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Abstract. We prove continuity up to the boundary of the minimizer of an obstacle problem
and higher integrability of its gradient under generalized Orlicz growth.The result recovers
similar results obtained in the special cases of polynomial growth, variable exponent growth
and produces new results for Orlicz and double phase growth.

1. Introduction

We study the obstacle problem related to the Dirichlet energy integral over a
bounded domain � ⊂ R

n with boundary values in the Sobolev sense

inf
ˆ

�

ϕ(x, |∇u|) dx,

where the infimum is taken over functions u ∈ W 1,ϕ(·)(�) such that, given functions
ψ, f : � → R, we have u � ψ almost everywhere and u − f ∈ W 1,ϕ(·)

0 (�).
In this paper we assume that ϕ satisfies generalized Orlicz growth conditions (see
Sect. 2). This class of growth conditions generalize several interesting special cases
such as the standard polynomial growth t �→ t p, Orlicz growth t �→ ϕ(t), see for
example [4], variable exponent growth t �→ t p(x), see for example [8,26] anddouble
phase case t �→ t p + a(x)tq , see for example [1,6,7]. Additionally, the problem is
motivated by the study of partial differential equations, see for example [11,12].

In this paper we prove twomain results of which the first concerns the boundary
continuity of a minimizer of the obstacle problem. For definitions and assumptions,
see Sects. 2 and 4. To best of our knowledge, the result is new even in the special
cases of Orlicz and double phase growth.

Theorem 1.1. Let ϕ ∈ �c(R
n) be strictly convex and satisfy (A0), (A1), (A1-n),

(aInc)p and (aDec)q . Let ψ ∈ C(�) and f ∈ C(�) ∩ W 1,ϕ(·)(�) be such that

K f
ψ(�) �= ∅ and let u be the continuous minimizer of theK f

ψ(�)-obstacle problem
from Theorem 5.8. If x0 ∈ ∂� satisfies the capacity fatness condition (2.8), then

lim
x→x0

u(x) = f (x0).
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A similar result in the generalized Orlicz setting without the obstacle has been
proven in [13].

The proof for interior continuity follows outlines given in the book of Björns’
[3]. The proof of the main theorem and few intermediate results are analogous to
[22], since scaling of the minimizer does not preserve minimality in the generalized
Orlicz case. We also study the relationship of the measure density condition and
ϕ-fatness: the former implies the latter when q < n (Lemma 6.4). For further
information about capacities in this context, see for example [2,13,24] in R

n and
[25] in metric measure spaces.

The second main result is global higher integrability of the gradient:

Theorem 1.2. (Global higher integrability of the gradient) Suppose that ϕ ∈
�w(Rn) satisfies conditions (A0), (A1), (aInc)p and (aDec)q . Additionally sup-
pose that the measure density condition (2.7) is fulfilled at every point x0 ∈ ∂�

with a constant c∗, and let u be the minimizer of the K f
ψ(�)-obstacle problem,

where ψ, f ∈ W 1,ϕ(·)(�) and ϕ(·, |∇ψ |), ϕ(x, |∇ f |) ∈ L1+δ(�) for some δ > 0
and K f

ψ(�) �= ∅. Then there exist ε > 0 and a constant C = C(n, ϕ, c∗) such that
ϕ(x, |∇u|) ∈ L1+ε(�) and

ˆ
�

ϕ(x, |∇u|)1+ε dx � C

[ (ˆ
�

ϕ(x, |∇u|) dx
)1+ε

+
ˆ

�

ϕ(x, |∇ψ |)1+ε dx +
ˆ

�

ϕ(x, |∇ f |)1+ε dx + 1

]
.

(1.3)

This result continues the recently published article [17], where the authors
proved local higher integrability of the gradient of the quasiminimizer. Now the
result is improved to a global result and the problem is generalized with an obstacle
ψ . These results are steps towards higher regularity results of the minimizer such
as Hölder continuity for every exponent β ∈ (0, 1) and Hölder continuity of the
gradient. For example in [21] local higher integrability of the gradient is used several
times in the proof. Again, to best of our knowledge, produces new results in special
cases of Orlicz and double phase growth. For variable exponent analogue, see [9].

The strategy of the proof is to combine two Caccioppoli inequalities with the
previously proven Sobolev–Poincaré inequality to lay ground for Gehring’s lemma.
The first Caccioppoli inequality handles the interior case with the obstacle and the
second inequality handles balls nearly overlapping with the boundary of �. To
achieve global results in general we assume that the measure density condition
(2.7) is fulfilled at every boundary point.

2. Properties of generalized �-functions

By � ⊂ R
n we denote a bounded domain, i.e. a bounded, open and connected set.

When A and B are open sets and A is compact, by A � B we mean that A ⊂ B.
The measure of a set A is denoted by |A|. By c or C we denote a generic constant
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whose valuemay change between appearances. A function f is almost increasing if
there exists a constant L � 1 such that f (s) � L f (t) for all s � t (more precisely,
L-almost increasing). Almost decreasing is defined analogously. A function f is
called convex if f (t x + (1− t)y) � t f (x)+ (1− t) f (y) for every t ∈ (0, 1). Strict
convexity assumes that the previous inequality is strict.

Definition 2.1. We say that ϕ : � × [0,∞) → [0,∞] is a weak �-function, and
write ϕ ∈ �w(�), if

• For every t ∈ [0,∞) the function x �→ ϕ(x, t) is measurable and for every
x ∈ � the function t �→ ϕ(x, t) is increasing.

• ϕ(x, 0) = limt→0+ ϕ(x, t) = 0 and limt→∞ ϕ(x, t) = ∞ for every x ∈ �.
• The function t �→ ϕ(x,t)

t is L-almost increasing for t > 0 and every x ∈ �.
• The function t �→ ϕ(x, t) is left-continuous for t > 0 and every x ∈ �.

If, additionally, t �→ ϕ(x, t) is convex, we denote ϕ ∈ �c(�) and say that ϕ is a
convex �-function.

By ϕ−1 we mean the left inverse of ϕ, defined as

ϕ−1(τ ) := inf{t � 0 : ϕ(t) � τ }.
Let uswriteϕ+

B (t) := supx∈B∩� ϕ(x, t) andϕ−
B (t) := infx∈B∩� ϕ(x, t); and abbre-

viate ϕ± := ϕ±
� . Throughout the paper we need one or multiple of the following

assumptions.

(A0) There exists β ∈ (0, 1) such that ϕ+(β) � 1 � ϕ−(1/β).
(A1) There exists β ∈ (0, 1) such that, for every ball B ∩ � �= ∅,

ϕ+
B (βt) � ϕ−

B (t) when t ∈
[
1, (ϕ−

B )−1
(

1

|B|
)]

(A1-n) There exists β ∈ (0, 1) such that, for every ball B ∩ � �= ∅,

ϕ+
B (βt) � ϕ−

B (t) when t ∈
[
1,

1

diam(B)

]
.

We also introduce the following assumptions, which are of different nature.
They are related to the �2 and ∇2 conditions from Orlicz space theory.

(aInc)p There exists p > 1 and L � 1 such that t �→ ϕ(x,t)
t p is L-almost increasing

in (0,∞).
(aDec)q There existsq > 1 and L � 1 such that t �→ ϕ(x,t)

tq is L-almost decreasing
in (0,∞).

For brevity, we may write for example that a constant C = C(n, ϕ), in which case
C depends on the dimension and some or all of the parameters listed in the previous
assumptions related to ϕ.

Despite the technical formulation of the assumptions, each of them has an intu-
itive interpretation. (A0) declares the space to be unweighed, (A1) is a continuity
assumption with respect to the space variable, while (A1-n) takes account of the
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dimension also. These are generalizations of the log-Hölder continuity of the vari-
able exponent spaces and the assumption q

p � 1 + α
n of the double phase case.

Lastly, (aInc)p and (aDec)q state that globally ϕ(x, t) grows faster than t p and
slower than tq .

We say that ϕ is doubling if there exists a constant L � 1 such that ϕ(x, 2t) �
Lϕ(x, t) for every x ∈ � and every t � 0. If ϕ is doubling with constant L , then
by iteration

ϕ(x, t) � L2
( t
s

)Q
ϕ(x, s) (2.2)

for every x ∈ � and every 0 < s < t , where Q = log2(L). For the proof see for
example [3, Lemma 3.3, p. 66]. Note that doubling also yields that

ϕ(x, t + s) � Lϕ(x, t) + Lϕ(x, s). (2.3)

Since (aDec)q is equivalent to doubling [18, Lemma 2.6], inequality (2.3) holds for
ϕ satisfying (aDec)q . In the proofs we often use the phrase like ”using (aDec)q”
and mean doubling or its consequence (2.3).

