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Abstract

We study the directional predictability of monthly excess stock market
returns in the U.S. and ten other markets using univariate and bivariate
binary response models. We introduce a new bivariate (two-equation) pro-
bit model that allows us to examine the benefits of predicting the signs of
returns jointly, focusing on the predictive power originating from the U.S.
to foreign markets. Our in-sample and out-of-sample forecasting results in-
dicate superior predictive performance of the new model over competing
univariate models by statistical measures and market timing performance,
highlighting the importance of predictive information from the U.S. to the
other markets. The proposed bivariate probit model also outperforms con-
ventional predictive regressions in forecasting the direction of international
stock returns.
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1 Introduction

There is a vast theoretical and empirical literature on asset return predictability.

The main focus in the literature on stock returns has been the predictability of

excess aggregate market returns (hereafter stock returns) by lagged financial and

macroeconomic predictive variables. Although the majority of research has con-

centrated on the U.S., there is an increasing string of research focusing on lead-lag

relationships in international asset markets. Rapach et al. (2005) examine the

predictability of stock returns in 12 industrialized countries and find that interest

rates are the most consistent and reliable predictors of stock returns. In the same

vein, Ang and Bekaert (2007) show that the dividend yields and short-term inter-

est rates are robust predictors for the stock returns in the U.S., U.K., France, and

Germany. Hjalmarsson (2010) examines return predictability in a larger dataset

comprising 40 developed international stock markets. Similarly to Rapach et al.

(2005) and Ang and Bekaert (2007), he finds that the short-term interest rate

as well as the term spread (the difference between the long-term and short-term

interest rates), are generally superior predictors across countries.

Previous research emphasizes significant interdependence among international

stock markets. Following the earlier evidence of Eun and Shim (1989), Becker et al.

(1995), and Karolyi (1995) (see also the references therein), Rapach et al. (2013)

study the importance of the U.S. market movements in predicting international

stock returns. Due to its major role in the world economy, investors are likely to

focus on the U.S. markets, potentially creating spillovers of U.S. returns to other

markets. The findings of Rapach et al. (2013) do in fact indicate that lagged

U.S. returns predict stock returns in several other markets, which they link to the

behavioral theory of Hong and Stein (1999) based on the idea of gradual diffusion

of information (see also the subsequent research by Hong et al. (2007), Menzly and

Ozbas (2010), and Rizova (2013)).

Similarly to Rapach et al. (2013), we examine the interdependencies between
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excess stock returns in the U.S. and ten other markets. Unlike them, however, we

concentrate on the directional component of stock returns, i.e. we are interested

in predicting the signs of the returns instead of the actual returns. In the previous

finance literature, including the studies mentioned above, a vast amount of research

effort has been put into the conventional predictive regression models and their

extensions, such as regime switching models, containing various different predictors

to examine whether there are statistically and economically significant (in- and

out-of-sample) predictive patterns in stock returns (see the survey of Rapach and

Zhou (2013)). A closely related and widely examined topic focuses on return and,

in particular, volatility transmission and spillover effects between markets (see the

survey of Gagnon and Karolyi (2006) and more recent work by, e.g., Diebold and

Yilmaz (2009, 2012), Alotaibi and Mishra (2015), Buncic and Gisler (2015), and

Fengler and Gisler (2015)), where the role of the U.S. as a driver of movements in

international stock markets has often been emphasized.

In contrast to these established approaches, the directional predictability of

stock returns is, so far, a less covered topic, although sign predictability is an

important issue in various financial applications. Forecasting the signs of stock

returns has often been motivated by its usefulness in market timing decisions (see,

e.g., Pesaran and Timmermann (2002)). Already in Merton’s (1981) classic market

timing model, fund managers are interested in the sign rather than the actual value

of the return when determining their asset allocations. A number of more recent

empirical studies also highlight the potential usefulness of sign predictability in

market timing, by showing that binary response models outperform the usual

real-valued predictive regression models in forecasting return signs based on both

statistical and economic goodness-of-fit measures (see, e.g., Leung et al. (2000),

Anatolyev and Gospodinov (2010), Nyberg (2011) and Pönkä (2016b,a)).

In addition to the market timing perspective, Christoffersen and Diebold (2006)

point out the presence of sign predictability in U.S. equity returns that may also

2



exist in the absence of mean predictability. Their argument is based on the fact

that predictable conditional volatility may be useful in forecasting the sign of the

return (see also the related findings of Christoffersen et al. (2007) in an interna-

tional setting and Chevapatrakul (2013) for the U.K.). Nyberg (2011) and Pönkä

(2016b) show that the return signs are indeed predictable and that there are even

more useful predictors than the conditional volatility.

Our study contributes to the existing literature on stock return predictability

via the sign component in a number of ways. In particular, we examine interna-

tional evidence using a dataset containing 11 industrialized countries, whereas the

previous studies have concentrated almost exclusively on the U.S. stock market re-

turns. Leung et al. (2000) consider the U.S., U.K. and Japanese markets, but unlike

us, they do not explore international linkages between the markets but concentrate

purely on country-specific models. Furthermore, Anatolyev (2009) considers di-

rectional cross-predictability of daily returns from three European markets, three

Baltic markets, and from two Chinese exchanges in a different multivariate model

compared to ours.

In econometric terms, our study contributes by proposing a new bivariate (two-

equation) probit model that facilitates studying the predictive role of the U.S.

market for the other markets in a new way. This allows us to examine whether

the possible predictive information originating from the U.S. is concentrated on

the directional or volatility components, or both. With our new model, we can

also circumvent problematic econometric issues related to generated regressors.

Overall, the previous econometric literature on bivariate and multivariate binary

response time series models is very scant. Our model has some similarities with

Nyberg (2014) who studies business cycle linkages between the U.S. and Germany,

and finds that joint modeling of recession probabilities in these two countries sub-

stantially increases predictive power compared to independent univariate models.

Our new bivariate model differs from that of Nyberg (2014), as it allows for a
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contemporaneous predictive effect between the two markets.

Our in-sample results show that the new bivariate (two-equation) model out-

performs the univariate models in seven out of ten markets, suggesting that it is

not only the lags of U.S. returns (as advocated by Rapach et al. (2013) for the

overall return) that have predictive power. In other words, we find it advanta-

geous to utilize the predictive power obtained for the U.S. market movements to

predict signs of returns in other markets. Out-of-sample forecasting results gener-

ally confirm the in-sample findings: The new bivariate probit model produces the

most accurate forecasts in the majority of markets in terms of statistical criteria

and simple trading strategies, which yield higher returns than those based on the

univariate probit models and the passive buy-and-hold strategy. These findings on

sign predictability in turn complement the previous research on the economic value

of volatility timing for short-horizon asset allocation strategies (cf., e.g., Fleming

et al. (2001)). Furthermore, in line with the point of Christoffersen and Diebold

(2006), we find that out-of-sample predictability in stock returns is improved when

predicting the sign versus predicting returns themselves with standard predictive

regression models, in terms of both statistical and economic measures.

The rest of the paper is organized in the following way. In Section 2, we

introduce the econometric framework, i.e. the univariate and bivariate probit

models. In Section 3, we describe the goodness-of-fit measures and statistical tests

used in evaluating sign predictions. Section 4 introduces the dataset, including the

predictive variables. In Sections 5 and 6, we report in-sample and out-of-sample

forecasting results, respectively, where in the latter we also study the economic

significance of out-of-sample forecasts in trading simulations. Finally, in Section 7

we conclude and discuss possible extensions of this study.
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2 Sign Predictability

2.1 Framework

In the previous finance literature, a vast amount of research effort has been put into

the conventional predictive regression model for excess stock returns, containing

various different predictors (see, e.g., the survey of Rapach and Zhou (2013)). The

directional predictability of excess stock returns is a less covered topic, but it holds

high potential for further research. As pointed out by Christoffersen and Diebold

(2006), sign predictability may exist even in the absence of mean predictability,

which can be particularly useful in terms of creating profitable investment strate-

gies.

Throughout this paper, our focus is on the directional component of the excess

stock market return. Let us denote a one-month excess market return for market

j as rjt = rnjt− r
f
jt, where rnjt is the nominal portfolio return and rfjt is the risk-free

rate. When we use the word ’return’ in the remainder of the paper, we refer to

the excess stock return as defined here. The excess return can be transformed into

binary time series

yjt = 1(rjt > ζ), (1)

where 1(·) is the indicator function and ζ is a user-determined constant. Following

previous research (see, e.g., Leung et al. (2000), Christoffersen and Diebold (2006),

Anatolyev and Gospodinov (2010) and Nyberg (2011)), we consider the leading

case ζ = 0, i.e., yjt consists of the signs of the excess returns. Assuming ζ = 0,

expression (1) can be rewritten as

yjt =


1, if the excess stock return rjt is positive,

0, otherwise,
(2)

for market j.
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In order to study the predictability of the sign of the return yjt, we need to

specify a model for the (conditional) probability of the positive return, denoted

by pjt. In the previous literature, this has been carried out by examining univari-

ate (single-equation) binary response models with different predictive variables.

