
Group-Walking Automata

Ville Salo1 and Ilkka Törmä2

1 Center of Mathematical Modeling
University of Chile

vsalo@dim.uchile.cl
2 TUCS – Turku Centre for Computer Science

University of Turku, Finland
iatorm@utu.fi

Abstract. In the setting of symbolic dynamics on discrete finitely gen-
erated infinite groups, we define a model of multi-headed finite automata
that walk on Cayley graphs, and use it to define subshifts. We character-
ize the torsion groups (also known as periodic groups) as those on which
the group-walking automata are strictly weaker than Turing machines.

Keywords: group-walking automaton, torsion group, periodic group, multi-
headed automaton, subshift

1 Introduction

One of the central objects in symbolic dynamics is the dynamical system SG

(where G is a discrete group and S a finite alphabet), called the full shift, where
G acts by translations. In particular, one studies its subsystems, usually called
subshifts, and classes of such subsystems. Some of the important classes studied
are the SFTs (subshifts defined by a finite set of forbidden patterns), sofic shifts
(the factors of SFTs) and the effective, or Π0

1 subshifts (defined by a recur-
sively enumerable set of forbidden patterns). SFTs and sofic shifts are natural
objects to study on all groups, and a robust notion of effectiveness of subshifts
on arbitrary groups is given in [2] (see also Section 5).

In this paper, continuing the work in [9], we define some new families of
subshifts on an arbitrary (discrete finitely generated infinite) group G. Namely,
we discuss the class of subshifts defined by certain multi-headed automata that
walk on the Cayley graph of the group G. We have studied the case G = Zd
in [9], the main result being that three-headed finite-state automata define the
same subshifts as general Turing machines.3 It turns out that up to notational
complications and a few simple tricks, the same result can be shown on all groups
containing a copy of Z. We show this in Theorem 1.

Most finitely generated groups of practical interest contain a copy of Z. For
example, in addition to infinite (finitely generated) abelian groups, this is true

3 In the earlier article [4], essentially the same observation is made in a slightly different
setting on the group Z2.

2 Ville Salo and Ilkka Törmä

for free groups, Baumslag-Solitar groups, the Heisenberg group, the Thompson
groups F , T and V , and the general linear groups GL(n,Z). In fact, infinite
finitely generated groups without a copy of Z, known as torsion groups, are quite
rare and hard to construct. Nevertheless, many examples exist in the literature.
The question is particularly hard in the case that the torsion is bounded, that
is, there exists n ∈ N such that every element of the group generates a subgroup
of order at most n. See [1] for a discussion of groups with bounded torsion. In
the case of unbounded torsion, there are examples that are relatively simple to
define, and simple to prove torsion. We mention in particular [5,6].

Given that such groups exist, an obvious question is whether we can extend
Theorem 1 to this case. It turns out that we cannot: in Theorem 2 we show that
a subshift on a torsion group accepted by a multi-headed automaton ‘cannot be
too sparse’, and as a further result we obtain Theorem 6, which characterizes
the torsion groups as those on which multi-headed automata are strictly weaker
than Turing machines.

2 Definitions and examples

2.1 Subshifts

In this section, we define some basic notions of of symbolic dynamics and com-
putability. Some references on symbolic dynamics on general groups are [3,2],
and a standard reference on Z is [8].

LetG be a group with identity element 1G ∈ G. Our groups are always infinite
(the finite case being trivial) and finitely generated (since the notions we consider
are local). For convenience, if G is finitely generated, we fix a symmetric finite
set s(G) ⊂ G of generators for it. The set s(G)∗ consists of all finite words over
s(G), and for v, w ∈ s(G)∗, we denote v ∼ w and v ∼ g if the words correspond
to the same element g ∈ G. We denote by BG(n) the ball of radius n with respect
to the fixed set of generators: BG(n) = {g ∈ G | w ∈ s(G)∗, |w| ≤ n,w ∼ g}.

A torsion element of a group G is an element g ∈ G that satisfies gn = 1G for
some n ≥ 1. If all elements of G are torsions, then G is a torsion group. To each
torsion element g ∈ G we associate its order tG(g) = min{n ≥ 1 | gn = 1G},
and to each finitely generated torsion group we associate the torsion function
TG : N→ N, defined by TG(n) = max{tG(g) | g ∈ BG(n)}. A non-torsion group,
conversely, is one containing an isomorphic copy of Z.

Both alphabet and state set mean any finite set. The symbol S always means
an alphabet, and the set SG is the full G-shift over S. Its elements, usually
denoted by x, y, z, are called configurations. We define both a left and a right
action of G on SG, called the left and right shifts. The left action is given by
(g · x)h = xg−1h. It is indeed an action because

(g2 · (g1 · x))h = (g1 · x)g−1
2 h = xg−1

1 g−1
2 h = x(g2g1)−1h = (g2g1 · x)h.