Generalized Orlicz and Orlicz–Sobolev spaces have been studied with our
assumptions for example in [13–18]. We recall some definitions. We denote by
L0(�) the set of measurable functions in� and the integral average of a function f
over a set A is denoted by

ffl
A f (x) dx =: f A. Additionally, we denote the positive

and negative part of a function as f+ = max{ f, 0} and f− = max{− f, 0}.
Definition 2.4. Let ϕ ∈ �w(�) and define the modular 
ϕ for f ∈ L0(�) by


ϕ( f ) :=
ˆ

�

ϕ(x, | f (x)|) dx .

The generalized Orlicz space, also called Musielak–Orlicz space, is defined as the
set

Lϕ(·)(�) :=
{
f ∈ L0(�) : 
ϕ(λ f ) < ∞ for some λ > 0

}

equipped with the (Luxemburg) norm

‖ f ‖Lϕ(·)(�) := inf

{
λ > 0 : 
ϕ

(
f

λ

)
� 1

}
.

If the set is clear from the context we abbreviate ‖ f ‖Lϕ(·)(�) by ‖ f ‖ϕ . A function

f belongs to local generalized Orlicz space Lϕ(·)
loc (�) if ‖ f ‖Lϕ(·)(K ) < ∞ for every

compact set K � �.
A function u ∈ Lϕ(·)(�) belongs to the generalized Orlicz–Sobolev space

W 1,ϕ(·)(�) if its weak partial derivatives ∂1u, . . . , ∂nu exist and belong to Lϕ(·)(�).
The norm of Orlicz–Sobolev space is defined as ‖ f ‖W 1,ϕ(·)(�) := ‖ f ‖Lϕ(·)(�) +
‖∇ f ‖Lϕ(·)(�), where ∇ f is the weak gradient of f . Additionally we define

W 1,ϕ(·)
0 (�) as the closure of the space C∞

0 (�) with respect to the norm of Orlicz–
Sobolev space.
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The definition ofW 1,ϕ(·)
0 (�) is reasonable, as C∞

0 (�) is dense inW 1,ϕ(·)
0 (�) if

ϕ satisfies (A0), (A1) and (aDec)q and � is bounded [15, Theorem 6.4.6] [bound-
edness of � frees us of the assumption (A2)].

Themodular 
ϕ and the norm have the following useful property, called the unit
ball property [15, Lemma 3.2.5]. However, in our case we need only the following
implication which follows from the definition of the norm


ϕ( f ) � 1 ⇒ ‖ f ‖ϕ � 1. (2.5)

Next we recall the definition of relative Sobolev capacity of a set as a another
way to measure the size of a set. Basic properties of this capacity have been studied
in [2].

Definition 2.6. Let ϕ ∈ �w(�) and E � �. Then relative Sobolev capacity of E
is defined as

Cϕ(E,�) = inf
u∈Sϕ(E,�)

ˆ
�

ϕ(x, |∇u|) dx,

where the infimum is taken over the set Sϕ(E,�) of all functions u ∈ W 1,ϕ(·)
0 (�)

with u � 1 in an open set containing E .

In order to attain global results, some regularity of the boundary has to be
assumed. In this paper we use the measure density and capacity fatness conditions

|B(x0, r) \ �| � c∗|B(x0, r)| (2.7)

Cϕ(B(x0, r) \ �, B(x0, 2r)) � c∗ Cϕ(B(x0, r), B(x0, 2r)), (2.8)

where B(x0, r) is a ball centred at a point x0 ∈ ∂� and r � R for some R > 0
and c∗ ∈ (0, 1). The measure density condition is often sufficiently general as for
example all domainswith Lipschitz boundary satisfy it and therefore it is commonly
used in regularity theory. However the capacity fatness condition was used in [13]
so we get the more general result with ease in the case of boundary continuity.

Even though we consider minimizing problem in�we assume that ϕ is defined
in thewholeRn since later we need to consider the complement of� due to previous
boundary conditions.

3. Auxiliary results

Let us first collect some general lemmas, which are not related to the obstacle
problem directly. First, we state the following lemma [13, Lemma 2.11], to which
we refer to throughout the paper.

Lemma 3.1. Let � ⊂ R
n be bounded. Let ϕ ∈ �w(�) satisfy (A0), (A1) and

(aDec)q . If v ∈ W 1,ϕ(·)(�) is non-negative and u ∈ W 1,ϕ(·)
0 (�), then min{u, v} ∈

W 1,ϕ(·)
0 (�).

The next lemma is intuitively clear, and follows easily from the previous lemma.
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Lemma 3.2. Let ϕ ∈ �w(�) satisfy (A0), (A1) and (aDec)q . Let u ∈ W 1,ϕ(·)(�)

and v,w ∈ W 1,ϕ(·)
0 (�). If v � u � w almost everywhere in �, then u ∈

W 1,ϕ(·)
0 (�).

Proof. If we subtract v from all the terms in the inequality and notice that u − v ∈
W 1,ϕ(·)

0 (�) if and only if u ∈ W 1,ϕ(·)
0 (�), we can assume that v = 0 almost

everywhere in �. Now since u is non-negative and w ∈ W 1,ϕ(·)
0 (�), Lemma 3.1

implies that u = min{u, w} ∈ W 1,ϕ(·)
0 (�). ��

Lastly, we prove a lemma regarding sequences of maxima and minima which is
important when we are comparing functions pointwise or handling just the positive
part of a function. The restriction to subsequences is not severe since later on we
need the existence of a sequence rather than convergence of a specific sequence.

Lemma 3.3. Let ϕ ∈ �w(�) satisfy (A0), and (aDec)q . If u j , v j ∈ W 1,ϕ(·)(�)

converge to u and v respectively in W 1,ϕ(·)(�), then there are subsequences such
that min{u jk , v jk } → min{u, v} and max{u jk , v jk } → max{u, v} in W 1,ϕ(·)(�).

Proof. Because, for example, min{ f, g} = g + min{ f − g, 0}, it suffices to show
that if u j converges to u in W 1,ϕ(·)(�), then

(
(u jk )+

)
converges to u+, where

(u jk ) is the pointwise converging subsequence. This subsequence exists because
assumption (A0) and (aInc)1 imply that W 1,ϕ(·)(�) ⊂ W 1,1(�) [16, Lemma 4.4].
Since |(u jk )+ −u+| � |u jk −u|, t �→ ϕ(·, t) is increasing and norm convergence is
equivalent to modular convergence when ϕ satisfies (aDec)q [15, Corollary 3.3.4],
we get ˆ

�

ϕ(x, |(u jk )+ − u+|) dx �
ˆ

�

ϕ(x, |u jk − u|) dx → 0

as jk → ∞.
As for the gradients, using (2.3)

ˆ
�

ϕ(x, |∇(u jk )+ − ∇u+|) dx

=
ˆ
�

ϕ(x, |χ(0,∞)(u jk )∇u jk − χ(0,∞)(u)∇u|) dx

�
ˆ
�

ϕ(x, |χ(0,∞)(u jk )∇u jk − χ(0,∞)(u)∇u + χ(0,∞)(u jk )∇u − χ(0,∞)(u jk )∇u|) dx

� L
ˆ
�

ϕ(x, |∇u||χ(0,∞)(u jk ) − χ(0,∞)(u)|) dx

+ L
ˆ
�

ϕ(x, χ(0,∞)(u jk )|∇u jk − ∇u|) dx

� L
ˆ
�

ϕ(x, |∇u||χ(0,∞)(u jk ) − χ(0,∞)(u)|) dx + L
ˆ
�

ϕ(x, |∇u jk − ∇u|) dx
→ 0,

as thefirst integral converges bydominated convergence [16,Theorem4.1] [(aDec)q
takes care of extra assumption that 
ϕ(λg) < ∞ for the dominating function
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g = |∇u| and if u ≡ 0 in some subset of�, then so is |∇u|] and the second integral
convergences by assumption. ��

The proof of the following Jensen type inequality can be found for example in
[17,19,20]. Here we have chosen p = 1 and simplified the assumptions on f as
we do not need the sharp result. Note that if ϕ satisfies (aDec)q , then the constant
β0 can be transferred to the right-hand side as a constant C .

Lemma 3.4. Let ϕ ∈ �w(B) satisfy assumptions (A0) and (A1). There exists β0 >

0 such that

ϕ

(
x, β0

 
B

| f | dy
)

�
 
B

ϕ(y, f ) dy + 1,

for every ball B and f ∈ Lϕ(·)(B) with ‖ f ‖Lϕ(·)(B) � 1.

