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Abstract: We consider a multicriteria problem of integer linear
programming and study the set of all individual criterion minimiz-
ers (extreme solutions) playing an important role in determining the
range of Pareto optimal set. In this work, the lower and upper at-
tainable bounds on the stability radius of the set of extreme solutions
are obtained in the situation where solution and criterion spaces are
endowed with various Hölder’s norms. In addition, the case of the
Boolean problem is analyzed. Some computational challenges are also
discussed.
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1. Introduction

Multiobjective discrete models have been widely used in decision making, design,
management, economics, and many other applied fields. Therefore, the interest of
mathematicians regarding multicriteria (vector) discrete optimization problems is
far from being lost, which is confirmed by numerous recent publications. One of
directions in investigating these problems is the analysis of stability of solutions
with respect to perturbations of the initial data (problem parameters). Various
notions of stability generate numerous investigation lines.

The terms, such as sensitivity, stability or post-optimal analysis are commonly
used for the phase of an algorithm at which a solution (or solutions) of the problem
has been already found, and additional calculations are performed in order to
investigate how this solution depends on changes in the problem data.

In 1923, Jacques Hadamard recognized the stability problem as one of the
central problems in mathematical research. He postulated that in order to be
well-posed, a mathematical problem should satisfy three properties: existence of
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a solution; uniqueness of the solution; and continuous dependence of the solution
on the data (Hadamard, 1923). Problems that are not well-posed in the sense of
Hadamard are usually termed ill-posed.

Despite existence of numerous approaches to stability analysis of optimization
problems, two major directions can be pointed out: quantitative and qualitative.

Qualitative sensitivity analysis is usually conducted for multicriteria optimiza-
tion problems with various (linear and nonlinear) criteria. The typical results
are necessary and sufficient conditions for different types of stability of one or
a set of optimal solutions (see, e.g., Serienko and Shib, 2003; Lebedeva and
Sergienko, 2008; Lebedeva, Semenova and Sergienko, 2014a,b; Emelichov et al.,
2014; Kuzmin, Nikulin and Mäkelä, 2017; Emelichov, Karelkin and Kuzmin,
2012).

Within the scope of the quantitative direction, various measures of stability are
investigated. Analytical expressions or (attainable) lower and upper bounds on a
quantitative characteristic called stability radius constitute typical results in this
area. The results are formulated in the case where parameter space is equipped
with various metrics (see, e.g., Leontev, 2007; Gordeev, 2015; Emelichev and Pod-
kopaev, 1998, 2001, 2010; Emelichev et al., 2002; Emelichev and Kuzmin, 2010;
Bukhtogarov and Emelichev, 2015; Emelichev and Nikulin, 2018). In addition
to stability radius, some papers are focusing on more general characteristics of
stability, for example stability and accuracy functions are analyzed in Libura and
Nikulin (2006) and Nikulin (2009). Sensitivity analysis has been also performed
for some problems of scheduling theory, see, e.g., Sotskov et al. (2010) and Nikulin
(2014).

This publication follows the ideas of quantitative analysis. It continues a se-
ries of publications (Emelichev et a., 2014; Emelichev and Podkopaev, 1998, 2001;
Emelichev and Kuzmin, 2007, 2013; Emelichev, Krichko and Nikulin, 2004) seek-
ing for analytical bounds on stability radius for multicriteria problem of Integer
Linear Programming (ILP) with various optimality principles.

In multicriteria optimization and decision making, we deal sometimes with
choice functions different from the well-known Pareto optimality principle (Pareto,
1909). Such functions play a crucial role in many real life applications (see, e.g.,
Podinovskii and Noghin, 1982 and Lotov and Pospelov, 2008). In this paper, we
consider the multicriteria problem of ILP with the extreme optimality principle,
i.e. with the set of solutions being individual optimizers of all criteria.