Let Et−1(·) and Pt−1(·) denote the conditional expectation and probability, respec-

tively, given the information set Ωt−1 including all relevant predictive information

such as the past returns and the values of the predictive variables. A univariate

probit model is hence specified as

pjt = Et−1(yjt) = Pt−1(yjt = 1) = Φ(πjt), (3)

where Φ(·) is the cumulative distribution function of the standard normal distri-

bution and πjt is a linear function of the variables in Ωt−1.1 The most commonly

used specification is the following

πjt = ωj + x′j,t−1βj, (4)

where βj is the coefficient vector of the lagged predictive variables included in

the vector xj,t−1 and ωj is a constant term for market j. In the subsequent anal-

ysis, we also consider dynamic models where the lagged returns (rj,t−1) and the

lagged values of binary return indicators (1) are included in xj,t−1. The presence

of sign predictability culminates to whether we can find predictors that contain

statistically significant predictive power over and above the constant term ωj in

(4). The parameters of these models can be estimated using the method of max-

imum likelihood (ML). For more details on ML estimation and the computation

of Newey-West type robust standard errors, we refer to Kauppi and Saikkonen

(2008).2

1 The conditional probability of a negative return (i.e. Pt−1(yjt = 0)) is then the complement
probability 1− pjt.

2As a possible extension, one could also consider an alternative estimation approach to the
method of maximum likelihood (see, e.g., Elliott and Lieli (2013)), as has also been done in the
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In the previous sign predictability research, Leung et al. (2000) find that

classification-based models, including binary response models, outperform tradi-

tional predictive regressions in forecasting the direction of stock markets in terms

of statistical goodness-of-fit tests and profitability of investment strategies built

on their forecasts. Their study covers the U.S., U.K., and Japanese stock markets.

Nyberg (2011) uses dynamic probit models to predict the direction of monthly

U.S. excess returns and finds evidence in favor of sign predictability. Moreover, in

line with Leung et al. (2000), his probit models yield superior forecasts over tradi-

tional predictive regressions. Pönkä (2016b) examines the directional predictability

of excess U.S. stock market returns by lagged excess returns on industry portfo-

lios using dynamic probit models, and finds that a number of industries lead the

stock market and that binary response models outperform conventional predictive

regressions in forecasting the direction of the market return.3

Overall, due to high integration of the stock markets around the world, the ex-

cess returns and their signs are rather highly correlated between different countries.

Thus, it seems highly reasonable to consider the joint modeling of the direction of

returns, which may well result in superior forecasts compared with country specific

univariate models. Based on the results of Rapach et al. (2013), it is particularly

interesting to include the U.S. market in such models. However, we could also

consider whether sign predictability in other markets can be improved when tak-

ing the predictability of the sign of U.S. returns into account by using the U.S.

probability forecast for the positive stock return as a predictor (i.e. conditioning

on a larger information set than just the past U.S. return). This issue can be con-

sidered in a meaningful way with our new bivariate (two-equation) probit model

described in the following Section.

context of conventional predictive regressions in predicting stock returns (see, e.g., Westerlund
and Narayan (2012, 2015) and the references therein).

3A related vein of literature has concentrated on studying bear and bull periods in stock
markets, see, e.g., Chen (2009) and Nyberg (2013) for an probit model approach or Maheu and
McCurdy (2000) and Jiang and Fang (2015) for a Markov switching model approach.
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2.2 Bivariate Probit Model

The main interest in this paper is on bivariate binary response models, where we

examine pairwise directional predictability of stock returns in two markets. This

will, in particular, allow us to consider the effect of the U.S. stock market to

international markets focusing on the directional component of the stock returns.

Let us now consider the random vector (y1t, y2t) containing the binary time

series of the signs of the excess stock returns (2) in two markets of interest. Condi-

tional on the information set Ωt−1, the vector (y1t, y2t) follows a bivariate Bernoulli

distribution,

(y1t, y2t)|Ωt−1 ∼ B2(p11,t, p10,t, p01,t, p00,t), (5)

where the joint conditional probabilities are

pkl,t = Pt−1(y1t = k, y2t = l), k, l = 0, 1,

and they sum up to unity

p11,t + p10,t + p01,t + p00,t = 1.

Following the bivariate probit model originally proposed by Ashford and Sow-

den (1970), we assume the joint conditional probabilities of the different outcomes

of (y1t, y2t) to be determined as

p11,t = Pt−1(y1t = 1, y2t = 1) = Φ2(π1t, π2t, ρ),

p10,t = Pt−1(y1t = 1, y2t = 0) = Φ2(π1t,−π2t,−ρ)

p00,t = Pt−1(y1t = 0, y2t = 0) = Φ2(−π1t,−π2t, ρ) (6)

p01,t = Pt−1(y1t = 0, y2t = 1) = Φ2(−π1t, π2t,−ρ),

where Φ2(·) is the cumulative density function of the bivariate standard normal
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distribution with zero means, unit variances and correlation coefficient ρ, |ρ| < 1.

Furthermore, similarly as in (4), πjt, j = 1, 2, are assumed to be linear functions

of the lagged stock returns (and their signs) and the other predictive variables

included in the information set at time t − 1. The conditional probabilities of

positive excess returns for markets j = 1, 2 are equal to (cf. (3))

p1t = Pt−1(y1t = 1) = p11,t + p10,t, (7)

and

p2t = Pt−1(y2t = 1) = p11,t + p01,t. (8)

To complete the bivariate probit model, we need to determine the linear func-

tions πjt, j = 1, 2 (i.e. the dependence structures on the available predictive infor-

mation). In the simplest case, introduced by Ashford and Sowden (1970), similar

to univariate model (4),

 π1t

π2t

 =

 ω1

ω2

+

 x′1,t−1 0

0 x
′
2,t−1


 β1

β2

 , (9)

where ω1 and ω2 are constant terms and β1 and β2 are the coefficient vectors of the

lagged predictive variables included in the vectors x1,t−1 and x2,t−1, respectively. In

model (9), the explanatory variables have an immediate effect on the conditional

probabilities (6) which, given the value of the correlation coefficient ρ, do not

change unless the values of the explanatory variables change.

In this study, we are interested in the information transmission between stock

markets in different countries and, especially, the possible leading role of the United

States. Rizova (2013) point out that as the larger stock markets are more widely

followed by investors, the cross-predictability caused by the gradual diffusion of

information in other markets is likely to be weaker for the major markets. Al-

though Rapach et al. (2013) find evidence that lagged U.S. returns significantly
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predict returns in nine out of ten countries in their study, it is likely that there

are differences between the predictive role of the U.S. due to, e.g., the amount of

investor attention and the relative importance of the U.S. as a trading partner.

The literature on the influence of the U.S. on international markets via volatility

spillovers across markets has also pointed out the leading role of the U.S. (see, e.g.,

the survey of Gagnon and Karolyi (2006)).

Hereafter the U.S. is the first country (i.e. j = 1) in model (9). Then, following

Rapach et al. (2013), we include the lagged U.S. return in the vector x2,t−1 for the

second country to examine whether the U.S. return predicts the sign of return in

the other markets (j = 2). An alternative and more general approach that we

consider is to allow the linear function π1t related to the probability of the positive

excess return to have an effect on π2t. Specifically, we consider the following

extension of model (9):

 1 0

−c 1


 π1t

π2t

 =

 ω1

ω2

+

 x′1,t−1 0

0 x
′
2,t−1


 β1

β2

 , (10)

where the coefficient c measures the contemporaneous effect from π1t to π2t. In the

context of our application, this means that we study the effect of the U.S. on the

other markets.4 Note that although in (10) π1t has a contemporaneous effect on

π2t, the predictive information in π1t is actually coming from the lagged predictors

in x1,t−1. In other words, the lagged U.S. return is not included as a predictor in

x2,t−1, but it has only an indirect effect on π2t via the coefficient c.

The linear function π2t does not contemporaneously help to predict the sign of

the return in market 1 (in the U.S.), while there is contemporaneous predictability

in the opposite direction, when c 6= 0. That is, when c 6= 0, the predictive power

obtained for the U.S. market is helpful in predicting the signs of the returns in
4 It is noteworthy that (10) bears resemblance to the structural vector autoregressive (SVAR)

models commonly used in empirical macroeconomics and finance.
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other markets, but not vice versa.5 Due to the nonlinear nature of model (10), we

can also statistically check this identification assumption by comparing the log-

likelihoods of two models where the matrix on the left hand side of (10) containing

the contemporaneous linkage should be lower or upper-diagonal (when the ordering

of the markets is given fixed).

In addition to the effect through π2t, the lagged U.S. excess return may have an

indirect effect on predictive power through the correlation coefficient ρ, generally

determining the shape of the bivariate normal distribution function used in (6).

The interpretation of the correlation coefficient is, however, somewhat complicated

as it is related to the bivariate normal distribution used to obtain the response

probabilities (6), based on the linear functions πjt.6 Notice the difference in model

(10) where the coefficient c measures explicitly the contemporaneous predictive

power of π1t on π2t (i.e. the effect of the observable U.S. predictors), whereas ρ

is related to the shape of the link function between πj,t, j = 1, 2 and the response

probabilities (6). As in Nyberg (2014), it turns out in our empirical analysis that

the effect of ρ on the sign probability forecasts (6) is minor, although statistically

significant. It is also worth noting that if ρ = c = 0, the bivariate model reduces

to two univariate probit models without linkages between the markets.7

In Appendix A, we will give details on the maximum likelihood estimation of

the new bivariate probit model introduced above. In particular, we derive the

formulae for the misspecification-robust standard errors of the bivariate probit
5 To identify model (10), as long as c 6= 0, the predictive variables (and their lags) in x1,t−1

and x2,t−1 cannot be the same. This is not a problem in our application, because we use only
domestic predictors for each country.

