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ABSTRACT 
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Human African trypanosomiasis (HAT), also known as sleeping sickness, is a disease caused by a group 

of parasites called Trypanosoma brucei (Tb). The two main types causing HAT are T. brucei gambiense 

and T. brucei rhodesiense. T. brucei gambiense is the most common form of HAT, accounting for ninety 

seven percent of all reported cases of sleeping sickness. According to WHO, HAT is endemic in 36 sub-

Saharan African countries. The disease can lead to death during the second stage if left untreated. Several 

drugs have been developed for the first stage such as pentamidine and suramin, and for the second stage 

such as melarsoprol, nifurtimox-eflornithine combination therapy (NECT). In 2019, fexinidazole was 

introduced as an oral treatment for the first stage and non-severe second stage of HAT. Several 

antiparasitic compounds prepared by our collaborator’s research group at the University of Graz, Austria 

showed varying levels of activity against Tb in vitro, whereas the compounds had only a moderate in 

vivo effect if at all. The suggested reason for the poor in vivo activities is that the compounds may bind 

tightly to plasma proteins, or they are metabolized before reaching the target sites for therapeutic effect. 

The prediction of plasma protein binding is of paramount importance in the pharmacokinetics 

characterization of drugs, as it causes significant changes in volume of distribution, clearance and drug 

half-life. Human serum albumin (HSA), an abundant plasma protein, can bind a remarkable variety of 

drugs impacting their delivery and efficacy and ultimately altering the drug’s pharmacokinetic and 

pharmacodynamic properties. In this current investigation, the overall aim was to investigate whether a 

strong HSA binding could be a probable reason for the poor in vivo activity of the provided antiparasitic 

compounds. The interaction of the antiparasitic compounds with HSA was studied computationally by 

docking them in the HSA drug binding site I and II. The compounds with the highest docking score 

were additionally studied using molecular dynamics simulations to evaluate the stability of the binding 

interactions. Moreover, the HSA binding affinity of the compounds was estimated by calculating the 

binding free energies using the MM-GBSA approach. In addition, experimental HSA binding studies 

using Microscale thermophoresis (MST) were conducted for some of the compounds. The results of the 

in silico studies suggest that majority of the investigated compounds may bind to HSA with varying 

affinity whereas a few of them did not show favorable binding interactions with HSA. Further, none of 

the compounds studied in vitro by MST showed HSA binding. In sum, plasma protein binding may be 

the reason for the in vivo inactivity for some of the investigated antiparasitic compounds. 
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1  INTRODUCTION 

1.1 Trypanosoma brucei 

Human African trypanosomiasis, also recognized as sleeping sickness is a disease, which is 

initiated by a group of parasites called Trypanosoma brucei (Tb). The two main types of Tb 

causing human disease are Trypanosoma brucei gambiense (Tbg) and Trypanosoma brucei 

rhodesiense (Tbr) (Büscher et al., 2017). There are other types of Trypanosoma brucei, which 

are the reason for animal disease and very rarely infect humans. Chagas disease, also known as 

American trypanosomiasis, is another disease caused by Trypanosoma cruzi (Pérez-Molina & 

Molina, 2018). Trypanosoma brucei gambiense is the most common cause of African 

trypanosomiasis accounting for about ninety seven percent of all cases. It is found in Central 

and West African countries and tends to cause the chronic form of the disease. Trypanosoma 

brucei rhodesiense accounts for about three percent of the cases and is found in the Eastern and 

Southern African countries and causes a more acute infection (Büscher et al., 2017).                                                         

The parasite is transferred to humans through the bite of an infested tsetse fly. These flies are 

most commonly found in the rural areas of sub-Saharan Africa. Both the female and male flies 

can spread the disease and tend to bite during daytime. Flies can get infested by Tb, when they 

bite a human or an animal already infected with the Tb parasite. Both the wild and domestic 

animals can transmit the parasite and are significant storage of the infection. Human being are 

the leading reservoir for Trypanosoma brucei gambiense. It is unusually that the infection can 

be transferred from a mother to a baby or over blood transfusions, infected medical tool such 

as needles, or during sexual intercourse (Brun et al., 2010; Malvy & Chappuis, 2011).           

There are two main phases of the Tb. During the initial stage, the parasite is located away from 

central nervous system (CNS), and mostly in the organs, lymphatic system, and blood. During 

the latter stage, the parasite infects the CNS. Primarily, there can be agonizing sore at the site 

of the bite by tsetse fly, also known a chancre. The common indications of the initial stage 

involve itching, headaches, fever, pain in joints and muscle, and lymph nodes inflammation. It 

can cause ailment in the affected organs such as swelling of the heart muscle, inflammation of 

the liver and spleen. During the latter stage, several neurological symptoms can occur such as 

mood or personality change, psychiatric issues, instability and weakness during movement. The 

disease can upset sleep due to change in sleep circadian rhythm. This can gradually get dreadful 

as the patients is sleeping majority of the time. That is why the disease is called sleeping 

sickness (Brun et al., 2010).                                        
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The lack of treatment can cause the death of the patient. The intensity of the disease and how 

rapidly it advances from the initial to the latter stage depends on the form of the parasite. In 

Trypanosoma brucei rhodesiense infections, it is quite quick and usually require couple of 

weeks. However, the infection by Trypanosoma brucei gambiense may take numerous years as 

the infected person does not shows symptoms for many months or years. Once they found out, 

they are usually in the latter or last stage. The Trypanosoma brucei life cycle in tsetse fly and 

human being is shown below; 

 

 

Figure 1.1: A schematic representation of a life cycle of Trypanosoma brucei in tsetse fly and human 
being. (Image courtesy of DPDx, Centers for Disease Control and Prevention: 
https://www.cdc.gov/dpdx) 

 

The disease is detected in laboratory by analysing the blood under the microscope and looking 

for the parasite. This works good for Trypanosoma brucei rhodesiense infections, but it is 

tougher to do in case of Trypanosoma brucei gambiense infections. Trypanosoma brucei 

gambiense infections are diagnosed by studying the fluid taken from a lymph node under a 

microscope. The latter stage infections can be identified by probing the cerebrospinal fluid 

(WHO, 2019). The antibodies used against the parasite, can be used during the blood test. Card 

Agglutination test is used for screening for people with Trypanosoma brucei gambiense 

https://www.cdc.gov/dpdx
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infections. PCR tests that look for the parasites genetic fingerprint can be used too. There are a 

inadequate variety of efficient drugs available to treat the sickness. The drug used, will depend 

on the parasite type and the disease stage. It is harder to treat the disease once it has advanced 

to the latter stage and the drug used is more toxic and complicated to manage.   

The precautionary measures focus on preventing the interaction with the tsetse fly, which 

involves wearing suitable clothing that covers the bare parts of the body and keep away from 

bushes in the region that tsetse flies are well-known to live in (WHO, 2019). So far, there are 

no available vaccines or precautionary drugs that can be taken to stop people from receiving 

the disease. Extreme works to regulate the disease have been headed by the World Health 

Organization (WHO) national sleeping sickness control programs and several pharmaceutical 

companies and non-governmental organizations (Malvy & Chappuis, 2011; WHO, 2019). 

1.2  Previous research 

A novel bicyclic compound prepared by our collaborator’s research group at University of Graz, 

Austria, showed antiparasitic activities on screening. The compound prepared was further 

derivatized for activity enhancement. Out of these compounds, some showed moderate in vivo 

activity against Plasmodium falciparum (Pf) and Trypanosoma brucei (Tb) while some were 

ineffective in vivo. In case of Trypanosoma brucei, possible reasons for the poor (or lack of) in 

vivo activity may be their extensive binding to plasma proteins or metabolism of the compounds 

before they reach the target sites for therapeutic effect.  

1.3  Plasma protein binding 

In human and animals, blood manages the distribution of several substances inside the body. 

Blood can be separated into its components, a dense section of erythrocytes or red blood cells 

(RBC), and the less dense region of the yellowish plasma.They are divided by the buffy coat, a 

white layer having platelets and leukocytes, also well-known as white blood cells (WBC) 

(Lambrinidis et al., 2015).The plasma makes upto 55% of blood´s volume as depicted in Figure 

1.2. It is the fluid portion of the blood that consist of 91 % of water, 7 % of proteins such as 

albumin, fibrinogen and immunoglobin, nutrients such as glucose, fatty acids and aminoacids, 

electrolytes such as sodium, calcium, magnesium and bicarbonates, waste products such as 

lactic acid, carbon dioxide and urea, and hormones (Lambrinidis et al., 2015; Toma et al., 2019). 
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Figure 1.2: A schematic representation of the composition of plasma in human being. 

 

The affinity of substances for plasma proteins and tissues plays a significant role in drug 

delivery. After a drug is absorbed into the bloodstream, it may bind to plasma proteins. 

However, this binding is nonspecific and reversible, meaning that multiple drugs will bind to 

the same protein. The bound and unbound drugs reach a dynamic balance with one another 

(Kumar et al., 2017).                    

Small variations in the fraction bound to proteins may have a big impact on the drug's 

bioavailability, e.g. a difference between 98 percent and 99 percent bound drug results in twice 

the amount of drug present in plasma (Toma et al., 2019).       

Free Drug Theory (FDT) is being progressively utilized to classify pharmacokinetics/ 

pharmacodynamics (PK/PD) connections. According to this theory, a lack of energy-dependent 

processes (uptake and efflux transporters, pH gradient), free or unbound concentration of a drug 

in plasma (extracellular space) equals to concentration of free drug in tissues (intracellular 

space), and merely the free drug in the tissues is accessible for target binding sites and thus 

having a pharmacologic activity, as illustrated in Figure 1.3. As a result, the concentration of 

unbound drug in plasma should represent the pharmacologically important concentration at the 

target site in the tissues (Bohnert & Gan, 2013; Lambrinidis et al., 2015).             
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While entire drug concentration in plasma and tissues can vary greatly, for a drug with a quick 

rate of permeation, concentration of free drug intracellularly equals the systemic free drug in 

circulation. It is critical to consider that plasma proteins are not target tissues, and that drug 

binding to plasma proteins has little physiological impact. Drug-plasma protein binding makes 

a drug reservoir, but just the free drug is obtainable to tissues for therapeutic effect (Bohnert & 

Gan, 2013; Lambrinidis et al., 2015). 

 

 

Figure 1.3: A schematic representation of a drug’s pathway in the body. 

 

Plasma protein binding (PPB) is a significant criterion for a drug's effectiveness and safety that 

should be explored amid each drug development program. In both animals and humans, drug 

molecules are either bound to proteins and lipids or are readily available. Since it is commonly 

assumed that the free drug concentration drives the clinical effect, the degree of protein binding 

can have an influence on a drug's effectiveness and toxicology (Buscher, Brigitte, 2014).         

PPB in animal and human plasma should be determined before starting Phase I trials, and it 

should be used as a supporting data set when assessing drug–drug interactions, as recommended 

by many regulatory bodies. As a result, PPB is regarded as a critical parameter of any current 

drug discovery program (Buscher, Brigitte, 2014; Kumar et al., 2017). Also, in the systemic 

circulation, higher protein binding is commonly due to high lipophilicity and thus, low free-

drug concentration (Buscher, Brigitte, 2014).                   
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The association between the drug and proteins in plasma is reversible. The main forces involved 

in these associations are hydrogen bonding, hydrophobic effect and van der Waals interactions. 

(Ghafourian & Amin, 2013).           

PPB may adversely affect drug clearance, but in particular, only the free drug is subjected to 

hepatic clearance. Similarly, molecules with a high PPB have a limited renal clearance. Protein 

binding can also affect the amount of delivery of drug at steady state and, as a result impact 

half-life of drug. Different drugs may compete over the same binding pocket, resulting in 

competitive displacement interaction This will be especially problematic for heavily protein 

bound drugs with a narrow therapeutic index, such as tizoxanide, which is an active metabolite 

of nitazoxanide (Ghuman et al., 2005; Mullokandov et al., 2014). 

1.4  Human serum albumin (HSA) 

Human serum albumin (HSA) is the major drug binding protein in human blood plasma, 

accounting for about 60% of the mass of plasma proteins, with a typical concentration of 5 

g/100 mL in the bloodstream (Artali et al., 2005). It is a highly soluble, positively charged 

monomeric polypeptide with 585 amino acid residues. It is produced in the liver and has a 

molecular weight of 69 kDa. It has a high ligand-binding potential and can bind both acidic and 

neutral compounds reversibly at different sites. HSA binds to basic drugs as well, but to a minor 

extent (Bohnert & Gan, 2013; Ghuman et al., 2005). The HSA is mainly involved in 

the transport of fatty acids, maintaining colloidal osmotic blood pressure, fluid exchange 

between body compartments, organism defense against toxic metabolites, and acts as a nitric 

oxide storage. It has pseudo-enzymatic properties and accounts for the majority of the 

antioxidant potential of human plasma (Lambrinidis et al., 2015).           

Several experimental structures of HSA, both bound and unbound with endogenous compounds 

or drugs, are available in the Protein Data Bank (PDB) database (Moroy et al., 2012). The 

general structure of HSA (PDB ID:1H9Z) is shown in Figure 1.4.       