The proof of next proposition can be found in [15, Proposition 6.3.13] and is
the local version of the Sobolev–Poincaré inequality. One of the main ingredients
in proving Theorem 1.1 is to use this inequality also with balls that overlap the
complement of�. Aswith the Jensen’s inequality, the constantβ1 can be transferred
to the right-hand side as C with (aDec)q .

Proposition 3.5. (Sobolev–Poincaré inequality)Letϕ1/s ∈ �w(B) satisfy assump-

tions (A0) and (A1) and let s ∈
[
1, n

n−1

)
. Then there exists a constant β1 =

β1(n, s, ϕ) such that

 
B

ϕ

(
x, β1

|v − vB |
diam(B)

)
dx �

(  
B

ϕ(x, |∇v|) 1
s dx

)s

+ 1

for every v ∈ W 1,1(B) with ‖∇v‖ϕ1/s � 1.

The following is a classical iteration lemma. For the proof, see for example [18,
Lemma 4.2].

Lemma 3.6. Let Z be a bounded non-negative function in the interval [r, R] ⊂ R

and let X : [0,∞) → R be an increasing function which is doubling. Assume that
there exists θ ∈ [0, 1) such that

Z(s) � X ( 1
t−s ) + θ Z(t)

for all r � s < t � R. Then

Z(r) � X ( 1
R−r ),

where the implicit constant depends only on the doubling constant and θ .

The following form of Gehring’s lemma can be found from [10, Theorem 6.6
and Corollary 6.1].
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Lemma 3.7. (Gehring’s lemma) Let f ∈ L1(B) be non-negative. Assume that
g ∈ Lq(4B) for some q > 1 and that there exists s ∈ (0, 1) such that

 
B
f dx �

(  
3B

f s dx

) 1
s +

 
3B

g dx

for every ball B. Then there exists t > 1 such that

(  
B
f t dx

) 1
t

�
 
4B

f dx +
( 

4B
gt dx

) 1
t

.

4. Properties of local minimizers and local superminimizers

In this paper we do not only cover (local) minimizers but also the minimizer of
the so called obstacle problem. Since minimizers of obstacle problems and local
superminimizers are closely related, we collect basic results regarding local super-
minimizers also.

Definition 4.1. Let ψ : � → [−∞,∞) be a function, called obstacle, and let
f ∈ W 1,ϕ(·)(�) be a function, which assigns the boundary values. We define
admissible functions for the obstacle problem as a set

K f
ψ(�) := {u ∈ W 1,ϕ(·)(�) : u � ψ a.e. in �, u − f ∈ W 1,ϕ(·)

0 (�)}.

Additionally, we say that a function u ∈ K f
ψ(�) is a minimizer of the K f

ψ(�)-
obstacle problem if

ˆ
�

ϕ(x, |∇u|) dx �
ˆ

�

ϕ(x, |∇v|) dx

for all v ∈ K f
ψ(�).

If u is a minimizer of the K f
−∞(�)-obstacle solution, we call it a minimizer in �.

Definition 4.2. Let ϕ ∈ �w(�). A function u ∈ W 1,ϕ(·)
loc (�) is a local minimizer

of the ϕ-energy in � if
ˆ

{v �=0}
ϕ(x, |∇u|) dx �

ˆ
{v �=0}

ϕ(x, |∇(u + v)|) dx

for all v ∈ W 1,ϕ(·)(�) with spt v ⊂ �, where spt v is the smallest closed set such
that v is non-zero almost everywhere in that set.

If the inequality is assumed only for all nonnegative or nonpositive v, then u is
called a local superminimizer or local subminimizer, respectively.

The next lemma shows that we can often assume the test function v to be
pointwise bounded.
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Lemma 4.3. Let ϕ ∈ �w(�) satisfy (aDec)q . If u ∈ W 1,ϕ(·)
loc (�) satisfies

ˆ
{v �=0}

ϕ(x, |∇u|) dx �
ˆ

{v �=0}
ϕ(x, |∇(u + v)|) dx

for all bounded v ∈ W 1,ϕ(·)(�) with spt v ⊂ �, then u is a local minimizer of the
ϕ-energy in �.

Proof. Since ϕ satisfies (aDec)q , bounded Sobolev functions are dense in
W 1,ϕ(·)(�) [15, Lemma 6.4.2]. From the proof we see that if v ∈ W 1,ϕ(·)(�),
then truncations of v at level k, vk = max{min{v(x), k},−k}, converge to v in
W 1,ϕ(·)(�). Additionally, spt vk = spt v. Therefore, let v be as in Definition 4.2
and vk be its truncations. Then, as u is assumed to be a local minimizer when tested
with bounded Sobolev functions with compact support and convergence inmodular
and norm are equivalent as ϕ satisfies (aDec)q , we get

ˆ
{v �=0}

ϕ(x, |∇u|) dx =
ˆ

{vk �=0}
ϕ(x, |∇u|) dx �

ˆ
{vk �=0}

ϕ(x, |∇(u + vk)|) dx

=
ˆ

{v �=0}
ϕ(x, |∇(u + vk)|) dx .

Next, as vk is a truncation, we split the integration domain accordingly
ˆ

{v �=0}
ϕ(x, |∇(u + vk)|) dx =

ˆ
{v �=0}

χ{|v|�k}ϕ(x, |∇(u + v)|) dx

+
ˆ

{v �=0}
χ{|v|>k}ϕ(x, |∇(u + k)|) dx

=
ˆ

{v �=0}
χ{|v|�k}ϕ(x, |∇(u + v)|) dx

+
ˆ

{v �=0}
χ{|v|>k}ϕ(x, |∇u|) dx

→
ˆ

{v �=0}
ϕ(x, |∇(u + v)|) dx

byLebesgue’smonotone converge theorem for increasing anddecreasing sequences
and the fact that every integral is finite. Thus combining two previous displays, we
see that u is a local minimizer of the ϕ-energy in �. ��

Next we give a suitably general condition for non-emptiness of K f
ψ(�) and

flexibility for the boundary function f . We then show that being a minimizer of the
obstacle problem is a local property with suitable boundary values. For the rest of
the paper we implicitly assume that K f

ψ(�) is non-empty.

Proposition 4.4. Let ϕ ∈ �w(�) satisfy (A0), (A1) and (aDec)q and let f, ψ ∈
W 1,ϕ(·)(�). Then K f

ψ(�) �= ∅ if and only if (ψ − f )+ ∈ W 1,ϕ(·)
0 (�).
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Proof. Suppose first that u ∈ K f
ψ(�). Then by Lemma 3.1 we see that

0 � (ψ − f )+ � (u − f )+ = −min{−(u − f ), 0} ∈ W 1,ϕ(·)
0 (�). (4.5)

Now the conclusion follows from Lemma 3.2.
Suppose then that (ψ − f )+ ∈ W 1,ϕ(·)

0 (�) and define u := max{ψ, f } ∈
W 1,ϕ(·)(�). Now

u − f = max{ψ − f, 0} = (ψ − f )+ ∈ W 1,ϕ(·)
0 (�) and u � ψ in �.

Therefore u ∈ K f
ψ(�). ��

As f matters essentially only in the boundary, it can be modified inside�. This
is useful, as for technical reasons we would like f to be above the obstacle in �.

Lemma 4.6. Let ϕ ∈ �w(�) satisfy (A0) and (A1) and suppose that u ∈ K f
ψ(�).

Then u ∈ K f̃
ψ(�), where f̃ � ψ almost everywhere in �.

Proof. Define f̃ := max{ f, ψ}. First, we notice that f̃ = (ψ − f )+ + f . Second,
from Lemma 3.1 we deduce as in (4.5) that Lemma 3.2 implies (ψ − f )+ ∈
W 1,ϕ(·)

0 (�) and it is clear that u − f̃ ∈ W 1,ϕ(·)
0 (�). Thus we can use f̃ instead of

f as the function assigning boundary values. ��
Lemma 4.7. Let ϕ ∈ �w(�). Then a function u ∈ W 1,ϕ(·)(�) is a minimizer of
theKu

ψ(�)-obstacle problem if and only if u is a minimizer of theKu
ψ(D)-obstacle

problem for every open D ⊂ �.

Proof. Let us first suppose that u is a minimizer of the Ku
ψ(�)-obstacle problem.

Let v ∈ Ku
ψ(D). Since u − v ∈ W 1,ϕ(·)

0 (D), there exist functions η j ∈ C∞
0 (D)

such that η j → u − v ∈ W 1,ϕ(·)
0 (D). By a zero extension we see that η j ∈ C∞

0 (�)

for every j , which implies that u − v has a zero extension to W 1,ϕ(·)
0 (�), denoted

by h. Now we can define

ũ(x) :=
{
u(x) if x ∈ � \ D
v(x) if x ∈ D

which belongs toKu
ψ(�) as ũ = u−h ∈ W 1,ϕ(·)(�) and it has the correct boundary

values in the Sobolev sense. Now, because u is a minimizer of theKu
ψ(�)-obstacle

problem, we get
ˆ

�

ϕ(x, |∇u|) dx �
ˆ

�

ϕ(x, |∇ũ|) dx=
ˆ
D

ϕ(x, |∇v|) dx+
ˆ

�\D
ϕ(x, |∇u|) dx .