The right action is given by σRg (x)h = xhg. It is indeed an action because

σRg2(σRg1(x))h = σRg1(x)hg2 = xhg2g1 = σRg2g1(x)h.

Group-Walking Automata 3

We give SG the product topology induced by the discrete topology on S,
making it a compact metrizable space. It is easy to show that both actions are
continuous in this topology. A subshift of SG is a topologically closed subset of
SG closed under the left action of G. A cellular automaton on a subshift X ⊂ SG
is a continuous map f : X → X that commutes with the left shifts in the sense
that g · f(x) = f(g · x) holds for all x ∈ SG and g ∈ G. We denote by Aut(X)
the group of bijective cellular automata on X under composition.

For us, the main importance of the left action is that it allows for nice def-
initions of subshifts and cellular automata. On the other hand, when the right
action of an element g ∈ G is well-defined on a subshift, it is a cellular automa-
ton. In particular, the right actions show that Aut(SG) contains a copy of the
group G, by the injective group homomorphism g 7→ σRg .

A pattern (on G) is a function P ∈ SD, where D = D(P) is a finite subset
of G, called the domain of P . Each pattern P defines a cylinder set [P] =
{x ∈ SG | x|D = P}. The clopen (topologically closed and open) sets in SG

are precisely the finite unions of cylinders, and form a basis for the topology.
Subshifts can be characterized as sets X ⊂ SG for which there exists a set of
forbidden patterns F such that

X = {x ∈ SG | ∀P ∈ F : ∀g ∈ G : g · x /∈ [P]}.

Each cellular automaton on X has a radius r ∈ N and a local rule F : SBG(r) → S
such that f(x)g = F (g−1 · x|BG(r)) holds for all x ∈ X and g ∈ G.

Example 1. Let G be the free group generated by g, h ∈ G, and X ⊂ SG the set

{x ∈ SG | ∀g ∈ G : ∀n ∈ Z : xghn = xg}.

We show that X is a subshift, and for that, let x ∈ X and g ∈ G. We need to
show g · x ∈ X. Given f ∈ G and n ∈ Z, we have

(f · x)ghn = xf−1ghn = xf−1g = (f · x)g

by the definition of the left action, and the fact x ∈ X.

Definition 1. If S 3 0 is a finite alphabet, then the one-S subshift on a group
G is the subshift XG

S ⊂ SG where a finite pattern P ∈ SD is forbidden if and
only if there exist d 6= e ∈ D with Pe 6= 0 6= Pd. If 0 /∈ S, we write XG

S = XG
S∪{0}.

The group G is usually clear from context, and we write XS for XG
S .

Definition 2. Let S 3 0 be a finite alphabet. A configuration x ∈ SG is k-
sparse if it satisfies |{g ∈ G | xg 6= 0}| ≤ k. A subshift is k-sparse if each of its
configurations is k-sparse, and sparse if it is k-sparse for some k ∈ N.

The one-S subshift XS is of course a 1-sparse subshift on any group. Note
that in a sparse subshift, there is a global bound on the number of nonzero

4 Ville Salo and Ilkka Törmä

symbols. The sum x+ y of sparse configurations x, y ∈ SG with disjoint support
(no g ∈ G satisfies xg 6= 0 and yg 6= 0) is defined by

(x+ y)g =

{
xg if xg 6= 0,
yg otherwise.

A finite pattern is represented computationally as a finite list of word-symbol
pairs (w, d) ∈ s(G)∗×S. Such a list is inconsistent if it contains two pairs (v, d)
and (w, e) with v ∼ w and d 6= e (in this case, it does not actually encode a
pattern), and otherwise consistent.

Definition 3. The word problem of G is the set E = {w ∈ s(G)∗ | w ∼ 1G}
of words that represent the identity element of G. Whether the word problem is
decidable is independent of the chosen generator set. We say G is recursively pre-
sented if G ∼= 〈g1, . . . , gk | w1, w2, . . .〉, where (wi)i∈N is a computable sequence
of relations.4 This is equivalent to the set E being recursively enumerable.

If G has a decidable word problem, we say that a subshift X ⊂ SG is Π0
1

if there exists a Turing machine that enumerates a list of consistent forbidden
patterns defining it.

A subshift X is Π0
1 if and only if there exists an oracle Turing machine that,

given an oracle for a configuration x ∈ SG (which returns the symbol xw ∈ S
for a given word w ∈ s(G)∗), eventually halts if and only if x /∈ X.

2.2 Automata

We now define group-walking automata and the subshifts they recognize. Here
and henceforth, by πi we mean the projection to the ith coordinate of a finite
Cartesian product.

Definition 4. A k-headed group-walking automaton on the full shift SG is a
tuple A = (

∏k
i=1Qi, f, I, F), where Q1, Q2, . . . , Qk are state sets not containing

the symbol 0, I and F are finite clopen subsets of the product subshift Y =∏k
i=1XQi

, and f : SG × Y → SG × Y is a CA satisfying π1 ◦ f = π1.
We denote by S(G, k) the class of subshifts X ⊂ SG for which there exists a

k-headed automaton A as above such that

X = {x ∈ SG | ∀g, h ∈ G, y ∈ I, n ∈ N : h · π2(fn(g · x, y)) /∈ F}.