The amino acid distribution of HSA shows low content of methionine (Met), glycine (Gly) and 

isoleucine (Ile), while charged amino acids, both acidic amino acids: aspartates (Asp), 

glutamates (Glu) and basic amino acids: arginine (Arg), lysine (Lys), histidine (His) are very 

abundant (Artali et al., 2005; Aureli et al., 2005). This facilitates the interaction of HSA with 

cationic and anionic ligands. Also, one tryptophan (Trp) amino acid residue in the HSA protein 

has been especially beneficial in fluorescence binding in vitro experiments (Artali et al., 2005). 

Carter and Ho (1994) determined the first three-dimensional crystal structure of HSA at a 

resolution of 2.8 Å. It is comprised of three similar helical domains (1–3) arranged 
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asymmetrically in the form of a heart, with approximate dimensions of 80 Å on the side, an 

average thickness of 30 Å and a volume of 882493 Å3 (Artali et al., 2005). Out of 585 amino 

acid residues, residues 1-195 are in domain-1, 196-383 in domain-2 and 384-585 in domain-3 

(Pragna Lakshmi et al., 2017).                   

Each of the three domains (1-3) has ten helices and is further divided into two subdomains (A 

and B). These subdomains include six helices in subdomain A and four helices in subdomain 

B, and they are connected by a long-extended loop. The individual helices are linked by a 

conserved sequence of 17 disulfide bridges, which maintains the protein structure in all 

mammalian organisms. The improved thermostability of HSA is also due to the disulfide 

bridges. Subdomains 1 and 2 are perpendicular to one another, with hydrophobic and hydrogen 

bond interactions connecting subdomain 2A to the interface area between subdomains 1A and 

1B. Domain 3 associates only with subdomain 2B, and domains 2 and 3 form a Y-shaped 

assembly. Domains 1 and 3, which are only linked by a few connections, are separated by a 

large channel formed by subdomains 1B, 3A, and 3B (Artali et al., 2005; Lambrinidis et al., 

2015; Moroy et al., 2012). 

 

Figure 1.4: General view of the structure of human serum albumin (HSA) (PDB ID: 1H9Z). Drug 
binding sites in the protein are shown with circles around them. 
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Sudlow and Sjoholm (Rimac et al., 2017; Sjoholm et al., 1979) have proposed the presence of 

two HSA high-affinity binding sites (site I and site II) based on fluorescent probes that bind 

specifically to each of these sites. In practice, most drugs bind to one of these two primary 

binding sites located in the hydrophobic cavities of sub-domains 2A and 3A and able to 

accommodate a large range of chemical compounds (Artali et al., 2005; Moroy et al., 2012). In 

addition, the three homologous domains of HSA protein have seven fatty acid (oleic acid) 

binding sites. Several X-ray analyses of HSA-fatty acid complexes have revealed this reliable 

list of fatty acid binding site positions. The location of these sites are, one in sub-domain IB, 

one located between sub-domains 1A and 2A, two sites in 3A (constituting to the Sudlow’s 

drug binding site II), one in sub-domain 3B, one between the 2A and 2B interface, and the last 

within the drug-binding cavity of sub-domain 2A (Sudlow’s drug binding site I).             

Drug site I, also known as the warfarin binding site, is formed by a pocket located in subdomain 

2A of HSA. Ligands that have affinity to the highly flexible site I are mainly negatively charged 

large heterocyclic or dicarboxylic acid compounds such as azapropazone, warfarin and 

dansylamide. This could be due to the existence of Arg257 and Lys195/199 residues at this 

binding site, which bestow a partial positive character (Deeb et al., 2009; Moroy et al., 2012). 

Binding site II is situated in subdomain 3A of HSA. It is also known as the benzodiazepine 

binding site and often binds aromatic moieties and carboxylic acids having a negatively charged 

carboxylate group at the termination of the molecule, far from a hydrophobic center. Binding 

site II takes fewer ligands than site I, which could be due to site II is positioned in a subdomain 

that relates to a more unstable protein conformation compared to site I. In addition, the 

compounds such as ibuprofen, diazepam, phenylbutazone and ketoprofen binds to this site 

selectively (Deeb et al., 2009). 

A high degree of conformational flexibility due to the absence of beta sheets in HSA structure 

has been observed by a MD simulation study (Carter & Ho, 1994; Vallianatou et al., 2013). 

This high flexibility may explain HSA's incredible binding ability, which is expressed in several 

binding sites, according to the crystallographic evidence.  

1.5  Computational prediction of drug binding to human serum albumin  

The process of discovering and developing a novel drug is typically regarded as being 

exceedingly difficult and requires a significant effort and resources. Computer-aided drug 

design (CADD) techniques are thus now routinely employed to improve the effectiveness of 

the drug research and development process. Structure-based drug design (SBDD) and ligand-

based drug design (LBDD) are the two main methods used in CADD. SBDD methods such as 
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molecular docking and molecular dynamics simulations, require understanding of the three-

dimensional (3D) structure of the biological target of interest. In LBDD, the target protein's 3D 

structure is unknown, but the ligand or ligands that bind to the intended target location are 

known. LBDD includes methods such as quantitative structure-activity relationship (QSAR) 

and pharmacophore modeling (Jain, 2017).                   

Zsila et al. (2011) used a hybrid chemometrics-molecular docking approach that allows to 

predict whether a given ligand binds to HSA and what its likelihood is for binding to site I or 

site II. Based on the experimental HSA-binding data, a dataset of 163 small compounds were 

used, of which 62 compounds in the collection binds to HSA site I, 38 binds to site II, and 63 

compounds have no or poor affinity for HSA. For each compound, a total of 3250 descriptors 

were generated, and 45 descriptors were selected based on the physiochemical properties such 

as logP, compound aromaticity and number of carboxylic acid moieties, and 3D descriptors to 

make a distinction in the shapes of site I and site II. These selected descriptors contributed to 

HSA binding affinity and used in support vector machine (SVM) model building. The 100 

compounds from the dataset were randomly split into 60 % training and 40 % test set, and the 

remaining 63 compounds were chosen as the external validation set. They reported that the 

model showed an accuracy of 100% for training set and a test set accuracy of 78 % was 

achieved. The validation of the model on external dataset predicted compounds with an 

accuracy of 81%. The available X-ray crystal structures of ligand-HSA complexes were 

carefully examined to identify potential variability at the binding sites since choosing the right 

protein geometry is essential for precise complex geometry estimation. There has been some 

side-chain variability at the binding sites, based on the comparison of X-ray data of the ligand-

HSA complexes. The variations at HSA binding site I comprises of the rotation of residues such 

as aromatic (Tyr150, Trp214) and basic (Lys199, Arg218, Arg222), depending on the size and 

chemical structure of the ligand. The HSA site II, which binds both negatively charged (such 

as ibuprofen, indoxyl sulphate) and neutral substances (such as propofol, diazepam), the HSA 

side-chain conformational changes can also be seen due to the ligand. The binding of ibuprofen 

and diazepam at site II differ significantly, revealing significant side-chain alterations due to 

ligand. The carboxylic moiety of Ibuprofen forms a salt bridges with HSA residues Lys414 and 

Arg410. In contrast, the binding of diazepam, which lacks an acidic functional group, occupy 

alternative steric position does not involve binding to of basic residues such as Lys414 and 

Arg410. Furthermore, diazepam binding causes substantial rotation of HSA binding pocket 

residue such as Leu387 and Leu453, enabling the phenyl group of diazepam to enter the binding 

pocket from rear. 
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Aureli et al. (2005) suggested a site II specific 3D-QSPR (three-dimensional quantitative 

structure-property relationship) model for predicting HSA binding of structurally related 

compounds. The 37 compounds in the training set included 10 novel interleukine-8 (CXCL8) 

inhibitors, 17 structural analogs of diflunisal and 10 classical non-steroidal anti-inflammatory 

drugs (NSAIDs) (Aureli et al., 2005; Lambrinidis et al., 2015). The test set contains seven 

compounds having varied biological activities but a structural similarity close to the training 

set compounds. The flexible protein-ligand molecular docking was used to study whether the 

training set compounds preferred to bind to Sudlow’s drug site I or II. The results suggested 

that the majority of the compounds would preferentially bind to site II, which is consistent with 

the experimental studies that showed that despite lacking carboxylic group, these novel class of 

interleukine-8 inhibitors had an extraordinarily high affinity for HSA and that they resemble 

structurally the site II binding NSAIDs. The training set compounds interacted extensively with 

the hydrophobic residues (Leu453, Ile388, Asn391, and Leu407) in site II binding pocket. 

Additionally, the hydrogen bond and electrostatic interactions with site II amino acids, such as 

Tyr411, Arg410, Ser489 and backbone of Leu430 appear to be particularly important in 

defining binding affinity to HSA site II. It also showed that the physicochemical descriptors, 

for instance, hydrophilic and hydrophobic regions of the compounds are inversely and directly 

correlated with HSA binding. The substantial influence of acceptor groups on the compounds 

shows that the binding to HSA site II takes place through hydrogen bonding with the residues 

Arg410, Tyr411, Ser489 and backbone of Leu430. The specific residues Arg410 and Leu430 

of HSA site II form hydrogen bonds with high affinity ligands containing oxygen atom of 

carbonylic and sulfonylic groups.  

1.5.1  Molecular docking-based prediction  

Molecular docking is a widely used structure-based drug design (SBDD) tool for predicting 

protein-ligand binding interactions. It has become a widely used drug discovery tool especially 

due to the relatively low costs associated with its use and the perceived simplicity of use. It 

involves identification of a low-energy binding position of a small molecule or a ligand within 

the active site of a biological macromolecule or receptor. Molecular docking in drug discovery 

is usually applied for virtual screening where large databases of 3D structures of small 

molecules are searched through to find those fitting the binding pocket of the receptor by using 

an appropriate docking program (Halperin et al., 2002).  

Ligands used in molecular docking can be small molecules, peptides, peptidomimetics or DNA 

etc., but the larger the ligand the more challenging it is to achieve a reliable and accurate 
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docking result. Receptors on the other hand are 3D structures of proteins that are usually 

published in the PDB database. Docking can be categorized into flexible docking and rigid 

docking. In rigid docking, both the receptor’s and the ligand’s internal geometries are 

considered as rigid, like in case of a lock and a key. On the other hand, in flexible docking, an 

enumeration on the rotations of the fragments in one of the molecules (usually the smaller one, 

i.e. the ligand) is performed, while energy is calculated for every rotation and the most optimum 

pose is selected (Raval & Ganatra, 2022). Some docking methods can also take into account 

the flexibility of the receptor to some extent, e.g. induced-fit docking. 

Typically, ligand-protein docking software consists of two main components that work together 

to find the most stable binding conformation of the two partners (Kitchen et al., 2004; Sousa et 

al., 2006). A search algorithm is responsible for exploring the conformational space by making 

systematic changes to the molecule's orientation and conformation, in order to generate a large 

number of poses of a molecule in the binding site. There are many searching algorithms that 

have been developed. Some are more precise than others but all of them are meant to search 

within the conformational space for the most stable complex between the two partners. 

The strength of the binding affinity of the docked poses is assessed using scoring functions (SF) 

that estimate the ligand-protein binding free energy (Kitchen et al., 2004). It merely quantifies 

the energy of protein-ligand interactions by summing basic bonding and non-bonding 

(hydrogen-bonds, electrostatics, van der Waals, hydrophobic, pi-pi) parameters of the two 

entries composing the complex. Most scoring functions are very similar in concept but have 

different levels of simplifications and different variation of molecular mechanics force fields, 

that are used to estimate the energy of different poses in the binding site (Patrick Walters et al., 

1998; Taylor et al., 2002). 

The scoring methods can be categorized into empirical, knowledge-based and field-based. They 

mostly employ the linear regression model. Empirical SF evaluate a ligand-protein complex 

binding affinity by combining the essential energetic parameters for complex binding, such as 

hydrogen bonds, ionic interactions, hydrophobic effects, and steric effect (Guedes et al., 2018). 

The knowledge-based SF, based on statistical principle of inverse Boltzmann, acquire the 

relevant pairwise potentials from 3D structures of a vast set of ligand-protein complexes. The 

scores are calculated by penalizing the repulsive and favoring the preferred interaction among 

each atom of protein and ligand within a specified cutoff. The force field-based SF calculate 

the total of the non-bonded interactions (van der Waals and electrostatics) between ligand-

protein atom pairs, which take into account the significance of enthalpy to energy. The 

electrostatic and van der Waals terms are represented by Coulombic and Lennard-Jones 
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potentials, respectively. However, it ignores entropy and the solvent effects, which are 

enhanced by including ligand torsion entropy and the solvation/desolvation as defined by 

implicit and explicit solvent models (Li et al., 2019; Meng  Zhang, H. X., Mezei, M., & Cui, 

M., 2011). 