After subtracting
´
�\D ϕ(x, |∇u|) dx from both sides we see that u is also a mini-

mizer of the Ku
ψ(D)-obstacle problem.

The other direction follows immediately by choosing D = �. ��
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We recall that a solution of the K f
ψ(�)-obstacle problem is a local supermini-

mizer [3, Proposition 7.16] and an opposite relation also holds.

Proposition 4.8. Let ϕ ∈ �w(�). Then a function u is a local superminimizer in�

if and only if u is a minimizer of Ku
u(�

′)-obstacle problem for every open �′ � �.

Proof. Suppose first that u is a local superminimizer in �. Since �′ � � we have
u ∈ W 1,ϕ(·)(�′) and therefore u ∈ Ku

u(�
′). Now, let v ∈ Ku

u(�
′) be arbitrary

and denote w := max{u, v}. Clearly w = v almost everywhere in �′ and thus
η := w − u ∈ W 1,ϕ(·)

0 (�′) is nonnegative. Now, we use the local superminimality
of u in the set {η �= 0} and the fact that ∇η = 0 almost everywhere in the set
{η = 0} to get
ˆ

�′
ϕ(x, |∇u|) dx =

ˆ
{η=0}

ϕ(x, |∇u|) dx +
ˆ

{η �=0}
ϕ(x, |∇u|) dx

�
ˆ

{η=0}
ϕ(x, |∇(u + η)|) dx +

ˆ
{η �=0}

ϕ(x, |∇(u + η)|) dx

=
ˆ

�′
ϕ(x, |∇w|) dx =

ˆ
�′

ϕ(x, |∇v|) dx .

So u is a minimizer of a Ku
u(�

′)-obstacle problem.
Now suppose that u is a minimizer of a Ku

u(�
′)-obstacle problem for every

�′ � �. Let v ∈ W 1,ϕ(·)(�) be nonnegative such that {v > 0} � � and let �′ be
an open set such that {v > 0} ⊂ �′ � �. Therefore v is an admissible test function
for local superminimizers. As u is a minimizer of theKu

u(�
′)-obstacle problem and

u + v ∈ Ku
u(�

′), we have
ˆ

�′
ϕ(x, |∇u|) dx �

ˆ
�′

ϕ(x, |∇(u + v)|) dx

and therefore u is a local superminimizer in �. ��

Remark 4.9. From the previous proof we get also the following result: If a local
superminimizer u in � belongs to W 1,ϕ(·)(�), it is a minimizer of the Ku

u(�)-
obstacle problem.

Next we prove a comparison principle for the obstacle problem. Strong assump-
tions are needed to guarantee uniqueness of the minimizer. Note that comparison
principle also implies uniqueness of theminimizer of theK f

ψ(�)-obstacle problem.

Proposition 4.10. (Comparison principle) Let ϕ ∈ �c(�) be strictly convex and
satisfy (A0), (A1) and (aDec)q . Let ψ1, ψ2 : � → [−∞,∞), f1, f2 ∈ W 1,ϕ(·)(�)

and let u1 and u2 be solutions to the K f1
ψ1

(�) and K f2
ψ2

(�)-obstacle problems,

respectively. If ψ1 � ψ2 almost everywhere in � and ( f1 − f2)+ ∈ W 1,ϕ(·)
0 (�),

then u1 � u2 almost everywhere in �.
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Proof. Let u := min{u1, u2} and h := u1− f1−(u2− f2) ∈ W 1,ϕ(·)
0 (�). Note that

h− ∈ W 1,ϕ(·)
0 (�) by Lemma 3.1 since both h and the constant function 0 belong to

W 1,ϕ(·)
0 (�) and ϕ satisfies (A0), (A1) and (aDec)q . Now

h � min{ f2 − f1, h} = −max{ f1 − f2,−h}
� −(

max{ f1 − f2, 0} + max{−h, 0})
= −( f1 − f2)+ − h−.

Therefore, as −( f1 − f2)+ − h− and h belong to W 1,ϕ(·)
0 (�) and ϕ satisfies the

assumptions in Lemma 3.2, we get that min{ f2 − f1, h} ∈ W 1,ϕ(·)
0 (�). This in turn

implies that

u − f1 = min{u2 − f1, u1 − f1} = u2 − f2 + min{ f2 − f1, h} ∈ W 1,ϕ(·)
0 (�).

Because u � ψ1 almost everywhere in �, we see that u ∈ K f1
ψ1

(�).

Now let v := max{u1, u2} and h̃ := u2 − f2 − (u1 − f1) ∈ W 1,ϕ(·)
0 (�). As

before, we get

h̃ � max{ f1 − f2, h̃} � max{ f1 − f2, 0} + max{h̃, 0} = ( f1 − f2)+ + h̃+.

By assumptions and Lemma 3.1, the functions ( f1 − f2)+, h̃ and h̃+ =
−min{−h̃, 0} belong toW 1,ϕ(·)

0 (�), so from Lemma 3.2 we deduce that max{ f1 −
f2, h̃} ∈ W 1,ϕ(·)

0 (�). Again,

v − f2 = max{u1 − f2, u2 − f2} = u1 − f1 + max{ f1 − f2, h̃} ∈ W 1,ϕ(·)
0 (�).

Finally, since v � ψ2 almost everywhere in �, we see that v ∈ K f2
ψ2

(�).

Let A := {u1 > u2}. Since u2 is a minimizer of the K f2
ψ2

(�)-obstacle problem,
we find ˆ

�

ϕ(x, |∇u2|) dx �
ˆ

�

ϕ(x, |∇v|) dx

=
ˆ
A

ϕ(x, |∇u1|) dx +
ˆ

�\A
ϕ(x, |∇u2|) dx .

Now it follows that ˆ
A

ϕ(x, |∇u2|) dx �
ˆ
A

ϕ(x, |∇u1|) dx

and thereforeˆ
�

ϕ(x, |∇u|) dx =
ˆ
A

ϕ(x, |∇u2|) dx +
ˆ

�\A
ϕ(x, |∇u1|) dx

�
ˆ

�

ϕ(x, |∇u1|) dx .
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Now since u1 is a minimizer of the K f1
ψ1
-obstacle problem, so is u. But because ϕ

is strictly convex and satisfies (A0), the minimizer of the obstacle problem has to
be unique [16, Theorem 7.5]. Therefore u1 = u = min{u1, u2} almost everywhere
in � and thus u1 � u2 almost everywhere in �. ��

The following result is not needed in the rest of the paper, but as it follows
quickly from the Comparison principle, we present it for the interested reader.

Proposition 4.11. Letϕ ∈ �c(�) satisfy (A0), (A1), (aDec)q and be strictly convex.

Let u be a minimizer of the K f
ψ(�)-obstacle problem and v ∈ K f

ψ(�) be a local
superminimizer. Then u � v almost everywhere in �.

Proof. Since v ∈ K f
ψ(�), we have that v ∈ W 1,ϕ(·)(�) and by Proposition 4.8

v is the minimizer of the Kv
v(�)-obstacle problem. Since u and v have the same

boundaryvalues inSobolev sense andv � ψ wehave from the comparisonprinciple
(Proposition 4.10) that u � v almost everywhere in �. ��

5. Continuity in the interior

Later in Sect. 6 we prove boundary continuity results relating to the solution of the
obstacle problem. The proofs rely heavily to similar results inside a domain and the
main strategy is to prove irrelevance of the obstacle in most of the points in �. At
first in this section we collect the relevant results from [13] and formulate them for
the obstacle problem and for balls instead of cubes. The original reason for cubes
has been to employ Krylov–Safanov covering theorem.

The first lemma corresponds to [13, Lemma 3.2], where instead of minimizer
of the K f

ψ(�)-obstacle problem there is a local quasisubminimizer. All we need
to note is that in the proof instead of −wη being negative, we have that v � ψ if
k � ψ . We also define A(k, r) := B ∩ {u > k} for any B � � with radius r . If
ψ(y) = ∞ for some y ∈ B(x, R), we have A(k, R) = ∅ and the estimate is trivial.

