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Abstract

A regression model where the response as well as the explaining variables are time series is considered. A

general model which allows supervised dimension reduction in this context is suggested without considering

the form of dependence. The method for this purpose combines ideas from sliced inverse regression (SIR)

and blind source separation methods to obtain linear combinations of the explaining time series which are

ordered according to their relevance with respect to the response. The method gives also an indication of

which lags of the linear combinations are of importance. The method is demonstrated using simulations and

a real data example.

Keywords: Blind source separation, joint diagonalization, prediction, sliced inverse regression, SOBI

1. Introduction

In many fields of application many variables are measured regularly over time. Sometimes one variable

is of main interest and its relationship to the other variables should be modelled or its future values should

be predicted based on the other series. For example in the field of macro-economics usually many possible

explaining time series are available which often are also highly correlated and therefore not all might be5

needed for the modelling or forecasting. When the number of explaining time series is large, modelling

is challenging and supervised dimension reduction methods can help to reduce the dimension and make

therefore visualization and modelling much easier. In supervised dimension reduction the joint distribution

of the response and the explaining variables is used in dimension reduction for the explaining variables.

For cross-sectional data there are many supervised dimension reduction methods available (for a recent10

review see for example Ma and Zhu (2013)) but somehow this has not yet been much considered in the
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time series case. Here the situation is also more difficult. The effect of some explaining time series might

manifest itself only in some delayed way. Therefore also past values of the explaining time series have to be

considered when reducing the dimension.

In this paper we combine ideas from cross-sectional dimension reduction methods and blind source15

separation methods for time series to introduce a model that makes such an approach possible. The proposed

method suggests linear combinations of the explaining time series that are of most interest when modelling

the response series, under weak assumptions. The procedure gives also an idea which of the lags of the

linear combinations are relevant.

The closest to our approach are probably Becker and Fried (2003) and Barbarino and Bura (2015) which20

both use supervised dimension reduction. But we would like to emphasize that our approach is very different

from dynamic factor models (see e.g. Forni et al. (2005); Kim and Swanson (2014) and references therein) as

there the factors are derived in an unsupervised fashion. Also very recently Fan et al. (2015) have presented a

method that uses the idea of SIR and builds a factor model for forecasting. Their approach is cross-sectional

unlike ours.25

In the paper we use the following notation. We write x = (xt)t∈Z for a p-variate time series with index set

Z = {0,±1,±2, . . .}. The term time series, as used here, means both the data as well as the random process

that produces the data. For any p × p matrix A and for any vector b, Ax + b is a time series

Ax + b = (Axt + b)t∈Z.

As in the case of univariate time series, we say that the multivariate time series x is (strictly) stationary if

(xt1 , . . . , xtk )
′ ∼ (xt1+s, . . . , xtk+s)′ for all s, t1, . . . , tk ∈ Z and weakly stationary if E(xt) =: µ (constant) for all

t ∈ Z and the cross-covariances Σs := COV(xt, xt+s), s, t ∈ Z, exist and depend only on s. For a p × q matrix

A, ||A|| =
√∑p

i=1

∑q
j=1 A2

i j denotes the Frobenius norm. For a p × p matrix A, diag(A) is a diagonal matrix

with the same diagonal elements as A, and off(A) = A − diag(A). For a p-vector x and a p × k matrix A,30

k ≤ p, PA = A(A′A)−1 A′ is the projection matrix to the linear subspace SA of Rp spanned by the columns

of A.

The structure of the paper goes as follows. Section 2 deals with sliced inverse regression for iid observa-

tions and in Section 3 we generalize it to a time series context. In Section 4 we present an example of how

our algorithm works with simulated data. Section 5.1 discusses the prediction problem. In Section 5.2 we35

present a simulation study and finally in Section 5.3 we show a real data example.
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2. Sliced inverse regression (SIR) for iid observations

In sliced inverse regression (SIR) (Li, 1991), the dependence between the p-variate random vector x and

a univariate response or target variable y is considered. The goal is to find a k × p signal separation matrix

Γ, k � p such that x⊥⊥y|Γx, meaning that x and y are independent conditional on Γx. The matrix Γ is thus40

used to separate the signal part Γx from the noise part x|Γx in the analysis of dependence between x and y.

The idea is to find Γ with “minimal” or central dimension reduction subspace SΓ. The separation is possible

under the following blind source separation model for the joint distribution of x and y.

Assumption 1. Assume that the random vector x ∈ Rp is generated by

x = Ωz + µ,

where µ ∈ Rp is a location center, Ω ∈ Rp×p is a full-rank mixing matrix, and z =
(
z(1)′, z(2)′)′ with

subvectors z(1) ∈ Rk and z(2) ∈ Rp−k satisfies45

(A1) E(z) = 0 and COV(z) = Ip, and

(A2) (y, z(1)′)′⊥⊥z(2)

There are however several ambiguities in the model. First note that the vectors z(1) and z(2), and therefore

also Ω, are not fully identifiable as the assumptions also hold true for

z(∗1) = U1 z(1) and z(∗2) = U2 z(2)

and

Ω∗ = Ω


U′1 0

0 U′2



for any orthogonal matrices U1 ∈ Rk×k and U2 ∈ R(p−k)×(p−k), respectively. This does not cause a problem

in the subspace estimation, however. Also, there may be several divisions z =
(
z(1)′, z(2)′)′ such that (A1)

and (A2) are true. We therefore assume that the division in Assumption 1 is the unique one (up to rotation)50

having the smallest k.