The complexes calculated using molecular docking techniques can be more or less stable 

depending on various factors, but the binding affinity calculated with the scoring function can 

be a good indicator of the binding strength and the stability. Usually, a high negative value 

indicates a strong binding energy between the investigated ligand and the receptor. On the other 

hand, a positive value would mean an artifact clash or repulsion between the atoms of the 

participating molecules in the docking. However, docking programs are fairly robust and they 

will eliminate any unrealistic poses from the final list of ligands. 

After calculating the binding position between the ligand and the receptor, the main purpose is 

to study the interaction between the molecules. In this way, the molecular docking method 

allows screening of entire libraries with a much lower cost than experimental methods. 

Regardless of the advantages, docking-based virtual screening is not the substitute of the actual 

laboratory experimental screening. In fact, these two approaches are highly complementary. 

1.5.2 Molecular dynamics simulation 

Molecular dynamics simulation (MDS) is a significant theoretical tool to visualize detailed 

physical motion and interactions of atoms of biological macromolecules over time at a specified 

temperature. It can also be useful to refine models coming from docking experiments or 

generated by experimental techniques or to complement biological experiments. Everything 

known about biomolecules at the atomistic level are built with models. Biological structures 

are all refined using molecular modeling. Sometimes structural biology tools cannot be used, 

for example a structure cannot be crystallized by X-ray crystallography, a protein is not soluble 

for an NMR experiment, or the molecule is very small and does not has enough contrast for 

cryo-EM. However, using homology model to construct the atomic-resolution model of the 

desired protein structure, followed by molecular dynamics simulation can capture the behavior 

of the biological macromolecules and provide necessary information in full atomic detail 

(Hollingsworth & Dror, 2018; Patodia, 2014). 

Based on the number of degrees of freedom, MD simulations can be described into different 

approaches. An atomistic approach where one particle describes one atom can be used for 

analyzing the atomic-level behavior of a molecular system. The atomistic approach belong to 
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the category of classical molecular mechanics (Joshi & Deshmukh, 2020; Salo-Ahen et al., 

2021).  

Generally, one mole of a macroscopic sample in the experimental environment has Avogadro’s 

number (6 x1023) of molecules and the average taken in the measurement is an average of the 

total number of molecules. That is, the laboratory experiment measures an average property, 

averaged over a large number of molecules in a macroscopic sample usually over the time of 

measurement. However, in MD simulations conformations are generated for one molecule in 

time. The ergodic hypothesis states that a single system developing in time is replaced by a 

large number of relative replications of the same system that are considered at the same 

moment. That is, an average of a large number of conformations is equal to the average of the 

same property in time. Hence, the time set for MDS should be sizeable to allow the generation 

of enough conformations to represent the system. 

Therefore, the ultimate goal of MDS is to generate a large enough ensemble of conformations 

of a system as depicted in Figure 1.5. In such a way, an accurate value of a property of interest 

can be calculated by applying the Newton’s second equation of motion as presented in the 

following equation:   

      

Force = mass x acceleration 

      F = ma       

 

According to Newton’s equation of motion, the particle of mass 'm', experiences an acceleration 

'a' in the path of the applied force 'F'.  

 

Figure 1.5: MD simulations ensemble of conformations generated with time.  

 

The total force F acting on an individual particle at each MD simulation step can be obtained 

from a potential energy function V(total), also called a force-field (Lin & Mackerell, 2019; 

Ponder & Case, 2003).  There are several force fields accessible, with varying degrees of 
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complexity and aimed at treating various types of systems. However, a general force 

field (González, 2011) can be expressed as follow:  

 

 

 

As indicated in the above equation, the parameters contributing to the total potential energy 

function V(r) are split into bonded interactions and non-bonded interactions, as shown in Figure 

1.6. Bonded interactions include bond length, bond angle and dihedral angles to keep the 

chemical groups sterically stable during the MD simulation. Bond stretching is computed by a 

harmonic potential, which depends on the square of the separation distance between the atoms. 

The term kb is a force constant for bond stretching. Angle bending is also described by a 

harmonic potential for the reference bond angle θo. The term ka is a force constant for angle 

bending. This parameter is defined for a group of three bonded atoms. Dihedral angles are 

expressed by a torsion or 1-4 interaction function between a group of four bonded atoms and 

are computed by a Fourier potential such as cos function. The parameters η is the number of 

minima when the bond is rotated, δ is the phase factor that determines the position of minima. 

The term ϕ is the angle formed by the two planes. The last two expressions represents 

coulombic and van der Waals interaction (Levitt et al., 1995).  
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Figure 1.6: Bonded and non-bonded interaction parameters. 

 

The non-bonded interactions are long-range interactions between a pair of atoms in the 

macromolecule. These are usually calculated over every pair of atoms in the system except for 

the atoms that are bonded to each other or separated by two or three bonds (Sagui & Darden, 

1999). These interactions include both van der Waals and electrostatic interactions. The van der 

Waals interactions are described by the Lennard-Jones 12-6 potential (Heinz et al., 2008; Wang 

et al., 2020) which contains the depth of the potential well ε, finite inter-particle distance σ at 

which the potential is zero, and distance r between particles. The electrostatic interactions are 

estimated among the pairs of point charges q using Coulomb’s law. Non-bonded interactions 

are the most time-consuming to calculate, as for N number of atoms in a system, N2 interactions 

are required to be calculated. However, it is known that non-bonded interactions also decay 

very fast with the distance. The van der Waals interaction decays faster than charge-charge 

Coulombic interaction (1/r) and thus the long-range contributions are ignored. This can be done 

by applying a cut-off value at which non-bonded potential and forces are not any more 

calculated. In order not to completely neglect the electrostatic interactions coming from a 

distance larger than the cutoff radius rc, usually the Ewald summation method (Darden et al., 

1993) is used to sum up electrostatic interactions in real space (short range) and in reciprocal 

space (long range), which results in a faster convergence (Essmann et al., 1995; York et al., 

1993).  

However, Predescu et.al. (2020) established U-series, a new and more effective decompositions 

for coulomb potential method with an improved efficiency and performance with around half 
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of the computational requirements, compared to conventional (Ewald) decomposition method. 

It decomposes Coulombic interaction (1/r) into a near and far components, resulting in a variety 

of desirable properties for the resultant approximation. It has a consistently limited relative error 

for r > rc and is uniform along the entire real space. However, the majority of the inaccuracy 

occurs from the interactions with particles located immediately outward the radius r ≤ rc. The 

u-series approach is less accurate for systems containing lipid bilayer, where some charge 

structure is conserved on scales greater than the cutoff radius rc.   

Subsequently the total force F acting on the system is computed as a negative gradient of the 

potential energy function V(total), which allows to calculate the acceleration of particles based 

on the equations below;  

𝐹 =  − ∇𝑉(𝑡𝑜𝑡𝑎𝑙) 

 

         

𝐹 =
𝑑𝑃

𝑑𝑡
  =  𝑚

𝑑2𝑟

𝑑𝑡2       

  
Along with the initial positions of particles acquired from the simulated structures and initial 

velocities produced according to atom types and simulation temperature, the acceleration is 

used to compute for next positions and velocities in the simulation run. The algorithms used for 

the incorporation of classical Newton's equation of motion apply an approximation known as 

Taylor Series expansion for the positions, velocities and accelerations. Some of the well-known 

algorithms for this purpose are Verlet algorithm, Leapfrog algorithm and Beeman's algorithm 

(van Gunsteren & Berendsen, 1990).  

The most common force fields used for biomolecular simulations are AMBER (Hornak et al., 

2006), CHARMM (Best et al., 2012), GROMACS (Oostenbrink et al., 2004), OPLS (Beveridge 

& Jorgensen, 1988) and for the coarse-grained setting a Martini force field (Marrink et al., 

2007). It is suggested not to mix and match force field parameters. The parameters in the force 

field come from experimental or ab initio studies of small molecular compounds, e.g., bond 

lengths and bond angles come from crystal data, force constants for bonds and angles come 

from spectroscopic data (IR, Raman) and the charges might come from a quantum mechanics 

electrostatic potential. The parameters developed for small compounds should be transferable 

to a new set of molecules (Lin & Mackerell, 2019). 

The span of time step ∆t, used in a simulation is needed to be considerably smaller than the 

fastest movement in the system, for instance the bond vibrations. The integration of an 

appropriate time step is critical. With an overly small-time step, the events might never happen 
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as it will take longer to simulate whereas with a too large a time step, the system will get 

unstable. The time step is usually set to be around 1-5 femtoseconds.                               

Another aspect that governs the outcome of a simulation is keeping the temperature and 

pressure close to the experimental conditions. To regulate (maintain) these physical properties 

during a MD simulation run, several statistical ensembles are employed. Ensembles such as 

NVE, NVT and NPT are the most common settings. A simulation in the NVE ensemble, also 

known as the microcanonical ensemble, is performed at a constant number of particles N, 

constant volume V and energy E. This ensemble does not control the temperature or the pressure 

of the system, and thus, is not suggested for equilibration. The NVT ensemble (NosÉ, 2002), 

referred as canonical ensemble, maintains the number of particles N, volume V and temperature 

T constant during the MD simulation. In this ensemble the energy of endothermic and 

exothermic processes is exchanged with a thermostat. The role of a thermostat is to guarantee 

a suitable average temperature and an appropriate extent of temperature fluctuation. Most 

commonly used thermostats are the Berendsen weak-coupling thermostat (Berendsen, 1981), 

velocity-rescaling temperature (Bussi et al., 2007) and Nose-Hoover temperature coupling 

(Nose, 1984; Hoover, 1985). The NPT or isothermal-isobaric ensemble (Yamauchi et al., 2019) 

keeps the number of particles N, pressure P and temperature T conserved. The pressure is 

associated to the system’s volume and the particles interaction with each other. This allows the 

pressure to be adjusted by varying the volume of the system and scaling the position of the 

molecules (Victor, 2007). Examples of barostats are the Berendsen barostat (Berendsen, 1984), 

stochastic cell rescaling (Bernetti & Bussi, 2020) and Parrinello-Rahman (Parrinello, 1981; 

Nose, 1984).  

To sum up the MD simulations workflow, the starting configuration R0 can be attained from 

experimental data from structural biology. The initial velocities v0 are usually taken from 

random distribution (Maxwell distribution) with the kinetic energy corresponding to the desired 

temperature of the simulation. The force acting on each atom in the MD simulations can be 

calculated by the potential energy function V(r), in order to acquire the accelerations a. The 

new configuration can then be achieved from the previous position repetitively until a desired 

length trajectory is produced.  

1.5.2.1 Molecular dynamics trajectory analysis   

Several properties such as root-mean-square deviation (RMSD), root-mean-square fluctuation 

(RMSF), number of hydrogen bonds, can be analyzed to extract valuable information about the 
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protein-ligand interaction.                

RMSD estimation is the most usual way to measure a structure’s stability during the timespan 

of the whole simulation. It shows the average variation in dislocation of the protein Cα atoms. 

This dislocation in each specific simulation frame is measured against the backbone atoms of 

the initial frame (reference structure) of the simulation. This gives insight into the structural 

conformation throughout the simulation and indicates if the simulation has reached equilibrium. 

Usually, the RMSD values of 1-3 Å are considered as standard, whereas values higher than 3 

Å may show that a protein (or part of the protein) goes through large conformational changes 

during the course of the simulation. The equation shown below is used to calculate RMSD for 

the whole trajectory (Bowers et al., 2007):  

 

𝑹𝑴𝑺𝑫 =  √ ∑ (𝒓𝒊(𝒕𝒙)

𝑵𝒂𝒕𝒐𝒎𝒔 

𝒊=𝟏

− 𝒓𝒊(𝐭𝒓𝒆𝒇))𝟐  / 𝑵𝒂𝒕𝒐𝒎𝒔 

where, N atoms is the number of atoms whose positions are being compared, ri (t) is the position 

for atom i at time t, tref is the initial or reference frame at time t=0 and tx is the recorded frame 

at a certain time. Time-specific and averaged RMSD values are given for the atoms in the 

molecule.                     

Alike RMSD, RMSF can also be used to analyze the most and the least fluctuating residues in 

a protein Cα atoms. The regions that generally show high RMSF are loops and the termini. In 

contrast, secondary structures of proteins such as helices and beta-sheets show less fluctuation 

since they are structurally rigid. The equation shown below is used to calculate RMSF (Bowers 

et al., 2007).  

𝑅𝑀𝑆𝐹𝑖  =  √
1

𝑇
 ∑ < 

𝑇

𝑡 = 1

( 𝑟𝑖
′(𝑡))  −  𝑟𝑖(𝑡𝑟𝑒𝑓))2   >  

The equation presents RMSF calculated for the trajectory time T, where the reference time is 

tref, the position of a residue i is ri, and the position of atoms in residue i after superimposition 

on the reference frame is rꞌ. The angle brackets (<, >) specify that the average of the square 

distance is taken over the selection of Cα atoms in the protein residue. RMSF is averaged over 

time and gives a value for each particle (residue) i.          
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Hydrogen bonds play a vital role in ligand binding by bringing stability and rigidity to the 

binding pocket. 