6In the related literature, the bivariate probit model is often presented via the latent variable
presention where ρ is the correlation between the unobserved disturbance terms (see, e.g., Ashford
and Sowden (1970) and Greene (2012), pp. 778–781). We prefer the presentation given in
equations (6)–(9), following a similar notation as employed in the recent research (see Kauppi
and Saikkonen (2008) and Nyberg (2011), among others).

7 Allowing for cross-country dependencies between multiple markets might be also of interest.
It requires, however, a multivariate extension of the bivariate model designed above, which is
technically complicated. Following Rapach et al. (2013), as long as we are interested in the
predictive effect coming from the U.S market (the main hypothesis of this study), a multivariate
model reduces to separate bivariate models and it is thus sufficient to consider different U.S–
domestic market combinations as above.

11



model (10) to take the potential misspecification of the model into account when

interpreting the estimation results. An important advantage of the joint model

(10) is that it circumvents the well-known generated regressor problem (see, e.g.,

Pagan (1984)), as the effect of π1t on π2t is conveniently estimated within one

model.

3 Goodness-of-Fit Measurement and Sign Predictabil-

ity

We will employ a number of alternative measures to evaluate the in-sample and

out-of-sample predictive performance of the models. We need to modify some

measures to suit our bivariate model and we also use some methods to evaluate

directional predictability that have previously not been applied to sign forecasts

of stock returns. Following the usual practice in finance, one of our measures is a

counterpart of the coefficient of determination (R2) designed for binary response

models. Estrella (1998) defined the pseudo-R2 (for univariate models) as

psR2 = 1−
( logLu
logLc

)−(2/T )logLc
, (11)

where logLu and logLc are the maximum values of the constrained and uncon-

strained log-likelihood functions respectively, and T is the length of the time series.

This measure takes on values between 0 and 1, and may be interpreted intuitively

in a similar way as the coefficient of determination (R2) in linear regression mod-

els. In Section 5, we also report its adjusted form (see Estrella (1998)) that takes

into account the trade-off between the improvement in model fit and the number

of estimated parameters.

Due to the form of (11), there is a linkage between to the pseudo-R2 and the

corresponding likelihood ratio test statistic testing the null hypothesis that the

included predictive variables do not have predictive power. In other words, under
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the null hypothesis, the value of the log-likelihood function (logLc) is obtained

when only a constant term is included in the model. Hence, (11) measures the

predictive power obtained with the predictors included in xj,t−1. In the bivariate

probit model a nonzero correlation coefficient ρ poses a complication to this inter-

pretation, as its nonzero value implies predictive power not accounted for by the

predictors. Therefore, for bivariate models with ρ 6= 0, we propose a modification

to (11)

psR2
ρ = 1−

( logLu
logLρc

)−(2/T )logLρc
, (12)

where logLρc denotes the value of the restricted log-likelihood function of the bivari-

ate probit model where β1 = β2 = 0 (and c = 0 in model (10)). In other words,

similarly as (11), expression (12) measures the predictive power of explanatory

variables, but as the expressions (11) and (12) differ, they are not comparable.

The problems with the pseudo-R2 statistics mean that we will also need to use

some other statistics that allow us to do make comparisons between different uni-

variate and bivariate probit models. Together with the pseudo-R2, the Quadratic

Probability Score

QPS =
1

T

T∑
t=1

2(yjt − pjt)2 (13)

is also commonly used to evaluate probability forecasts, and it can be seen as a

mean square error type of statistic for binary dependent variable models. The

value of the QPS ranges between 0 and 2, with score 0 indicating perfect accuracy.

As previously, e.g., in Nyberg (2011) and Pönkä (2016b,a), we also report the

success ratio (SR), which is simply defined as the percentage of correct signal

forecasts. A signal forecast for the sign of the return yjt can be written as

ŷjt = 1(pjt > ξ), j = 1, 2, (14)

where pjt is the conditional probability of a positive excess return implied by a

univariate or bivariate probit model. If pjt is higher than the threshold ξ, the
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signal forecast ŷjt = 1 (i.e. positive excess return), while ŷjt = 0 if pjt ≤ ξ. This

measure is useful in evaluating out-of-sample forecasts, but it can also be used in

in-sample evaluation.

An unfortunate feature of the success ratio is that its effectiveness depends on

the predefined probability threshold ξ. Following previous research, we report the

success ratios implied by ξ = 0.5, which is also in line with the symmetric selection

ζ = 0 in (1) that the signal forecast (14) is the likeliest outcome (i.e. positive or

negative return). Related to the success ratio, Pesaran and Timmermann (2009)

have suggested a statistical test (denoted by PT) of directional predictive accuracy

allowing for serial correlation in yjt. It measures the distance of the value of SR

from the success ratio obtained when the realized values yjt and the forecasts ŷjt

are independent.

Although ξ = 0.5 is a commonly used natural threshold in (14), it is not an

innocent selection. It turns out that success ratios and market timing tests are

rather highly dependent on threshold selection. Therefore, it is reasonable to look

at an alternative approach to assess the accuracy of probability forecasts, namely

the Receiver Operating Characteristic (ROC) curve. ROC analysis has long been

used as a goodness-of-fit measure of classification accuracy in medical applications

and biostatistics, but it has also recently been used in a small but growing number

of economic applications (see, e.g., Berge and Jorda (2011) and Christiansen et al.

(2014)). Following the idea of signal forecasts (14), we can define two widely used

measures of classification accuracy, namely the true positive rate (TP) and the

false positive rate (FP):

TP (ξ) = Pt−1(pjt > ξ|yjt = 1), (15)

FP (ξ) = Pt−1(pjt > ξ|yjt = 0), (16)

for any threshold 0 ≤ ξ ≤ 1. The ROC curve is a mapping of the true positive rate
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(15) and the false positive rate (16) for all possible thresholds ξ described as an

increasing function in the [0, 1]× [0, 1] space, with TP (ξ) plotted on the Y -axis and

FP (ξ) on the X-axis. A ROC curve above the 45-degree line indicates forecast

accuracy superior to a coin toss, whereas curves below it are considered ’perverse’

forecasts for which the optimal signal forecast is exactly the opposite of what the

forecast suggests.

In our application, it is reasonable to think that different agents (investors)

have their own risk profiles which can be interpreted in our framework as different

selections of ξ. In other words, one (risk-averse) investor may require a higher

probability of a positive return than another. The optimal threshold may also

be time-varying, complicating our analysis further. As there obviously is no clear

rule or reason to use a specific threshold, the ROC curve seems useful in assessing

overall predictive ability of a given model.

The area under the ROC curve (AUC) is a convenient measure to summarize

the predictive information contained in the ROC curve. The AUC is defined as

the integral of the ROC curve between zero and one. Therefore, the AUC also gets

values between 0 and 1, with the value of 0.5 corresponding a coin toss and the

value 1 to perfect forecasts. The value of the AUC as such describes the overall level

of sign predictability: A value of AUC above 0.5 indicates statistical predictability,

i.e. successful market timing ability (with potential economic gains). We test the

statistical significance of the AUC (i.e. testing the null of AUC = 0.5 implying no

predictability) using standard techniques (see Hanley and McNeil, 1982) applied

recently by Berge and Jorda (2011) and Christiansen et al. (2014), among others,

in economic applications.

In addition to statistical criteria, in Section 6.2 we consider asset allocation

experiments to examine the economic value of our sign forecasts. It is rather

common that forecasting results deemed statistically insignificant by statistical

measures are still economically significant (see, e.g., Leitch and Tanner (1991) and
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Cenesizoglu and Timmermann (2012)), which also highlights the need for market

timing tests.

4 Data and Descriptive Statistics

In finance, a large number of potential predictors of excess stock returns have been

considered in the linear predictive regression context (see the survey of Rapach and

Zhou (2013) and the references therein). Typically very little out-of-sample pre-

dictive power is found, if any (see Goyal and Welch (2008) and Campbell and

Thompson (2008)). In contrast to the usual predictive models, the previous re-

search on (out-of-sample) sign predictability is rather scant and, to the best our

knowledge, so far only Leung et al. (2000) and Anatolyev (2009) have examined

international datasets (containing only a few countries).

By traditional predictive regressions, Ang and Bekaert (2007) study stock re-

turn predictability in an international setting by three commonly used predictors;

the short term interest rate, the dividend yield, and the earnings yield. Rapach

et al. (2013) examine the effect of the U.S. stock market on international markets

by including the lagged U.S. return as a predictor in linear regression models. In

our analysis, we consider the same international dataset as Rapach et al. (2013)8,

which facilitates examining to what extent potential differences in results can be

attributed to different forecasting methodologies. Rapach et al. (2013) examine

the results of traditional predictive regression for monthly excess stock returns,

while in this paper we concentrate on sign predictability. The monthly dataset

includes Australia (AUS), Canada (CAN), France (FRA), Germany (GER), Italy

(ITA), Japan (JPN), the Netherlands (NED), Sweden (SWE), Switzerland (SUI),

the United Kingdom (U.K.), and the United States (U.S.). The sample period

ranges from February 1980 to December 2010.
8 We would like to thank the authors of Rapach et al. (2013) for making the dataset available

at David Rapach’s website: sites.slu.edu/rapachde/home/research.
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In the dataset, the monthly excess stock market returns (denoted by RM) are

return indices that take dividends into account. These returns are transformed

to binary return series (RMI) as in (1). In line with Rapach et al. (2013), our

predictive variables include the three-month short-term interest rate (TB) and div-

idend yield (DY ) for each market. We also consider additional predictive variables

that Rapach et al. (2013) only used in their robustness checks. These variables

include CPI inflation (INF ), term spread (TS), the ten-year government bond

yield (10Y ), as well as the growth rates in the real exchange rate (REX), real oil

price (OIL), and industrial production (IP ).