We also write S(G) =
⋃
k≥1 S(G, k).

The intuition for these definitions is the following. A configuration y ∈ Y =∏k
i=1XQi

consists of k layers πi(y), each of which contains at most one nonzero
symbol qi ∈ Qi, representing the i’th head of the automaton in state qi. The
cellular automaton f is the update function of the heads: since f has a finite

4 The term ‘recursively presented’ comes from the fact that one may always assume
{wi | i ∈ N} to be a recursive set of words.

Group-Walking Automata 5

radius, the heads can only move at a bounded speed, and interact over bounded
distances. Also, the condition π1 ◦ f = π1 ensures that the automaton cannot
alter the configuration of SG that it runs on. The clopen sets I, F ⊂ Y are
the initial and final states of the automaton. Each of them is a finite union of
cylinder sets [P], and since they are also finite as sets, each of the patterns P
necessarily contains all k heads of the automaton. Thus, an initial or finite state
specifies the position and internal state for each head, and we translate them by
every element of G in the definition of S(G).

The definition is given in dynamical terms to make the connection with
cellular automata clearer, and to facilitate the statement and proof of Lemma 3.
With some work, one can show that this model is equivalent to the one we gave
in [9] in terms of the classes of subshifts defined.

Example 2. Let G be again the free group generated by the elements g, h ∈ G,
and let S = {0, 1}. We define a two-headed group-walking automaton A =
(Q1 × Q2, f, I, F) on G as follows. The local state sets are Q1 = {qg, qg−1}
and Q2 = {qh, qh−1}, the set of initial states I contains only the cylinder set
{x ∈ (Q1 × Q2)G | x1G = (qg, qh)}, and the set of final states F contains the
cylinder {x ∈ (Q1 × Q2)G | x1G = (qg−1 , qh−1)}. This means that the heads of
the automaton are initialized at the same coordinate in states qg and qh, and a
configuration is rejected if they ever return to the same coordinate in states qg−1

and qh−1 . The CA f moves each head by the step indicated in its state, and if a
head encounters a symbol 1 in state qg or qh, it assumes the respective inverse
state qg−1 or qh−1 .

In a run of the automaton, the heads start moving in the directions g and h
until they encounter symbols 1, and then turn back. If both of them turn at the
same time, they will meet again where they started, in the states qg−1 and qh−1 ,
so the configuration is rejected. If not, the configuration is not rejected. Thus
the automaton A defines the subshift X ⊂ SG with the forbidden patterns

{1G 7→ 0, g 7→ 0, h 7→ 0, . . . , gn−1 7→ 0, hn−1 7→ 0, gn 7→ 1, hn 7→ 1}

for all n ≥ 1. It is not an SFT.

Naturally, Turing machines are stronger than multi-headed finite automata.

Lemma 1. If G has a decidable word problem and X ∈ S(G), then X ∈ Π0
1 .

Proof. Let A be a group-walking automaton that defines X. We construct a
Turing machine TA that outputs its forbidden patterns. The machine TA enu-
merates all consistent patterns over G (using the fact that G has a decidable
word problem), and simulates a run of the automaton A on each of them, from
every initial state. If one of the heads exits the pattern during such a simulation,
or every head enters an infinite loop, that simulation is simply discarded. If one
of the runs enters a rejecting state on the pattern P before exiting it (from any
initial configuration and initial position on the domain D(P)), the machine TA
outputs the pattern P . It is clear that TA defines the same subshift as A. ut

6 Ville Salo and Ilkka Törmä

3 Non-torsion groups with a decidable word problem

On non-torsion groups, there are essentially no restrictions on the types of com-
putation a multi-headed finite state automaton can do, apart from the inherent
limits of computation. In fact, we will implement all Π0

1 -subshifts on such groups,
using just three heads. The construction is similar to that in [4] and [9].

Theorem 1. If G is finitely generated, infinite and non-torsion, and has a de-
cidable word problem, then S(G, 3) is exactly the class of Π0

1 -subshifts.

Proof. By Lemma 1, all S(G, 3)-subshifts are Π0
1 . To show that S(G, 3) contains

all Π0
1 -subshifts, we repeat the proof of Theorem 5 in [9], where the same problem

was considered for G = Zd, with one additional detail in the non-abelian case.
Since there are not many changes, we refer to [9] for some of the details.

Let X ⊂ SG be a Π0
1 -subshift, and let h ∈ G be an element of infinite

order. Given a Turing machine T enumerating a list of forbidden patterns for X,
we construct an automaton AT with three heads, the pointer head, the zig-zag
head and the counter head. The relative positions of these heads store a number,
which we increment, decrement, multiply and divide by suitable constants, and
test for equivalence and divisibility by constants, in order to perform arbitrary
computation: such a model is Turing-complete by the results of [10].