Lemma 5.1. (Caccioppoli inequality) Let ϕ ∈ �w(�) satisfy (aDec)q . Let u be a

minimizer of theK f
ψ(�)-obstacle problem. Then for all k � supB(x,R) ψ in B(x, R)

we have ˆ
A(k,r)

ϕ(x, |∇(u − k)+|) dx � C
ˆ
A(k,R)

ϕ

(
x,

u − k

R − r

)
dx (5.2)

where the constant C depends only on the (aDec)q constants of ϕ.

Nowsince u satisfies the previousCaccioppoli inequality, we have the following
boundedness result [13, Proposition 3.3].

Proposition 5.3. Let ϕ ∈ �w(�) satisfy (A0), (A1), (aInc)p and (aDec)q . Suppose
that u ∈ W 1,ϕ(·)(�) satisfies the Caccioppoli inequality (5.2). Then there exists
R0 ∈ (0, 1) such that

ess sup
1
2 B

u � k0 + 1 + cR
− q

αp

(ˆ
2B

ϕ(x, (u − k0)+) dx

) 1
p

,
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for every k0 � sup2B ψ in 2B, where B := B(y, R), when R ∈ (0, R0] such that
B(y, 6R0) ⊂ �. Here R0 is such that R0 � c(n) and 
Lϕ(·)(B6R0 )(∇u) � 1, α is
a constant that depends on n, p and q, and the constant c depends only on the
parameters in assumptions and the dimension n.

By assuming (A1-n) and boundedness of the minimizer instead of assuming
(A1) we have the following result [13, Corollary 3.6].

Proposition 5.4. Let ϕ ∈ �w(�) satisfy (A0), (A1-n) and (aDec)q and suppose
that u is locally bounded and satisfies the Caccioppoli inequality (5.2). Then

ess sup
1
2 B

u − k � C

⎡
⎣(ˆ

2B
(u − k)q+ dx

) 1
q + R

⎤
⎦

when B := B(y, R) with R ∈ (0, R0] such that B(y, 6R0) ⊂ � and k � ψ(x)
almost everywhere in 2B and q ∈ (0,∞). The constant C depends only on the
parameters in assumptions (A0), (A1-n) and (aDec)q , n, R0, ‖u‖L∞(B) and q.
Especially the constant is independent of R.

Next we use the fact that u is also a local superminimizer (Proposition 4.8)
to get an infimum estimate from below [13, Theorem 4.3]. Since we are aiming
for the weak Harnack inequality we need to assume also nonnegativity of the
minimizer u.

Proposition 5.5. (The weakHarnack inequality) Let ϕ ∈ �w(�) satisfy (A0), (A1-
n), (aInc)p and (aDec)q . Let u ∈ W 1,ϕ(·)

loc (�) be locally bounded nonnegative local
(quasi)superminimizer or a locally bounded minimizer of an obstacle problem in
�. Then there exists an exponent h > 0 such that

( 
B(y,R)

uh dx

)1/h

� C

[
ess inf
B(y,R/2)

u + R

]

for every R � c(n) with B(y, 6R) � � and
´
B(y,6R)

ϕ(x, |∇u|) dx � 1. The
constant C depends only on the parameters in the assumptions and n.

The final result we borrow from non-obstacle case is [13, Theorem 4.4]. It
follows directly to our case since a minimizer of the K f

ψ(�)-obstacle problem is
also a local superminimizer (Proposition 4.8).

Proposition 5.6. Let ϕ ∈ �w(�) satisfy (A0), (A1-n), (aInc)p and (aDec)q . Let u

be a minimizer of the K f
ψ(�)-obstacle problem which is bounded from below and

set

u∗(x) := ess lim
y→x

inf u(y) := lim
r→0

ess inf
B(x,r)

u.

Then u∗ is lower semicontinuous and u = u∗ almost everywhere.

The next scheme is to use lower semicontinuous representatives to prove con-
tinuity of u. The first lemma shows that u can be defined pointwise everywhere.
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Lemma 5.7. Let ϕ ∈ �w(�) satisfy (A0), (A1-n), (aInc)p and (aDec)q . Assume
that u is a locally bounded local superminimizer in �. Then

u∗(x) = lim
r→0

 
B(x,r)

u dy

for all x ∈ �.

Proof. Fix x ∈ � and denote mr := ess infB(x,r) u when r is small enough to
guarantee that B(x, 6r) � �. As u is assumed to be locally bounded we may
assume that mr � M < ∞. Note that mr is a constant when x and r are fixed.
Therefore the function u − m4r is a local superminimizer in the set B(x, r) when
x and r are fixed. The weak Harnack inequality (Proposition 5.5) implies

0 �
 
B(x,6r)

(u − m4r )
h dy � C [(mr − m4r ) + r ]h .

Note that by Hölder’s inequality we can choose h ∈ (0, 1] in Proposition 5.5. Since
u is bounded, the right-hand side converges to 0 as r → 0. Therefore we get

lim
r→0

 
B(x,6r)

(u − m4r )
h dy = 0.

Combining this with the fact that u is locally bounded (Proposition 5.4) we find
that

0 �
 
B(x,6r)

u − m4r dy �
 
B(x,6r)

(u − m4r )
h sup
y∈B(x,6r)

(u − m4r )
1−h dy

= sup
y∈B(x,6r)

(u − m4r )
1−h

 
B(x,6r)

(u − m4r )
h dy → 0.

In conclusion

lim
r→0

 
B(x,6r)

u − m4r dy = 0.

Since u∗ is the lower semicontinuous representative, the previous limit implies

u∗(x) = ess lim
y→x

inf u(y) = lim
r→0

 
B(x,6r)

u dy

for all x ∈ �. ��
Finally we can prove the continuity of the minimizer of a K f

ψ(�)-obstacle
problem in �. This proof is a modification of [3, Theorem 8.29]. By lower semi-
continuously regularized we mean that u(x) = ess lim inf y→xu(y), that is u = u∗.
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Theorem 5.8. Assume thatψ : � → [−∞,∞) is continuous and f ∈ W 1,ϕ(·)(�).
Let ϕ ∈ �w(�) satisfy (A0), (A1), (A1-n), (aInc)p and (aDec)q . Let u be a mini-

mizer of theK f
ψ(�)-obstacle problem. Then the lower semicontinuously regularized

representative of a minimizer is continuous.
Moreover, if ϕ is convex, then u is a local minimizer (and therefore locally

Hölder continuous) in the open set A = {x ∈ � : u(x) > ψ(x)} with boundary
values u.

Proof. Let us denote the lower semicontinuous representative of u still by u. To
show that u is continuous, we need to prove that

lim sup
y→x

u(y) � u(x)

for all x ∈ �. By local boundedness (Proposition 5.3) and lower semicontinuity
this implies that u is real valued and continuous.

Let x ∈ � and ε be positive. By continuity of ψ we can pick a radius r such
that B := B(x, r) � 2B � � and sup2B ψ � ψ(x) + ε. Also, the ball B can be
chosen to satisfy

ess inf
B

u > u(x) − ε, (5.9)

as u is finite by the Proposition 5.4 and it is lower semicontinuous. Now lower
semicontinuity of u and continuity of ψ imply that

u(x) = ess lim
y→x

inf u(y) � ess lim
y→x

inf ψ(y) = ψ(x) � sup
2B

ψ − ε.

Now from Proposition 5.4 and (5.9) we have for k = u(x) + ε, q = 1 and B ′ :=
B(x, r ′), 0 < r ′ < r ,

ess sup
1
2 B

′
(u − (u(x) + ε)) � C

 
2B′

(u − (u(x) + ε))+ dy + r ′

� C
 
2B′

(u − (u(x) − ε))+ dy + r ′

= C
 
2B′

(u − (u(x) − ε)) dy + r ′

= C

( 
2B′

u dy − u(x) + ε

)
+ r ′.

From Lemma 5.7 we have

u(x) = lim
r→0

 
B(x,r)

u(y) dy.

Therefore

ess lim
y→x

sup u(y) − u(x) − ε � Cε.
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Thus the claim follows by letting ε → 0+.
Next we prove the second claim. We see that A is open by the continuity

of u and ψ . Since ϕ satisfies (aDec)q , by Lemma 4.3 it is enough to test the local
minimizerwith bounded and compactly supported Sobolev functions. Therefore, let
v ∈ W 1,ϕ(·)(A) be bounded and compactly supported. Since u andψ are continuous
and u > ψ in A, there exists ε > 0 such that u � ψ+ε in the compact set spt v ⊂ A.
By boundedness of v, we can choose t ∈ (0, 1) such that

w := (1 − t)u + t (u + v) = u + tv � ψ

in A. Therefore w ∈ Ku
ψ(A). Now, since u is a minimizer of the Ku

ψ(A)-obstacle
problem (Lemma 4.7) and ϕ is convex, we see that
ˆ
A

ϕ(x, |∇u|) dx �
ˆ
A

ϕ(x, |∇w|) dx �
ˆ
A

ϕ(x, (1 − t)|∇u| + t |∇(u + v)|) dx

� (1 − t)
ˆ
A

ϕ(x, |∇u|) dx + t
ˆ
A

ϕ(x, |∇(u + v)|) dx .