1.5.2.2  Binding free energy estimation 

The assessment of the binding strength among the protein and ligand is one of the fundamental 

components of essentially all structure-based approaches. The molecular mechanics 

generalized Born surface area (MM-GBSA) is the most widely used techniques developed by 

Kollman et al. (1998) to approximate the binding free energies (BFE) between two molecules 

such as a ligand and a biological macromolecule.  

Through this approach, the generalized Born (GB) implicit solvent model is used to estimate 

∆Gsolv, and a classical molecular mechanics (MM) force-field is used to estimate ∆EMM 

components. A large number of snapshots generated from an MD simulation run are used to 

calculate the ∆Gsolv average. After eliminating the explicit solvent molecules, the binding free 

energies of these structures are estimated in the implicit solvent, followed by assigning an 

average free energy of binding ∆GBind as illustrated below; 

 

Figure 1.7: MM/GBSA flowchart. 

 

Equation below is used to estimate the binding free energies calculated by MM-GBSA methods 

(Li et al., 2011):            
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∆∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =  ∆𝐺𝑐𝑜𝑚𝑝𝑙𝑒𝑥   − ( ∆𝐺𝑝𝑟𝑜𝑡𝑒𝑖𝑛   +  ∆𝐺𝑙𝑖𝑔𝑎𝑛𝑑) 

 

 

where ∆𝐺complex, ∆𝐺protein and ∆𝐺ligand represent the delta free energy of the complex, the protein 

and the ligand, respectively. Each term can be estimated according to Tuccinardi (2021) as in 

the following equations; 

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔  =  ∆𝐺𝑀𝑀   +  ∆𝐺𝑠𝑜𝑙   −  𝑇∆𝑆 

 

∆𝐺𝑀𝑀  =  ∆𝐺𝑒𝑙𝑒   +  ∆𝐺𝑣𝑑𝑤 

  

where the term ∆𝐺MM denotes the molecular mechanics free energy that splits into electrostatic 

interaction (ΔGele) and van der Waals interaction (ΔGvdw) energies.   

∆𝐺𝑠𝑜𝑙  =  ∆𝐺𝐺𝐵   +   ∆𝐺𝑆𝐴 

ΔGsolv term in the above equation stands for solvation free energy that includes polar 

contributions of electrostatic solvation energy (ΔGGB) and non-polar contributions of the non-

electrostatic solvation (ΔGSA). Additionally, several other components also contribute to the 

total energy such coulombic, covalent binding, van der Waals, lipophilic, generalized Born 

electrostatic solvation, hydrogen-bonding correction and pi-pi packing correction as stated by 

(Li et al., 2011).  

1.5.3  Pharmacokinetic property prediction 

Drugs bind to proteins in order to produce their pharmacologic effects. As a result, a drug needs 

to be structurally capable of interacting with the suitable protein in order to have a 

pharmacologic effect. However, a therapeutically effective agent needs more than just a drug's 

capacity to bind with a protein. The field of pharmacology known as pharmacokinetics studies 

the four stages that drugs go through as they move through the body. These stages include 

absorption, distribution, metabolism, and excretion (ADME). The delivery of a drug from its 

point of administration to the blood system is referred to as absorption. Distribution refers to 

the drug's passage through the bloodstream and into body tissues. The procedure that breaks 

down the drug is called metabolism. Enzymes such as cytochrome P450 (CYP450) are 

accountable for the biotransformation of majority of drugs. Excretion refers to the process by 

which a drug is eliminated from the body via kidneys (Backes, 2007). 
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Several in silico tools are available to predict ADME specifications from chemical structure. 

The web tool such as SwissADME (Daina et al., 2017) is publicly available ADME and 

pharmacokinetics resource. It considers several physiochemical properties, which includes 

lipophilicity, polarity, size, solubility, flexibility and saturation. Likewise, admetSAR (Cheng 

et al., 2012) is another open source tool to predict the ADMET properties of molecules. The 

physiochemical properties taken into account by admetSAR are amount of H-bond donor and 

acceptor, molecular weight, topological polar surface area and octanol-water partition (log P).  

Similarly, QikProp is a rapid and convenient ADME estimation module of Schrödinger. It 

predicts a total of 46 tangibly meaningful descriptors and pharmaceutically related properties 

of organic molecules. Additionally, it provides recommended values to correlate a certain 

molecule’s properties with those of 95% of known drugs. The QikProp prediction method was 

developed by Professor William L. Jorgensen and Professor Erin M. Duffy. The Monte Carlo 

method was used to identify important physically descriptors for predicting aqueous solubility, 

solvation free energies, and log P octanol/water.  This method averaged several descriptors such 

as solute-water Coulomb and Lennard-Jones interaction energies, solvent-accessible surface 

area (SASA) and its components (hydrophobic, hydrophilic and aromatic), total number of 

solutes as H-bond donor and H-bond acceptor. This method, however, has the practical 

drawback of being slow due to use of more computational resources. As a result, they created 

algorithms for quick estimation of key descriptors, particularly hydrogen-bond counts. This 

take account of electronic and steric surroundings of the H-bonding sites, as well as the 

possibility of intramolecular H-bonding. The input requires a 3D structure of the compound, 

followed by performing SASA yielding its components, such as solvent-accessible volume, 

weakly polar surface area for sulphur, halogens and phosphorous, hydrophobic surface area, 

hydrophilic surface area and carbon-pi surface area. Multiple Linear Regression model was 

performed for aqueous solubility on a training dataset of 317 wide-ranging organic molecules, 

with a special emphasis on heterocyclic compounds and drugs. The overall MLR model has an 

r2 and rms value of 0.90 and 0.63 log unit respectively, with a standard deviation error of 0.48 

log unit.  

The anticipated log S (Solubility) values from QikProp (QP log S) are typically within a few 

tenths of a log unit for the vast majority of conformers, with the largest ranges very seldom 

covering more than one log unit. Even though there are variations, extended structures usually 

produce outcomes that are more consistent with the experimental data. The QikProp regressions 

were created with extended conformers, which are typically generated by standard 2D to 3D 

structure conversion programs.  
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Out of the 46 properties, the only property of interest in the current thesis work was the 

prediction of a molecule’s binding to HSA (QPlogKhsa) (William L. Jorgensen & Duffy, 2002). 

As discussed earlier, the effectiveness of a drug molecule may be disturbed by the level to 

which it binds to the blood plasma proteins such as HSA. This significantly lowers the 

magnitude of the free drug in general blood circulation and the amount of the drug reaching the 

target. Hence, the more bound a drug is to blood plasma proteins, the less efficiently it can pass 

through cell membranes or diffuse to reach the target to produce its effect. Since HSA is the 

most abundant plasma protein and because it has a high capacity to bind various molecules, the 

prediction of drug binding to HSA has been estimated to represent the overall plasma protein 

binding. The logarithm of HSA predicted binding constant log KHSA parameter has a 

recommended value range between −1.5 to 1.5 for 95% of known drugs. The more positive 

value represent strong binding of the ligand to HSA due to the reaction equilibrium constant 

toward the complex, whereas lower values indicate weak binding between ligand and HSA 

(Colmenarejo et al., 2001).  

1.5.4 Examples on computational studies of drug-HSA binding  

As discussed earlier in the section 1.4., the HSA protein has several ligand binding sites. Out 

of them, drug site I and II are the most common for ligand binding. The pharmacokinetics and 

pharmacodynamic characteristics of chiral compounds can be significantly impacted by 

enantioselectivity in protein binding. Among the plasma proteins, HSA has the ability to 

demonstrate the greatest possible enantioselectivity and the capacity to bind to a range of drugs. 

Therefore, using rigid-receptor docking techniques for flexible proteins (such as HSA) may 

result in an inaccurate pose because of conformational changes in the binding process between 

the receptor and the ligand. The binding of warfarin enantiomers (R-, S-) cause HSA to 

experience gradual conformational modification, resulting in HSA-warfarin complex. 

According to Gumede et al. (2012) the R-enantiomer of warfarin indicated a considerable 

change in the conformation of the rotatable groups in binding pocket of HSA site I. Therefore, 

the lock and key method (flexible ligand-rigid protein) appears to be inaccurate. However, 

induced fit docking (IFD) using flexible ligand-protein, consider the movement of protein side 

chain and back bone during binding to the ligand. The HSA side chains Lys199, Arg257, and 

His242 were shown to have intermolecular interaction with the ligand, whereas, Tyr150 plays 

a key role in hydrogen bonding at site I, followed by His242, Lys199, and Arg222. They also 

reported that the affinity and enantioselectivity was observed in favor of the S-pose over R-

pose due to the presence of an additional π−π interaction and a strong hydrogen bond between 
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the Arg218 N-H group (hydrogen bond donor) and a negatively charged oxygen group of the 

coumarin ring (hydrogen bond acceptor). The achieved binding affinity and enantioselectivity 

estimates were reported to be comparable with experimental data.  

Warfarin ((3-(α-acetonylbenzyl)-4-hydroxycoumarin) binds to subdomain IIA of drug site I 

within HSA with high affinity (Kd ≈3 μM). Additionally, the affinity of warfarin to HSA may 

be enhanced up to 3-fold in the presence of low levels of fatty acids. Range of other drugs like 

indomethacin, tolbutamide and phenylbutazone compete with warfarin for the same binding 

site. Despite the fact that different drugs bind to site I, the structure of these drugs generally 

exhibits bulky heterocyclic features with a negative charge located toward the molecule center. 

Therefore, warfarin exemplifies this type of compound and consequently, the study of the HSA-

warfarin complex structure could explain this broad selectivity. Petitpas et al. have reported the 

crystal structures of HSA-myristate complexed with both the R- and S- enantiomers of warfarin 

and elucidated the molecular details of the interaction between warfarin and HSA. Warfarin 

enantiomers were both bound to the protein in the same way which accounts for albumin poor 

stereoselectivity. The coumarin and benzyl moieties of warfarin could be seen accommodating 

two adjacent but separate sub-chambers. The interactions between HSA-warfarin complex were 

shown to be dominated by hydrophobic contacts, however, specific electrostatic interactions 

could also be noticed. Phe211, Trp214, Leu219, and Leu238 forms the sub-chamber that fits 

the benzyl moiety with additional aliphatic contacts with Arg218 and His242. The coumarin 

moiety accommodates the main chamber located further from the entrance and interacts 

primarily with the surrounding side chains via hydrophobic contacts. Ala291 and Leu238 

delimit the roof and floor of the pocket, respectively. Meanwhile, Ile260, Ile264, Ile290, and 

the aliphatic parts of Arg257 and Ser287 make contact with the coumarin ring back end. Further 

hydrophobic contacts were seen with the right side from Val241 and on the left from the 

aliphatic part of Arg222.  Moreover, the coumarin moiety lies close to the fatty acid in the 

adjacent binding site, however, it doesn't make direct contact with it. Interestingly, the coumarin 

chamber shows an additional side pocket that formed by Leu219, Arg222, Phe223, Leu234, 

Ile264, Leu257 and Ile290. Although this side chamber is not occupied by warfarin, it can fit 

further hydrophobic portions of other site I drugs. More importantly, two of the three oxygen 

atoms of the coumarin moiety are involved in electrostatic interactions. The O(a) atom of 

warfarin is close to NЄ of Arg222 while the acetonyl group O(c) lies close to NH2 of Arg222 

closer to the pocket entrance. The hydroxyl group O(d) atom makes hydrogen bonds to the side 

chain of His242 and also to a bound water molecule. The authors suggested that the electrostatic 

interactions made by O(b), O(c), and O(d) altogether help maintain the orientation of warfarin 
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within its binding pocket. However, the authors also suggest that the shape complementarity 

between the drug and the pocket plays in an additional major role in its binding (Petitpas et al., 

2001). 

Meenu Narwal et al. (2018) used short MD simulations run to distinguish ester and non-ester 

drugs binding with HSA. HSA has esterase activity, which allows it to break drugs with ester 

bonds and so modulate their effects. The initial poses of the compounds at the drug sites I and 

II were created by molecular docking. The preference for the particular binding site was 

determined by the greatest number of hydrogen bonds and other close interactions between the 

protein and the ligand. The docking analysis demonstrates that some drugs prefer binding at 

HSA site I while others preferred binding at HSA site II, regardless of the kind of drug (ester 

or non-ester). The best pose of each ligand with the most favorable calculated binding energy 

at the identified binding site was submitted for a 2 ns MD simulation. After running the MD 

simulations, they observed that the protein backbone RMSD in case of both ester and non-ester 

drugs remained between 1-3.4 Å. Also, the ester drugs showed constantly 1 to 2 hydrogen bonds 

and non-ester drugs 1-4 hydrogen bonds during the simulations. They concluded that the 

presence of an ester bond cannot determine which site the drug binds to since both ester and 

non-ester drugs were detected bound in the two HSA binding pockets, either at drug site I or 

site II.  

Another study by Pragna Lakshmi et al. (2017) investigated the interaction of a compound 2,4-

diacetylphloroglucinol (DAPG) with HSA drug site I and site II through 50-ns MD simulations. 