This set is used to construct the payoff table, often serving for calculating
the ideal point and estimating the nadir point of the Pareto optimal set (see, e.g.,
Steuer, 1986; Miettinen, 1999; Noghin, 2018; Ehrgott, 2005). We study the type of
stability with respect to independent perturbations of linear function coefficients
that is a discrete analogue of Hausdorff upper semi-continuity mapping, trans-
forming any set of problem parameters into a set of extreme solutions. In other
words, this type of stability guarantees the existence of a neighborhood in prob-
lem parameter space such that no new extreme solutions appear, see Emelichev
and Podkopaev (1998, 2001, 2010) and Emelichev et al. (2002).

As a result of the parametric analysis performed, the lower and upper bounds
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on the stability radius are obtained for multicriteria ILP problem with extreme
solutions in the case where criterion space is endowed with various Hölder’s norms.
Attainability of the estimates (both lower and uppers bounds) is demonstrated.

2. Problem formulation and basic definitions

We consider an m-criteria ILP problem in the following formulation. Let C =
[cij ] ∈ Rm×n be a real valued m × n - matrix with rows Ci ∈ Rn, i ∈ Nm =
{1, 2, . . . ,m}, m ≥ 1. Let also X ⊂ Zn, 1 < |X | < ∞, be the set of feasible
solutions x = (x1, x2, . . . , xn)

T , n ≥ 2. We define a vector criterion

Cx =
(

C1x,C2x, . . . , Cmx
)T

→ min
x∈X

,

with linear objective functions.
In this paper, Zm(C), C ∈ Rm×n, is the problem of finding the set of extreme

solutions defined in, e.g., Miettinen (1999) and Branke et al. (2007):

Em(C) =
{

x ∈ X : ∃k ∈ Nm ∀x′ ∈ X
(

Ck(x) ≤ Ck(x
′)
)

}

.

This set can equivalently be written as follows:

Em(C) = {x ∈ X : ∃k ∈ Nm (Em
k (x,Ck) = ∅)},

where
Em

i (x,Ci) =
{

x′ ∈ X : Ci(x− x′) > 0
}

, i ∈ Nm, x ∈ X.

Thus, the choice of extreme solutions can be interpreted as finding best solu-
tions for each of m criteria, and then combining them into one set. The vector
composed of optimal objective values constitutes the ideal vector that is of great
importance in theory and methodology of multiobjective optimization (Miettinen,
1999). This also justifies our particular interest in studying some properties of
extreme solutions. Obviously, E1(C), C ∈ Rn is the set of optimal solutions for
the scalar problem Z1(C).

We will perturb the elements of matrix C ∈ Rm×n by adding elements of the
perturbing matrix C′ ∈ Rm×n. Thus, the perturbed problem Zm(C + C′) of
finding extreme solutions has the following form:

(C + C′)x → min
x∈X

.

The set of extreme solutions of the perturbed problem is denoted by Em(C+C′).
In the solution space Rn, we define an arbitrary Hölder’s norm lp, p ∈ [1,∞], i.e.
the norm of vector a = (a1, a2, . . . , an)

T ∈ Rn is defined as

‖a‖p =















(

∑

j∈Nn

|aj |p
)1/p

if 1 ≤ p < ∞,

max{|aj| : j ∈ Nn} if p = ∞.
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In the criteria space Rm, we define another Hölder’s norm lq, q ∈ [1,∞]. The
norm of matrix C ∈ Rm×n is defined as

‖C‖pq = ‖(‖C1‖p, ‖C2‖p, . . . , ‖Cm‖p)‖q.

It is easy to see that

‖Ci‖p ≤ ‖C‖pq, i ∈ Nm. (1)

It is well known that the lp norm defined in Rn induces conjugated lp∗ norm in
(Rn)∗. For p and p∗, the following relations hold:

1

p
+

1

p∗
= 1, 1 < p < ∞. (2)

In addition, if p = 1 then p∗ = ∞, and, if p∗ = 1 then p = ∞. Notice that p and
p∗ belong to the same range [1,∞]. We set 1

p = 0 if p = ∞.