In the literature of sliced inverse regression, the assumption (A2) is usually replaced by two conditions

z(2)⊥⊥y|z(1) and E(z(2)|z(1)) = 0 (a.s.),

where the latter condition is the so called linearity assumption (indicating a kind of weak independence

between z(1) and z(2)) (Li, 1991; Cook and Weisberg, 1991). It is straightforward to see that (A2) implies

these conditions which in turn imply the key result

3
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COV(E(z|y)) =


COV(E(z(1)|y)) 0

0 0

 .

Remark 1. Let S1, . . . ,SH be H disjoint intervals (slices) such that R = S1 + . . . + SH and let ysl :=
∑H

h=1 yh1y∈Sh for some choices yh ∈ Sh, h = 1, . . . ,H. The random variable ysl can then be seen as a discrete

approximation of continuous random variable y. Then naturally also

COV(E(z|ysl)) =


COV(E(z(1)|ysl)) 0

0 0



and COV(E(z(1)|ysl)) does not depend on the specific choices of yh ∈ Sh, h = 1, . . . ,H. The term sliced55

inverse regression (SIR) then just refers to the use of the inverse regression E(z|ysl) in the analysis of the

data. In practice the slices are often chosen so that P(y ∈ Sh) = 1
H , h = 1, . . . ,H, with H = 10, for example.

Let Γ ∈ Rk×p be the matrix of the first k rows of Ω−1. The goal is, based on iid observations x1, . . . , xn,

to find an estimate of Γ, or rather, the estimate of the k-variate subspace spanned by the rows of Γ and given

by the projection matrix PΓ = Γ′(ΓΓ′)−1Γ. The indeterminacy ofΩ discussed above implies that Γ is unique60

only up to pre-multiplication by a k × k orthogonal matrix, but PΓ does not have any indeterminacy. In

practice, however, also k is unknown and has to be estimated from the data. To be more precise in what we

are estimating, we define the functional Γ = Γ(x; y) using the following steps.

Definition 1. The inverse regression (IR) functional Γ(x; y) at the joint distribution of (y, x′)′ is defined as

follows.65

1. Standardize x and write xst := COV(x)−1/2(x − E(x)).

2. Find the k × p matrix W = (w1, . . . ,wk)′, with orthonormal rows w1, . . . ,wk, that maximizes

∥∥∥∥diag
(
WCOV(E(xst |y))W′)∥∥∥∥

2
=

k∑

i=1

[
wi
′COV(E(xst |y))wi

]2
.

3. The value of the functional is then Γ(x; y) = WCOV(x)−1/2.

The functional Γ(x; ysl) is called the sliced inverse regression (SIR) functional.

First note that, in regular sliced inverse regression, the approximation COV(E(xst |ysl)) is easier to im-

plement for practical data analysis. Under our model assumption, Γ(x; y) is unique if the k eigenvalues of70

COV(E(z(1)|y)) are distinct and it provides the matrix of the first k rows of Ω−1 pre-multiplied by a well-

specified orthogonal matrix. This can be seen as follows. First, it can be shown that xst = Uz for some

4
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p × p orthogonal matrix U, see for example Miettinen et al. (2015). If COV(E(z(1)|y)) has the eigenvector-

eigenvalue decomposition V1Λ1V′1 then

COV(E(xst |y)) = UCOV(E(z|y))U′ = U1COV(E(z(1)|y))U′1

= U1V1Λ1V′1U′1,

where U1 is a p × k matrix of the first k columns of U. The maximizer of
∥∥∥diag

(
WCOV(E(xst |y))W′)∥∥∥2

is

therefore W = (U1V1)′ and, finally,

Γ(x; y)x = V′1U′1Uz = V′1 z(1).

The components of Γ(x; y)x are standardized and the components of E(Γ(x; y)x|y) are uncorrelated and75

ordered according to their variances λ1 ≥ . . . ≥ λk. The larger the variance of (E(Γ(x; y)x|y))i, the stronger is

the dependence between (Γ(x; y)x)i and response y, i = 1, . . . , k. For sliced ysl, the variances simply provide

the ANOVA type comparisons for between and within slices variations. Note that, under our assumptions,

the p − k smallest eigenvalues of COV(E(xst |y)) are all zero.

Let (y1, x′1)′, . . . , (yn, x′n)′ be a random sample of size n from the joint distribution of (y, x′)′ satisfying80

Assumption 1. The estimate Γ̂ is then obtained if the above procedure is applied to the empirical distri-

bution of (y1, x′1)′, . . . , (yn, x′n)′: First, use the sample mean vector x̄ and sample covariance matrix S to

standardize the x-observations. Second, choose slices for the empirical distribution of the y-variable, that

is, use (ysl
1 , x

′
1)′, . . . , (ysl

n , x
′
n)′ instead of (y1, x′1)′, . . . , (yn, x′n)′. Third, find eigenvectors and eigenvalues of

the empirical version of COV(E(xst |ysl)) and the first k eigenvectors give you Ŵ. Fourth, the final estimate85

is Γ̂ = ŴS−1/2. Note that the approach also suggests tests and estimates for the true value of k based on

the eigenvalues λ̂1 ≥ . . . ≥ λ̂p of the estimate of COV(E(xst |ysl)). See also Liski et al. (2014) for further

discussion on this type of approach for supervised dimension reduction.

3. Sliced Inverse Regression (SIR) for time series

3.1. Blind source separation model for SIR90

We consider the following blind source separation model for the joint distribution of a p-variate time

series x and the target time series y, that is, for the observed time series

(y, x′)′ =
(
(yt, x1t, . . . , xpt)

′)
t∈Z .

We then have the following.

