applications such as

this one. The problem is atypical compared to other text detection and recognition

applications, as panoramas are used rather than perspective images, and the text to

be recognized is relatively smaller and on a more cluttered industrial background.

However, the task does have some significant advantages as well, most notably the

knowledge of the list of text labels in advance.

Adapting text detection and recognition to the task of locating labels in indus-

trial facilities appears to be entirely feasible. In practical experimentation, it was

discovered that the greatest challenge in its development is applying text recognition

to the detection results. However, end-to-end methods produced promising results

on this front, indicating the feasibility of the technology. Problems with text recog-

nition were made worse by the lack of task-specific training data and full reliance
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on pretrained models, which were typically trained on English language data rather

than the alphanumeric codes seen in facilities.

On the business side of the problem, assuming that the technical problems are

resolved, the exact end-to-end feasibility of the solution is still unclear. For instance,

how much special effort will be required from scanning teams on-site to improve

recognition quality, and whether there’s enough useful information visible in the

images, are yet to be known. Modern scanners produce scans of sufficient quality,

but the older existing scans tend to be too blurred to be useful.

Overall, these results indicate that recognizing text from facilities is feasible with

some obstacles in the way, some technical and some business-related. The technical

obstacles can likely be overcome with deep learning expertise, while the business

obstacles can be cleared with more collaboration with the potential customers that

would benefit from this functionality. Several future research topics are suggested,

most importantly improving text recognition results, but also the potential use of

domain-specific datasets and synthetic data.
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