It is easy to see that for any vector ξ = (ξ1, ξ2, ..., ξn)
T ∈ Rn with |ξj | = σ,

j ∈ Nn, for any p ∈ [1,∞] the following equality holds:

‖ξ‖p = n
1

pσ. (3)

For any two real-valued vectors a and b of same dimension n, the following
Hölder’s inequality is well known:

|aT b| ≤ ‖a‖p‖b‖p∗, (4)

where p ∈ [1,∞].
It is also well-known (see, e.g., Hardy, Littlewood and Polya, 1988) that

Hölder’s inequality becomes an equality for 1 < p < ∞ if and only if
a) one of a or b is the zero vector;
b) the two vectors obtained from non-zero vectors a and b by raising their com-

ponents’ absolute values to the powers of p and p∗, respectively, are linearly
dependent (proportional), and sign (aibi) is independent of i.

When p = 1, (4) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|bi|
∑

i∈Nn

|ai|.

The last holds as equality if, for example, b is the zero vector or if aj 6= 0 for some
j such that |bj| = ‖b‖∞ 6= 0, and ai = 0 for all i ∈ Nn\{j}.

When p = ∞, (4) transforms into the following inequality:

|
∑

i∈Nn

aibi| ≤ max
i∈Nn

|ai|
∑

i∈Nn

|bi|.

The last holds as equality if, for example, b is the zero vector or if ai = σ sign (bi)
for all i ∈ Nn and σ ≥ 0.
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From here we deduce that the following formula is valid for p ∈ [1,∞]:

∀b ∈ Rn ∀σ > 0 ∃a ∈ Rn
(

|aT b| = σ‖b‖p∗ & ‖a‖p = σ
)

. (5)

Given ε > 0, let

Ωpq(ε) =
{

C′ ∈ Rm×n : ‖C′‖pq < ε
}

be the set of perturbing matrices C′ = [c′ij ] ∈ Rm×n with rows C′
k ∈ Rn, k ∈ Nm.

Denote

Ξpq =
{

ε > 0 : ∀C′ ∈ Ωpq(ε)
(

Em(C + C′) ⊆ Em(C)
)}

.

Following Emelichev and Podkopaev (1998, 2001) and Emelichev et al. (2002),
the number

ρm(p, q) =







sup Ξpq if Ξpq 6= ∅,

0 if Ξpq = ∅

is called stability radius (T3-stability radius in terminology of Sergienko and Shilo,
2003; Lebedeva and Sergienko, 2008; and Emelichev et al., 2014 of problem
Zm(C), m ∈ N, with Hölder’s norms lp and lq in the spaces Rn and Rm, re-
spectively. Thus, the stability radius of problem Zm(C) defines the extreme level
of perturbations of the elements of matrix C in the metric space Rm×n such that
no new extreme solutions appear in the perturbed problem. The problem Zm(C)
is called stable if and only if the stability radius is positive (ρm(p, q) > 0).

If Em(C) = X , then the inclusion Em(C+C′) ⊆ Em(C) holds for any perturb-
ing matrix C′. Therefore, the stability radius of such a problem is not bounded
from above. The problem Zm(C) with Em(C) 6= X is referred to as non-trivial.

3. Bounds on the stability radius

Given the multicriteria ILP problem Zm(C), m ∈ N, for any p ∈ [1,∞] we set

φm(p) = min
i∈Nm

min
x 6∈Em(C)

max
x′∈X\{x}

Ci(x− x′)

‖x− x′‖p∗

,

ηm(p) = min{‖Ci‖p : i ∈ Nm}.

Theorem 1 Given p, q ∈ [1,∞] and m ∈ N, for the stability radius ρm(p, q) of
the non-trivial multicriteria ILP problem Zm(C), the following lower and upper
bounds are valid:

0 < φm(p) ≤ ρm(p, q) ≤ ηm(p).