5
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Assumption 2. Assume that the p-variate time series x is generated by

x = Ωz + µ,

where µ ∈ Rp is a location center, Ω ∈ Rp×p is a full-rank mixing matrix, and z =
(
z(1)′, z(2)′)′ is a p-variate

time series with k- and (p − k)-variate subseries z(1) and z(2). We further assume that

(y, z′)′ =
(
y, z(1)′, z(2)′)′ =

(
(yt, z1t, . . . , zpt)

′)
t∈Z

is a stationary (p + 1)-variate time series, that satisfies

(A1) E(zt) = 0 and COV(zt) = Ip, and

(A2)
(
y, z(1)′)′ ⊥⊥z(2).

Note that (A2) implies that
(
yt1 , z(1)

t1
′)′ ⊥⊥z(2)

t2 or
(
yt1+s, z(1)

t1
′)′ ⊥⊥z(2)

t2 for all t1, t2, s ∈ Z. Therefore the95

classical sliced inverse regression (SIR) for marginal distributions of
(
yt, x′t

)′ could also be used to find z(1).

The classical SIR however uses only the cross-sectional information and ignores the information coming

from the dependencies between the series at different time points. It is important to utilize this information

as we often have prediction models that use also information on temporal dependence (See Section 5.1).

Note that our model formulation does not separate between independent and dependent explaining series for100

the modelling of the y series. All the dependence between the x and y series, as a whole, goes through z(1),

and the aim is simply to separate between the signal part z(1) and the noise part z(2) of z.

Also in this latent time series model the series z(1) and z(2) are identifiable only up to pre-multiplication

by orthogonal matrices. Again we assume that the division z =
(
z(1)′, z(2)′)′ is the unique one with the

smallest k. As in the iid case, the assumption (A2) implies two conditions

z(2)⊥⊥y|z(1) and E(z(2)
t+s|z(1)

t ) = 0 (a.s.) for all s ∈ Z,

which in turn imply that the cross-covariance matrix

Σs := COV (E(zt |yt+s)) =


COV

(
E(z(1)

t |yt+s)
)

0

0 0

 for all s ∈ Z.

Again for H disjoint slices S1, . . . ,SH such that R = S1 + . . . + SH , one can construct a discrete valued time

series ysl such that ysl
t :=

∑H
h=1 yh1yt∈Sh for some choices yh ∈ Sh, h = 1, . . . ,H. Then COV

(
E(zt |ysl

t+s)
)

has

the same structure as above and its value does not depend on the specific choices of yh ∈ Sh, h = 1, . . . ,H.105

6
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3.2. The separation matrix functional and estimate

As in the iid case, the goal is, based on an observed series (y1, x′1)′, . . . , (yT , x′T )′ following Assumption 2,

to find an estimate of the first k rows of Ω−1. Then E(xt) = µ and COV(xt) = ΩΩ′ =: Σ. To fix the

indeterminacy in estimation, we define the functional Γ = Γ(x; y) using the following steps.

Definition 2. The inverse regression (IR) functional Γ(x; y) for a stationary time series (y, x′)′ is obtained110

as follows.

1. Standardize x and write xst := COV(xt)−1/2(x − E(xt)).

2. Find the k × p matrix W = (w1, . . . ,wk)′ with orthonormal rows w1, . . . ,wk that maximizes

∑

s∈S

∥∥∥∥diag
(
WCOV(E(xst

t |yt+s))W′)∥∥∥∥
2

=

k∑

i=1

∑

s∈S

[
wi
′COV(E(xst

t |yt+s))wi

]2
, (1)

for a chosen set of lags S ⊂ Z+.

3. The value of the functional is then Γ(x; y) = WCOV(xt)−1/2.

The functional Γ(x; ysl) is called the sliced inverse regression (SIR) functional. The estimate Γ̂ of the popu-115

lation value Γ(x; ysl) is obtained by replacing the covariances, expectations and conditional expectations by

their sample counterparts.

Write

λis =
(
wi
′COV(E(xst

t |yt+s))wi

)2
, i = 1, . . . , k; s ∈ S.

Under our model assumption, Γ(x; y) is unique if λi· =
∑

s∈S λis, i = 1, . . . , k, are distinct. We see it as

follows. As in the iid case, xst = Uz for some p × p orthogonal matrix U. If COV(E(z(1)
t |yt+s)) = VsΛsV′s,

s ∈ S, (the eigenvector-eigenvalue decompositions) then120

COV
(
E(xst

t |yt+s)
)

= UCOV (E(zt |yt+s)) U′ = U1COV(E(z(1)
t |yt+s))U′1

= U1VsΛsV′sU
′
1, s ∈ S,

and U1 is a p × k matrix of the first k columns of U. The maximizer of

∑

s∈S

∥∥∥∥diag
(
WCOV(E(xst

t |yt+s))W′)∥∥∥∥
2

=
∑

s∈S

∥∥∥diag
(
WU1VsΛsV′sU

′
1W′)∥∥∥2

is therefore W = V′U′1 for some k×k orthogonal matrix V, and can be computed using joint diagonalization,

see Cardoso and Souloumiac (1996). Finally,

Γ(x; y)x = V′U′1Uz = V′ z(1).

7
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The components of Γ(x; y)x are standardized and ordered so that λ1· ≥ . . . ≥ λk·. Again, the larger the values

λi·, the stronger the dependence between time series (Γ(x; y)x)i and y, i = 1, . . . , k. High values of λis alone

indicate a strong dependence between (Γ(x; y)x)it and yt+s, i = 1, . . . , k, s ∈ S.

Note that our approach finds a k × p matrix Γ such that x⊥⊥y|Γx and uses the values λi·, i = 1, . . . , p, for

this separation. (λk+1,· = . . . = λp· = 0). However, due to the temporal dependence in the x-series the values125

λis, i = 1, . . . , k and s ∈ S, may not advice much in the further choice of the number of lags to be used in a

future analysis.