The lagged values of RM and RMI are also included in the set of potential

predictive variables. This allows us to study the relative usefulness of the actual

lagged excess return RM and its sign component RMI. The use of the lagged

RMI as a predictor has previously been considered by Anatolyev and Gospodinov

(2010), Nyberg (2011) and Pönkä (2016b) for U.S. data in different dynamic probit

models.

Following the previous literature on examining the gradual diffusion of infor-

mation across markets (see Hong et al. (2007), Menzly and Ozbas (2010) and

Rapach et al. (2013)), we use monthly data in this study. Although we emphasize

on the role of the U.S., we are not explicitly considering the speed of information

diffusion between countries. Admittedly, much of the relevant information is likely

to be diffused more rapidly than in monthly frequency, but Pönkä (2016b) found

that results based on monthly and daily frequency data were surprisingly similar

in a related application. In this paper, however, we are interested in studying

the role of the U.S. economic fundamentals (many of them not available in higher

frequencies) in predicting signs of returns in non-U.S. countries.
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5 In-Sample Results

Before considering the out-of-sample predictive power of different models and pre-

dictive variables in Section 6, we first examine their in-sample performance in the

full sample period from 1980 to 2010.9 Following the typical convention in the

previous similar studies, we consider only the one-month-ahead forecast horizon

(h = 1) and the first lags of the predictors throughout the study.

In Section 5.1, we first consider univariate (single-equation) models in sample.

In the same spirit as Rapach et al. (2013), in Section 5.2 we examine the poten-

tial predictive gains of including the lagged U.S. excess return in the model. In

Section 5.3, we consider the bivariate probit models, introduced in Section 2.2,

that facilitate examining the linkages between the U.S. and other markets in more

detail.

5.1 Univariate Models

We study the predictive power of a number of domestic variables for the direction

of the excess stock return separately in each of the eleven markets in the univariate

probit model defined in (3) and (4). We initially consider models with the same

two predictors as Ang and Bekaert (2007) and Rapach et al. (2013) included in

their main models, i.e. the dividend yield (DY ) and the three-month T-bill (TB)

rate. The results for these baseline models are presented in Table I.

It turns out that DY and TB are statistically significant predictors of the

direction of the U.S. return. The adjusted pseudo-R2 equals 0.016, which is in line

with a modest level of predictability typically found in previous studies. As far as

the overall predictive power in the other markets is concerned, the results are rather

similar for Canada and the Netherlands, although in the latter case the dividend

yield is not statistically significant. However, for most of the other markets, these
9 We also assessed the robustness of these results using a shorter in-sample period up to

1994M12, which is the endpoint before out-of-sample forecasting starts (see Section 6). The
results turned out to be essentially similar as those in Sections 5.1–5.3.
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two-predictor models have little or no predictive power, as the negative values of

the adjusted pseudo-R2 among other measures indicate.

The results on sign predictability presented in Table I are generally in line with

those of Rapach et al. (2013) based on traditional, linear predictive regressions.

In particular, the dividend yield does not seem to be a powerful predictor in an

international context. Similar findings have also been reported by Hjalmarsson

(2010) who finds that while interest rate variables are rather robust predictors

of stock returns in developed markets, the dividend-price ratio has very limited

predictive ability in various international stock markets. The short-term interest

rate has somewhat higher predictive power, and its negative estimated coefficient

implies that higher interest rates decrease the probability of positive stock return.

Due to the relatively weak predictive power of dividend yield (DY ) and short-

term interest rate (TB) considered above, we examine a larger set of predictors for

each market by performing a standard model selection procedure using the Akaike

information criterion (AIC) that involves all the domestic variables in our dataset.

The selected univariate probit models for the different markets are presented in

Table II. For example, in the U.S. case the selected model contains five predictors,

whereas for the other markets a model with fewer variables is typically selected

(only one predictor for Australia and Japan). Also the model fit, measured by the

adjusted pseudo-R2, is higher for the U.S. than for the other countries (except for

Switzerland). A similar pattern can also be seen in the QPS and SR statistics. In

general, we obtain improvement in predictive power by allowing for a larger set

of predictors compared with the case of including only TB and DY (see Table I).

The lagged domestic stock return (RM) and the real oil price (OIL) are the most

commonly selected predictors. Interestingly, in line with the findings of Nyberg

(2011), the lagged return (RM) is generally superior to the lagged sign of the

return (RMI). Overall, the values of the adjusted pseudo-R2 still remain rather

modest, demonstrating statistically weak predictability, as is typical of predictive
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models for stock returns in general.

In Table I, we find a statistically significant value of the Pesaran-Timmermann

market timing test statistic (PT) in only two out of the eleven models and that the

values of the PT statistic are not all that well in line with the success ratio (SR);

for example, for the case of Japan the PT statistic is statistically significant at the

10% level, while the success ratio is only as low as 0.524. It is also worth noting

that the PT statistic for the U.K. is not applicable, because the model yields only

positive signal forecasts (ŷjt = 1), i.e. the estimated probability of positive return

is higher than 50% all the time. This shows that the dividend yield and short

term interest rate are poor predictors for the sign of the U.K. return. On the other

hand, this finding highlights the need for other measures, such as the AUC, that

is not dependent on only one specific threshold selection, which is ξ = 0.5 for the

PT statistic and success ratio.10 All in all, the results of the PT statistics are in

line with other measures and generally indicate a higher level of predictability for

the models in Table II than in Table I.

Due to the difficulties with the success ratio and the PT test, we emphasize the

AUC in describing the predictive ability of the probit models. The reported AUCs

also lend support to including a wider selection of domestic predictive variables. In

Table I, the AUC values range from 0.524 for Japan to 0.589 for the Netherlands

for the models which we contain the domestic dividend yield and the three-month

interest rates as predictors. For the models in Table II, the AUCs are actually

higher (and statistically highly significant) for all the countries than in the previous

case, and lie between 0.576 for Japan and 0.651 for Switzerland. This can be seen

as further evidence in favor of going beyond the dividend yield and short-term

interest rate as predictors when predicting the signs of the excess stock returns.
10We report the results for the natural and commonly used threshold of ξ = 0.5 in the tables,

but we also experimented with alternative thresholds, mainly one where the threshold was the
sample mean proportion of positive and negative returns. This led to only minor changes (slight
deterioration of results) compared to the results presented here.
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5.2 Univariate Models with the Lagged U.S. Return as a

Predictor

As we are especially interested in the possible leading role of the U.S. in inter-

national stock markets, we next study univariate models presented in Table II

augmented with the lagged U.S. excess return (RMU.S.,t−1). The results of these

models are reported in Table III. For three out of ten markets, the lagged U.S. re-

turn is statistically significant (at least) at the 10% level, indicating improvement

in predictive power. Interestingly, when we compare the AUC values between the

univariate models in Tables II and III, we find improvement in seven out of ten

cases upon including RMU.S.,t−1 in the model. In some cases the improvement

is rather modest, but this finding is generally reconfirmed also by the adjusted

pseudo-R2, QPS, and the SR.11

Overall, our findings in the univariate probit models are in line with those of

Rapach et al. (2013) for traditional linear predictive models. The lagged value of

the U.S. excess return seems to contain useful additional predictive power to predict

return directions internationally. However, in contrast to the results reported by

Rapach et al. (2013), we have shown that the dividend yield and the lagged three-

month interest rate are not the best predictors of the sign of the excess return in

most of the markets considered. Instead, the lagged domestic excess stock return

and the change in the real oil price are typically among the best predictors in

sample.
11As our aim is to test the predictive ability of the lagged U.S. return, we do not present detailed

results on how returns in other markets help predict the sign of the U.S. return. However, we
found that when we augment the model for the U.S. (see Table II) with the lagged returns from
each individual country separately, only the lagged Swedish and Italian returns turn out to be
statistically significant predictors of the U.S. return. The finding that the foreign lagged returns
do not predict the U.S. return sign is in line with the results of Rapach et al. (2013) obtained
with the conventional predictive regression models for the actual return.
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5.3 Bivariate Models

In the previous section, we found that including the lagged U.S. return in the

univariate models (marginally) improves the in-sample fit in some of the markets.

To further explore the importance of the predictive information originationg from

the U.S., in this section, we estimate bivariate probit models for the U.S. and

the ten other markets. In particular, we want to examine whether including the

combination of the U.S. predictors (i.e. π1t in model (10)) can produce more

accurate predictions for other markets over and above including only the lagged

U.S. return in a parsimonious way.