The antibacterial, antiviral, antihelminthic, and anticancer activities of 2,4-

diacetylphloroglucinol (DAPG) have long been recognized. The obtained RMSD plot of DAPG 

in site I illustrates that the simulation system converged during the first 1000 ps of the 

simulation time and stayed generally stable for the remaining of the simulation, with minor 

fluctuation between 30 ns and 40 ns. The complex containing DAPG in site II, on the other 

hand, was more fluctuating. The findings of this investigation suggest that DAPG binds to HSA 

site I.  

1.6  Microscale thermophoresis (MST) in studying biomolecular interactions 

Biomolecular interactions between drug compounds and serum albumin are important for 

understanding drug pharmacokinetics. Microscale thermophoresis (MST) can be used to 

perform biomolecular interaction studies (Jerabek-Willemsen et al., 2011b). This is based on 

the basic principle of thermophoresis, which is motion of molecules in temperature gradient.   

A temperature field in an aqueous solution of biomolecules stimulates both the flow of heat and 
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molecules. This coupling effect among a heat flow and mass flow was initially detected by Carl 

Ludwig in 1856 (Jerabek-Willemsen et al., 2011a) and is thus known as Ludwig-Soret effect or 

thermophoretic effect. This effect is very sensitive to the solvent-molecule interface. It allows 

the quantification of biomolecular interactions by the thermophoretic changes in size, charge 

and hydration shell of a molecule. For example, the size changes when a protein binds to another 

protein, the charge changes when a DNA binds to a protein. When a protein binds with a small 

molecule, the charge or size may never change, but still one water molecule is displaced upon 

binding. Therefore, any change in these three parameters (size, charge or hydration shell) will 

change the thermophoresis behavior (Duhr & Braun, 2006). As a result, the approach is 

appropriate for quantification of a broad variety of interactions, ranging from small molecules 

binding to proteins to affinities in multi-subunit complexes and liposomes.  

The MST experiment is easy to setup and handle; it has a low sample requirement (6 µl per 

sample), a short analysis time allowing high throughput, a wide temperature range (20°C - 

45°C) for the analysis. In addition, MST measures interactions with essentially no limitation on 

molecule size or molecular weight (100 Da to 1 MDa), and it allows instantaneous quality 

control (aggregation, precipitation, sticking) and the sample does not need any immobilization 

(Jerabek-Willemsen et al., 2011b). The MST instrument couples infrared (IR)-laser into the 

direction of fluorescence emission with the help of an IR-mirror. The IR-laser is directed onto 

the sample via the same optics that are used for detection of fluorescence. This allows a stable 

and accurate observation of thermophoresis (Jerabek-Willemsen et al., 2011b).                                 

In the beginning, the molecules are dispersed homogeneously at an ambient temperature 

without laser heating in order to measure a constant initial fluorescence. The instant an IR-laser 

is turned on, a quick temperature jump is witnessed, due to the molecules moving away from 

the heat, as illustrated in Figure 1.8. This temperature jump is associated with temperature 

dependent variations in fluorescence that are sensitive to the local environment of the 

fluorophore. This allows the affinity of the interaction to be quantified by the intrinsic 

temperature dependent changes in fluorescence. This is followed by fluorescence variation 

induced by thermophoretic molecule motion. The decrease in fluorescence is measured for 

around 30 seconds until it reaches a steady state. Once the laser source is turned off after 30 

seconds, an inverse temperature jump or a steep rise in signal is observed caused by the sample 

cooling. Lastly, back diffusion of molecules, which is solely driven by mass diffusion, allowing 

to derive information on the size of molecule (Jerabek-Willemsen et al., 2011b).  
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Figure 1.8: The schematic diagram of MST time trace. Different phases in fluorescence over time are 
distinguished by their time scale. 

 

1.6.1  MST studies on drug binding to HSA 

Several studies have incorporated MST for the purpose of analyzing binding affinity of 

compounds with HSA. Joanna Wasko et al. (2020) employed the MST approach, in order to 

determine if HSA attaches to native human insulin and its A13-A19 and B12-B17 fragments 

(hot spots), and whether binding with HSA helps to decrease the ability of insulin and its hot 

spots to aggregate in human body. These hot spots regions are structural components that 

regulate the aggregation of native polypeptides. Insulin can misfold, resulting in the formation 

of organized fibrillar amyloid aggregates inside the body. The conformational changes in the 

structure of metabolic hormones (insulin) may be detected during aggregation, with a 

considerable rise in the quantity of B-sheet with time. Recent research has revealed that small 

fragments (hot spots) of insulin are involved for the instigation and advancement of soluble 

peptide aggregation into fibrous deposition in numerous tissues and organs. Furthermore, 

calculating the dissociation constant (Kd) of HSA-fragments complexes revealed the binding of 

both insulin fragments (A13–A19 and B12–B17) with HSA, minimizing the possibility of 

fragments to aggregate in the presence of HSA. The utilization of HSA as a drug delivery 

mechanism for peptidic inhibitors of the insulin aggregation development, may result in cutting 

edge diabetic treatment strategies.               

Another study by Christoph J. Wienken et al. (2010) also reported MST being an excellent 
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method for understanding the effect of HSA on the binding of small molecule inhibitor 

quercetin to its target kinase, protein kinase A (PKA). HSA, a universal transport protein is 

being well-known for having a hydrophobic pocket that can bind flavonoids such as quercetin. 

The experiment showed that HSA binds to quercetin and thus reduced the affinity of quercetin 

for PKA.                   

Chushak et al. (2015) investigated the binding of toluene to HSA using MST. The affinity 

chemicals, drugs and metabolites to HSA is proportional to their distribution throughout the 

body as well as the percentage of unbound compounds accessible for biological activities and 

toxic effects. The benzene and its metabolites interact with a cysteine residue in HSA to form 

a protein adduct, which is utilized as an indicator of benzene exposure. Similarly, toluene 

binding to HSA causes nonspecific binding and promotes aggregation, which occurs commonly 

with HSA and small molecules. The authors concluded that HSA certainly interacts with 

toluene. 
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2 AIM OF THE STUDY 

The overall aim of the study was to investigate whether a strong HSA binding could be a 

probable reason for the poor in vivo activity of the provided antiparasitic compounds.  

The detailed objectives of the study were to: 

● Computationally study the binding interaction of the provided antiparasitic compounds 

and fexinidazole with HSA by docking them in the HSA drug binding sites I and II.  

● Evaluate the stability of binding interactions of the compounds with the best docking 

scores using MD simulations.  

● Estimate the HSA binding affinity of the compounds by calculating the binding free 

energies using the MM-GBSA approach.   

● Predict the binding interaction of the compounds with HSA using an ADME property 

prediction program QikProp.    

● Conduct in vitro HSA binding studies using MST for some of the provided compounds. 
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3 MATERIALS AND METHODS 

3.1 Computational protocols 

Molecular modeling and visualization of the molecular structure was carried out with the 

Maestro molecular modeling suite (Maestro v2021.2 by Schrödinger LLC graphical user 

interface) and PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. were used 

for visual analysis and structural investigation of the protein, ligand and protein-ligand 

complexes. The graphs for the MD structure stability analysis (RMSD, RMSF, and H-bonds) 

were plotted using the Grace-5.1.25 plotting tool. The generous computational resources for 

MD simulation were provided by CSC – IT Center for high performance Scientific Computing, 

Finland. 

3.1.1  Ligand preparation 

An initial library of 418 antiparasitic compounds was provided by our collaborator Dr. Werner 

Seebacher from the University of Graz, Austria. The compound structures were provided in an 

Excel sheet, in 1D SMILES (Simplified Molecular Input Line Entry System) format. In 

addition, in vitro activities and toxicity values as IC50 (nM) were given for these antiparasitic 

compounds. The in vitro inhibitory activities of the compounds against the growth of 

trypanosome (Tb rhodesiense STIB 900) had been studied using a fluorescence-based  assay 

and the toxicity assay had been performed in L-6 cells acquired from rat skeletal myoblasts 

(Ahmad et al., 2016; Mohsin et al., 2018). The antiparasitic in vivo activities of some of the 

compounds had also been evaluated at Swiss Tropical and Public Health Institute (Basel) in 

Naval Medical Research Institute (NMRI) mice.                     

All of the 418 compounds and their biological data have been published previously (Ahmad et 

al., 2012, 2015, 2016; Berger et al., 2009; Faist et al., 2009; Hoffelner et al., 2019; Seebacher 

et al., 2005, 2006, 2007b, 2007a; Weis, Berger, et al., 2008; Weis, Kaiser, et al., 2008; 

Wolkinger et al., 2016).                 

Additionally, fexinidazole, an oral drug used for sleeping sickness and the co-crystallized 

warfarin R-(+)-enantiomer, present at the HSA drug site I of the HSA crystal structure (PDB 

ID: 1H9Z), were also used for the computational study.                   

To prepare the above-mentioned compounds, the LigPrep tool of Maestro (Schrödinger Release 

2021-2: LigPrep, Schrödinger, LLC, New York, NY, 2021) was used to produce low-energy 

3D structures from the initial SMILES strings. The ionization states were calculated  at pH of 
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7.0+/-2.0 with Epik (Greenwood et al., 2010; Shelley et al., 2007) (Schrödinger Release 2021-

2: Epik, Schrödinger, LLC, New York, NY, 2021). All possible tautomers and a maximum of 

two stereoisomers per compound were generated using the OPLS4 (Lu et al., 2021) force field.  

3.1.2  Protein preparation 

The 3D structure of the target protein HSA was retrieved from the RCSB Protein Data Bank 

(PDB) (Berman et al., 2000) (http://www.rcsb.org/) that is a freely available database 

containing more than 190,000 macromolecular structures as of June 2022 

(https://www.rcsb.org/stats/growth/growth-released-structures). The techniques used to solve 

3D structures of macromolecules are mainly röntgen (X-ray) crystallography, nuclear magnetic 

resonance (NMR) and cryo-electron microscope (EM). Out of these techniques, X-ray 

crystallography is the most widely used. The retrieved X-ray crystal structure of HSA (PDB 

ID: 1H9Z, resolution 2.50 Å), contains a single protein chain including 583 modelled amino 

acids with a structural weight of 68.25 kDa. It has been co-crystallized with the R-(+) 

enantiomer of warfarin contains also six myristic acid molecules and several water molecules 

(Petitpas et al., 2001). 

The HSA experimental structure obtained from the PDB database cannot be used straightaway 

for molecular modeling purposes. To prepare the protein, the Protein Preparation Wizard tool 

of Maestro (Madhavi Sastry et al., 2013) was used. First of all, HSA was preprocessed by 

adding hydrogen atoms, filling in missing side chain residues and loops using Prime 

(Schrödinger Release 2021-2: Prime, Schrödinger, LLC, New York, NY, 2021). Water 

molecules beyond 3 Å of heteroatom (non-protein) groups were removed and hydrogen bonds 

(H-bonds) networks were optimized. The only water molecule retained within the 3Å is H2O-

2028, as it mediates the interaction between the co-crystallized ligand warfarin and HSA residue 

Arg257. This specific water molecule (H2O-2028) was retained in docking of other compounds 

too. Finally, the whole protein structure was minimized to eliminate strain using the OPLS4 

force field and letting convergence criteria for the heavy atoms to be 0.30 Å RMSD.  

3.1.3 Molecular docking 

For the purpose of the current investigation, both drug site I and drug site II were used for ligand 

binding studies, to find whether the provided antiparasitic compounds would bind to either of 

these sites.  
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The HSA co-crystallized ligand (warfarin) was self-docked by Glide extra precision (XP) mode 

to reconstruct the pose in drug site I of HSA, and the resulting poses were scored and visually 

assessed. The poses generated from the self-docking of co-crystallized warfarin were evaluated 

for their binding free energy by MM-GBSA approach. The free energy of binding values 

estimated for all the generated poses were compared with the HSA co-crystallized ligand. 

Before docking the library of ligands into the putative target protein HSA, the docking sites 

were defined using the Receptor Grid Generation tool of Maestro. For the drug site I, the grid 

box was generated around the co-crystallized ligand; the internal box size was 15x15x15Å3 and 

the external box 28.58x28.58x28.58Å3. In case of the drug site II, the already present fatty acid 

was removed from the pre-processed HSA and the Site Map tool of Maestro (T. Halgren, 2007; 

T. A. Halgren, 2009) (Schrödinger Release 2021-2: SiteMap, Schrödinger, LLC, New York, 

NY, 2021) was used to explore the binding sites on the protein surface. SiteMap mainly focuses 

on the expected pockets according to their size, exposure levels, hydrophobic and hydrophilic 

regions to occupy hydrophobic and hydrophilic ligands groups, compactness, and hydrogen-

bond donors and acceptor descriptions. The predicted binding site by SiteMap tool around sub-

domain IIIA (drug site II) was selected for grid generation. The grid box size for the drug site 

II was defined as the internal box 17x17x17Å3 and the external box 37x37x37Å3. 