Remark 2. The form (1) is a double sum over all linear combinations and over all lags and therefore allows

a deeper analysis of the dependence than an alternative objective function

∥∥∥∥∥∥∥
diag

W
∑

s∈S
COV(E(xst

t |yt+s))W′


∥∥∥∥∥∥∥

2

=

k∑

i=1


∑

s∈S
wi
′COV(E(xst

t |yt+s))wi


2

,

suggested by an anonymous referee.

Remark 3. We briefly discuss, as requested by the reviewers, the computation and future work needed

for the limiting distribution of the estimate Γ̂, first with known dimension k and number of lags s′. Let

S = COV(xt) and S j = COV(xt |yt+ j), j = 1, . . . , s′. Next write R j = S−1/2S jS−1/2, j = 1, . . . , s′. Then

Γ(x; y) = WCOV(xt)−1/2 where W = (w1, ...,wk)′ is the k × p matrix with orthonormal rows maximizing
∑k

i=1
∑s′

j=1

(
w′i R jwi

)2
. Using the Lagrange multiplier technique one finds the estimating equations

WT′ = TW′ and WW′ = Ik

where T = T(W) = (t(w1), . . . , t(wk))′ with t(wi) =
∑s′

j=1(w′i R jwi)R jwi, i = 1, . . . , k. The estimating

equations suggest a fixed-point algorithm with steps W ← (TT′)−1/2T (providing the same solution as joint130

diagonalization in Cardoso and Souloumiac (1996), see Illner et al. (2015)) and can be used to find the

limiting distribution of Ŵ and Γ̂ as follows.

Due to affine equivariance of the estimate is is not a restriction to consider the case with population

values S = Ip, W = (Ik, 0) and λ1· > . . . > λk·. Next we need to assume that the joint limiting distribution

of
√

n(Ŝ − Ip) and
√

n(Ŝ j − S j), j = 1, . . . , s′ is known. To find this joint distribution one may need strong

model assumptions. Denote t̂(wi) =
∑s′

j=1(w′i R̂ jwi)R̂ jwi, i = 1, . . . , k and T̂(W) = ( t̂(w1), . . . , t̂(wk))′. The

joint limiting distribution of Ŵ and T̂ = T̂(Ŵ) then satisfies

√
n(Ŵ −W)T′ − T

√
n(Ŵ −W)′ =

√
n(T̂ − T)W′ −W

√
n(T̂ − T)′ + oP(1)

8
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and
√

n(Ŵ −W)W′ = −W
√

n(Ŵ −W)′ + oP(1)

and these can further be used to find the joint limiting distribution of
√

n(Ŵ −W) and
√

n(Ŝ − Ip). Finally
√

n(Γ̂ −W) =
√

n(Ŵ −W) − 1
2W
√

n(Ŝ − Ip) + oP(1). See Miettinen et al. (2016) for similar derivations in

the Second Order Blind Identification (SOBI) for time series.135

For testing the null hypothesis H0 : k = k0, that is, λ1· ≥ . . . ≥ λk0· > λk0+1· = λp· = 0, one can first find a

p×p matrix Ŵ with λ̂1· > . . . > λ̂p· and then use L =
∑p

i=k0+1 λ̂i· as a test statistic. In the regular SIR for the iid

case with n observations, the limiting distribution of nL is a chi square distribution with (p− k0)(H −K0 − 1)

degrees of freedom. See Nordhausen et al. (2016) and references therein. To find the limiting distribution

for L in the time series context is still an open problem. Also, it is not clear how to make inference on s′.140

Remark 4. The inverse regression functional Γ(x; y) is thus a functional for supervised dimension reduction

in the time series context. For unsupervised dimension reduction, assume that x = Ωz +µ where z is second

order stationary with E(zt) = 0, COV(zt) = Ip and diagonal COV(E(xst
t (xst

t+s)
′)) for all s = 0,±1, . . ..

The Second Order Blind Identification (SOBI) functional (Belouchrani et al., 1997) for time series is then

Γ(x) = WCOV(xt)−1/2 where W is an orthogonal matrix that maximizes

∑

s∈S

∥∥∥∥diag
(
WCOV(E(xst

t (xst
t+s)
′))W′)∥∥∥∥

2
.

For different versions of SOBI, their computation and statistical properties see also Miettinen et al. (2012,

2014, 2016); Taskinen et al. (2016). For other independent component time series models, see for example

Shi et al. (2009); Nordhausen (2014); Matilainen et al. (2015, 2016) and references therein.

3.3. The choice of the dimension and the number of lags

Consider next the case with lags in S = {1, . . . , s} that is natural when yt-values are predicted with lagged

x values xt−1, . . . , xt−s. Let then Λ = (λi j) be the matrix of

λi j = c ·
(
w′iCOV(E(xst

t |yt+ j))wi

)2
, i = 1, . . . , k; j = 1, . . . , s,

where w1, . . . ,wk are the k rows of W in the functional Γ(x; y) = WCOV(xt)−1/2 and c is chosen so that
∑k

i=1
∑s

j=1 λi j = 1. Write also λi· =
∑s

j=1 λi j, i = 1, . . . , k, and λ· j =
∑k

i=1 λi j, j = 1, . . . , s, for the row

and column sums of Λ, respectively. Assume also that the latent series w′1xst, . . . ,w′k xst are ordered so that

λ1· ≥ . . . ≥ λk· The k × p matrix Λ thus provides measures of dependence between

yt and (wi
′xst)t− j, i = 1, . . . , k; j = 1, . . . , s.

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In the simulations and in the real data example k = p is used. There are several strategies for further choosing145

between the k′ ·s′ variables (wi
′xst)t− j in a way that most of the dependence measured by the λi j’s, say 100×π

percent, is still remaining.