Moreover,

0 < φm(p) ≤ ρm(p, q) ≤ min
{

n
1

pφm(∞), ηm(p)
}

if the problem is Boolean.
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Proof According to the definition of Em(C), we have

∀x 6∈ Em(C) ∀i ∈ Nm ∃x0 ∈ X
(

Cix > Cix
0
)

,

and hence φm(p) > 0. Now we prove that

ρm(p, q) ≥ φm(p). (6)

Let C′ ∈ Rm×n be an arbitrary perturbing matrix, and norm

‖C′‖pq < φm(p),

i.e. C′ ∈ Ωpq(φ
m(p)). Then, according to the definition of number φm(p) and due

to (1), the following statement holds:

∀i ∈ Nm ∀x 6∈ Em(C) ∃x0 ∈ X\{x}

(Ci(x− x0)

‖x− x0‖p∗

≥ φm(p) > ‖C′‖pq ≥ ‖C′
i‖p

)

.

Taking into account Hölder’s inequalities (4), we deduce that for any index
i ∈ Nm there exists x0 6= x such that

(Ci + C′
i)(x − x0) = Ci(x− x0) + C′

i(x− x0) ≥

Ci(x− x0)− ‖C′
i‖p‖x− x0‖p∗ > 0,

i.e. x 6∈ Em(C + C′) for any x 6∈ Em(C).
Hence, the inclusion Em(C + C′) ⊆ Em(C) holds for any perturbed matrix

C′ ∈ Ωpq(φ
m(p)), so that equation (6) is true.

Further, we prove that ρm(p, q) ≤ ηm(p). In order to do that, it suffices to
show that ρm(p, q) ≤ ‖Ck‖p for any k ∈ Nm. Let us fix k ∈ Nm and let matrix
C0 = [cij ] ∈ Rm×n with rows C0

i ∈ Rn, i ∈ Nm be constructed as follows:

C0
i =

{

−Ci if i = k,
0T if i ∈ Nm\{k},

where 0 is the vector column in Rn, containing all zeroes. Then we get

‖C0‖pq = ‖C0
k‖p = ‖Ck‖p,

Em(C + C0) = X.

Taking into account X 6⊆ Em(C), we conclude that ρm(p, q) ≤ ‖Ck‖p. Hence,
ρm(p, q) ≤ ηm(p) = min{‖Ci‖p : i ∈ Nm}.

We then consider the case where X ⊆ {0, 1}n. All the bounds proven earlier
remain valid. All we need to show is that an extra upper bound holds:

ρm(p, q) ≤ n
1

pφm(∞). (7)
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Indeed, according to the definition of φ = φm(∞), there exist a solution x0 =
(x0

1, x
0
2, ..., x

0
n)

T 6∈ Em(C) and an index k ∈ Nm such that for any solution x 6= x0

the following inequality holds

φ‖x− x0‖1 ≥ Ck(x
0 − x). (8)

Set ε > n
1

pφ, choose δ such that

φ < δ <
ε

n
1

p

,

and consider the row vector ξ = (ξ1, ξ2, ..., ξn) with coordinates

ξj =

{

−δ if x0
j = 1,

δ if x0
j = 0.

Then, according to (3), we get

‖ξ‖p = n
1

p δ.

Further we define a perturbing matrix C0 = [cij ] ∈ Rm×n with rows C0
i ∈ Rn,

i ∈ Nm, constructed as follows:

C0
i =

{

ξ if i = k,
0T if i ∈ Nm\{k}.

Then we have

‖C0‖pq = n
1

pφ,

C0 ∈ Ωpq(ε).

In addition, for any x 6= x0 we have

C0
k(x

0 − x) = −δ‖x0 − x‖1.

From the above, using inequality (8), we deduce for any x ∈ X\{x0}:

(Ck + C0
k)(x

0 − x) = Ck(x
0 − x) + C0

k(x
0 − x) ≤ (φ− δ)‖x0 − x‖1 < 0.