Once the docking grids were generated around the putative binding sites (site I and site II), the 

entire prepared library of ligands (altogether 1690, including their tautomers and stereoisomers) 

was docked into these sites  with Schrödinger’s Grid-based Ligand Docking with Energetics 

(Glide) program (Friesner et al., 2004; T. A. Halgren et al., 2004) (Glide, Schrödinger, LLC, 

New York, NY, 2021) using the Glide extra precision (XP) mode. 

The energy terms in XP scoring function (Friesner et al., 2006) are more complex than those in 

classic molecular mechanics. It includes terms, such as hydrophobic interaction (Ehyd_enclosure), 

hydrogen bond neutral-neutral motifs (Ehbond_nn_motif), hydrogen bond charged-charged motif 

(Ehbond_cc_motif), pi-stacking and pi-cation (EPI) interactions. It also uses standard ChemScore 

function such as lipophilic-lipophilic pair (Ephoic_pair) and hydrogen bonds term (Ehbond _pair). The 

hydrogen-bonding expression (Ehbond _pair), like the standard the ChemScore function, is divided 

into multiple weighted components depending on whether the donor and acceptor are both 

neutral, one of them is neutral and the other is charged, or both of them are charged. The binding 

penalties in the XP scoring function includes desolvation penalties (Edesolv) and contact penalties 

in rigid-protein docking (Elig_strain). The equation below illustrates the parameters in Glide XP 

scoring function. 
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XP_Glide score = Ecoul + EvdW + Ebind + Epenalty 

Ebind = Ehyd_enclosure + Ehbond_nn_motif + Ehbond_cc_motif + EPI + Ehbond _pair + Ephoic_pair 

Epenalty = Edesolv + Elig_strain        

3.1.4 Molecular dynamics simulation 

Based on the molecular docking results, best-ranked docking poses of the protein-ligand 

docking complexes at both drug site I and II were further investigated by MD simulation. For 

comparison, a docking complex of one of the ligands tested experimentally for HSA binding 

(150MFC6c) and the apo (ligand free) HSA were also simulated. MD simulation was carried 

out by using Desmond module (Schrödinger Release 2021-2: Desmond Molecular Dynamics 

System, D. E. Shaw Research, New York, NY, 2021. Maestro-Desmond Interoperability Tools, 

Schrödinger, New York, NY, 2021) (Bowers et al., 2007) to study the stability and dynamic 

behavior of these complexes. The total of four parallel MD simulation runs with four randomly 

generated seeds were used and the simulation outcome of the seed with the best RMSD value 

was chosen. A cubic simulation box with distance 10 x 10 x 10 Å and a three-point TIP3P 

explicit water model (Jorgensen et al., 1983; Mark & Nilsson, 2001) were used to prepared a 

solvated system employing the OPLS4 (Lu et al., 2021) force field. The sodium ions (Na+) as 

counter ions were added to neutralize the system charge and a physiological salt concentration 

of 0.15 M. The NPT ensemble was employed for the 400 ns production simulation; temperature 

of 300 K was maintained with the Nose-Hoover chain coupling scheme (Martyna et al., 1992) 

and 1 bar pressure controlled using the Martyna-Tuckerman–Klein barostat (Martyna et al., 

1994). High performance computational (HPC) recourses from IT Center for Science Finland - 

CSC were used to run all MD simulations.  

3.1.5 MD simulation analysis 

The outcomes of MD simulations are collected in the form of trajectories, which are a series of 

snapshots (called as frames) collected over the period of the simulation time. Several aspects 

of the structural stability of the complexes were extracted from the generated trajectories. The 

script $SCHRODINGER/run analyze_simulation was used followed by an automated 

Simulation Interactions Diagram (SID) tool (Bowers et al., 2007). The values estimated by the 

SID tool were RMSD and RMSF. Additionally, a script $SCHRODINGER/run 

trajectory_analyze_hbonds.py was employed to calculate the number of protein-ligand 

hydrogen bonds. The mentioned simulation analysis was implemented for the full span of the 
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MDS trajectories.                     

Lastly, the number of hydrogen bonds between the protein and the ligands in the complexes 

over a simulation time was measured. Apart from this, a visual inspection was done for all 

protein-ligand complexes.  

3.1.6  Binding free energy calculation 

The MM-GBSA method incorporated in Maestro’s Prime module (Bowers et al., 2007), 

accessible via the Prime/MM-GBSA module of Maestro (Jacobson et al., 2002, 2004) 

(Schrödinger Release 2021-3: Prime, Schrödinger, LLC, New York, NY, 2021.) was applied to 

calculate BFE of the docked protein-ligand complexes.  

The protein-ligand complexes binding free energies of MD simulation were estimated by MM-

GBSA approach, accessible in Schrödinger Maestro suite by running the thermal_mmgbsa.py 

script. The 50 evenly spaced snapshots for the last 4000 trajectory frames (200 ns) were taken 

into consideration for BFE calculation.  

3.1.7  Computational prediction of plasma protein binding by QikProp  

Plasma protein binding property of the compounds was analyzed by using the QikProp module 

from the Maestro suite (Schrödinger Release 2021-4: QikProp, Schrödinger, LLC, New York, 

NY, 2021). The prediction by QikProp module was applied to the LigPrep generated 

compounds.    

3.2  Experimental protocol 

3.2.1  Microscale thermophoresis 

The MST experiment was conducted on Monolith NT.115 (NanoTemper Technologies, model: 

Monolith NT.115). Human Serum Albumin ≥98% (SDS-PAGE) SRP6182-1MG was 

purchased from Sigma-Aldrich. The HSA was labelled with MO-L011 Protein Labeling Kit 

RED-NHS 2nd Generation (Amine Reactive). High precision glass capillaries from 

MonolithTM NT and Automated Capillaries Chips (MO-AK002) were used for the samples. The 

four ligands for an in vitro MST experiment (150MFC6c, 39APR4b, 150MFC11 and Berr5) 

were obtained from our collaborator Dr. Seebacher. The three first are published structures and 

were also provided in the Excel sheet of the 418 compounds. MST assays were carried out as 

described in Jerabek-Willemsen et al. (Jerabek-Willemsen et al., 2011b).  
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4 Results and Discussion 

The molecular interactions of the ligands with HSA were computationally studied by docking 

them into the crystal structure of HSA (PDB ID: 1H9Z) drug site I and drug site II. Initially, a 

library of 418 ligands, a co-crystallized ligand (warfarin) and fexinidazole were prepared with 

Maestro's LigPrep tool to convert mentioned ligands from 1D SMILES to low energy 3D 

structure format. The LigPrep generate tautomers and at most 2 stereoisomers per ligand. The 

number of ligands prepared in 3D format after applying LigPrep are compiled in Table 4.1.  

Table 4.1: The number of compounds prepared by the LigPrep tool for Molecular docking  

 Before LigPrep (2D format) After LigPrep (3D format) 

Ligand library 418 1690 

Warfarin 1 4 

Fexinidazole 1 1 

150MFC6c*  1 4 

* Example molecule from the library, was also tested in the MST assay 

4.1  Molecular docking 

Molecular docking is an effective method for the prediction of protein-ligands binding and 

strength of molecular interaction at the binding site of protein. For the current thesis work, the 

prepared co-crystallized ligand warfarin was self-docked to replicate the poses in the binding 

site and to evaluate the ability of Glide docking software in replicating the poses similar to that 

of reference pose, into the HSA drug site I. The extra precision (XP) scoring function of Glide 

was used to dock co-crystallized ligand warfarin, taken from X-ray crystal structure of HSA 

(PDB ID: 1H9Z). A total of four poses were generated (Table 4.2.), their BFE were estimated 

using MM-GBSA approach incorporated in Maestro Prime module. The generated poses were 

also visually inspected and compared with the reference co-crystallized ligand. All the poses 

showed precise overlapping with a minimal variation. The similarity of re-docked pose-1 and 

co-crystallized warfarin is illustrated in Figure 4.1. The evaluation of binding free energies 

showed similar values for pose-2, pose-3, pose-4 and co-crystallized ligand. The BFE for pose-

1 showed a value higher than the co-crystallized ligand.     
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Table 4.2: The docking score and binding free energies of co-crystallized ligand and re-docked poses.  

Warfarin 

 

Docking score 

(kcal/mol) 

BFE 

(kcal/mol) 

co-crystallized ligand (1H9Z) - -48.28 

Pose-1 -7.80 -51.91 

Pose-2 -7.51 -48.97 

Pose-3 -7.32 -48.26 

Pose-4 -7.28 -48.62 

 

 

 

Figure 4.1: Self docking of co-crystallized ligand warfarin at HSA drug site I (PDB ID: 1H9Z), green 

show co-crystallized ligand, grey show pose 1. 

 

Fexinidazole, an oral drug for the treatment of human African trypanosomiasis, was docked 

into HSA drug site I. In addition, the entire prepared library of compounds from our collaborator 

(altogether 1690, including their tautomers and stereoisomers) was docked into both the drug 

site I and drug site II of HSA using Schrödinger’s Glide with XP (extra precision) mode. The 

docking score values for these compounds according to the putative drug binding sites are 

compiled in Table 4.3.  
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Table 4.3: The number of compounds docked at HSA site I and site II and their docking score 

range. 

Compound Number of compounds  Docked compounds Docking Score range 

(kcal/mol) 

HSA Drug Site-I 

Ligand library 1690 1572 -6.761   10.609 

Warfarin poses 4 4 -7.80   -7.28 

Fexinidazole 1 1 -5.030 

150MFC6c 4 2 -2.803  -2.700 

HSA Drug Site-II 

Ligand library 1690 950 -8.376  6.578 

150MFC6c 4 4 -6.091 -3.248 

  

 

Based on Table 4.3, the generated poses of warfarin had a better docking score ranging from -

7.780  to  -5.836 kcal/mol (depending of the tautomer/steroisomer), compared to fexinidazole 

(-5.030 kcal/mol) and 150MFC6c (2.803 to -2.700), when docked to HSA  Sudlow's drug site 

I.  

Warfarin (Figure 4.2. a) makes two hydrogen bonds, one with HSA residue Arg222 and other 

with Arg257, mediated by a water molecule (H2O-2028). Also, a salt bridge was observed with 

residue Arg222 and a pi-pi interaction with residue Trp214. In case of fexinidazole (Figure 4.2. 

b), the hydrogen bond was observed with the water molecule (H2O-2028), and salt bridge 

between fexinidazole and Arg222. The compound 150MFC6c (Figure 4.2. c), used for in vitro 

study, showed pi-cation interaction with Lys195 and an H-bond with Lys199. The water 

molecule (H2O-2028) did not show any interaction with 150MFC6c.   
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Figure 4.2: Docking pose of a) Warfarin, b) Fexinidazole and c) 150MFC6c at the HSA drug site I. Left 
panel: A 2D illustration of the binding interactions at the site. Right panel: 3D docking pose. HSA protein 
is depicted in green cartoon, Ligand: ball-and stick, atom color code: hydrogen (white), nitrogen (blue), 
oxygen (red), carbon (grey) and sulphur (yellow), bonds color code: h-bond (yellow), salt bridge (pink), 
aromatic h-bond (green) and pi-pi interaction (cyan) dashed lines. For 2D structures: h-bond-pink, salt 
bridge-blue-red, aromatic h-bond-red, pi-pi stacking-green.   
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Molecular docking of the ligand library to site I and site II of HSA showed that most of the 

molecules were preferential ligands for the HSA drug site I, with 1572 and 950 compounds 

succesfully docked, respectively. However, majority of these ligands does not seem to have a 

strong binding affinity to either of the target HSA sites. From the ligand library, four best 

docking poses of the ligand molecules that fit into the binding region (site I, site II) of the target 

protein HSA were kept for the MD simulation study. These compounds were selected primarily 

by considering the docking score but the visual inspection of these docked poses in Maestro 

was also taken into account. The docking poses of the chosen compounds are shown in Figures 

4.3 and 4.4 for site I and site II, respectively. 

 

 

a)  

 

b)  
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c)  

 

d)  

 

Figure 4.3: Docking pose of the best-ranked compounds at the HSA drug site I. a) 150MFC18b, b) 
136MFC2e, c)140MCF4a and d) 140MCF8a. Right panel: 3D docking pose. HSA protein is depicted in 
green cartoon, Ligand: ball-and stick, atom color code: hydrogen (white), nitrogen (blue), oxygen (red), 
carbon (light grey), chlorine (green), fluorine (cyan) and sulphur (yellow), dashed bonds color code: H-
bond (yellow), salt bridge (pink), aromatic H-bond (green), pi-cation interactions (cyan). For 2D 
diagrams: H-bond-pink, salt bridge-blue-red, pi-pi stacking-green, pi-cation interactions-red.   
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a) 

       

b)   

 

c)  
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d)   

 

Figure 4.4: Docking pose of selected compounds at the HSA site II. a) CHEMBL3401421, b) 138MFC9a, 
c) 39APR7i and d) CHEMBL459424S. Right panel: 3D docking pose. HSA protein is depicted in 
blue/green cartoon, Ligand: ball-and stick, atom color code: hydrogen (white), nitrogen (blue), oxygen 
(red), carbon (grey) and sulphur (yellow), bonds color code: h-bond (yellow), aromatic h-bond (green) 
and pi-cation (cyan) dashed lines. For 2D structures: H-bond-pink, aromatic H-bond-cyan and pi-cations-
red.   