• Keep the k′ first directions and s′ first lags, that is,

(
wi
′xst

)
t− j
, i = 1, . . . , k′; j = 1, . . . , s′,

with k′ ≤ k and s′ ≤ s. The strategies then are, for example, as follows.

1. Keep all lags: Choose s′ = s and find smallest k′ such that
∑k′

i=1 λi· ≥ π.

2. Keep all directions: Choose k′ = k and find smallest s′ such that
∑s′

j=1 λ· j ≥ π.150

3. Find k′ and s′ with the smallest product k′s′ such that
∑k′

i=1
∑s′

j=1 λi j ≥ π.

• Find the smallest number r of elements (i1, j1), . . . , (ir, jr) of Λ such that
∑r

k=1 λik jk ≥ π. The chosen

variables are then
(
w′i1 xst

)
t− j1

, . . . ,
(
w′ir xst

)
t− jr

.

These strategies are illustrated with the λ̂i j’s in Table 1 obtained from model B (see Section 4 below)

where the first two components are AR(1) models with φ = 0.2. However, for illustration purposes here

the time series length is only T = 1000 and the innovation distribution is N(0, 0.1). The two dashed lines

represent the 80% thresholds when all lags and all directions are kept, respectively. The rectangle with solid155

lines gives k′ and s′ for the third strategy. The last strategy gives r = 11 with the λ̂i j’s separated by grey

background.

4. Sliced inverse regression in three simulated multivariate time series

The four z series are simulated as follows.

First component : AR(1) with φ = 0.2 (or 0.8).

Second component : AR(1) with φ = 0.2 (or 0.8).

Third component : ARMA(1, 1) with φ = 0.3 and θ = 0.4.

Fourth component : MA(1) with θ = −0.4, respectively.

The first and the second component have the same AR-coefficient φ = 0.2 or = 0.8, the cases of low or high160

dependencies, respectively. In our three models A, B and C, the y series depends on z1 and z2 series in the

following way.
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w′1xst w′2xst w′3xst w′4xst Sum

t − 1 0.006 0.218 0.007 0.006 0.237

t − 2 0.009 0.012 0.005 0.004 0.030

t − 3 0.004 0.005 0.009 0.006 0.024

t − 4 0.024 0.005 0.002 0.006 0.037

t − 5 0.460 0.005 0.010 0.003 0.478

t − 6 0.017 0.010 0.011 0.009 0.047

t − 7 0.007 0.011 0.001 0.016 0.035

t − 8 0.006 0.009 0.004 0.003 0.022

t − 9 0.002 0.009 0.003 0.004 0.018

t − 10 0.005 0.007 0.011 0.001 0.024

t − 11 0.004 0.009 0.005 0.010 0.028

t − 12 0.003 0.007 0.006 0.003 0.019

Sum 0.547 0.307 0.074 0.071 1

Table 1: Estimated dependencies λ̂i j between yt and (wi
′xst)t− j with an illustration of different choices of (wi

′xst)t− j.

A: yt = 2z1,t−1 + 3z2,t−1 + εt with iid N(0, 1)-distributed innovations εt.

B: yt = 2z1,t−1 + 3z2,t−5 + εt with iid N(0, 1)-distributed innovations εt.

C: yt = z1,t−1/(0.5 + (z2,t−1 + 1.5)2) + εt with iid N(0, 1)-distributed innovations εt.165

As our procedure is affine equivariant, it is not a restriction to consider only the case Ω = I4 so that xt = zt

for all t ∈ Z. We use the standardized z series and the length of the time series was T = 10000. The ‘true’

linear combinations and lags then are

A: ((1, 1, 0, 0)′x)t−1

B: ((1, 0, 0, 0)′x)t−1 and ((0, 1, 0, 0)′x)t−5170

C: ((1, 0, 0, 0)′x)t−1 and ((0, 1, 0, 0)′x)t−1

Note that in the last case the dependence is non-linear. For the choice of the number of directions and the

number of lags we use the threshold value π = 0.8.
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Results for Model A. Table 2 gives the matrix Λ̂. Depending on the method used, we can take values inside175

the rectangle with solid lines (i.e. k′ first directions and s′ first lags) or pick the values marked in gray (r

largest λi j’s). Here both lead to the same choices. Dashed lines, which represent which lags to take when

all the directions are used and vice versa, lead us to take to either one direction with all lags or all directions

with one lag in each case.

1. Case φ = 0.2: k′ = s′ = 1 and r = 1, as λ11 = λi1, j1 = 0.926 ≥ 0.8.180

2. Case φ = 0.8: k′ = 1 and s′ = 4, and r = 4, as
∑4

j=1 λ1 j =
∑4

r=1 λir , jr = 0.813 ≥ 0.8.

The case of weak dependence leads to the first direction with only the first lag to be chosen, as expected.

In the strong dependence case also the subsequent lags of the first direction are important, as values depend

largely on the previous ones. The chosen lags and directions would then be used for modelling or prediction.

To illustrate this situation with the low dependence case, first the original time series are plotted together185

with the first selected direction and then yt is plotted along with the chosen direction. The direction is chosen

using the rectangle method with π = 0.8. In Figure 1 the first 100 values are plotted. It is rather easy to see

that the previous values of the chosen direction correspond to the current values of (standardized) yt, as the

changes in those values follow a very similar track. Also from the left panel of the figure it can be seen that

the first two original variables (darker gray lines) contribute to the chosen direction. Hence time series SIR190

is also helpful for data visualization, by reducing the dimension of multivariate time series (here from 4 to

one) in an informative way.