This implies that x0 ∈ Em(C + C0) for x0 6∈ Em(C). Summing up, we have

∀ε > n
1

pφm(∞) ∃C0 ∈ Ωpq(ε)
(

Em(C + C0) 6⊆ Em(C)
)

,

i.e. ρm(p, q) < ε for any number ε > n
1

pφm(∞). Therefore, inequality (7) is
true. �
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4. Bound attainability

The following corollaries indicate the lower bound attainability φm(p) for the
stability radius ρm(p, q) of non-trivial ILP problem Zm(C).

Corollary 1 Let m ∈ N. If for a non-trivial multicriteria ILP problem Zm(C)
we have Em(C) = {x0}, then the stability radius ρm(p, q) is expressed by the
following formula:

ρm(p, q) = min
i∈Nm

max
x∈X\{x0}

Ci(x− x0)

‖x− x0‖p∗

. (9)

Proof Let Θ denote the right-hand side of (9). According to the definition of Θ,
there exist x̂ ∈ X\{x0} and k ∈ Nm such that the following equality holds:

Ck(x̂− x0) = Θ‖x̂− x0‖p∗ . (10)

Notice that here Θ > 0. Set ε > Θ and a number γ, satisfying

Θ < γ < ε.

According to formula (5), there exists a vector a ∈ Rn such that

aT (x̂− x0) = −γ‖x̂− x0‖p∗ ,

‖a‖p = γ.

Further, we define a perturbing matrix C0 = [cij ] ∈ Rm×n with rows C0
i ∈ Rn,

i ∈ Nm, constructed as follows:

C0
i =

{

aT if i = k,
0T if i ∈ Nm\{k}.

Then we have
‖C0‖pq = γ,

C0 ∈ Ωpq(ε),

C0
k(x̂− x0) = −γ‖x̂− x0‖p∗ .

From the above, using inequality (10), we deduce

(Ck + C0
k)(x̂− x0) = Ck(x̂− x0)− γ‖x̂− x0)‖p∗ = (Θ− γ)‖x̂− x0‖p∗ < 0.

This implies that x0 6∈ Em
k (x̂, Ck + C0

k). If Em
k (x̂, Ck + C0

k) = ∅, then x̂ ∈
Em(C +C0). If Em

k (x̂, Ck +C0
k) 6= ∅, then there exists x̃ ∈ Em

k (x̂, Ck +C0
k) such

that x̃ ∈ Em(C + C0) and x̃ 6= x0.
Summing up, we have that for any ε > Θ there exists a perturbing matrix

C0 ∈ Ωpq(ε) such that one can specify x′ ∈ X\{x0} satisfying the condition
x′ ∈ Em(C + C0). This implies that Em(C + C0) 6⊆ Em(C). Hence ρm(p, q) < ε

for any number ε > Θ, i.e. ρm(p, q) ≤ Θ.
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Taking into account the lower bound ρm(p, q) ≥ Θ, proven earlier in Theorem
1, we get formula (9). �

In the case of a Boolean non-trivial problem, the following corollary results
from Theorem 1 and indicates the lower bound attainability for the stability radius
ρm(∞, q).

Corollary 2 Given m ∈ N and q ∈ [1,∞), the stability radius ρm(∞, q) of
a non-trivial multicriteria Boolean problem Zm(C) is expressed by the following
formula:

ρm(∞, q) = φm(∞) = min
i∈Nm

min
x 6∈Em(C)

max
x′∈X\{x}

Ci(x− x′)

‖x− x′‖1
. (11)

Further, we show that for any number p ∈ [1,∞], the upper bound n
1

pφm(∞)
for the stability radius of the Boolean problem is attainable when m = 1.

Theorem 2 Given p, q ∈ [1,∞], there exists a class of scalar Boolean problems
Z1(C), C ∈ Rn, such that the stability radius ρ1(p, q) of any problem belonging
to the class is expressed by the following formula:

ρ1(p, q) = n
1

pφ1(∞). (12)

Proof Due to Theorem 1, in order to prove (12) it suffices to find a class of

problems satisfying ρ1(p, q) ≥ n
1

pφ1(∞). Let X = {x∗, x1, ..., xn} ∈ En, where
x∗ = (0, 0, ..., 0)T ∈ Rn, xi = ej , j ∈ Nn. Here ej is the j-th column of the n× n

basis matrix (basic column vector). We set C = (−a,−a, ...,−a) ∈ Rn, a > 0.
Then

E1(C) = X\{x∗},

φ1(∞) = a.