More precisely, all heads are initialized on the same element of G, which
we may assume to be 1G. The run of the automaton proceeds in sweeps, each
of which either corresponds to an arithmetical operation as described above,
or moves the heads in some direction. Between these sweeps, the location of
both the pointer head and the zig-zag head is some g ∈ G, and the position of
the counter head is ghp. The number p ∈ N is the counter value. Changes in
the counter value are used to perform computation, and changes to the value g
allow us to read the contents of every cell in the configuration.

The operations are implemented as in the case G = Zd (for example, see
Proposition 3 in [9]). The only operations that are nontrivial to implement are
multiplication and division, and they are dealt with by standard signaling tech-
niques. The details of this are omitted in [9], so we outline the construction here:
we explain how to multiply the counter value by a rational number 0 < m

n < 1
assuming the counter value is divisible by n; to multiply by a rational number
greater than 1, one essentially performs the same steps in reverse.

For this, let g ∈ G be the position of the pointer head. The idea is that the
zig-zag head moves to the counter head, which is at ghp, along the progression
g, gh, gh2, The two heads then perform a coordinated move along the path
g, gh, gh2, . . . , ghc, so that they meet exactly at gh

m
n p. The zig-zag head then

returns to the pointer head, and computation continues. We have much freedom
in performing these moves, but we fix a particular scheme that works: After
the zig-zag head and the counter head meet, the counter head starts moving in
steps of h towards the pointer head (so that from the cell ghj , it moves to the
cell ghj−1 in one step), until it meets the zig-zag head again. The zig-zag head
moves towards the pointer head by hn every step, until it meets the pointer

Group-Walking Automata 7

head. Note that n divides p, so that the zig-zag head indeed reaches exactly the
cell g. After this, the zig-zag head starts moving back towards the counter head
at speed m

n−m−1 . More precisely, the zig-zag head carries a modular counter,
starting at 0, and at each step it increments this counter. When the modular
counter reaches n − m − 1, the zig-zag head resets it to 0 and moves by hm.
When the zig-zag head reaches the counter head, it turns back, and returns to
the pointer head. It is a simple calculation to check that the heads meet exactly
at gh

m
n p, as required, so the counter value has been changed correctly.

Now that we can do arbitrary computation in the counter value, we give
the algorithm we simulate in it. The algorithm is the same as in the proof of
Theorem 5 of in [9], and we reproduce it in Algorithm 1 with trivial modifications.
In the algorithm, objects related to the group are stored as they are output by
the Turing machine: group elements are finite words over s(G), and patterns
P ∈ SD are lists of pairs (w, s) ∈ s(G)∗ × S meaning Pw = s. We assume the
Turing machine T outputs an infinite list of forbidden patterns, and enters the
state qout every time it outputs a new pattern.

Algorithm 1 The algorithm that the three-headed automaton AT simulates.

1: c← c0 . A configuration of T , set to the initial configuration
2: u← 1G ∈ G . The position of the pointer head relative to the initial position
3: P : ∅ → S . A finite pattern at the initial position
4: loop
5: repeat
6: c← NextConfT (c) . Simulate one step of T
7: until State(c) = qout . T outputs something
8: P ′ ← OutputOf(c) . A forbidden pattern
9: while D(P ′) 6⊂ D(P) do

10: w ← LexMin(D(P) \D(P ′)) . The lexicographically minimal element
11: for a = u−1

1 , u−1
2 , . . . , u−1

|u| , w1, w2, . . . , w|w| do

12: MoveBy(a) . Move all heads of AT by group element a

13: u← w . New position of the pointer is w
14: b← ReadSymbol . Read the symbol of x under the pointer head
15: P ← P ∪ {u 7→ b} . Expand P by one coordinate

16: if P |D(P ′) = P ′ then halt . The forbidden pattern P ′ was found

The function ReadSymbol gives the symbol currently under the pointer
head. The procedure MoveBy(a) causes the three heads to assume new posi-
tions: if the pointer head and zig-zag head are at g and the counter head is at
ghp, they are moved to ga and gahp, respectively. This step is the main difference
between the abelian and non-abelian cases, and we explain it below. We note
that there are only finitely many different messages sent between the abstract
computation and AT , namely the exchange related to ReadSymbol and the
commands MoveBy(a) for finitely many a ∈ G. This information exchange can

8 Ville Salo and Ilkka Törmä

easily be performed by storing the state of the Turing machine T directly in the
finite state of the pointer head.

It is easy to see that this algorithm does what we want: whenever the Turing
machine T enumerates a forbidden pattern P ′, we expand the stored pattern P
by reading the configuration until its domain contains that of P ′. If P ′ occurs
in the configuration, it is eventually found by the algorithm from some start-
ing position, and conversely, if the automaton halts, this is because it found a
forbidden pattern.