In this section, we consider four different bivariate probit models. The most

general model (Model 4) defined in Equations (6) and (10) is based on the new

bivariate model allowing for the contemporaneous predictive linkage from the U.S.

to the other market. The examined models contain the following restrictions:

Model 1: c = 0, ρ = 0,

Model 2: c = 0,

Model 3: ρ = 0,

Model 4: unrestricted.

Model 1 is the most restricted version of the general bivariate model (Model 4),

and it reduces to two univariate probit models considered already in Sections 5.1

and 5.2. Model 2 restricts c to zero, leaving out the contemporaneous linkage from

the U.S. to the other market; nevertheless the correlation coefficient ρ still has an

effect on the response probabilities (6). In Model 3, we restrict ρ to zero, but allow

for the contemporaneous effect through c.

In Section 5.1, we found that the fit of the univariate models is rather weak

when including only DY and TB as predictors. Hence, instead of relying on

these variables, we select the predictors for each market separately. The selection

22



of predictors for Model 1 is straightforward, as no contemporaneous effects are

allowed for between the two markets. Thus, for the sake of comparability, we

simply rely on the predictors selected for the univariate models in Table II.

As we have ten pairs of markets, we will not discuss the results for every pair

in detail. Instead, we concentrate on three dissimilar cases that give a general

overview of our results, and summarize the rest of the findings. The countries

we focus on are the U.K., Sweden, and Canada. In addition to a few system-

wide measures, we report goodness-of-fit statistics for the markets separately, as

this allows us to compare the results with those of the univariate models and to

evaluate the predictive power coming from the U.S. to the market of interest.

Previous studies by, e.g., Becker et al. (1995) and Rapach et al. (2013) suggest

a strong linkage between U.S. and U.K. equity markets, and highlight the leading

role of the U.S. Our results of the bivariate models for the pair of the U.S. and

the U.K. are reported in Table IV. We first consider the case of two independent

univariate probit models (see also Table II). This allows us to later compare the

potential benefits of joint modeling of the markets. Furthermore, as discussed

in Section 3, we cannot directly compare pseudo-R2s between different models

because the benchmark model (i.e. restricted log-likelihood function) is different.

In other words, the pseudo-R2 measures for Model 2 and Model 4 (see (12)) are

not directly comparable to those for Models 1 and 3 (see (11)). Similar argument

applies also comparisons to the univariate probit models reported in Tables I–

III. Thus, we rely on other measures, mainly the AUC and the success ratio in

comparing the different models.

[Table IV here]

For RMIU.S., Models 1 and 2 in Table IV (i.e. the models including the effect

of a nonzero ρ) yield rather similar results, whereas for RMIU.K. the estimated

parameter coefficients generally lose some of their statistical significance in Model

2. The parameter ρ is statistically highly significant, which suggest that there
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are some benefits of joint modeling, but on the other hand we find little or no

improvement in predictive power measured by the success ratio and AUC.

With Model 3 (i.e. allowing for a nonzero parameter c) we find that the adjusted

pseudo-R2 and the AUC clearly favor it over the independent model (Model 1). The

success ratio and AUC are also higher for Model 3 than for Model 2. The estimated

value of c is positive, as expected, but interestingly statistically insignificant at

the 5% level even though the above-mentioned goodness-of-fit measures clearly

demonstrate benefits when allowing for a contemporaneous predictive relationship

from the U.S. to the U.K. stock market.

Overall, Model 3 appears the best according to the AUC and SR in spite of the

statistically insignificant coefficient for parameter c. The results of the unrestricted

bivariate model (Model 4) indicate that there is little or no benefit of allowing for

both nonzero c and ρ compared with Model 3 in terms of the predictability of

RMIU.K..

[Table V here]

In Table V, we report the findings for the bivariate system of the U.S. and

Sweden. The small Swedish markets are more likely to be affected by events in

larger markets. The results indicate that the predictability of the direction of the

Swedish markets is indeed improved by modeling it together with the U.S. market.

In particular, the AUCs implied by Models 3 and 4 are greater than that implied

by Model 1. Also, the parameter c (expressing the linkage between the markets) in

Model 3 turns out statistically significant at the 10% level, and the improvement

compared with Models 1 and 2 is evident in terms of all goodness-of-fit measures.

This can be interpreted as clear evidence of gradual diffusion of information from

the U.S. to the Swedish markets, which could indicate that the small Swedish

markets that receive less investor attention are prone to be affected by the changes

in larger markets.

[Table VI here]
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In Table VI, we present the results of the bivariate models for the U.S. and

Canada. Interestingly, the transmission of stock returns and volatility between the

U.S. and Canada has previously been studied by, e.g., Karolyi (1995), but this is

the first study focusing on the cross-predictability of the directional component of

the returns. It is perhaps not that surprising that we also find a predictive effect

from the U.S. to the Canadian market, as Canada is a relatively small economy

with strong ties to its neighbor. We find c highly statistically significant in Model

3 and, in fact, it remains statistically significant for Canada also in Model 4, while

for the other markets considered that is not the case. The differences in the AUCs

are also rather large compared to the specifications where c is restricted to zero.

Figure 1 illustrates the superior in-sample predictive ability presented in Table VI:

The ROC curve of Model 3 is almost exclusively above the ROC curve of Model

1, implying thus also higher AUC. Both ROC curves are also above the 45-degree

line implying useful predictive power.
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Figure 1: ROC curves of Models 1 and 3 for the Canadian stock return (see Table
VI) .

As a general finding for the bivariate models (results for all the markets avail-

able upon request), Model 3 performs the best and, hence, in the following sections

we will mostly focus on it. In seven out of the ten markets, the AUC is highest
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for Model 3 although the parameter c is statistically significant only for five out

of the ten markets at least at the 10% level. The independent model (Model 1) is

preferred for the German and Swiss markets, and Model 4 yields the highest AUC

only for Italy. This is in line with Nyberg (2014) that the statistical significance of

ρ does not imply an improvement in overall predictability measured by, e.g., the

AUC and success ratio.12

According to the AUC statistics the bivariate model (Model 3) outperforms the

univariate models (presented in Table III) for eight out of the ten markets, with

Australia and Switzerland being the only exceptions. The success ratio favors

the bivariate model (Model 3) in seven out of the ten cases over the univariate

models. Putting together all of this evidence we get relatively strong indication

that the bivariate modeling is competitive in sample and, especially, Model 3 is

found to work the best. In order to confirm these findings, we will examine the

out-of-sample forecasting performance of these models in the following section.

6 Out-of-Sample Forecasting Results

It is a typical convention in time series forecasting to examine out-of-sample pre-

dictive performance, as the in-sample findings do not often hold out of sample.

In particular, the commonly used in-sample goodness-of-fit measures are prone to

favor overparametrized models, whereas in out-of-sample forecasting more parsi-

monious models often outperform more complicated ones. In Section 5.3, we found

that the bivariate Model 3 (where c 6= 0 and ρ = 0) performed best. Thus, we will

compare the out-of-sample performance of this model with that of the univariate

models reported in Sections 5.1 and 5.2.13

12 Reversing the order of the equations in Model 3, i.e., allowing for predictive effects from
each of the other markets on the direction of the U.S. return, we find the parameter c significant
(at the 10% level) only in the model for the bivariate case of Italy and U.S. This strengthens our
identification assumption in (10) further.

13 We find that the univariate models where only the dividend yield and three-month interest
rate are included as predictors perform poorly also out of sample, so the results will not be
discussed here, but they are available by request.
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In line with the in-sample results, we consider one-month-ahead forecasts (h =

1) throughout this section for the forecasting period 1995M1–2010M12. Forecast

performance is evaluated by means of statistical measures (Section 6.1) as well

as simple asset allocation trading strategies to assess the economic value of the

forecasts (Section 6.2). The forecasts are computed following a rolling window

approach, where the estimation window is 15 years, i.e. 1980M01–1994M12 for

the first forecasts (corresponding to our in-sample period used in our robustness

checkes, see footnote 7). Several previous studies have shown that the predictive

relations in asset markets may not be stable in time (see, e.g., Pesaran and Tim-

mermann (2002)). Therefore, the rolling window approach is often preferred, as it

is able to better take possible structural changes into account than the expanding

window approach. We also performed robustness checks based the expanding win-

dow and a shorter 5-year rolling window, but the results remain essentially similar

to those presented below (available upon request).

6.1 Statistical Forecast Evaluation

The out-of-sample forecasting results are presented in Table VII. We focus on

two measures of statistical forecasting performance that are easy to interpret and

compare, i.e. the success ratio (SR) and the AUC. Overall, the results in Table

VII show that the out-of-sample predictability is, as expected, generally lower than

obtained in in-sample analysis.

In accordance with the in-sample findings, in Panel A we find that BIV (i.e.

Model 3) generally outperforms the univariate models. The AUC is higher for six

out of ten markets and the success ratio (SR) is higher for eight out of ten markets

than for the best performing univariate model UNIRM. Most importantly, the

out-of-sample AUC for the bivariate model is statistically significantly different

from the 0.5 benchmark (implying no predictability) for nine out of ten studied

markets. In univariate models, including the lagged U.S. return (RMU.S.,t−1) as a
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predictor (model UNIRM) improves out-of-sample performance measured by the

AUC in six out of the ten non-U.S. markets compared to the baseline univariate

model UNI.