Let C′ = (c′1, c
′
2, ..., c

′
n) be an arbitrary perturbing row vector belonging to

Ωpq(n
1

p a). Reasoning by contradiction, it is easy to see that there exists at least
one index k ∈ Nm such that |c′k| < a. Therefore, we get

(C + C′)(x∗ − xk) = a− c′k > 0,

i.e. x∗ 6∈ E1(C + C′) for any perturbing row C′ ∈ Ωpq(n
1

pφ1(∞)). Hence, due to

x∗ 6∈ E1(C), we get ρ1(p, q) ≥ n
1

pφ1(∞). �

The numerical example, given below, shows that all three bounds for the
stability radius of a non-trivial Boolean problem can also be attainable in the
single criterion case.

Example 1 Let X = {x0, x1} ⊂ En where x0 = (0, 0, ..., 0)T , x1 = (1, 1, ..., 1)T ,
and C = (1, 1, ..., 1). Then, we have

Cx0 = 0, Cx1 = n,
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E1(C) = {x0}, X\E1(C) = {x1},

ρ1(p, q) ≤ ‖C‖p.

Moreover, by taking into account (2) and (3), we obtain the equalities

φ1(p) = n
1

p = ‖C‖p.

Then, according to Theorem 1,

ρ1(p, q) = ‖C‖p, p, q ∈ [1,∞].

In addition, we notice that

φ1(p) = ‖C‖p = n
1

pφ1(∞),

i.e. all the three bounds are attainable in the scalar case of m = 1.

5. Conclusion

In this paper, the lower and upper attainable bounds on the stability radius
of the set of extreme solutions were obtained in the situation where solution
and criterion spaces are endowed with various Hölder’s norms. As corollaries,
analytical formulae for the stability radius are specified in the case of the Boolean
set of feasible solutions.

One of the biggest challenges in this field is to construct efficient algorithms to
calculate the analytical expressions. To the best of our knowledge, there are not
so many results known in that area, and, moreover, some of those results, which
have been already known, put more questions than answers. As it was pointed
out in Nikulin, Karelkina and Mäkelä (2013), calculating exact values of stability
radii is an extremely difficult task in general, so one could concentrates either on
finding easily computable classes of problems or developing general metaheuristic
approaches.

Estimations of stability radius obtained in this paper, are based on the enu-
meration of the set of feasible solutions, whose cardinality may grow exponentially
with n. In the case of a single objective function, an approach to calculating the
stability radius of an ε-optimal solution to the linear problem of 0-1 programming
in polynomial time has been given in Chakravarti and Wagelmans (1999). These
authors assumed that the objective function is minimized, the feasible solution
set is fixed and a given subset of the objective function coefficients is perturbed.
The approach requires that the original single objective optimization problem be
polynomially solvable, for example it can be one of the well-known graph theoretic
problems, such as minimum spanning tree or shortest path problems. Another
approach, based on k-best solutions, was proposed in Libura et al. (1998) for
NP-hard problems, such as traveling salesman problem. In Emelichov and Pod-
kopaev (2010), it has been shown how analytical formulae similar to (9) can be
transformed into polynomial type calculation procedure in the case of Boolean
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variables, Chebyshev norm and polynomial solvability of the problem. However,
for multicriteria case the question of existence of the polynomial time procedures
remains open. As it is well known that the presence of multiple criteria increases
the level of complexity, for example, polynomially solvable single objective prob-
lems become intractable even in bicriteria case, see, e.g., Ehrgott (2005), finding
polynomial methods seems to be unlikely in general. For some particular chal-
lenging combinatorial problems, it has been proven that the problem of finding
the radii of every type of stability is intractable unless P = NP (Kuzmin, 2015).
An application of inverse optimization allows, reducing the calculation of stabil-
ity radius to a logarithmic number of mixed integer programs for multi-objective
combinatorial problems, where each objective function is a maximum sum and
the coefficients are restricted to natural numbers (Roland, Smet and Figueira,
2012).