Results for Model B. We conclude from Table 3

1. Case φ = 0.2: k′ = 2 and s′ = 5, as
∑2

i=1
∑5

j=1 λi j = 0.954 ≥ 0.8. Also r = 2, as
∑2

r=1 λir , jr = 0.915 ≥
0.8, where pairs (ir, jr) are (5, 1) and (1, 2).195

2. Case φ = 0.8: k′ = 1 and s′ = 7, as
∑7

j=1 λ1 j = 0.803 ≥ 0.8. Also r = 7, as
∑7

r=1 λir , jr = 0.803 ≥ 0.8.

In the weak dependence case the last method chooses two (ir, jr) pairs, which are included also in the solid

rectangle. In the strong dependence case both selection methods lead again to the same choices; the values

in the first column are already high enough to explain at least 80% of the dependence.

The methods should lead to choices where two directions and lags one and five are important. This is the200

case when there is weak dependence in the source time series. On the other hand, for the strong dependency

case, the high value in lag five of the first column combined with strong dependence for adjacent values

leads to a first direction overshadowing the second one (Table 3, right panel).
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Figure 1: Model A with φ = 0.2. Left panel: The original variables (gray lines) with the chosen direction (black line). Right panel: the

first 100 values of standardized yt (gray line) with the chosen direction (black line).

Results for Model C. Table 4 provides the estimates for λi j’s. In this model different strategies in case of

strong dependence lead to slightly different results.205

1. Case φ = 0.2: k′ = 2 and s′ = 1, as
∑2

i=1 λi1 = 0.82 ≥ 0.8. Also r = 2, as
∑2

r=1 λir , jr = 0.82 ≥ 0.8,

where pairs (ir, jr) are (1, 1) and (1, 2).

2. Case φ = 0.8: k′ = 2 and s′ = 5, as
∑2

i=1
∑5

j=1 λ1 j = 0.855 ≥ 0.8. Also r = 8, as
∑8

r=1 λir , jr = 0.820 ≥
0.8, where pairs (ir, jr) are (1, 1), . . . , (6, 1), (1, 2) and (2, 2).

In the weak dependence case both these methods lead to same choices, i.e. λ11 and λ12 are chosen. In the210

strong dependence case here these methods differ a bit more from each other than in other examples.

In both settings two directions are found. In the case of weak dependence only the first lag is enough. In

the strong dependence case more lags are needed, and depending on the choice of method, either an equal

or unequal number of lags are chosen for the two directions.
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w′1 xst w′2 xst w′3 xst w′4 xst Sum

t − 1 0.926 0.000 0.001 0.001 0.929

t − 2 0.027 0.001 0.001 0.001 0.030

t − 3 0.002 0.001 0.001 0.001 0.005

t − 4 0.001 0.001 0.001 0.000 0.003

t − 5 0.001 0.002 0.001 0.001 0.004

t − 6 0.001 0.001 0.002 0.001 0.004

t − 7 0.001 0.002 0.001 0.001 0.005

t − 8 0.001 0.001 0.001 0.001 0.004

t − 9 0.001 0.001 0.001 0.001 0.003

t − 10 0.001 0.000 0.001 0.001 0.004

t − 11 0.001 0.001 0.001 0.001 0.005

t − 12 0.001 0.002 0.001 0.000 0.005

Sum 0.965 0.013 0.011 0.011 1

w′1 xst w′2 xst w′3 xst w′4 xst Sum

t − 1 0.351 0.001 0.000 0.000 0.352

t − 2 0.224 0.001 0.000 0.000 0.225

t − 3 0.144 0.000 0.000 0.000 0.145

t − 4 0.093 0.000 0.000 0.000 0.094

t − 5 0.062 0.000 0.000 0.000 0.063

t − 6 0.040 0.001 0.001 0.000 0.041

t − 7 0.027 0.001 0.000 0.000 0.028

t − 8 0.017 0.001 0.000 0.000 0.018

t − 9 0.010 0.001 0.001 0.000 0.012

t − 10 0.007 0.001 0.000 0.000 0.008

t − 11 0.005 0.001 0.001 0.000 0.007

t − 12 0.004 0.002 0.000 0.000 0.006

Sum 0.983 0.010 0.003 0.003 1

Table 2: Estimated dependencies λ̂i j between yt and (wi
′xst)t− j for model A with φ = 0.2 (left panel) and φ = 0.8 (right panel) for the

whole example data.

w′1 xst w′2 xst w′3 xst w′4 xst Sum

t − 1 0.001 0.276 0.001 0.001 0.279

t − 2 0.001 0.011 0.000 0.002 0.013

t − 3 0.002 0.001 0.001 0.000 0.004

t − 4 0.023 0.001 0.000 0.001 0.025

t − 5 0.639 0.000 0.000 0.000 0.640

t − 6 0.021 0.000 0.001 0.000 0.023

t − 7 0.002 0.000 0.000 0.001 0.003

t − 8 0.001 0.001 0.001 0.000 0.003

t − 9 0.001 0.001 0.001 0.001 0.004

t − 10 0.000 0.000 0.000 0.001 0.002

t − 11 0.000 0.001 0.001 0.000 0.002

t − 12 0.001 0.001 0.001 0.001 0.003

Sum 0.691 0.292 0.009 0.008 1

w′1 xst w′2 xst w′3 xst w′4 xst Sum

t − 1 0.073 0.041 0.000 0.000 0.114

t − 2 0.084 0.017 0.000 0.000 0.101

t − 3 0.104 0.005 0.000 0.000 0.109

t − 4 0.138 0.000 0.000 0.000 0.139

t − 5 0.198 0.003 0.001 0.000 0.202

t − 6 0.126 0.001 0.001 0.000 0.128

t − 7 0.079 0.001 0.001 0.000 0.081

t − 8 0.050 0.001 0.000 0.000 0.051

t − 9 0.031 0.000 0.000 0.000 0.032

t − 10 0.019 0.001 0.000 0.000 0.021

t − 11 0.012 0.000 0.000 0.000 0.013

t − 12 0.008 0.001 0.000 0.000 0.009

Sum 0.923 0.071 0.004 0.002 1

Table 3: Estimated dependencies λ̂i j between yt and (wi
′xst)t− j for model B with φ = 0.2 (left panel) and φ = 0.8 (right panel) for the