To finish the proof, we explain how to perform MoveBy(a). If G is abelian,
this can be done as in [9]: the zig-zag head moves to the counter head, informs
it of the element of G by which it should move, and returns back. The counter
head moves as instructed, and the pointer head does so as well. If the pointer
head was previously at g and the counter head at ghP , and both move by a ∈ G,
then after this sequence of moves, the pointer head will be at ga, and the counter
head at ghpa = gahp, as required. More generally, this works if h is in the center
of G. Otherwise, we may have ghpa 6= gahp. Since we do not necessarily have
gahp ∈ g〈h〉a, the counter head may not even encode a valid counter value.

However, using the same trick we used to perform multiplications, we can
perform the movement in general. First, the zig-zag head moves to the counter
head. Then, both heads start moving toward the pointer head. The counter head
moves in steps of h−1, computing the parity of p on the way, and the zig-zag head
moves in steps of h−2. If p is even, then the zig-zag head reaches the anchor head
exactly, moves to ga, and starts moving along the sequence ga, gah, gah2, . . . in
steps of h. If p is odd, then the zig-zag head reaches the cell gh−1 instead, moves
to gah, and starts moving in steps of h as before. The counter head performs
the same task, but with the speeds reversed: after reaching the anchor head with
speed h−1, it starts moving from ga in steps of h2 if p was even, and from gah
in steps of h2 if p was odd. When the counter head reaches the pointer head,
the pointer head also moves to ga. It is easy to check that the counter head and
the zig-zag head meet at the cell gahp. The counter head stops, and the zig-zag
head returns to the pointer head. ut

4 Walking on torsion groups

A torsion group is one where every element generates a finite subgroup. In this
section, we show that on such groups, non-trivial sparse subshifts cannot be
recognized by multi-headed automata. We also show two results about cellular
automata and automorphism groups of sparse subshifts on torsion groups. These
follow from a curious property, Lemma 3, of CA on sparse subshifts on torsion
groups. In its proof, we use the following lemma about finite metric spaces.

Lemma 2. Let X be a finite metric space with |X| = k ≥ 2. For all c <
diam(X)/(k−1), there exists a nontrivial partition X = Y ∪Z with d(Y,Z) > c.

Proof. For a set E ⊂ X, write BE(r) for the closed ball of radius r ≥ 0 around
E. Let diam(X) = d(y, z) for some y, z ∈ X. Let X1 = {y}, and inductively

Group-Walking Automata 9

define Xi+1 = BXi(c). For all i ≥ 1 we have either |Xi+1| > |Xi| or Xi+1 = Xi,
and in the latter case we have Xj = Xi for all j ≥ i. It follows that Xi = Xi+1

holds for some i ≤ k.
If we have Xi = Xi+1 = X, then diam(X) ≤ (k− 1)c, since every element of

X, including z, is in the ball By((i−1)c) ⊂ By((k−1)c). This is a contradiction,
so it must be the case that Xi = Xi+1 6= X. Then Y = Xi and Z = X \Xi give
the desired partition. ut

Lemma 3. For all torsion groups G, there exists a function d : N3 → N with the
following property. For all k-sparse subshifts X ⊂ SG over all alphabets S 3 0
with |S| = q + 1, all cellular automata f : X → X with radius r ∈ N, and all
x ∈ X, we have

(∃n ∈ N : fn(x)g 6= 0) =⇒ ∃h ∈ BG(d(k, q, r)) : xgh 6= 0.

Proof. We prove the existence of such a function d by induction. We define the
function so that it is monotone in all the three parameters. Let tG be the order
function and TG the torsion function of G.

Case 1: k = 1

First, let k = 1, and let f : X → X be a CA. It is easy to show that if
xgh = 0 for all h ∈ BG(r), then f(x)g = 0. Intuitively, this means that nonzero
symbols can ‘spread’ by at most r per time step, and one cannot appear from
nowhere. Since X is a k-sparse subshift and k = 1, every point x ∈ X contains
at most one nonzero coordinate xg 6= 0. Intuitively, we want to give an upper
bound on how far the nonzero symbol can travel from its initial position g.

By shift-commutation, it is enough to analyze the case x1G 6= 0. Combining
the previous observations and the fact |S| = q+1, it follows from the pigeonhole
principle that fn+m(x) = σRh (fn(x)) for some 0 ≤ n < n + m ≤ q + 1 and h ∈
BG((q+ 1)r). Since f commutes with the shift, we have fn+`m(x) = σRhk(fn(x))

for all ` ∈ N. Since htG(h) = 1G, we have fn+tG(h)m(x) = fn(x). We have shown
that f j(x)h′ 6= 0 for some j ∈ N implies h′ ∈ BG((q + 1)r(1 + tG(h))). Since
h ∈ BG((q + 1)r), we can define

d(1, q, r) = (q + 1)r(1 + TG((q + 1)r)).

