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Abstract

Hypertension or high blood pressure (BP) is one of the
most common worldwide disease leading to heart attack
or stroke. Continuous assessment of blood pressure level
is key to diagnosing hypertension. In this study, we de-
signed and tested a dedicated cuff-less monitoring system
which estimates BP level without need for calibration. We
obtained continuous measurements from 40 healthy sub-
jects (30 males and 10 females) ranging from 20-30 years
old. Our measurement protocol consisted of 15 minutes si-
multaneous electrocardiography (ECG) and photoplethys-
mography (PPG) within three sessions, i.e. rest, bicycle
exercise, and recovery. From ECG and PPG signals, we
obtained 34 candidate features from which up to 9 features
were selected to estimate systolic and diastolic BP levels.
We validate our results with three regression models such
as linear regression, support vector machines (SVM) re-
gression, and multilayer perceptron (MLP) to obtain the
best results. The study provides a promising approach for
modern cuff-less BP monitoring devices.

1. Introduction

According to the American Heart Association 2017
statistics, heart diseases are the number one cause of death
globally. Cardiovascular diseases (CVD), which are a
group of disorders of the heart and vessels, are considered
as the leading cause of death for 30.8% of all deaths in
the United States in 2014 [1]. Hypertention or high blood
pressure (HBP) is a major cardiovascular risk factor for
CVD and stroke that is curable, but requires accurate and
reliable detection and control strategies [1]. Continuous
assessment of blood pressure (BP) level is one way to im-
prove hypertension detection by providing serial measure-
ments in the mass population [2]. Therefore, it is imper-
ative to have an effective strategy to accurately and safely
diagnose at-risk subjects for early intervention and fast re-
sponse to sudden and potentially lethal events.

Several invasive and non-invasive BP measurement
methods are commonly used in clinical sites. Catheter-
ization is the golden standard to monitor instantaneous
arterial blood pressure, which requires invasive interven-
tions to measure accurate BP from central venous sites [3].
Auscultation, oscillometry, and volume clamping are the
other most popular noninvasive cuff-based methods that
measure systolic and diastolic BP based on different con-
figurations. Auscultation is based on sphygmomanome-
ter and detecting Korotkoff sounds using a stethoscope,
while oscillometry is an automatic method based on pres-
sure sensors inside a cuff which may be fitted on the
wrist [4]. Volume clamping is a recently developed ap-
proach to automatically measure instantaneous BP using a
photoplethysmography (PPG) sensor attached to the fin-
ger and a inflating-deflating cuff fasten around arm [5].
However, cuff-based BP measurement methods are cum-
bersome, time consuming, inconvenient, and troublesome
during ambulatory monitoring, particularly for long term
continuous monitoring.

2. Related Work

Several modern approaches for cuffless BP monitor-
ing and noninvasive and automated cardiovascular mon-
itoring are now available. New methods are mostly
based on waveform measurement from ECG, PPG sen-
sor, bioimpedance (EBI)/impedance cardiography (ICG),
ballistocardiography, and videoplethysmography (VPG) as
they aim to measure pulse wave velocity (PWV) [6], pulse
arrival time (PAT), and pulse transit time (PTT) [7] in-
dexes as surrogate indicators of blood pressure. However,
such methods pose a great challenge which is calibration
of PTT/PWV (in units of m/s or ms) to BP (in units of
mmHg) [4].

In this study, we designed a non-invasive cuff-less proto-
type for continuous and long term blood pressure monitor-
ing which requires no calibration. Our proposed method is
based on feature extraction from simultaneous electrocar-
diography (ECG) and PPG signals. We considered the use



of machine learning techniques, mainly regression models,
to estimate systolic and diastolic BP with different mea-
surement protocols. This paper is organized as follows:
Section 3 describes details of our designed data acquisition
system, experimental set-up, and protocols employed for
data collection and analysis. Section 4 describes biosig-
nal preprocessing, followed by feature extraction and se-
lection pipelines for machine learning experiments. Sec-
tion 5 delineates experimental results, Section 6 discusses
the limitation and future direction of this work, and finally
concludes this work.

3. Materials and Methods

The data acquisition for this study consists of 40 record-
ings, each of a duration of a 45 minutes, taken from healthy
volunteers (30 males and 10 females ranging from 20-30
years old) with their written informed consent. The re-
search protocol was approved by the the institutional re-
view board of University of Isfahan and performed accord-
ing to the Declaration of Helsinki.

Our measurement protocol consisted of continuous 15
minutes blood pressure monitoring within three sessions,
i.e. rest, bicycle exercise, and recovery, with a 3 minutes
intersession pause. In the first session, subjects were asked
to lie on supine position for 15 minutes. Subsequently,
they were asked to perform 15 minutes work out using
an exercise bike, and finally 15 minutes recovery while
seating on a chair. A dedicated wearable Holter monitor-
ing system was designed to capture concurrent ECG (three
lead Holter device, AD8236, Analog Devices, USA) and
PPG finger sensor (Nellcor pulse oximetry, USA) with a
sampling rate of 1024 Hz and a resolution of 16 bits. Ad-
ditionally, a custom-made software was developed for real-
time acquisition of signals to be stored on .wav format in
a host computer. A reference cuff-based automatic blood
pressure monitor (Omron MX3 Plus, Japan) was used for
validation purposes. All signal processing and feature ex-
traction tasks were made using Matlab software while ma-
chine learning experiments were accomplished in WEKA
environment.