6. Acknowledgement

The authors thank two referees for their helpful comments and suggestions, which
substantially improved the presentation and the content of this paper. The au-
thors are also grateful to Kirill Kuzmin for the fruitful discussion on some parts
of the article.

References

BRANKE, J., DEB, K., MIETTINEN, K., SLOWINSKI R. (eds.) (2007),
Practical Approaches to Multi-Objective Optimization. Dagstuhl seminar
proceedings 06501. Internationales Begegnungs- und Forschungszentrum
(IBFI), Schloss Dagstuhl, Germany

BUKHTOYAROV, S. and EMELICHEV, V. (2015) On the stability measure of
solutions to a vector version of an investment problem. Journal of Applied
and Industrial Mathematics, 9 (3), 328–334.

CHAKAVARTI, N. and WAGELMANS, A. (1999) Calculation of stability radius
for combinatorial optimization problems. Oper. Res. Lett., 23, 1–7.

EMELICHEV, V. and PODKOPAEV, D. (1998) On a quantitative measure of
stability for a vector problem in integer programming. Journal of Compu-
tatonal Physics and Mathematics, 38 (11), 1727–1731.

EMELICHEV, V. and PODKOPAEV, D. (2001) Stability and regularization of
vector problems of integer linear programming. Diskretnyi Analiz i Issle-
dovanie Operatsii. Ser. 2, 8 (1), 47–69.

EMELICHEV, V., GIRLICH, E., NIKULIN, Y. and PODKOPAEV, D. (2002)
Stability and regularization of vector problems of integer linear program-
ming. Optimization, 51 (4), 645–676.

EMELICHEV, V., KRICHKO, V. and NIKULIN, Y. (2004) The stability radius
of an efficient solution in minimax Boolean programming problem. Control
and Cybernetics, 33 (1), 127–132.



12 V.A. Emelichev and Y.V. Nikulin

EMELICHEV, V. and KUZMIN, K. (2007) On a type of stability of a multicri-
teria integer linear programming problem in the case of monotonic norm.
Journal of Computers and Systems Sciences International, 46 (5), 714–720

EMELICHEV, V. and KUZMIN, K. (2010) Stability radius of a vector integer
linear programming problem: case of a regular norm in the space of criteria.
Cybernetics and Systems Analysis, 46 (1), 72–79.

EMELICHEV, V. and PODKOPAEV, D. (2010) Quantitative stability analysis
for vector problems of 0-1 programming. Discrete Optimization, 7 (1-2),
48–63.

EMELICHEV, V, KARELKINA, O. and KUZMIN, K. (2012) Qualitative sta-
bility analysis of combinatorial minmin problems. Control and Cybernetics,
41 (1), 57–79.

EMELICHEV, V. and KUZMIN, K. (2013) A general approach to studying the
stability of a Pareto optimal solution of a vector integer linear programming
problem. Discrete Mathematics and Applications, 17 (4): 349–354.

EMELICHEV, V., KOTOV, V., KUZMIN, K., LEBEDEVA, T., SEMENOVA,
N. and SERGIENKO, T. (2014) Stability and effective algorithms for solving
multiobjective discrete optimization problems with incomplete information.
Journal of Automation and Information Sciences, 46 (2), 27–41.

EMELICHEV, V. and NIKULIN, Y. (2018) Aspects of stability for multicriteria
quadratic problems of Boolean programming, Bul. Acad. Stiinte Repub.
Mold. Mat., 87 (2), 30–40.

EHRGOTT, M. (2005) Multicriteria Optimization. Springer, Birkhäuser.
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