Next, consider the case k > 1. To each configuration x ∈ X, we associate
the metric space A(x) whose points are the nonzero coordinates of x, and whose
distances are those induced by the natural (right) distance in G. We will split
the analysis of the dynamics of f on the point x into two cases, depending on
whether the diameter of A(fn(x)) stays bounded (by an explicit constant) as n
grows.

Intuitively, the idea is that as long as the diameter stays small, we can shrink
all the information in x into a single symbol, reducing to the case d(1, ·, ·), and if
the configuration starts expanding, then it splits into two pieces that can never
again communicate, and we apply induction to these smaller pieces.

10 Ville Salo and Ilkka Törmä

More precisely, define A(x) = ({g ∈ G | xg 6= 0}, δ) where

δ(g, h) = min{` ∈ N | ∃w ∈ s(G)` : h = gw}.

Define also c = 2d(k − 1, q, r) + r, and note that since d is monotone, we in
particular have

c ≥ max
1≤`<k

d(`, q, r) + d(k − `, q, r) + r.

We say that a configuration x ∈ X is clustered if diam(A(x)) ≤ (k − 1)c holds,
and scattered otherwise.

Case 2: clustered configurations

First, suppose x ∈ X and N ∈ N are such that fn(x) is clustered for all
n ≤ N . We will give an upper bound on how far nonzero symbols can travel from
their original positions in these N steps. Let Z ⊂ X be the subshift generated
by the configurations fn(x) for n ≤ N . It is easy to see that every configuration
of Z is clustered. Note that that the subshift Z may not be closed under f .

Let Y = X{0}∪K , where K ⊂ LBG((k−1)c)(Z) is the set of patterns P of
shape BG((k − 1)c) occurring in Z such that P1G 6= 0. Clearly, Y is a 1-sparse
subshift, and it should be thought of as a ‘compressed’ version of Z, where all
the nonzero symbols have been encoded into a single coordinate. The idea is to
simulate CA f on the compressed subshift Y , and reduce back to the k = 1 case.
Let φ : Y → SG be the ‘decompression function’ defined by

φ(y)h =

{
(yg)g−1h, if ∃g ∈ G : yg 6= 0 ∧ g−1h ∈ BG((k − 1)c),
0, otherwise.

Let Y ′ = φ−1(Z), so that φ : Y ′ → Z is a surjective block map.5 A visualization
of φ is shown in Figure 1.

Claim. There exists a (not necessarily unique) cellular automaton fφ : Y ′ → Y ′

such that φ(fφ(y)) = f(φ(y)) holds for all y ∈ Y ′ such that f(φ(y)) ∈ Z.

Intuitively, the CA fφ simulates f on the compressed configurations of Y ′,
as long as their φ-images are clustered.

Proof (of claim). Observe that for each z ∈ Z and g ∈ G there is at most
one configuration y ∈ Y ′ such that yg 6= 0 and φ(y) = z. Let then 1 = h1 <
h2 < h3 < · · · be any total order on the group G, not necessarily in any way
compatible with its algebraic structure. Then we can define a map fφ with the
desired properties as follows.

First, for the all-0 configuration 0G ∈ Y ′, we define fφ(0G) = 0G, and for
all y ∈ Y ′ such that f(φ(y)) /∈ Z, we also define f ′(y) = 0G. For all other
y ∈ Y ′, let g ∈ G be the unique element with yg 6= 0, and let W ⊂ Y ′ be the
set of configurations y′ ∈ Y ′ with φ(y′) = f(φ(y)). The set W is nonempty since

5 The fact that G is torsion prevents us, in general, from defining a bijective version
of φ. Also, the subshift Y ′ may be strictly smaller than Y .

Group-Walking Automata 11

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

y ∈ Y

φ7→ s1

s2

s3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

φ(y) ∈ SG

Fig. 1. The decompression function φ applied to a configuration y ∈ Y . We have chosen
G = Z2 here for simplicity, even though it is not a torsion group. Note that the alphabet
of Y consists of certain patterns of X and the symbol 0.

φ : Y ′ → Z is surjective, and it is finite because the unique nonzero coordinate
of each y′ ∈ W is among the coordinates gh where h ∈ BG((k − 1)c + r),
since we assumed P1G 6= 0 for each P ∈ K. Now, we choose fφ(y) to be the
unique configuration y′ ∈ W with y′gh 6= 0, where h ∈ G is minimal in the
ordering h1 < h2 < · · · . It is easy to check that fφ is then continuous and shift-
commuting. In fact, from the way we defined it, we see that its radius is at most
(k − 1)c+ r. ut

Recall the clustered configuration x ∈ SG. We have x ∈ Z by the definition
of Z, so there exists a configuration y ∈ Y ′ such that φ(y) = x. By the above
claim, we have φ(fnφ (y)) = fn(x) for all n ≤ N . Since Y is a 1-sparse subshift
with alphabet of size |K|+1 and fφ is a CA on it with radius at most (k−1)c+r,
we have

(∃n : fnφ (y)g 6= 0) =⇒ ∃h ∈ BG(d(1, |K|, (k − 1)c+ r)) : ygh 6= 0 (1)

by Case 1 of this proof. We also remark that if we have N > |K|, then the
configuration fn(x) is clustered for all n ∈ N, since there exist i < j ≤ N such
that f iφ(φ(y)) is a translated version of f jφ(φ(y)).