Next we subtract the first term on the right-hand side and divide by t to obtain
ˆ
A

ϕ(x, |∇u|) dx �
ˆ
A

ϕ(x, |∇(u + v)|) dx .

Now, since |∇v| = 0 almost everywhere in the set {v = 0}, we get
ˆ

{v �=0}
ϕ(x, |∇u|) dx +

ˆ
{v=0}

ϕ(x, |∇u|) dx

=
ˆ
A

ϕ(x, |∇u|) dx �
ˆ
A

ϕ(x, |∇(u + v)|) dx

=
ˆ

{v �=0}
ϕ(x, |∇(u + v)|) dx +

ˆ
{v=0}

ϕ(x, |∇u|) dx .

Subtracting the last term on the right-hand side from both sides, we get
ˆ

{v �=0}
ϕ(x, |∇u|) dx �

ˆ
{v �=0}

ϕ(x, |∇(u + v)|) dx .

By Lemma 4.3, u is a local minimizer in A and from [18, Corollary 1.5] we obtain
local Hölder continuity of u in A. ��

6. Continuity up to the boundary

In order to prove the first main theorem, we need to define regular boundary points
of a set �. In [13, Theorem 1.1] it was proven that a point is regular if the so called
ϕ-fatness condition is satisfied at x0 and if ϕ is regular enough. In Proposition 6.4
we prove that the measure density condition (2.7) implies ϕ-fatness when q < n.

First we give notation for minimizers for given boundary values. Note that
continuous functions can be approximated by Lipschitz functions.
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Definition 6.1. Let H( f ) denote the minimizer of the Dirichlet energy
ˆ

�

ϕ(x, |∇v|) dx

with boundary values f ∈ W 1,ϕ(·)(�). If g ∈ C(∂�), then

Hg(x) := sup
f �g

f is Lipschitz

H( f )(x).

Let � ⊂ R
n . A point x ∈ ∂� is called regular if

lim
y→x
y∈�

H f (y) = f (x)

for all f ∈ C(∂�).

The next theorem is the main result of [13].

Theorem 6.2. Let � ⊂ R
n be bounded and x0 ∈ ∂�. Let ϕ ∈ �c(R

n) be strictly
convex and satisfy (A0), (A1), (A1-n), (aInc)p and (aDec)q . If the complement of �
is locally ϕ-fat at x0 in the sense of (2.8), then x0 is a regular boundary point.

Most often capacity of balls is somewhat straightforward to compute. This is
the case also with ϕ-capacity, if we assume (aDec)q , as we have the estimate [13,
Lemma 2.8]

c|B|ϕ−
2B

( 1
r

)
� Cϕ(B, 2B) � c|B|ϕ+

2B

( 1
r

)
. (6.3)

It is also noteworthy to mention that upper and lower bounds are comparable when
(A1-n) is in force.

Next we extend the relation between measure density condition and capacity
fatness to generalized Orlicz case. Note that the assumption q < n corresponds to
the classical p-fatness situation, where it is commonly assumed that p < n since
otherwise singleton sets have positive capacity.

Lemma 6.4. Let ϕ ∈ �w(Rn) satisfy (A0), (A1), (A1-n) and (aDec)q . If q < n and
the measure density condition (2.7) is satisfied at x0 ∈ ∂�, then the complement of
� is locally ϕ-fat at x0.

Proof. Denote E := B(x0, r) \ � and let v be an admissible test function for
Cϕ(E, 2B).

Now using (aDec)q and Poincaré inequality for ϕ−
2B with a small constant β

[15, Corollary 7.4.1] we estimate

ϕ−
2B

( 1
r

) |E | =
ˆ
E

ϕ−
2B

( 1
r

)
dx �

ˆ
E

ϕ−
2B

(
v
r

)
dx � Lβ−q

ˆ
2B

ϕ−
2B

(
βv

r

)
dx

� C
ˆ
2B

ϕ−
2B(|∇v|) dx � C

ˆ
2B

ϕ(x, |∇v|) dx .
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Taking infimum over admissible functions v we get

Cϕ(E, 2B) � C |E |ϕ−
2B

( 1
r

)
. (6.5)

As (A1-n) implies that ϕ+
2B( 1r ) and ϕ−

2B( 1r ) are comparable, from (6.5) and the
measure density condition (2.7) we deduce

Cϕ(B(x0, r) \ �, 2B) � c∗ |B(x0, r) \ �| ϕ−
2B

( 1
r

)
� c∗ |B| ϕ−

2B

( 1
r

)
� c∗ |B| ϕ+

2B

( 1
r

)
� c∗ Cϕ(B(x0, r), 2B),

where the last inequality follows from (6.3). Thus the capacity fatness condition is
satisfied at x0. ��

Finally we are ready to prove the continuity of a minimizer up to the boundary.

Proof of Theorem 1.1. By Lemma 4.6 we can assume that f � ψ . Let us first show
that

lim sup
x→x0

u(x) � f (x0). (6.6)

Let us denote D := {x ∈ � : u(x) > f (x)}. If D = ∅, then (6.6) holds trivially.
Let us then suppose that D is not the empty set. If x0 /∈ ∂�∩ ∂D, then there would
exist an open set U ⊂ � \ D containing x0 and (6.6) would follow again trivially.
Therefore let x0 ∈ ∂� ∩ ∂D. First we need to show that u − f ∈ W 1,ϕ(·)

0 (D).
Since ϕ satisfies (A0), (A1), (aDec)q and D is bounded, C∞(D) ∩ W 1,ϕ(·)(D)

is dense inW 1,ϕ(·)(D) [15, Theorem 6.4.6]. Let us denote v j := max{u− f − 1
j , 0}

and notice by continuity of u and f that it has compact support in D for every j .
From [18, Lemma 3.4] we have that compactly supported Sobolev–Orlicz functions
belong toW 1,ϕ(·)

0 (D), especially v j ∈ W 1,ϕ(·)
0 (D) for every j . Bymonotone conver-

gence [16, Theorem 4.1], u− f − 1
j converges to u− f inW 1,ϕ(·)(D) and therefore

by Lemma 3.3 (v j ) has a subsequence converging to max{u − f, 0} = u − f in

W 1,ϕ(·)(D). Since W 1,ϕ(·)
0 (D) is closed, we see that u − f ∈ W 1,ϕ(·)

0 (D).
Since by assumption, f � ψ in �, by Theorem 5.8 u is a local minimizer in

D with u − f ∈ W 1,ϕ(·)
0 (D). Since D ⊂ �, the capacity fatness condition with

respect to D is satisfied at x0:

Cϕ(B(x0, r) \ D, B(x0, 2r)) � Cϕ(B(x0, r) \ �, B(x0, 2r))

� c Cϕ(B(x0, r), B(x0, 2r)),

where the first inequality follows from monotonicity of capacity [13, (C2) on p. 6].
Now it follows from Theorem 6.2 that x0 ∈ ∂� ∩ ∂D is a regular boundary point,
that is

lim
x→x0
x∈D

u(x) = f (x0).
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Since u � f in � \ D we get (6.6).
It remains to show that

lim inf
x→x0

u(x) � f (x0). (6.7)

Let h be the unique minimizer with h − f ∈ W 1,ϕ(·)
0 (�). By the comparison

principle (Proposition 4.10) we have that h � u in �. Therefore by regularity of
x0 we get

lim inf
x→x0

u(x) � lim
x→x0

h(x) = f (x0).

Combining (6.6) and (6.7) yields

lim sup
x→x0

u(x) � f (x0) � lim inf
x→x0

u(x)

from which we see that

lim
x→x0

u(x) = f (x0).

Therefore u is continuous at the point x0 ∈ ∂�. ��

7. Higher integrability of the gradient

We start by proving two Caccioppoli inequalities: one inside the domain and one
near the boundary. The proofs are quite standard and similar usage of test functions
can be found from example in [5]. In the next Caccioppoli inequality assumptions
(A0), (A1) and (aInc)p are only to use Sobolev–Poincaré inequality for ψ , which
combines terms involving ψ − ψ2B and ∇ψ for simpler result. Assuming only
(aDec)q would yield the result as in (7.3). Compared to the Caccioppoli inequality
previously presented in Lemma 5.1, now we do not limit ourselves to the positive
part of the minimizer and the obstacle appears as an energy rather than a bound for
the constant k. The second Caccioppoli inequality on the other hand leverages the
boundary function rather than the obstacle.