whole example data.
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w′1 xst w′2 xst w′3 xst w′4 xst Sum

t − 1 0.686 0.139 0.003 0.002 0.830

t − 2 0.024 0.009 0.004 0.002 0.039

t − 3 0.006 0.004 0.002 0.003 0.015

t − 4 0.002 0.002 0.005 0.003 0.013

t − 5 0.002 0.004 0.001 0.006 0.014

t − 6 0.003 0.003 0.010 0.002 0.019

t − 7 0.003 0.003 0.005 0.003 0.014

t − 8 0.002 0.004 0.002 0.000 0.008

t − 9 0.002 0.001 0.003 0.002 0.008

t − 10 0.006 0.006 0.002 0.001 0.015

t − 11 0.004 0.002 0.005 0.001 0.012

t − 12 0.003 0.004 0.003 0.003 0.014

Sum 0.744 0.182 0.044 0.029 1

w′1 xst w′2 xst w′3 xst w′4 xst Sum

t − 1 0.280 0.065 0.001 0.001 0.347

t − 2 0.178 0.042 0.001 0.001 0.222

t − 3 0.114 0.027 0.001 0.001 0.143

t − 4 0.067 0.020 0.001 0.001 0.089

t − 5 0.045 0.017 0.001 0.001 0.064

t − 6 0.028 0.010 0.001 0.001 0.040

t − 7 0.017 0.007 0.002 0.001 0.027

t − 8 0.011 0.007 0.001 0.001 0.020

t − 9 0.008 0.005 0.002 0.001 0.016

t − 10 0.007 0.003 0.001 0.001 0.012

t − 11 0.006 0.001 0.001 0.002 0.010

t − 12 0.006 0.001 0.002 0.001 0.010

Sum 0.768 0.205 0.015 0.012 1

Table 4: Estimated dependencies λ̂i j between yt and (wi
′xst)t− j for model C with φ = 0.2 (left panel) and φ = 0.8 (right panel) for the

whole example data.
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5. Sliced inverse regression in prediction215

5.1. Prediction

To predict values of the response yt we need to extract the meaningful linear combinations d = Γx and

the number of lags s as explained in Section 3.3. We use the prediction model

yt = f (dt−1, . . . , dt−s) + εt, t ∈ Z, s ∈ Z+,

where the components of d are the chosen directions and ε is a white noise process. Let f̂t be the estimate of

the prediction function only using past observations xt−1, xt−2, . . . and yt−1, yt−2, . . ., then the one-step-ahead

predictor of yt is f̂t(dt−1, . . . , dt−s). If ε̂t = yt − f̂t(dt−1, . . . , dt−s) is calculated for t = a + 1, a + 2, . . . , a + b

then the prediction power of different choices of Γ and s can be compared using the Root Mean Square Error

(RMSE)

RMS E =

√√√
1
b

a+b∑

t=a+1

(ε̂t)2.

In our simulations and in the real data example we use a simple linear regression to approximate f . We also

set a equal to 75% of the length of the time series, being a + b. Hence we make one-step-ahead predictions

of the last 25% of the series.

5.2. Simulated time series220

In the following simulation study we consider the performance of our method in the context of one-step-

ahead prediction as described above. We continue to consider the models A, B and C of Section 4 with cases

φ = 0.2 and φ = 0.8 and fix the time series length to T = 5000. The number of directions and relevant lags is

chosen in our method using the first three approaches described in Section 3.3 with π = 0.8, a value common

for example in PCA as threshold for the proportion of variance to be explained. Although sometimes also225

lower values might be appropriate, especially when the dimension is large. To see the impact of the value

of π we also consider π = 0.5 for the ‘rectangle’ method where the number of directions k′ and lags s′ is

chosen such that k′s′ is minimal for
∑k′

i=1
∑s′

j=1 λi j ≥ π. In all simulations we consider the lags s of interest

to be 1, . . . , 12, as these values are common in blind source separation methods. As a baseline we choose an

Oracle estimator which knows the value of k′ and the number of lags relevant but still needs to estimate the230

parameters of the regression model for the prediction.

As mentioned earlier, there are not really comparable other methods around. The closest seems the ap-

proach suggested in Becker and Fried (2003) where the iid SIR is applied to a modified matrix of explaining
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variables x∗. In our context this would mean that x∗t = (x′t , x
′
t−1, . . . , x

′
t−s)
′, i.e. if it is assumed that at most s

lags are relevant, then all time series are added as new variables shifted by each lag 1, . . . , s. Hence even for235

moderate p and s the dimension of x∗ will be huge while at the same time the number of available time points

is reduced by s. In the context of Becker and Fried (2003) they argue that s = 2 is sufficient. Also no direct

rules about how to choose the number of directions here are available. In our simulation study we choose for

their method k′ as the minimal value for which
∑k′

i=1 λi/
∑s(p+1)

i=1 λi ≥ π = 0.8, where λi, i = 1, . . . , s(p + 1)

are the ordered eigenvalues of the empirical supervised covariance matrix COV(E(x∗,st |ysl).240

Figure 2 presents the relative RMSE values of 500 repetitions compared to the Oracle estimator, using

80% as the threshold value unless otherwise stated. In models A and C the rectangle method with choice

π = 0.5 gives at least as good as or sometimes even better results than choice π = 0.8, but all methods work

well. In model B some of our methods work very well (small variation like in other models) and better than

Becker and Fried (2003). However, some methods do not work at all because the second direction is not245

found. This is especially true with the choice π = 0.5. Keeping all directions gives the best results here.