We are also interested in the differences between the out-of-sample performance

of the binary response models and the usual predictive regression models used

by Rapach et al. (2013). In Panel B of Table VII, we report the out-of-sample

forecasting performance obtained by their preferred model including the dividend

yield and three-month interest rate as predictors (Model OLS), as well as the model

that is augmented with RMU.S.,t−1 (OLSRM). We follow the common approach

that a positive forecast implies a signal for positive return (i.e. ŷt = 1, cf. Section

), and vice versa with negative forecasts.

It turns out that the augmented predictive regression model outperforms the

baseline model (i.e. the lagged U.S. return has also out-of-sample predictive

power), but compared to the bivariate model (BIV) in Panel A, the performance

of the former model is inferior (AUC lower for nine out of ten markets). This

brings further evidence in favor of our proposed bivariate model (Model 3) and

that binary response models are more useful in predicting the future direction of

the stock market than traditional predictive regression models.

6.2 Market Timing Tests

In addition to statistical measures, the out-of-sample performance of the models

can also be assessed by their market timing performance. This approach is partly

motivated by Leitch and Tanner (1991), among others, who argue that the models

performing well according to statistical criteria might not be profitable in market

timing, and vice versa. As the central idea of this paper is to study the predictive

role of information originating from the U.S. on the excess returns in other markets,

it is also of interest to examine the economic significance of this predictive linkage.

We consider simple trading strategies between stocks and bonds similar to those
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in Pesaran and Timmermann (1995), Leung et al. (2000), and Nyberg (2011),

among others, based on the out-of-sample forecasts of the models in Table VII

and explained more detail below. This facilitates a direct comparison of trading

returns of different models and commonly used benchmarks, such as the buy-and-

hold (B&H hereafter) strategy where the investor invests only in stocks during the

whole out-of-sample period.

We assume that an investor makes a decision on asset allocation at the begin-

ning of each month. The selection of assets consists of the stocks (risky assets)

and the three-month T-bill rate (risk-free asset). The investment decision is based

on the conditional probability of positive excess returns forecast by the models

and the probability threshold ξ that we set at 0.5. If the signal forecast (14) is

ŷjt = 1 (i.e. a positive return), the investor invests only in stocks. In our case this

is the market portfolio, which is assumed tradable through a hypothetical index

fund. If the forecast model predicts a downward movement in the stock market

(ŷjt = 0), the investor allocates the whole portfolio value to the three-month T-bill.

We assume zero transaction costs and no short sales for the sake of simplicity.14

In Table VIII, we report the annualized average returns as well as the Sharpe

ratios that can take the riskiness of the portfolio into account. In Table VIII,

we compare the performance of the probit models to the buy-and-hold strategy

(Panel A). The B&H strategy yields very different returns in the different markets;

whereas the annual return was 12.12% in Sweden, the return in the Japanese

stock market was actually negative (-1.92%) for the out-of-sample period 1995M01-

2010M12.

We find that the return implied by the strategy based on the forecasts of the

bivariate model (BIV, Model 3) is higher than that of the competing strategies

(in Panels A and B) in eight out of the ten markets, and in the remaining two
14 We regard this market timing study as only an example of how our modelling framework

can be used in practice. More advanced trading strategies and utility-based evaluations require a
more distinct examination on the linkage between sign predictability and optimal asset allocation
decisions not yet examined in the previous research.
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cases (Canada and Sweden), the model augmented with the lagged U.S. excess

return (UNIRM) performs the best.15 The values of the Sharpe ratio confirm these

findings for all the markets except for Italy, where the Sharpe ratio is slightly higher

for the univariate model (UNIRM) despite the higher average return implied by

the bivariate model. The findings between the other strategies are less ambiguous;

the buy-and-hold strategy yields the lowest returns in six out of the ten cases, but

in four cases the UNIRM strategy performs the worst. Overall, the superiority

of the bivariate model also in the trading strategies lend further support to the

prominent role of the U.S. stock market in predicting the direction of returns in

other markets.

Finally, in Panel C of Table VIII we report returns from the trading strategies

based on the predictive regression models for returns themselves. Interestingly,

we find that the bivariate probit model (BIV) outperforms OLSRM (including

the lagged U.S. return as a predictor) in terms of trading returns for five out of

ten markets. It seems that in these cases the differences are rather large while in

the opposite case BIV yields only marginally smaller returns. This partly reflects

the point noted by Leitch and Tanner (1991) and Cenesizoglu and Timmermann

(2012) that findings based on statistical and economic goodness-of-fit measures

might not always be in line with each other. All in all, it is worth remembering

that these reported trading experiments are fundamentally based on one particular

selection of the threshold value to get signals to invest in stocks and bonds, while,

especially, the AUC measures the predictive performance in a broader scale, and

it indicates superior performance of the suggested bivariate probit model (Model

3) over the alternatives.
15 We study the robustness of the results by considering an alternative strategy, where the

threshold ξ is set equal to the rolling average of realized past values of yjt. The findings mainly
remain similar, they are slightly weaker than those presented in Table VIII, but the bivariate
model (BIV, Model 3) still performs the best. Overall, the results obtained using our preferred
threshold (ξ = 0.5) are stronger than those obtained with the alternative threshold. The findings
using the alternative threshold are available in the supplementary material.
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7 Conclusions

We study the interrelationships between excess stock market returns in the U.S.

and ten other markets. In contrast to the usual predictive regression models for

actual returns, we focus on predicting the sign component of excess returns. The

previous research on the sign predictability in stock returns is rather limited, al-

though it is an important issue in various financial applications, such as market

timing decisions. We explore whether the combined effect of the U.S. market fun-

damentals (i.e. the predictive power obtained for the U.S. market) is useful in

predicting the signs of returns in a number of international markets. To exam-

ine this potential leading role of the U.S., we introduce a new bivariate probit

model, which adds to the previous scant econometric research on bivariate and

multivariate binary time series models.

Our results show that in the univariate probit model the lagged U.S. excess

stock return is a useful predictor of the sign of the excess return in a number of other

markets. This finding is consistent with the previous results of Rapach et al. (2013),

who study actual return predictability with conventional predictive regressions.

We also find that the lagged domestic stock return and the real oil price are

generally the best predictors of the sign of the return. In any case, the new bivariate

(two-equation) probit model, allowing for a contemporaneous predictive linkage

from the U.S. to the other market, outperforms the above-mentioned univariate

models containing the lagged U.S. return as a predictor in eight out of ten markets,

supporting the gradual diffusion of directional predictive information from the

U.S. to the other markets. In particular, this suggest that the predictive power is

not restricted to just the lagged U.S. return. Instead, it is beneficial to use the

obtained predictive power of sign forecast for the U.S. in other countries. The out-

of-sample forecasting results generally confirm our in-sample findings. Specifically,

the new bivariate model produces the best out-of-sample sign forecasts for the

majority of markets and, importantly, utilizing these forecasts result in higher
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trading returns in simple asset allocation experiments than a number of competing

models. Furthermore, the binary response models outperform the usual real-valued

predictive regression models.

This study could be extended in a number of ways. The possible time variation

in the parameters of binary response models has not been studied in the context of

sign predictability of returns although, e.g., Pesaran and Timmermann (2002) have

pointed out issues related to model instability. Furthermore, more complicated

(out-of-sample) trading strategies might also be of interest, but this requires a

closer examination of the linkage between the binary response models and portfolio

optimization decisions, which lies outside of the scope of this study.
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Appendix A: Maximum likelihood estimation
This appendix shows how the log-likelihood function of the new bivariate probit
model (Model 4) are determined by Equations (6) and (10). The restricted models
(Models 1–3) can be obtained by imposing suitable restrictions on Model 4. Special
attention below will be paid to the derivation of the robust standard errors of the
estimates of the parameters.

The notation closely follows Greene (2012), pp. 778–781 (see also Nyberg
(2014)). We start with the construction of the log-likelihood function. Suppose we
have observed a binary time series yjt, j = 1, 2, such as (2). Define qjt = 2yjt − 1
and µjt = qjtπjt, j = 1, 2, so that

qjt =

{
1 if yjt = 1,
−1 if yjt = 0,
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and
µjt =

{
πjt if yjt = 1,
−πjt if yjt = 0.

Furthermore, set
ρ∗t = q1tq2tρ.

The conditional probabilities of the different outcomes of (y1t,y2t) given in (6) can
thus be expressed as

pij,t = Φ2(µ1t, µ2t, ρ
∗
t ), i, j = 0, 1,

where ρ is the correlation coefficient in the bivariate normal distribution function.

Let θ =
[
ω1 β1 ω2 β2 c ρ

]′
denote the vector of the parameters of the

bivariate probit model (10). The conditional log-likelihood function, conditional
on the initial values, is the sum of the individual log-likelihoods lt(θ),

l(θ) =
T∑
t=1

lt(θ) =
T∑
t=1

log
(

Φ2(µ1t, µ2t, ρ
∗
t )
)

=
T∑
t=1

(
y1ty2t log(p11,t) + y1t(1− y2t) log(p10,t) + (1− y1t)y2t log(p01,t)

+(1− y1t)(1− y2t) log(p00,t)
)
.

The maximization of l(θ) is clearly a highly nonlinear problem, but it can be
straightforwardly carried out by standard numerical methods.