 

For site I, the compound 150MFC18b (Figure 4.3.a) had a highest docking score of -6.761 

kcal/mol. It forms an aromatic H-bond with the binding pocket residues Ser454 and Glu153, a 

pi-cation interaction with Arg222, a H-bond and a salt bridge with Asp451. The second 

compound 136MFC2e (Figure 4.3.b) forms a H-bond with Ala291 and an aromatic H-bond 

with Trp214. The third compound 140bMCF4a (Figure 4.3.c) forms a H-bond with Lys199 and 

Asp451, an aromatic H-bond with Ser454, a salt bridge with Asp451 and a pi-cation interaction 

with Lys199. The fourth promising compound studied at site I was 140MCF8a (Figure 4.3. d). 

It formed a H-bond with Lys199 and Asp451, a pi-cation interaction with Lys199 and a salt 

bridge with Asp451.  

Similarly, for site II of HSA, the compound CHEMBL3401421 (Figure 4.4.a) with a docking 

score of -8.376 kcal/mol, formed a H-bond with Ser489 and a pi-cation interaction with Arg410. 

The compound 138MFC9a and 39APR7i (Figure 4.4.b, c) had a docking score of -8.243 

kcal/mol and -8.125 kcal/mol, and it formed two aromatic H-bonds with Ser489 and Phe488. 

The compound CHEMBL459424S (Figure 4.4. d) with a docking score of -7.979 kcal/mol 

forms three H-bonds with Asn391, Ser489 and Lys414, and an aromatic H-bond with Leu430. 
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4.2 MD trajectory analysis 

MD simulation of 400 ns was carried out using the Desmond module of Schrödinger to optimize 

the best docking complexes and to evaluate the compound's relative binding affinities to HSA 

drug site I or II. As a reference,  complexes of HSA with warfarin, fexinidazole and 150MFC6c 

(the MST-tested compound in the library) were subjected to MD analysis. Altogehter, the 

number of trajectories obtained is listed below: 

a. 4 for ligands at HSA drug site I; 

b. 4 for ligands at HSA drug site II; 

c. 1 for warfarin at HSA drug site I; 

d. 1 for fexinidazole at HSA drug site I; 

e. 1 for MST tested compound (150MFC6c) at HSA drug site I; 

f. 1 for HSA (apo). 

4.2.1 Root-Mean-Square Deviation (RMSD)  

Calculating RMSD is the most popular method for determining how stable a protein structure 

is during the MD simulation. By measuring the RMSD of the HSA Cα atoms with respect to 

the initial (before MD) protein conformation, the overall structural fluctuation of HSA with a 

bound-ligand and without a bound ligand (apo) were assessed over the simulation time. It was 

done by superimposing the trajectory frames over the reference (initial) frame versus time. The 

whole MD simulation time frame of 400 ns was considered for the RMSD calculation. The high 

RMSD value indicates that the protein experienced significant conformational change during 

the MD simulation time frame. Ideally, the trajectories of stable binding compounds would have 

an average RMSD value ranging from 1.5 to 3.0 Å (or comparable to the apo), whereas large 

RMSD values can result from the movement of a loop region or termini or unfolding of the 

protein.  

The RMSD plots (Figure 4.5) for the HSA drug site I, indicated that the RMSD for the majority 

of the HSA-compound complexes varies between 2 to 5 Å, with the exception of HSA-

136MFC2e and HSA-fexinidazole complexes. The complex HSA-150MFC18b and HSA-

140MCF8a reached equilibrium during the last 230 and 200 ns, respectively. The HSA-

136MFC2e complex showed the highest RMSD value of approx. 6.0 Å. It raised from the 2 to 

6 Å within less than 50 ns, after which it reached a plateau. After about 120 ns of simulation, 

the RMSD of the HSA-140MCF4a complex appears to be quite stable, with the RMSD reaching 

a plateau of approximately 3.0 Å. The HSA-warfarin complex showed RMSD of 2 to 4 Å. The 
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complex of HSA-fexinidazole showed quite high deviation for the initial 200 ns, then started to 

maintain stability until deviated again after 350 ns. The HSA-150MFC6c system showed an 

elevation from 2 to 5 Å within the first 25 ns. The structural transformation is visible in the 

RMSD plot of the apo Cα atoms (Figure 4.5) during the 400 ns of the MD simulation. This is 

sustained with slight fluctuation for the first 50 ns, after which the RMSD Cα atoms is increased 

from 3 to 4.5 Å, eventually reaching approx. 5.0 Å until the end of simulations. This could be 

due to the absence of ligand interaction in the binding pocket. Most of the drug site I HSA-

ligand complexes showed better convergence in comparison to apo. The RMSD results imply 

that most of the complex at HSA drug site I reached equilibrium during the last 200 ns of the 

simulation and thus can be used for the binding free energy analysis.    

In case of HSA drug site II (Figure 4.6.), the apo showed better convergence compared to the 

HSA-ligand complexes. The RMSD value of apo was found to be lower than that of the 

complexes. The HSA- CHEMBL3401421 and HSA-39APR7i complexes showed RMSD close 

to apo. The HSA-138MFC9a system fluctuated from 2 to 7 Å during the whole simulation time 

frame and indicates that the system did not evolve into a stable state. Similarly, the HSA- 

CHEMBL459424S complex showed the highest RMSD value of approx. 8 Å. It raised from 

the 2 to 8 Å within 100 ns, after which it reached the plateau. The HSA-CHEMBL3401421 has 

the lowest and HSA-CHEMBL459424S has the highest fluctuation at HSA drug site II. The 

RMSD values higher than 3 Å may show that a protein goes through large conformational 

changes during the course of the simulation. In sum, the complexes at drug site II did not 

showed better convergence as compared to apo. Nevertheless, the complexes HSA- 

CHEMBL3401421, HSA-39APR7i and HSA-CHEMBL459424S, showed equilibrium during 

the last 200ns, and can be used for binding free energy analysis.  
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Figure 4.5: Comparison of RMSDs of Cα atoms of apo HSA and ligand-HSA complexes at HSA drug 
site I during the 400 ns of molecular dynamics simulation. a) 150MFC18b, b) 136MFC2e, c) 
140bMCF4a, d) 140MCF8a, e) Warfarin, f) Fexinidazole and g) 150MFC6c.  
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Figure 4.6: RMSD of apo HSA and ligand-HSA complexes for compounds docked at HSA drug site II 
during the 400 ns molecular dynamics simulation. a) CHEMBL3401421, b) 138MFC9a, c) 39APR7i 
and d) CHEMBL459424S. 

4.2.2  Root-Mean-Square Fluctuation (RMSF) 

In order to investigate the movement of HSA protein residues through the MD simulation, the 

RMSF plots were generated to quantify the average atomic fluctuations of Cα atoms of the 

protein. The RMSF plots (Figures 4.7-4.8), show that residues that constitute part of the loop 

regions are flexible throughout the simulation. As anticipated, the abrupt fluctuation at the start 

and the end of the RMSF plots shows how the protein's N-terminus and C-terminus reach a 

higher fluctuation value. 

The residues forming the Sudlow’s drug site I and drug site II are present in the range of 197-

297 and 384-497, respectively. The most fluctuating residues in apo are 100-123 which are 

present in the region connecting subdomain 1A and 1B, 168-173 in subdomain 1B which belong 

to the drug site III, 289-315 and 360-373 in subdomain 2B where there are loops and no helices 

present, 431-444 in subdomain 3A where the Sudlow’s drug site II binding pocket locates, and 

487-516 in the loop region connecting the subdomains 3A and 3B. 

There are regions where the apo RMSF is higher compared to the complexes when a ligand 

binds at HSA drug site I pocket. These include residues from approx. 400-500 where the 
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subdomain 3A (drug site II) and subdomain 3B lie. This region fluctuates more in case of apo. 

Contrary to this, the presence of a ligand molecule in drug site I, indicates lower fluctuation of 

the region (400-500). The residues involved in contact with ligand molecules at this region are 

Arg410, Tyr411, Leu430, Val433, Ala449, Asp451, Leu453, Arg485 and Ser489. Similarly, a 

slight fluctuation in apo can be seen in the region of residues 200-300, which form the drug site 

I. This region, compared to apo, shows less fluctuation in complex except in the complex HSA-

150MFC18b. The residues in contact with the ligand molecules at this region are Trp214, 

Arg218, Arg222, His242 and Arg257. 

Similarly, the binding of a ligands (CHEMBL3401421, 138MFC9a, 39APR7i and 

CHEMBL459424S) at the HSA drug site II (Figure 4.8), showed more fluctuation in the 

complexes than in the apo structure. The more fluctuation can be seen in the beginning where 

the subdomains 1A and 1B are located. Similarly, the fluctuating residues 197-297 in 

complexes, which are present in subdomain 2A, showed more fluctuation than in the apo 

structure. The presence of a ligands (CHEMBL3401421, 138MFC9a and 39APR7i) bound at 

drug site II region (residues 384-497), showed slightly lower fluctuation than in the apo. 

However, it is not the case with the HSA-CHEMBL459424S, which showed even higher 

fluctuation when the ligand (CHEMBL459424S) is bound to drug site II. This could be because 

site II is located in a subdomain 3A, that corresponds to a more fluctuating region, relative to 

site I. 
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Figure 4.7: RMSF of compounds plotted against number of residues calculated from subjected to MD 
simulation. a) 150MFC18b, b) 136MFC2e, c) 140bMCF4a, d) 140MCF8a, e) Warfarin, f) Fexinidazole 
and g) 150MFC6c. 
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Figure 4.8: RMSF of compounds plotted against number of residues. a) CHEMBL3401421, b) 
138MFC9a, c) 39APR7i and d) CHEMBL459424S. 

4.2.3  Hydrogen bond count 

Furthermore, the total number of hydrogen bonds formed between HSA and the docked ligands 

during the MD simulation was also analyzed (Figures 4.9 and 4.10). A lot of fluctuation was 

observed in the number of the hydrogen bonds in all the complexes.  

In case of the HSA-ligand complexes at drug site I, the total number of hydrogen bonds detected 

ranged from 1 to 3 for the majority of complexes, with an exception of has-warfarin complex, 

where the hydrogen bond count was 1 to 6. The compound 150MFC18b and fexinidazole have 

the least (two) H-bonds, whereas 136MFC2e and warfarin have four and six H-bonds, 

respectively. The residues involved in H-bonds with the ligands at this drug site are Lys199, 

Arg218, Arg222, His242, Arg257 and Glu292. 

The complexes at drug site II, the total number of hydrogen bonds detected ranged from 1 to 3. 

The compound CHEMBL3401421 and 39APR7i have the least (two) H-bonds, whereas three 

H-bonds were observed for 138MFC9a and CHEMBL459424S. The residues Arg485 and 

Ser489 are involved in H-bonds with the ligands at this drug site.  
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Figure 4.9: Number of ligand-protein hydrogen bonds for the docked compounds at HSA drug site I 
during the 400 ns. a) 150MFC18b, b) 136MFC2e, c) 140bMCF4a, d) 140MCF8a, e) Warfarin, f) 
Fexinidazole and g) 150MFC6c. 
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Figure 4.10: Number of ligand-protein hydrogen bonds for the docked compounds at HSA drug site II 
during the 400 ns. a) CHEMBL3401421, b) 138MFC9a, c) 39APR7i and d) CHEMBL459424S. 

4.3 Binding free energy calculation 

MM-GBSA approach was applied in order to calculate the binding free energies of the 

complexes. The 80 snapshots were obtained from the last 200 ns of the MD simulation with 

evenly spaced interval of 50 frames. The BFE estimation of the initial docked poses and their 

average BFE estimated from the last 200 ns of MD simulation are listed in Table 4.4.  

In case of drug site I, the docking pose of warfarin showed the highest docking score of -7.780 

kcal/mol. Warfarin is known for binding strongly to HSA with a plasma protein binding 

percentage of 99% (Valko et al., 2003). The highest docking score of warfarin correlates well 

with the RMSD, RMSF and H-bonds count data from the MD simulation (section 4.2). Warfarin 

has a maximum number (six) of H-bonds compared to the other studied ligands at drug site I. 

The RMSD plots of HSA-warfarin complex also showed a deviation of 2 to 4 Å, whereas the 

RMSF plot revealed less fluctuation of the protein Cα atoms than in the apo. The BFE 

estimation of warfarin-HSA docked poses showed a value of -51.91 kcal/mol, which is the 

second best after 150MFC6c.  However, the average BFE estimated from the MD simulation 

(last 200 ns) revealed the opposite, a lower BFE value (-36.12 kcal/mol) compared to the initial 

docked pose. This is because warfarin docked pose moves in its place inside the binding pocket 
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during the MD simulation due to the flexibility of the HSA structure, leading to less favorable 

average BFE value (-36.12 kcal/mol). 