In general, except in model B, the loss in estimating the number of directions and lags is minimal

compared to the oracle estimator. In addition π = 0.8 seems to be a more reliable choice. It can be concluded

that the method keeping all the directions and then choosing the number of lags seems to be the best from a

prediction point of view, as other methods do not always find the proper amount of directions. It is the best250

or one of the best in all three settings under both low and high serial dependence and in all of the simulations

it works better than Becker and Fried (2003). However, it should be noted that keeping all directions in high

dimensional time series may be infeasible.

Also if the underlying relationship is linear or non-linear seems not to matter much in this context. We

had used also a more flexible spline regression model to approximate the f , but do not present the results255

here as the gain was minimal. This might be however more relevant when predicting more than one step

ahead.
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Figure 2: Relative RMSE values of 500 repetitions of all models with low (φ = 0.2) and high (φ = 0.8) dependence compared to the

Oracle estimator.
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5.3. Real data example

To demonstrate our method also for real data, we consider the well-known Stock and Watson (2002)

monthly economic time series data set. The version of the data we use contains 125 macroeconomic variables260

for the whole period from January 1959 to December 2003 (T = 540). Following Carriero et al. (2011),

which give also more detailed information about the data set, we follow their recommendation and use a

subset of, partly transformed, p = 52 time series as chosen there. As in Stock and Watson (2002), monthly

growth rate of the industrial production index (total index, code IPS10) is used as the response series. 527

observations are then left after data preparation.265

We use our approach and Becker and Fried (2003) as described in the simulation section for one-step-

ahead prediction of the last 25% of the data. However, now only lags s = 1, . . . , 6 are utilized, as Becker and

Fried (2003) cannot cope with a larger number of lags. Our methods did however not really improve when

using the larger lag set s = 1, . . . , 12. The threshold values π = 0.5 and 0.8 have been chosen as before.

For π = 0.8 when keeping all lags 23 directions are chosen and when keeping all directions 6 lags are270

chosen. For the rectangle method k′ = 23 and s′ = 6. For π = 0.5 when keeping all lags 10 directions are

chosen and when keeping all directions 3 lags are chosen. For the rectangle method k′ = 10 and s′ = 6.

As seen from the results, real data are much more complex than simulated data, and therefore here so many

directions are needed and also π = 0.5 seems to be enough.

Table 5 presents the results using Becker and Fried (2003) with π = 0.5 as the baseline. While in the275

simulations the differences between Becker and Fried (2003) and our methods seemed not so big, it is quite

different here. All our methods are clearly better than Becker and Fried (2003) and rectangle method along

with keeping all lags and then choosing the number of directions seem to be the best approaches. Results

also show that choosing all directions and then the number of lags is not so good in practice, likely due

to too many directions causing excess noise. It can also be noted that the results with π = 0.5 give more280

satisfactory results.

Method RMSE (π = 0.5) RMSE (π = 0.8)

Keep all s lags 0.469 0.579

Keep all k directions 0.596 0.807

Rectangle method 0.469 0.579

Becker & Fried 1.000∗ 0.957

Table 5: Relative RMSE values for all methods compared to Becker & Fried with π = 0.5.
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6. Discussion

Especially in macroeconomics forecasting one time series using multiple other time series is a common

problem. Many approaches were suggested for this problem. In dynamic factor models the latent factors are

usually estimated in an unsupervised fashion and then a linear regression model is fitted. Another approach285

is variable selection methods like for example Gelper and Croux (2008) where a special version of least

angle regression (LARS) for time series is suggested in the linear regression context.

Barbarino and Bura (2015) combine supervised and unsupervised ideas by applying SIR to selected

principal components of the explaining time series jointly with the lagged values of the response. Becker

and Fried (2003) also naturally can use the lagged response values in the augmented explaining series x∗t .290

Similarly, in our approach one could first regress the response on its past values and apply our methodology

to the resulting residuals. This will be still explored in future work as it makes then an assumption on

linearity. The method we suggested in this paper on the other hand makes no assumption on the form of the

relationship between and yt and xt and under weak assumptions suggests a number of linear combinations

which are relevant and can even indicate important lags. As all these different approaches here make quite295

different assumptions, a general comparison is difficult.

In the case of independent and identically distributed observations asymptotic results, including con-

sistency, have been developed in the literature. Asymptotics for subspace estimation is considered in Zhu

and Ng (1995) and Li and Zhu (2007) for example. If the dimension of the subspace is unknown as well,

asymptotics tools for testing and estimation of the subspace dimension are available. Li (1991) proposes a300

chi-squared test for finding the dimension when xt is normal. Bura and Cook (2001) shows that the normal-

ity assumption is not necessary and just the conditional covariance structure of the predictors needs to have

some restrictions. See also Nordhausen et al. (2016). Zhu et al. (2010) suggests a BIC-type criterion to find

the dimension. If the observations are multivariate time series, the problem is much more challenging with

unknown number of lags and unknown dimensions for each lag. In this paper we just provide heuristic tools305

to choose the lags, dimensions and subspaces in the time series context.

We consider this paper as an opening for a formal supervised dimension reduction framework for time

series and plan to consider in future extensions of other iid supervised dimension reduction methods like

SAVE (Cook, 2000) and so on to the time series context. Also different ways on how to incorporate past

values of the response series will be considered.310
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