Level of blood pressure was measured as two numbers:
systolic blood pressure (SBP) – pressure caused by blood
against artery walls when the heart beats – and diastolic
blood pressure (DPB) – the pressure in the vascular sys-
tem when the heart is relaxing. Blood pressure evaluations
were made according to Association for the Advancement
of Medical Instrumentation (AAMI) and British Hyperten-
sion Society (BHS) protocols.

4. Machine Learning Pipeline

4.1. Feature Extraction

After collecting data, we extracted 34 candidate fea-
tures from the measured ECG and PPG signals. Primary
pre-processing pipelines started with motion artifact re-
moval followed by bandpass filtering of ECG (0.02-43
Hz) and PPG (0.01-20 Hz) for noise and baseline wander-
ing removal. ECG R-wave peaks were detected using an
adaptive low-complexity QRS detector method [8]. After-
wards, PPG peak and valley locations were identified to
measure time intervals. The local maxima (systolic point)
in PPG signal is considered as the peak between the in-
terbeat R-waves, while the local minima (diastolic point)
is considered as the first down-ward wave before the local
maxima.

Our extracted features are based on the time intervals
between the ECG R and location of maxima and minima
points in PPG signal. These features can be divided into
two groups. The first group of features refers to the tim-
ings between the R-wave and PPG points to measure pulse
parameters (feature 1-6), while the latter group considers
PPG pulsatile components and its derivations in time do-
main (7-34). Figure 1 shows an overview of the feature ex-
traction from PPG pulsatile components and Table 1 rep-
resents a full description of all extracted features in this
study.

Time intervals between respectively 10, 25, 32, 50, 66,
and 75 percent of the PPG amplitude — upward slope from
diastolic to systolic points — are nominated by – diastolic
width (DW) – DW10, DW25, DW32, DW50, DW66, and
DW75, while for the PPG downward slope they are nom-
inated by – systolic width (SW) – SW10, SW25, SW32,
SW50, SW66, and SW75 [9]. We did not consider features
related to the dicrotic notch because this peak is impercep-
tible in some cases, specifically elderly subjects, may fully
be disappeared during exercise.

4.2. Feature Selection

After obtaining 34 candidate features, we performed a
two-step feature selection approaches based on calculating
correlation coefficient (r) in order to identify best features
in terms of regression power for estimating blood pressure.
Correlation coefficient value was calculated as:

r = C(X,Y )/
√
D(X).D(Y ) (1)

Where X is one set of the 34 extracted candidate fea-
tures and Y is one of the two pressures, systolic or dias-
tolic. C donates covariance between two variables and D
donates variance. In the first method, for each subject we
considered an average value for the measured BPs (systolic



Figure 1. Feature extraction from PPG pulsatile components.

Number Feature Description
1 Time delay between ECG R and PPG diastolic point
2 Time delay between ECG R and PPG systolic point
3 Time interval between ECG R peaks
4 Time delay between ECG R and PPG 1st derivative local maxima
5 Time delay between ECG R and PPG 2nd derivative local maxima
6 Time delay between ECG R and PPG 1st derivative local minima

7 Time delay between PPG disatolic and following systolic point
(systolic upstroke time)

8 Time delay between PPG systolic and following diastolic point
(diastolic time)

9-14 DW10, DW25, DW33, DW50, DW66, DW75

15-20 DW33 + SW33, DW25 + SW25, DW10 + SW10, DW75 + SW75,
DW66 + SW66, DW50 + SW50

21-26 DW33 / SW33, DW25 / SW25, DW10 / SW10, DW75 / SW75 ,
DW66 / SW66, DW50 / SW50

27 Time delay between PPG diastolic point and PPG 1st derivative
local maxima

28 Time delay between PPG systolic point and PPG 1nd derivative
local maxima

29 Amplitude of PPG from baseline to the 1st derivative local maxima
30 Amplitude of PPG from baseline to the 2nd derivative local maxima
31 Amplitude of PPG from baseline to the 2nd derivative local minima
32 Amplitude of PPG 2nd derivative local minima to maxima
33 Time delay between PPG 2nd derivative local maxima and minima
34 Time delay between PPG 2nd derivative local maxima and baseline

Table 1. List of features from ECG and PPG signals.

and diastolic) as well as candidate features (3 values for the
pressures and 3 candidate feature set were obtained during
the rest, exercise, and recovery sessions). Afterwards, the
correlation coefficient, r, was calculated between the mea-
sured reference systolic-diastolic blood pressures and the
mean value of the extracted features. Candidate features
with the correlation coefficient greater than |0.6| with both
systolic and diastolic BPs were selected in this step.