To obtain robust standard errors for the parameter coefficients, we need the
score of the log-likelihood function. The score vector is defined as

s(θ) =
T∑
t=1

st(θ) =
T∑
t=1

∂lt(θ)

∂θ
,

where

st(θ) =
∂lt(θ)

∂θ
=

1

Φ2(µ1t, µ2t, ρ∗t )

∂Φ2(µ1t, µ2t, ρ
∗
t )

∂θ
.

Split the parameter vector into three disjoint components, namely θ = [θ
′

1 θ
′

2 ρ]
′ ,

where the parameters in θ1 and θ2 are related to the specifications of π1t and π2t.
Note, however, that in contrast to the usual bivariate specification (Model 2), the
parameters θ1 and θ2 are not separable in Model 4 (and Model 3) as the linear
function π2t is dependent on π1t via the coefficient c and, thus, the estimates of θ1
are not necessarily the same as obtained with the univariate independent models
(Model 1).

Let us partition the score vector accordingly as

st(θ) =
[
s1t(θ1)

′
s2t(θ2)

′
s3t(ρ)

]′
.
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The components of st(θj) with respect of θj, j = 1, 2,, can be written as

sjt(θj) =
1

Φ2(µ1t, µ2t, ρ∗t )

∂Φ2(µ1t, µ2t, ρ
∗
t )

∂θj

=
1

Φ2(µ1t, µ2t, ρ∗t )

[∂Φ2(µ1t, µ2t, ρ
∗
t )

∂µ1t

∂µ1t

∂π1t

∂π1t
∂θj

+
∂Φ2(µ1t, µ2t, ρ

∗
t )

∂µ2t

∂µ2t

∂π2t

∂π2t
∂θj

]
.

For Model 4, we obtain

∂π2t
∂θ1

=
[∂π2t
∂ω1

∂π2t
∂β1

]′
=
[
c x1,t−1c

]′
,

and
∂π1t
∂θ2

=
[∂π1t
∂ω2

∂π1t
∂β2

∂π1t
∂c

]′
= 0,

while for Model 2 the first derivative is also zero (when the contemporaneous link
does not exist (c = 0)).

Therefore, the first component, st(θ1), is

s1t(θ1) =
1

Φ2(µ1t, µ2t, ρ∗t )

[
φ(µ1t)Φ

(µ2t − µ1tρ
∗
t√

1− ρ∗2t

)
q1t
∂π1t
∂θ1

+ φ(µ2t)Φ
(µ1t − µ2tρ

∗
t√

1− ρ∗2t

)
q2t
∂π2t
∂θ1

]
,

and the second component is

s2t(θ2) =
1

Φ2(µ1t, µ2t, ρ∗t )
φ(µ2t)Φ

(µ1t − µ2tρ
∗
t√

1− ρ∗2t

)
q2t
∂π2t
∂θ2

,

where φ(·) and Φ(·) are the density and cumulative distribution functions of the
standard normal distribution, respectively. In Model 4, the derivatives ∂π1t/∂θ1
and ∂π2t/∂θ2 equal

∂π1t
∂θ1

=
[

∂π1t
∂ω1

∂π1t
∂β1

]′
=
[

1 x1,t−1
]′
,

and

∂π2t
∂θ2

=
[

∂π2t
∂ω2

∂π2t
∂β2

∂π2t
∂c

]′
=
[

1 x2,t−1 π1t
]′
.

The values of sjt(θ1) depend on the realized values of y1t and y2t. For instance, if
y1t = 1 and y2t = 1, then by the definitions of µjt and q1t, we get

s1t(θ1) =
1

Φ2(π1t, π2t, ρ)

[
φ(π1t)Φ

(π2t − π1tρ√
1− ρ

)∂π1t
∂θ1

+ φ(π2t)Φ
(π1t − π2tρ√

1− ρ

)∂π2t
∂θ1

]
,

and

s2t(θ1) =
1

Φ2(π1t, π2t, ρ)
φ(π2t)Φ

(π1t − π2tρ√
1− ρ

)∂π2t
∂θ2

.

Following Greene (2012, pp. 780), the score with respect of the correlation
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coefficient ρ becomes

s3t(ρ) =
∂lt(θ)

∂ρ
=

1

Φ2(µ1t, µ2t, ρ∗t )

∂Φ2(µ1t, µ2t, ρ
∗
t )

∂ρ∗t

∂ρ∗t
∂ρ

=
φ2(µ1t, µ2t, ρ

∗
t )

Φ2(µ1t, µ2t, ρ∗t )
q1tq2t.

As above, the value of s3t(ρ) depends on the realized values of the dependent
variables. For example, if y1t = 1 and y2t = 1, then we get

s3t(ρ) =
φ2(π1t, π2t, ρ)

Φ2(π1t, π2t, ρ)
,

and if y1t = 1 and y2t = 0,

s3t(ρ) = −φ2(π1t,−π2t,−ρ)

Φ2(π1t,−π2t,−ρ)
.

Maximization of the log-likelihood function yields the maximum likelihood es-
timate θ̂, which solves the first-order condition s(θ̂) = 0, where the score vector
is obtained above. At the moment there is no formal proof of the asymptotic
distribution of the maximum likelihood estimator θ̂. However, under appropriate
regularity conditions, including the stationarity of explanatory variables (xj,t−1)
and the correctness of the probit model specification, it is reasonable to assume
that the ML estimator θ̂ is consistent and asymptotically normal. This facilitates
the use of the conventional tests for the components of the parameter vector θ in
the usual way.

Throughout this paper, the maximum likelihood estimator θ̂ is interpreted as a
quasi-maximum likelihood estimator (QMLE). Therefore, we consider the following
asymptotic distribution of θ̂

T 1/2(θ̂ − θ∗)
d−→ N

(
0, I(θ∗)

−1J (θ∗)I(θ∗)
−1
)
,

where the asymptotic covariance matrix consists of I(θ) = plimT−1
∑T

t=1(∂
2lt(θ)/∂θ∂θ

′
)

and J (θ) = plimT−1
∑T

t=1 st(θ)st(θ)
′ . In this expression, θ∗ is the value in the

parameter space of θ assumed to maximize the probability limit of T−1l(θ) (see,
e.g., Davidson (2000, Section 9.3) for details). If the model is correctly specified,
then I(θ) = J (θ).

Robust standard errors based on the QMLE (reported in the estimation results
in Sections 5 and 6) are obtained from the diagonal elements of the asymptotic
covariance matrix, where I(θ) and J (θ) are replaced by their sample analogues.
That is, we compute the diagonal elements of

Î(θ̂)−1Ĵ (θ̂)Î(θ̂)−1.

A consistent estimator of the matrix I(θ∗) is obtained as

Î(θ̂) = T−1
T∑
t=1

(∂2lt(θ̂)/∂θ∂θ
′
),
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but the estimation of the matrix J (θ) is more complicated. Following the pro-
cedure proposed by Kauppi and Saikkonen (2008), applied to univariate probit
models in this paper, we use a general estimator given by

Ĵ (θ̂) = T−1

(
T∑
t=1

st(θ̂)st(θ̂)
′
+

T−1∑
j=1

wTj

T∑
t=j+1

(
st(θ̂)st−j(θ̂)

′
+ st−j(θ̂)st(θ̂)

′
)
,

)

where wTj = k(j/mT ) for an appropriate kernel function k(x). In our empirical
application, we use the Parzen kernel function (see Davidson (2000), p. 227) and,
similarly as Kauppi and Saikkonen (2008), the bandwidth mT is selected according
to the rule mT = floor(4(T/100)2/9), where the function floor(x) rounds x to the
nearest integer less than or equal to x.
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Table IV: In-sample estimation results for bivariate Models 1–4 for the U.S. and
the U.K. markets.

Dep. Exp. Model 1 Model 2 Model 3 Model 4
RMIU.S. CONST 0.600*** 0.552*** 0.612*** 0.620**

(0.214) (0.239) (0.219) (0.283)
DYU.S.,t−1 0.449*** 0.402*** 0.430*** 0.466***

(0.120) (0.116) (0.136) (0.136)
RMU.S.,t−1 0.049** 0.027 0.057** 0.041

(0.024) (0.023) (0.025) (0.037)
RMIU.S.,t−1 -0.320 -0.133 -0.417* -0.253

(0.220) (0.193) (0.245) (0.338)
IPU.S.,t−1 0.161 0.108 0.184 0.152

(0.106) (0.084) (0.116) (0.129)
10YU.S.,t−1 -0.206*** -0.193*** -0.193*** -0.220***

(0.050) (0.046) (0.061) (0.056)
RMIU.K. CONST -0.149 -0.062 -0.174 -0.112

(0.266) (0.342) (0.243) (0.315)
DYU.K.,t−1 0.134* 0.111 0.113* 0.105

(0.069) (0.097) (0.067) (0.086)
INFU.K.,t−1 -0.391*** -0.384** -0.361** -0.364**

(0.148) (0.152) (0.154) (0.157)
ρ 0.721*** 0.719***

(0.014) (0.015)
c 0.405 0.284

(0.294) (0.289)
logL -485.160 -438.313 -483.855 -437.652
AIC 494.160 448.313 493.855 448.652
QPSU.S. 0.458 0.459 0.459 0.458
QPSU.K. 0.469 0.469 0.465 0.467
psR2 0.072† 0.074‡ 0.079† 0.078‡
adj.psR2 0.049† 0.048‡ 0.053† 0.049‡
SRU.S. 0.638 0.659 0.632 0.635
SRU.K. 0.614 0.614 0.622 0.597
AUCU.S. 0.620*** 0.624*** 0.615*** 0.623***
AUCU.K. 0.581*** 0.584*** 0.601*** 0.598***
PTU.S. 8.441*** 14.071*** 8.481*** 6.810***
PTU.K. 4.335** 4.470** 7.495*** 0.918

Notes: The table presents the in-sample estimation results for the different bivariate probit
models for the U.S. and the U.K. markets. Robust standard errors are reported in brackets. In
the table, *, **, and *** denote the statistical significance at the 10, 5 and 1% level,
respectively. Note that the psR2 and adj.psR2 values are only comparable between Models 1
and 3 (denoted by †), and Models 2 and 4 (denoted by ‡).
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Table V: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Swedish markets.