It remains to prove a variant of the above formula for f , and for that, let
fn(x)g 6= 0 for some g ∈ G. Since the block map φ has radius (k − 1)c, we have
φ(fn(x))gh′ = fnφ (y)gh′ 6= 0 for some h′ ∈ BG((k − 1)c). Equation (1) implies
that ygh′h 6= 0 for some h ∈ BG(d(1, |K|, (k − 1)c+ r)), and from the definition
of φ it follows that xgh′h 6= 0 as well, since (ygh′h)1G 6= 0. We have shown that
if fn(x) contains a nonzero symbol in some coordinate, then there is a nonzero
coordinate in x at distance at most d(1, |K|, (k − 1)c+ r) + (k − 1)c. Note that
the cardinality of K is at most exponential in (k − 1)c.

Case 3: scattered configurations

Suppose finally that the configuration fn(x) is scattered for some n ∈ N,
which we assume to be minimal. By the remark at the end of Case 2, we have

12 Ville Salo and Ilkka Törmä

n ≤ |K|. We apply Lemma 2 to the metric space A(fn(x)), and obtain a partition
for it into sets C,D ⊂ G with distance at least c.

Denote y = fn(x). We define a partition of the configuration y by y = yC +
yD, where (yC)g = yg when g ∈ C and (yC)g = 0 otherwise, and yD is defined
analogously. By the definition of c, we have c ≥ d(|C|, q, r) + d(|D|, q, r) + r. It
is then easy to see that fn(y) = fn(yC) + fn(yD) for all n ∈ N. In particular,
if we have f j(y)g 6= 0 for some j ∈ N and g ∈ G, then ygh 6= 0 for some
h ∈ BG(max`<k d(`, q, r)) ⊂ BG(d(k − 1, q, r)) by the induction hypothesis.
Since we have n ≤ |K| and the CA f has radius r, this implies that xghh′ 6= 0
for some h′ ∈ BG(r|K|), which implies hh′ ∈ BG(r|K|+ d(k − 1, q, r)).

Putting all three cases together, we can define the function d recursively by

d(k, q, r) = d(1, |K|, (k − 1)c+ r) + (k − 1)c+ r|K|+ d(k − 1, q, r)

for all k > 1. ut

The bounds we give are not very strong, but at least one can check that if
the torsion function TG is primitive recursive, then so is the function d.

Theorem 2. If G is finitely generated, infinite and torsion, and X ⊂ SG is
sparse and nontrivial, then X /∈ S(G).

Proof. Let A be a group-walking automaton and Y its associated subshift, and
let X ′ = {x + y | x, y ∈ X,∀g ∈ G : xg = 0 ∨ yg = 0}. Since X ′ × Y is sparse,
Lemma 3 implies that any head of A can only travel a bounded distance on any
configuration of X ′ × Y . Then, for all x ∈ X and all but finitely many g ∈ G,
the configuration x+ (g · x) is rejected by A if and only if x is. If the support of
x is maximal, this configuration is not in X. Thus A does not define X. ut

Lemma 3 also restricts the structure of the automorphism group of a sparse
subshift on a torsion group.

Theorem 3. If G is torsion and X ⊂ SG is sparse, then Aut(X) is also torsion.

The last theorem has an obvious converse: if G is not torsion, then the shift
along a copy of Z is a non-torsion element of Aut(X) whenever X is sparse
and nontrivial. One can construct such examples even in the quotient group
Aut(G)/〈σRg | g ∈ G〉.

5 Undecidable word problem

If the word problem for G is not necessarily decidable, one can give multiple
definitions of Π0

1 . We give two, both of which correspond to our previous defini-
tion of Π0

1 when the word problem is decidable. Recall that finite patterns are
represented computationally as lists of pairs drawn from s(G)∗ × S.

Definition 5. A subshift on G is Π0
1 if there exists a Turing machine enumer-

ating a set of (possibly inconsistent) forbidden lists of word-symbol pairs for it.

Group-Walking Automata 13

Definition 6. A subshift X on G is intrinsically Π0
1 if there exists an oracle

Turing machine that, given an oracle for the word problem of G, enumerates a
set of consistent forbidden lists of word-symbol pairs for X.

In [2], what we call intrinsically Π0
1 is called G-effective, and this notion was

first defined and studied there. Its actual definition in [2] uses ‘group-walking
Turing machines’, but it is also shown to be equivalent to Definition 6. The
following results, the first of which is a direct corollary of Theorem 1, relate
these classes of subshifts to the hierarchy of group-walking automata.