With the second method, we considered the correlation
between the blood pressures and each extracted feature for
all subjects, and subsequently selected features of which
have the correlation greater than |0.6| with both systolic
and diastolic pressure. Finally, selected features which
are common in both methods were selected for regression
analysis tasks.

4.3. Learning and Cross-validation

After selecting suitable features, we performed different
methods to estimate systolic and diastolic blood pressures.
We considered the use of three regression models such as
linear regression, support vector machines (SVM) regres-
sion, and multilayer perceptron (MLP) to obtain the best
results. In order to evaluate each of these methods, we as-
sessed three metrics, i.e. mean absolute error (MAE), stan-
dard deviation (SD), and correlation coefficient between
the true measured values and estimated numbers by the
regression models. In order to avoid possible over-fitting
we considered a 10-fold cross validation for evaluating our
learning approaches

With the MLP method, we tested various number of hid-

den layers and neurons and finally obtained best results
with 1 hidden layer and 4 neurons for systolic pressure and
2 hidden layers and 3 neurons for the diastolic pressure es-
timations. The SVM learning algorithm was trained with
radial basis function (RBF) kernels.

5. Results

Table 2 shows the performance of the three regression
models by assessing MAE, SD, and correlation coefficient
(CC) of the estimated systolic and diastolic BP levels. The
average MAE and SD were 5.61 mmHg and 4.86 mmHg
for systolic BP and 5.32 mmHg and 4.27 mmHg for dias-
tolic BP, respectively. As can be seen from Table 2 among
the learning methods, KSVM and MLP represented very
close performances. However, due to the fact that MLP is
less computationally demanding we considered it for the
final implementation of the system. Therefore, we com-
pared results obtained from MLP method against BHS and
AAMI standards for greater certainty. According to the
BHS standard, the reliability of BP estimations can be di-
vided into three categories: A, B, and C. For example, in
category A, at least 60%, 85%, and 95% of the estimated
cases have a difference less than±5,±10, and±15 mmHg
of standard value.

Table 3 shows the results obtained from MLP approach
as compared to the BHS standards. When compared to the
AAMI requirement, the estimated blood pressures should
have error and standard deviation rates less than 5 mmHg
and 8 mmHg, respectively. Thus, for the MLP method, the
average error rate for the systolic and diastolic BP were



-1.5 and -0.2 mmHg, while the standard deviations were
6.93 and 6.65 mmHg, respectively.

Table 2. Performance assessment of regression models for
BP estimation

Systolic BP Diastolic BP

Model
MAE

(mmHg)
SD

(mmHg)
CC
(r2)

MAE
(mmHg)

SD
(mmHg)

CC
(r2)

Linear regression 5.83 4.83 0.86 5.68 4.30 0.63
SVM regression 5.55 4.42 0.88 5.33 4.19 0.67

MLP 5.46 4.79 0.87 4.96 4.32 0.70

Table 3. MLP performance with respect to the BHS stan-
dards

5 mmHg< 10 mmHg< 15 mmHg<

MLP Systolic 55% 86% 97%
Diastolic 53% 89% 97%

BHS
Standard

Category A 60% 85% 95%
Category B 50% 75% 90%
Category C 40% 65% 85%

6. Discussion and Conclusion

In this study we presented a cuff-less and non-invasive
blood pressure monitoring system which is solely based
on features extracted from simultaneous ECG and PPG
signal processing and neural network. Our designed sys-
tem offers accurate and reliable estimation of systolic and
diastolic blood pressure values without need for calibra-
tion in advance. The final system is based on a real-time
data gathering software powered by advanced signal pro-
cessing and machine learning algorithms for accurate mea-
surement of the blood pressure. Additionally, in order to
have a comprehensive and operational device for all type
of subjects including heart diseased patients, we designed
a small-size wearable Holter system which is connected
with an optical sensor and a running software.

The main limitation of this research is that heart dis-
eased patients were excluded and only 40 young healthy
subjects were examined; this effects the robustness and
statistical power of our outcomes. However, the results
are encouraging, and warrant subsequent measurements
and analysis with a bigger study group including heart dis-
eases subjects. Our future direction would include evalu-
ation of our method against invasive blood pressure mon-
itoring systems with both healthy and diseased subjects.
Furthermore, a new miniaturized hardware system will be
developed for wearable physiological data recording. Non-
invasive physiological monitoring is an area of high inter-
est with potential for significant patient benefit. Allowing
early detection and prediction of cardiovascular diseases,
such as hypertension, will affect patient outcome and qual-
ity of life after treatment. Additionally, user-friendly and
cost-effective monitoring systems will enhance the quality
of treatment and daily life quality of cardiac patients.

In conclusion, the achieved results in this study are con-
sistent with BHS and AAMI standards which confirm the
accuracy of the measurements obtained by the designed BP
monitoring system.
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