Dep. Exp. Model 1 Model 2 Model 3 Model 4
RMIU.S. CONST 0.600*** 0.603** 0.501** 0.578**

(0.214) (0.236) (0.238) (0.284)
DYU.S.,t−1 0.449*** 0.396*** 0.401*** 0.436***

(0.120) (0.153) (0.138) (0.162)
RMU.S.,t−1 0.049** 0.032 0.057** 0.053

(0.024) (0.026) (0.022) (0.035)
RMIU.S.,t−1 -0.320 -0.274 -0.294 -0.317

(0.220) (0.203) (0.215) (0.235)
IPU.S.,t−1 0.161 0.093 0.204** 0.183

(0.106) (0.129) (0.096) (0.162)
10YU.S.,t−1 -0.206*** -0.187*** -0.177*** -0.199**

(0.050) (0.071) (0.063) (0.079)
RMISWE CONST 0.070* 0.092 0.068 -0.027

(0.082) (0.082) (0.118) (0.144)
TSSWE,t−1 0.116** 0.091** 0.109** 0.086*

(0.044) (0.045) (0.047) (0.048)
OILSWE,t−1 -0.015** -0.013 -0.014* -0.012

(0.007) (0.009) (0.007) (0.008)
ρ 0.539*** 0.528***

(0.019) (0.022)
c 0.587* 0.500

(0.347) (0.477)
logL -488.845 -466.083 -486.266 -464.429
AIC 497.845 476.083 496.266 475.429
QPSU.S. 0.458 0.459 0.459 0.458
QPSSWE 0.479 0.480 0.470 0.473
psR2 0.077† 0.062‡ 0.090† 0.070‡
adj.psR2 0.054† 0.035‡ 0.065† 0.042‡
SRU.S. 0.638 0.646 0.641 0.641
SRSWE 0.565 0.570 0.608 0.605
AUCU.S. 0.620*** 0.621*** 0.619*** 0.621***
AUCSWE 0.605*** 0.605*** 0.639*** 0.634***
PTU.S. 8.441*** 6.735*** 12.410*** 11.093***
PTSWE 1.520 1.794 13.443*** 11.070***

Notes: See the notes to Table IV.
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Table VI: In-sample estimation results for bivariate Models 1–4 for the U.S. and
Canadian markets.

Dep. Exp. Model 1 Model 2 Model 3 Model 4
RMIU.S. CONST 0.600*** 0.587 0.546** 0.576

(0.214) (0.357) (0.216) (0.384)
DYU.S.,t−1 0.449*** 0.266** 0.410*** 0.425*

(0.120) (0.135) (0.146) (0.218)
RMU.S.,t−1 0.049** 0.017 0.054** 0.051

(0.024) (0.029) (0.022) (0.043)
RMIU.S.,t−1 -0.320 -0.219 -0.255 -0.266

(0.220) (0.224) (0.219) (0.358)
IPU.S.,t−1 0.161 0.102 0.151 0.152

(0.106) (0.099) (0.114) (0.168)
10YU.S.,t−1 -0.206*** -0.137** -0.189*** -0.197**

(0.050) (0.070) (0.060) (0.099)
RMICAN CONST 0.428** 0.433*** 0.095 0.099

(0.126) (0.183) (0.171) (0.196)
TBCAN,t−1 -0.44*** -0.44** -0.026 -0.024

(0.017) (0.024) (0.016) (0.019)
REXCAN,t−1 0.051 0.039 0.028 0.033

(0.033) (0.041) (0.039) (0.039)
ρ 0.806*** 0.799***

(0.020) (0.010)
c 0.883*** 0.835**

(0.329) (0.385)
logL -489.183 -424.031 -483.512 -419.470
AIC 498.183 434.031 493.512 430.470
QPSU.S. 0.458 0.463 0.459 0.458
QPSCAN 0.480 0.480 0.466 0.466
psR2 0.079† 0.051‡ 0.107† 0.074‡
adj.psR2 0.056† 0.024‡ 0.083† 0.046‡
SRU.S. 0.638 0.641 0.641 0.643
SRCAN 0.597 0.608 0.600 0.603
AUCU.S. 0.620*** 0.614*** 0.623*** 0.623***
AUCCAN 0.588*** 0.583*** 0.634*** 0.634***
PTU.S. 8.441*** 6.875*** 10.236*** 10.568***
PTCAN 2.450 6.687*** 5.508** 4.304**

Notes: See the notes to Table IV.
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Table VII: Out-of-sample forecasting results.

Model Statistic AUS CAN FRA GER ITA JPN NED SWE SUI U.K.
Panel A: Binary response models

UNI SR 0.615 0.620 0.589 0.547 0.542 0.505 0.630 0.599 0.620 0.599
AUC 0.510 0.494 0.572** 0.572** 0.530 0.533 0.573** 0.576** 0.592*** 0.529

UNIRM SR 0.609 0.635 0.599 0.536 0.547 0.510 0.630 0.615 0.615 0.597
AUC 0.526 0.572** 0.577*** 0.580*** 0.540 0.516 0.570** 0.592*** 0.590*** 0.501

BIV SR 0.635 0.594 0.609 0.547 0.557 0.542 0.656 0.589 0.620 0.615
AUC 0.546* 0.551* 0.591*** 0.567** 0.575** 0.543 0.573** 0.581*** 0.572** 0.557**

Panel B: Predictive regression models
OLS SR 0.630 0.563 0.589 0.542 0.490 0.479 0.625 0.589 0.625 0.563

AUC 0.537 0.478 0.511 0.500 0.437 0.461 0.532 0.521 0.534 0.509
OLSRM SR 0.615 0.552 0.594 0.547 0.505 0.521 0.615 0.615 0.594 0.578

AUC 0.544 0.560* 0.553 0.558* 0.481 0.511 0.558* 0.574** 0.550 0.521

Notes: This table displays the out-of-sample forecasting results for the period 1995M01–
2010M12. The forecasts are based on the rolling estimation window of 15 years. In Panel A,
model UNI refers to the univariate probit models that are selected separately for each country,
UNIRM refers to UNI models augmented with the U.S. lagged return (RMU.S.,t−1), and BIV
refers to the bivariate model with the contemporaneous linkage via the parameter c (Model 3).
In Panel B, OLS and OLSRM refer to the predictive regression models with same predictors
as in Rapach et al. (2013).

Table VIII: Market timing tests.

Model Statistic AUS CAN FRA GER ITA JPN NED SWE SUI U.K.
Panel A: Buy and hold

B&H RETURN 10.30% 9.77% 8.19% 7.04% 6.27% -1.92% 7.84% 12.12% 7.86% 7.95%
SHARPE 1.24 1.34 0.92 0.67 0.35 -0.42 0.81 1.37 1.39 0.76

Panel B: Binary response models
UNI RETURN 10.30% 12.47% 8.72% 7.26% 7.99% -0.29% 11.37% 15.87% 7.77% 7.95%

SHARPE 1.24 2.13 1.18 0.73 0.96 -0.16 1.48 2.19 1.45 0.76
UNIRM RETURN 10.05% 14.00% 10.48% 6.57% 9.84% -0.03% 11.02% 17.13% 6.81% 7.74%

SHARPE 1.17 2.63 1.56 0.63 1.33 -0.09 1.41 2.63 1.21 0.71
BIV RETURN 11.30% 12.37% 10.74% 8.39% 10.03% 1.62% 14.18% 14.93% 8.61% 9.82%

SHARPE 1.60 2.38 1.67 0.94 1.32 0.41 2.16 2.01 1.66 1.29
Panel C: Predictive regression models

OLS RETURN 11.35% 8.86% 7.98% 5.21% 4.22% -1.66% 11.69% 13.56% 7.49% 8.10%
SHARPE 1.61 1.58 0.91 0.40 0.04 -0.40 1.62 1.65 1.37 0.99

OLSRM RETURN 10.35% 10.17% 10.97% 8.45% 5.33% -0.01% 14.31% 15.31% 10.14% 9.46%
SHARPE 1.39 2.03 1.62 1.05 0.30 -0.07 2.30 2.17 2.15 1.48

Notes: The table displays annual returns and Sharpe ratios of investment strategies based on
different forecasting models for the period 1995M01–2010M12. B&H refers to a buy and hold
strategy, see also the notes to Table VII.
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