Theorem 4. If G is finitely generated, infinite and non-torsion, then S(G, 3)
contains the class of Π0

1 -subshifts.

Theorem 5. If G is finitely generated, infinite and non-torsion, then S(G, 4)
is exactly the class of subshifts on G which are intrinsically Π0

1 .

Proof. Clearly, all S(G, 4) subshifts are intrinsically Π0
1 , since a Turing machine

with an oracle for the word problem of G can simulate a multi-headed finite
state machine on the group. The proof that S(G, 4) contains the intrinsically
Π0

1 subshifts is similar to that of Theorem 1, except that we must simulate a
Turing machine with access to an oracle for G. Thus, we only need to describe
how one can use four heads to check whether the identity 1 ∼ w holds for an
arbitrary w ∈ s(G)∗. For this, we use three heads to move by the letters of w,
and leave the fourth head as a marker in the cell we started from. We return
back on top of the fourth head if and only if 1 ∼ w. We can then move back by
w−1 and pick up the fourth head. ut

From these results, we obtain a characterization of torsion groups.

Lemma 4. The XS subshift is intrinsically Π0
1 on every group.

Theorem 6. Let G be a finitely generated infinite group. Then G is torsion if
and only if S(G, 4) is not equal to the class of all intrinsically Π0

1 subshifts.

Proof. This follows from Lemma 4, Theorem 5 and Theorem 2. ut

Finally, we note that Lemma 4 requires the intrinsic notion of computability,
as shown by the following corollary of [2, Proposition 2.3] (also proved in [7]).

Proposition 1. Let G be a recursively presented and finitely generated group,
and S is a nontrivial finite alphabet. The subshift XG

S is Π0
1 if and only if G has

a decidable word problem.

6 Future work and open questions

While we need four heads in the proof of Theorem 5, we are not able to separate
the class S(G, 3) from S(G, 4) on any group G. We do have a general construction
which separates these classes on all sufficiently complex torsion groups. Unfortu-
nately, we do not know how to construct a group with the necessary properties,
as the construction of torsion groups is quite complicated. Nevertheless, this
leads us to believe that the classes are not always equal.

14 Ville Salo and Ilkka Törmä

Conjecture 1. There exists an infinite finitely generated torsion group G such
that S(G, 3) (S(G, 4). In particular, S(G, 3) is not always equal to the class of
intrinsically Π0

1 subshifts.

We know that if G is not a torsion group, then the hierarchy S(G, k)k≥1
collapses to the fourth level (if not earlier), and S(G, 4) is exactly the class
of intrinsically Π0

1 subshifts. On torsion groups, the hierarchy never reaches
all intrinsically Π0

1 subshifts, but we have not shown that it is infinite. We
believe we have a general construction that proves exactly this, but it is relatively
complicated, so for now we only state its conclusion as a conjecture.

Conjecture 2. If G is an infinite finitely generated torsion group, then the hier-
archy S(G, k)k≥1 is infinite.

Some very basic questions about the abelian cases were left open in [9]. We
have no progress on these questions.

Question 1. Do we have S(Z, 2) = S(Z, 3) or S(Z2, 2) = S(Z2, 3)?

We note that in [4], a slightly different model of multi-headed group-walking
automaton is studied on the group Z2, and it is shown that in this model, two-
headed machines are strictly weaker than three-headed ones. It seems that the
question is harder in our model. In [9], we only showed that S(Zd, 2) (S(Zd, 3)
holds for d ≥ 3.

References

1. S.I. Adian. The burnside problem on periodic groups and related questions. Pro-
ceedings of the Steklov Institute of Mathematics, 272(2):2–12, 2011.

2. N. Aubrun, S. Barbieri, and M. Sablik. A notion of effectiveness for subshifts on
finitely generated groups. ArXiv e-prints, December 2014.

3. T. Ceccherini-Silberstein and M. Coornaert. Cellular Automata and Groups.
Springer Monographs in Mathematics. Springer-Verlag, 2010.

4. Marianne Delorme and Jacques Mazoyer. Pebble automata. figures families recog-
nition and universality. Fundam. Inf., 52(1-3):81–132, January 2002.

5. R. I. Grigorčuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen., 14(1):53–54, 1980.

6. Narain Gupta and Said Sidki. On the burnside problem for periodic groups. Math-
ematische Zeitschrift, 182(3):385–388, 1983.

7. E. Jeandel. Some Notes about Subshifts on Groups. ArXiv e-prints, January 2015.
8. Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and coding.

Cambridge University Press, Cambridge, 1995.
9. Ville Salo and Ilkka Törmä. Plane-walking automata. CoRR, abs/1408.6701, 2014.

10. Rich Schroeppel. A two counter machine cannot calculate 2N . 1972.

	Group-Walking Automata
	Introduction
	Definitions and examples
	Subshifts
	Automata

	Non-torsion groups with a decidable word problem
	Walking on torsion groups
	Undecidable word problem
	Future work and open questions