Lemma 7.1. (Interior Caccioppoli inequality) Let ϕ ∈ �w(�) satisfy (A0), (A1),
(aInc)p and (aDec)q , and let u be a minimizer of the K f

ψ(�)-obstacle problem

where f, ψ ∈ W 1,ϕ(·)(�). Then we have

 
B

ϕ(x, |∇u|) dx � C
 
2B

ϕ

(
x,

|u − u2B |
diam(2B)

)
dx + C

 
2B

ϕ(x, |∇ψ |) dx + C,

(7.2)

in the ball B with and 2B ⊂ �, ‖∇ψ‖Lϕ(·)(2B) < 1 and a constant C = C(n, ϕ).
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Proof. Choose 1 � s < t � 2. Let η ∈ C∞
0 (t B) be a cut-off function such that

η = 1 in sB, 0 � η � 1, η = 0 in 2B \ t B and |∇η| � 2
(t−s)r . Let v be the

following test function

v := u − u2B − η(u − u2B − (ψ − ψ2B)).

First, it needs to be shown that v is an admissible test function for a suitable
obstacle problem. Indeed, v ∈ K f −u2B

ψ−u2B
(�) since v − ( f − u2B) ∈ W 1,ϕ(·)

0 (�),
because η ∈ C∞

0 (2B), and

v = (1 − η)(u − u2B) + η(ψ − ψ2B)

� (1 − η)(ψ − u2B) + η(ψ − u2B) = ψ − u2B

almost everywhere in � because u � ψ almost everywhere in �.
A direct calculation yields

|∇v| � (1 − η)|∇u| + η|∇ψ | + |u − u2B − (ψ − ψ2B)||∇η|.

Since u is a minimizer of the obstacle problemK f
ψ(�), we deduce that u−u2B

is a minimizer ofK f −u2B
ψ−u2B

(�) for which v is an admissible test function. Therefore,
as Lemma 4.7 guarantees that u − u2B is a minimizer also in t B, it follows that

ˆ
t B

ϕ(x, |∇u|) dx =
ˆ
t B

ϕ(x, |∇(u − u2B)|) dx �
ˆ
t B

ϕ(x, |∇v|) dx

�
ˆ
t B

ϕ
(
x, (1 − η)|∇u| + η|∇ψ |

+ (u − u2B − (ψ − ψ2B))|∇η|) dx .
Since ϕ satisfies (aDec)q , we can use (2.3) to split the sum inside of ϕ. This

together with the fact that η � 1 yields
ˆ
t B

ϕ(x, |∇u|) dx � C
ˆ
t B

ϕ(x, (1 − η)|∇u|) dx + C
ˆ
t B

ϕ(x, |∇ψ |) dx

+C
ˆ
t B

ϕ

(
x,

|u − u2B − (ψ − ψ2B)|
(t − s)r

)
dx .

Since η = 1 in sB, we see thatϕ(x, (1−η)|∇u|) = 0 in sB. Also, by decreasing
the set t B on the left-hand side of the inequality and increasing the set t B on the
right-hand side, we get

ˆ
sB

ϕ(x, |∇u|) dx � C
ˆ
t B\sB

ϕ(x, |∇u|) dx + C
ˆ
2B

ϕ(x, |∇ψ |) dx

+C
ˆ
2B

ϕ

(
x,

|u − u2B − (ψ − ψ2B)|
(t − s)r

)
dx .

Now we use the hole-filling trick by adding C
´
sB ϕ(x, |∇u|) dx to both sides

of the previous inequality and get C + 1 of them in the left-hand side while having
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just constant C on the right-hand side. Now after dividing the inequality by C + 1
we get a constant θ < 1 as the first constant on the right-hand side

ˆ
sB

ϕ(x, |∇u|) dx �θ

ˆ
t B

ϕ(x, |∇u|) dx + C
ˆ
2B

ϕ(x, |∇ψ |) dx

+ C
ˆ
2B

ϕ

(
x,

|u − u2B − (ψ − ψ2B)|
(t − s)r

)
dx .

Identifying this inequality with the one in iteration Lemma 3.6, we see after
changing to averages that

 
B

ϕ(x, |∇u|) dx �C
 
2B

ϕ

(
x,

|u − u2B |
r

+ |ψ − ψ2B |
r

)
dx

+ C
 
2B

ϕ(x, |∇ψ |) dx .

As before, we can use (aDec)q to obtain

 
B

ϕ(x, |∇u|) dx � C
 
2B

ϕ

(
x,

|u − u2B |
r

)
dx + C

 
2B

ϕ

(
x,

|ψ − ψ2B |
r

)
dx

+ C
 
2B

ϕ(x, |∇ψ |) dx . (7.3)

Finally using (aDec)q and, as ϕ satisfies (A0), (A1) and (aInc)p, Sobolev–Poincaré
inequality (Proposition 3.5) with s = 1 we can estimate the term containing ψ

C
 
2B

ϕ

(
x,

|ψ − ψ2B |
r

)
dx � C

 
2B

ϕ(x, |∇ψ |) dx + C.

Therefore we get as an interior Caccioppoli inequality
 
B

ϕ(x, |∇u|) dx � C
 
2B

ϕ

(
x,

|u − u2B |
r

)
dx + C

 
2B

ϕ(x, |∇ψ |) dx + C.

Lastly, we use (aDec)q to convert from radius to diamater. ��
Lemma 7.4. (Caccioppoli inequality over the boundary) Let ϕ ∈ �w(�) satisfy
(aDec)q and let u be a minimizer of the K f

ψ(�)-obstacle problem where f, ψ ∈
W 1,ϕ(·)(�). Assume that there exists a compact set K ⊂ � such that f � ψ in
� \ K or that ϕ satisfies also (A0) and (A1). Then we have

1

|B|
ˆ
B∩�

ϕ(x, |∇u|) dx � C

|2B|
ˆ
2B∩�

ϕ

(
x,

|u − f |
diam(2B)

)
dx

+ C

|2B|
ˆ
2B∩�

ϕ(x, |∇ f |) dx
(7.5)

in the ball B := B(y, r) with y ∈ �, 2B \ � �= ∅ and r < r0
4 , where r0 :=

dist{K , ∂�} and constant the C depends only on n and ϕ.
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Proof. If ϕ satisfies (A0) and (A1), Lemma 4.6 allows us to assume that f � ψ and
therefore we can take the compact set K as ∅. As for the Caccioppoli inequality,
we choose 1 � s < t � 2 and η ∈ C∞

0 (t B) to be a cut-off function such that
η = 1 in sB, 0 � η � 1, η = 0 in 2B \ t B and |∇η| � 2

(t−s)r . This time we use

v := u − η(u − f ) as a test function. Here we note that v ∈ K f
ψ(t B ∩ �), since

f � ψ in � \ K and the radius r is small enough. Using similar approach as in
proof of interior Caccioppoli inequality, we getˆ

t B∩�

ϕ(x, |∇u|) dx �
ˆ
t B∩�

ϕ(x, |∇v|) dx

�
ˆ
t B∩�

ϕ(x, (1 − η)|∇u| + |u − f ||∇η| + η|∇ f |) dx

�C
ˆ
t B∩�

ϕ(x, (1 − η)|∇u|) dx

+ C
ˆ
t B∩�

ϕ(x, |u − f ||∇η|) dx

+ C
ˆ
t B∩�

ϕ(x, |∇ f |) dx .
Again by decreasing and increasing integration domains and noting that η = 1

in sB ∩ �, we continueˆ
sB∩�

ϕ(x, |∇u|) dx �C
ˆ

(t B\sB)∩�

ϕ(x, |∇u|) dx

+ C
ˆ
2B∩�

ϕ

(
x,

|u − f |
(t − s)r

)
dx

+ C
ˆ
2B∩�

ϕ(x, |∇ f |) dx .
Repeating the hole-filling trick as in the previous Caccioppoli inequality, we getˆ

sB∩�

ϕ(x, |∇u|) dx � θ

ˆ
t B∩�

ϕ(x, |∇u|) dx + C
ˆ
2B∩�

ϕ

(
x,

|u − f |
(t − s)r

)
dx

+ C
ˆ
2B∩�

ϕ(x, |∇ f |) dx
and thus repeating the iteration, Lemma 3.6, we end up withˆ

B∩�

ϕ(x, |∇u|) dx � C
ˆ
2B∩�

ϕ

(
x,

|u − f |
r

)
dx + C

ˆ
2B∩�

ϕ(x, |∇ f |) dx .
Now we divide by the measure of balls

1

|B|
ˆ
B∩�

ϕ(x, |∇u|) dx � C

|2B|
ˆ
2B∩�

ϕ

(
x,

|u − f |
r

)
dx

+ C

|2B|
ˆ
2B∩�

ϕ(x, |∇ f |) dx .
(7.6)

Finallywe use (aDec)q to change from r to diameter and get the desiredCaccioppoli
inequality. ��
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Next we prove the global higher integrability result.