Similarly, fexinidazole has a docking score of -5.03 kcal/mol, and BFE estimation for its docked 

poses of -46.82 kcal/mol. However, the average BFE value after MD simulation is lower (-

35.01 kcal/mol), than the BFE of the docked pose. The MD trajectory analysis for fexinidazole 

showed RMSD convergence higher than for apo, RMSF fluctuation comparable to apo and H-

bond count of two. The experimental plasma protein binding percentage value for fexinidazole 

is 95.4%, which does not correlate well with the average BFE value obtained by the MD 

simulation.  

The compound 150MFC6c (also used for in vitro study) from the provided ligand library, 

showed the least favorable docking score of the simulated compounds (-3.29 kcal/mol). 

However, the BFE for its docked pose is calculated as the highest (-54.29 kcal/mol) among the 

studied compounds listed in Table 4.4. Furthermore, the average BFE calculated for this 

compound after MD indicated a decrease in value (-42.33 kcal/mol). This maybe because the 

BFE calculated after molecular docking has only one conformation, whereas the BFE calculated 

after MD is an average of all the conformations, with some conformations contributing more 

and others less.  

Rest of the compounds 150MFC18b, 136MFC2e, 140bMCF4a and 140MCF8a studied at HSA 

drug site I, has a docking score lower than warfarin, but a very higher average BFE (after MD). 

Especially, the compound 150MFC18b revealed an average BFE -90.81 kcal/mol, significantly 

higher than that of warfarin. The highest BFE does not correlate with the H-bonds count of two 

for 150MFC18b, compared to warfarin having six H-bonds and a pi-pi interaction.  

The compounds studied at the HSA drug site II showed docking scores similar to each other, 

with CHEMBL3401421 having the most favorable (-8.38 kcal/mol) and CHEMBL459424S the 

least favorable in this group (-7.98 kcal/mol). The compound 138MFC9a showed the least 

favorable BFE for docking, however the average BFE value after MD simulation is the most 

favorable (-72.50 kcal/mol). The favorable BFE value correlate well with its H-bonds count, 

which reveals that during the whole simulation time, it sustained two H-bonds, with a maximum 

of three H-bonds. Contrary to this, the RMSD plot shows its high fluctuation during the whole 

simulation, indicating that the complex did not get stabilized.  
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Table 4.4: Binding free energy dG (kcal/mol) estimation of docked poses and average BFE estimated 
from the last 200 ns of MD simulation (400 ns) 

Drug site I 

 

Name of compound Docking score BFE (kcal/mol)- 

for docked poses 

Average BFE 

(kcal/mol)- 

*after MD 

150MFC18b -6.76 -35.33 -90.81 

136MFC2e -6.72 -40.71 -45.78 

140bMCF4a -6.37 -35.09 -41.08 

140MCF8a -6.19 -21.99 -45.54 

Warfarin  -7.80 -51.91 -36.12 

Fexinidazole  -5.03 -46.82 -35.01 

150MFC6c  -3.29 -54.29 -42.33 

Drug site II 

 

CHEMBL3401421 -8.38 -45.47 -52.23 

138MFC9a -8.24 -35.27 -72.50 

39APR7i -8.12 -45.93 -45.15 

CHEMBL459424S -7.98 -42.04 -51.00 

 

4.4  QikProp estimation 

The ADME property of interest for the current work was the prediction of a compound’s 

binding to human serum albumin (log KHSA). The logarithm of HSA predicted binding constant 

log KHSA parameter has a recommended range between −1.5 to 1.5 for 95% of known drugs. 

The QPlogKhsa estimates of these compounds by QikProp module of Schrödinger are shown 

in Table 4.5. 

Table 4.5: Docking scores and QikProp predicted QPlogKhsa property of the MD simulated and the 
MST-tested compounds  

HSA Drug Site-I 

Name of compound Docking score QikProp prediction Binding quality 

150MFC18b -6.76 2.00 High 

136MFC2e -6.72 0.72 Intermediate 

140bMCF4a -6.37 1.41 High 

140MCF8a -6.19 1.46 High 

Warfarin* -7.80 0.09 Low 

Fexinidazole  -5.03 -0.06 Low 

150MFC6c -3.29 1.23 Intermediate 

HSA Drug Site-II 

CHEMBL3401421 -8.376 0.49 Intermediate 

138MFC9a -8.243 1.87 High 
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39APR7i -8.125 1.99 High 

CHEMBL459424S -7.979 1.64 High 
*Re-docked pose with the highest docking score.  

 

The estimation of human serum albumin binding (QPlogKhsa) by QikProp reveals that the 

majority of the compounds from the provided library of our collaborator are predicted to bind 

strongly to HSA and thus they would not be abundantly available within the blood stream and 

they would  not reach their target in required quantities if administered in too low doses. 

However, in our study, rigid docking and QPlogKhsa calculated with QikProp correlated very 

poorly with the experimental HSA binding affinity. Warfarin showed a QikProp value of 0.09 

whereas it is very low compared to the literature value of 1.49 and a plasma protein binding 

affinity of 99 % (Valko et al., 2003). Similarly, fexinidazole showed a very low QikProp value 

-0.06. In contrary, the binding of fexinidazole to human serum protein reported in vitro in 

literature is relatively high 95.4%, however, the binding of its active metabolites showed lower 

binding values of 25.9 and 41.6% for M1 and M2, respectively (Gorris, 2021). Thus, 

QplogKhsa values predicted by QikProp may not be a reliable estimator for HSA binding 

affinity of ligands. QSAR and similar statistical predictive models are highly dependent on the 

quality and size of the training set which could limit their applicability to a certain domain. 

Additionally, the majority of the available crystal structures of HSA have poor resolution. 

Besides, the binding sites of HSA are inherently flexible which altogether render the 

development of a structure-based model for HSA binding challenging. Herein, Lexa et al. 

(2014) have developed a structure-based model of serum albumin binding while successfully 

incorporating albumin inherent flexibility. They applied the developed models on several series 

from which they observed that a combined model using logP and docking scores performed 

well across a broad range of test sets. However, logP alone showed only a modest correlation 

with HSA binding affinity while induced fit docking showed relatively good correlation but 

with few major outliers.  

4.5 Micro Scale Thermophoresis 

The microscale thermophoresis technique trace plot reveals a change in relative fluorescence 

as the concentration of a binding ligand increases. The binding of HSA with ligands (Figure 

4.11) 150MFC6c, 39APR4b, 150MFC11 and Berr5 was experimentally evaluated using  MST. 
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Figure 4.11: 2D illustration of the previously published ligands used for in vitro study. a) 150MFC11, b) 
150MFC6c and c) 39APR4b. 

 

During the in vitro study, none of the compounds showed binding affinity to HSA (Figure 4.12). 

According to the docking study (Table 4.6), the compound 150MFC6c showed some binding 

affinity to drug site I and drug site II with docking scores of -3.29 kcal/mol and -6.09 kcal/mol, 

respectively. On the other hand, the QikProp prediction for binding affinity to HSA for this 

compound suggests that 150MFC6c binds to HSA with a high affinity. Similarly, the in silico 

study for compound 150MFC11 suggests some binding affinity for HSA, with a docking score 

of -4.32 kcal/mol for site I and -6.14 kcal/mol for site II. The QikProp HSA binding prediction, 

however, suggests a high affinity of these compounds for HSA. The compound 39APR4b had 

poor docking scores of -0.49 kcal/mol and -1.64 kcal/mol for site I and site II, respectively, but 

a good prediction for human serum albumin binding affinity.  
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Table 4.6: Comparison of docking score and QikProp prediction for MST tested compounds.  

Name of compound Docking score 

(kcal/mol) 

QikProp 

prediction 

Binding quality 

according to 

QikProp 

HSA Drug Site-I/II 

150MFC11 -4.32 / -6.14 1.27 High 

150MFC6c -3.29 / -6.09 1.20 High 

39APR4b -0.49 / -1.64 0.80 High 

 

The in vitro study revealed that these compounds 150MFC6c, 39APR4b and 150MFC11 did 

not show any binding to HSA. The random signal in the Berr5 fluorescence time trace suggests 

nonspecific binding to HSA and aggregation induced by Berr5-HSA. The lack of these 

compounds binding can be due to low concentration used during the in vitro study. It might be 

possible that these compounds show more affinity for HSA if the concentration of the 

compounds are increased during experimental study.  

The docking scores for compounds (150MFC11 and 150MFC6c) at drug site I and site II 

corelate with the QikProp estimation, suggesting their binding to HSA. In contrast, the 

experimental results show lack of binding for these compounds and thus does not coincides 

with docking and QikProp prediction.           

Moreover, the docking score of 39APR4b at site I and site II suggested least favorable binding, 

and coincides well with the experimental result, which also shows no binding for 39APR4b.  

Contrary to this, it does not corelate with the QikProp estimation, which suggest its high affinity 

for HSA. 
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a) HSA-150MFC6c 

 
 

b) HSA-39APR4b 
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c) HSA-150MFC11 

 
 

d) HSA-Berr5 

 

Figure 4.12: Thermophoresis raw data of HSA binding. MST trace output (left) during the binding affinity 
test. The blue and red vertical lines are the regions analogous to cold and hot fluorescence 
thermophoresis, respectively. Binding response output (right) after binding affinity test. a) 150MFC6c, 
b) 39APR4b, c) 150MFC11, d) Berr5, aggregation (left) of the sample during the binding affinity test.      
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5 Conclusions 

Human African trypanosomiasis (HAT), or sleeping sickness, is an endemic disease in 36 sub-

Saharan African countries caused by a group of parasites called Trypanosoma brucei (Tb). If 

left untreated, the disease could lead to death in the second stage. Entamidine and suramin are 

drugs developed for treating the disease at the first stage while melarsoprol, nifurtimox-

eflornithine combination therapy (NECT) are approved for treating the disease at the second 

stage. Besides, fexinidazole is a newly approved oral drug for the treatment of the first stage 

and non-severe second stage of HAT.                    

Our collaborator’s research group at the University of Graz, Austria had prepared and tested 

several antiparasitic compounds against Tb and Plasmodium falciparum in vitro for which they 

showed varying levels of activity. Nonetheless, the compounds tested showed moderate activity 

in vivo if at all. It was suggested that the poor in vivo activities might be attributed to strong 

binding to plasma proteins or to rapid metabolism before reaching the target sites to achieve a 

therapeutic effect. Human serum albumin (HSA) is an abundant plasma protein that can bind 

to a different variety drugs altering their pharmacokinetics and pharmacodynamics properties. 

Herein, the aim of this study was to explore whether a strong affinity of the provided 

antiparasitic compounds to HSA binding could be a plausible reason for their poor in vivo 

activity. The binding interaction between the provided antiparasitic compounds and HSA was 

studied in silico. The co-crystallized ligand warfarin was self-docked to replicate the poses in 

the binding site. The antiparasitic compounds were docked into HSA drug binding sites I and 

II. Additionally, the compounds with best docking scores were further investigated using MD 

simulations to assess the stability of the binding interactions. Furthermore, the HSA binding 

affinities of the tested compounds estimated as average binding free energies using the 

Prime/MM-GBSA approach were calculated throughout the second half of the MD simulations. 

Besides, QPlogKhsa was predicted for the tested compounds using QikProp.               

The self-docking of warfarin showed that the generated poses with quite similar BFE scores 

and overlapping orientations and positions, with slight variation, compared to the co-

crystallized ligand. The molecular docking result indicated that majority of antiparasitic 

compounds may bind to the drug site I with varying affinities. The MD simulations suggest 

more stability of the studied compounds at site I. The RMSD of these compounds at site I 

converged similarly or at a lower level than that of the apo, the RMSF of protein Cα atoms 

showed that majority of complexes fluctuated less compared to the apo structure and the H-

bonds counts detected ranged from 1 to 3, with an exception of HSA-warfarin complex, where 
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the hydrogen bond count was 1 to 6. In case of the HSA drug site II, the HSA-ligand complexes 

showed lower RMSD convergence and more fluctuation of the protein Cα atoms compared to 

the apo, with a number of ligand-protein H-bonds ranging from 1 to 3. The higher fluctuation 

at drug site II, corresponds to its location in a subdomain that has a more unstable protein 

conformation relative to site I. Additionally, the average BFE calculation for complexes may 

suggest better affinities of compounds for HSA at site I. However, low estimation of the average 

BFE for warfarin does not correlate with the literature data, as warfarin has a plasma protein 

binding affinity of 99%.                

Although QikProp results suggested that most tested compounds have a high to intermediate 

binding affinity to HSA, the results of warfarin and fexinidazole were not aligned with results 

reported in literature. Therefore, the reliability of the QikProp tool for the prediction of logKhsa 

might be questionable.            

Thereafter, some of the provided compounds were tested for their experimental HSA binding 

affinity in vitro using Microscale thermophoresis (MST). However, none of the tested 

compounds showed binding affinity to HSA. Regardless, the concentration of the compounds 

might not be high enough to bind to HSA.                

Lastly, the current study suggests that plasma protein binding may be the reason for the in vivo 

inactivity for some of the investigated antiparasitic compounds against T. brucei gambiense. 
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