Proof of Theorem 1.2. Let B := B(y, r) be a ball with y ∈ � and a radius r
satisfying

‖∇(u − f )‖Lϕ(·)(3B) + |3B| <
1

C
, ‖∇(u − f )‖

Lϕ1/s (3B)

<1 and ‖∇ψ‖Lϕ(·)(2B) < 1, (7.7)

where s � p satisfies the assumptions in the Sobolev–Poincaré inequality (Proposi-
tion 3.5) andC is the constant of the same inequality. If 2B ⊂ �, from Caccioppoli
inequality (Lemma 7.1) we have
 
B

ϕ(x, |∇u|) dx � C
 
2B

ϕ

(
x,

|u − u2B |
diam(2B)

)
dx + C

 
2B

ϕ(x, |∇ψ |) dx + C.

For the first term on the right-hand side we can use Sobolev–Poincaré inequality
(Proposition 3.5) and introduce a constant s > 1 from (7.7) such that

 
2B

ϕ

(
x,

|u − u2B |
diam(2B)

)
dx � C

( 
2B

ϕ(x, |∇u|)1/s dx
)s

+ C

� C

( 
3B∩�

ϕ(x, |∇u|)1/s dx
)s

+ C.

(7.8)

Now if 2B \ � �= ∅, then we use the Caccioppoli inequality over the boundary
(Lemma 7.4)

1

|B|
ˆ
B∩�

ϕ(x, |∇u|) dx � C

|2B|
ˆ
2B∩�

ϕ

(
x,

|u − f |
diam(2B)

)
dx

+ C

|2B|
ˆ
2B∩�

ϕ(x, |∇ f |) dx .

The idea is to use Sobolev–Poincaré inequality also to the term involving u− f ,
but this needs some preparation, as there is no integral average on the right-hand
side. First we notice that since u− f ∈ W 1,ϕ(·)

0 (�), it has a zero extension belonging
to W 1,ϕ(·)(Rn) as in the proof of Lemma 4.7. This allows us to extend the domain
of integration form 2B ∩ � to 2B. Second, we note that using (aDec)q we can
increase the radii of balls 

2B
ϕ

(
x,

|u − f |
diam(2B)

)
dx � |3B|

|2B|
 
3B

ϕ

(
x,

3

2

|u − f |
diam(3B)

)
dx

� C
 
3B

ϕ

(
x,

|u − f |
diam(3B)

)
dx .

(7.9)

Next we choose a ball B̃ := B̃(x0, r), where x0 ∈ 2B ∩ ∂�. It is easily seen
that B̃ ⊂ 3B. Also by appealing to measure density condition (2.7), we see that
there exists a constant c̃ ∈ (0, 1) such that

|{x ∈ 3B : u − f = 0}| � |{x ∈ B̃ : u − f = 0}| � |�c ∩ B̃| � c∗|B̃| � c̃|3B|.
(7.10)
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The second inequality follows since u − f has been defined as 0 in the com-
plement of �, but could this could happen also inside �. For brevity, let us denote
v := u − f and A := {x ∈ 3B : u − f = 0}. Let us also recall that

 
�

|g − g�′ | dy � 2
|�|
|�′|

 
�

|g − g�| dy (7.11)

when �′ ⊂ � has positive measure [23, Lemma 2.3].
Now by (7.10) the set A has positive measure and therefore it is meaningful to

state that vA = 0. With this we can write

 
3B

ϕ

(
x,

|v|
diam(3B)

)
dx �

 
3B

ϕ

(
x,

|v − v3B | + |v3B − vA|
diam(3B)

)
dx .

After an application of (aDec)q in the form of (2.3) we get

 
3B

ϕ

(
x,

|v|
diam(3B)

)
dx � C

 
3B

ϕ

(
x,

|v − v3B |
diam(3B)

)
dx

+ C
 
3B

ϕ

(
x,

|v3B − vA|
diam(3B)

)
dx .

(7.12)

The first term on the right-hand side can be estimated with Sobolev–Poincaré
inequality (Proposition 3.5) since (7.7) is in force. Let us then use (7.11) to estimate
the last term

 
3B

ϕ

(
x,

|v3B − vA|
diam(3B)

)
dx �

 
3B

ϕ

(
x,

ffl
3B

|v − vA| dy
diam(3B)

)
dx

� C
 
3B

ϕ

(
x,

2 |3B|
|A|

ffl
3B

|v − v3B | dy
diam(3B)

)
dx .

Now by using (7.10) and (aDec)q we get

 
3B

ϕ

(
x,

|v3B − vA|
diam(3B)

)
dx � C

 
3B

ϕ

(
x,

ffl
3B

|v − v3B | dy
diam(3B)

)
dx .

From (7.7) we especially have that ‖∇v‖Lϕ(·)(3B) < 1. Thus by Sobolev–
Poincaré inequality (Proposition 3.5) with s = 1 and (7.7) we have that

ˆ
3B

ϕ

(
x,

|v − v3B |
diam(3B)

)
dx � C

[ˆ
3B

ϕ(x, |∇v|) dx + |3B|
]

< 1.

By the unit-ball property (2.5), we see that

∥∥∥∥ v − v3B

diam(3B)

∥∥∥∥
Lϕ(·)(3B)

� 1, so the

assumptions of the Jensen type estimate (Lemma 3.4) are satisfied. Now using it to
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pull the integral out from the ϕ and noticing that outer integral average is redundant,
we continue
 
3B

ϕ

(
x,

|v3B − vA|
diam(3B)

)
dx � C

 
3B

 
3B

ϕ

(
y,

|v − v3B |
diam(3B)

)
dy + 1 dx

= C
 
3B

ϕ

(
y,

|v − v3B |
diam(3B)

)
dy + C.

(7.13)

Now the last integral is in a form to which the Sobolev–Poincaré inequality is
applicable and we see that (after the backwards substitution v = u − f )

 
3B

ϕ

(
x,

|u − f |
diam(3B)

)
dx � C

( 
3B

ϕ(x, |∇(u − f )|)1/s dx
)s

+ C

= C

(
1

|3B|
ˆ
3B∩�

ϕ(x, |∇(u − f )|)1/s dx
)s

+ C,

where the equality follows, as u− f = 0 outside of �. Now finishing with triangle
inequality, (aDec)q and Hölder’s inequality we conclude that

 
3B

ϕ

(
x,

|u − f |
diam(3B)

)
dx � C

(
1

|3B|
ˆ
3B∩�

ϕ(x, |∇u|)1/s dx
)s

+ C

(
1

|3B|
ˆ
3B∩�

ϕ(x, |∇ f |)1/s dx
)s

+ C

� C

(
1

|3B|
ˆ
3B∩�

ϕ(x, |∇u|)1/s dx
)s

+ C

|3B|
ˆ
3B∩�

ϕ(x, |∇ f |) dx + C.

(7.14)

Combining the Caccioppoli inequalities (Lemmas 7.1 and 7.4 ), (7.8) and (7.14)
we have

1

|B|
ˆ
B∩�

ϕ(x, |∇u|) dx �C

(
1

|3B|
ˆ
3B∩�

ϕ (x, |∇u|)1/s dx

)s

+ C

|3B|
ˆ
3B∩�

ϕ(x, |∇ψ |) dx

+ C

|3B|
ˆ
3B∩�

ϕ(x, |∇ f |) dx + C.

(7.15)

Now let

g :=
{

ϕ(x, |∇u|), if x ∈ �

0 if x /∈ �
,

h :=
{

ϕ(x, |∇ψ |) + ϕ(x, |∇ f |), if x ∈ �

0 if x /∈ �.
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Writing (7.15) with functions g and h we get
 
B
g dx � C

( 
3B

g1/s dx

)s

+ C
 
3B

h dx + C,

where h has higher integrability as ϕ(x, |∇ψ |), ϕ(x, |∇ f |) ∈ L1+δ(�). Now we
can use Gehring’s lemma, Lemma 3.7, which yields a number ε > 0 and a constant
C such that
 
B

ϕ(x, |∇u|)1+ε dx �C

[ ( 
3B

ϕ(x, |∇u|) dx
)1+ε

+
 
3B

ϕ(x, |∇ f |)1+ε dx +
 
3B

ϕ(x, |∇ψ |)1+ε dx + 1

]
.

The theorem follows after a covering argument since � is bounded and � is com-
pact. ��
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