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Abstract
The classical ARCH model together with its extensions have been widely applied in
the modeling of financial time series. We study a variant of the ARCH model that
takes account of liquidity given by a positive stationary process. We provide minimal
assumptions that ensure the existence and uniqueness of the stationary solution for
this model. Moreover, we give necessary and sufficient conditions for the existence
of the autocovariance function. After that, we derive an AR(1) characterization for
the stationary solution yielding Yule–Walker type quadratic equations for the model
parameters. In order to define a proper estimation method for the model, we first
show that the autocovariance estimators of the stationary solution are consistent under
relativelymild assumptions. Consequently, we prove that the natural estimators arising
out of the quadratic equations inherit consistency from the autocovariance estimators.
Finally, we illustrate our results with several examples and a simulation study.
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1 Introduction

The ARCH and GARCHmodels have become important tools in time series analysis.
The ARCH model was introduced in Engle (1982) and then it has been generalized
to the GARCH model by Bollerslev (1986). Since, a large collection of variants and
extensions of these models has been produced by many authors. See for example
Bollerslev (2008) for a glossary of models derived from ARCH and GARCH. On a
related work we also mention (Han 2013), where GARCH-X model with liquidity
arising from a certain fractional ARMA process is considered.

In this work, we also focus on a generalization of the ARCH model, namely the
model (1). Our contribution proposes to include in the expression of the squared
volatility σ 2

t a factor Lt−1, which we will call liquidity. The motivation to consider
such amodel comes frommathematical finance, where the factor Lt , which constitutes
a proxi for the trading volume at day t , has been included in order to capture the
fluctuations of the intra-day price in financial markets. A more detailed explanation
can be found in Bahamonde et al. (2018) or Tudor and Tudor (2014). In the work
(Bahamonde et al. 2018) we considered the particular case when Lt is the squared
increment of the fractional Brownian motion (fBm in the sequel), i.e. Lt = (BH

t+1 −
BH
t )2, where BH is a fBm with Hurst parameter H ∈ (0, 1).
In this work, our purpose is twofold. Firstly, we enlarge the ARCH with fBm

liquidity in Bahamonde et al. (2018) by considering, as a proxi for the liquidity, a
general positive (strictly stationary) process (Lt )t∈Z. This includes, besides the above
mentioned case of the squared increment of the fBm, many other examples.

The second purpose is to provide a method to estimate the parameters of the model.
As mentioned in Bahamonde et al. (2018), in the case when L is a process without
independent increments, the usual approaches for the parameter estimation in ARCH
models (such as least squares method and maximum likelihood method) do not work,
in the sense that the estimators obtained by these classical methods are biased and not
consistent. Here we adopt a different technique, based on the AR(1) characterization
of the ARCH process, which has also been used in Voutilainen et al. (2017). The
AR(1) characterization leads to Yule–Walker type equations for the parameters of the
model. These equations are of quadratic form and then we are able to find explicit
formulas for the estimators. We prove that the estimators are consistent by using
extended version of the law of large numbers and by assuming enough regularity for
the correlation structure of the liquidity process. We also provide a numerical analysis
of the estimators.

The rest of the paper is organised as follows. In Sect. 2 we introduce our model
and discuss the existence and uniqueness of the solution. We also provide necessary
and sufficient conditions for the existence of the autocovariance function. We derive
the AR(1) characterization and Yule–Walker type equations for the parameters of the
model. Section 3 is devoted to the estimation of the model parameters. We construct
estimators in a closed form andwe prove their consistency via extended versions of the
law of large numbers and a control of the behaviour of the covariance of the liquidity
process. Several examples are discussed in details. In particular, we study squared
increments of the fBm, squared increments of the compensated Poisson process, and
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the squared increments of the Rosenblatt process. We end the paper with a numerical
analysis of our estimators. All the proofs and auxiliary lemmas are postponed to the
appendix.

2 Themodel

Our variant of the ARCH model is defined for every t ∈ Z as

Xt = σtεt , σ 2
t = α0 + α1X

2
t−1 + l1Lt−1, (1)

where α0 ≥ 0, α1, l1 > 0, and (εt )t∈Z is an i.i.d. process with E(ε0) = 0 and
E(ε20) = 1. Moreover, we assume that (Lt )t∈Z is a positive process and independent
of (εt )t∈Z.

Remark 1 By setting Lt−1 = σ 2
t−1 in (1) we would obtain the defining equations of the

classical GARCH(1, 1) process. However, in this case, the processes L and ε would
not be independent of each other.

In Sect. 3, in the estimation of themodel parameters, we further assume that (Lt )t∈Z
is strictly stationary with E(L0) = 1. However, we first give sufficient conditions to
ensure the existence of a solution in a general setting where L is only assumed to
be bounded in L2. This allows one to introduce ARCH models that are not based on
stationarity.
Note that we have a recursion

σ 2
t = α0 + α1ε

2
t−1σ

2
t−1 + l1Lt−1. (2)

Let us denote

At = α1ε
2
t and Bt = α0 + l1Lt for every t ∈ Z.

Using (2) k + 1 times we get

σ 2
t+1 = Atσ

2
t + Bt

= At At−1σ
2
t−1 + At Bt−1 + Bt

= . . .

=
(

k∏
i=0

At−i

)
σ 2
t−k +

k∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i ,

(3)

with the convention
∏−1

0 = 1.
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2.1 Existence and uniqueness of the solution

In the case of strictly stationary L , the existence and uniqueness of the solution is
studied in Brandt (1986) and Karlsen (1990). However, in order to allow flexibility
and non-stationarity in our class of ARCH models, we present a general existence
and uniqueness result. Furthermore, our result allows one to consider only weakly
stationary sequences. In addition, our proof is based on a different technique, adapted
from Bahamonde et al. (2018).

We start with the following theorem providing the existence and uniqueness of a
solution under relatively weak assumptions (we only assume the boundedness of L in
L2 and the usual condition α1 < 1 [see e.g. Francq and Zakoian (2010)].

Theorem 1 Assume that supt∈Z E(L2
t ) < ∞ and α1 < 1. Then (1) has the following

solution

σ 2
t+1 =

∞∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i . (4)

Moreover, the solution is unique in the class of processes satisfying supt∈Z E(σ 2
t ) < ∞.

The following result provides us a strictly stationary solution provided that L is
strictly stationary. While the result is a special case of Karlsen (1990), for the reader’s
convenience we present a different proof that can be applied to the case of weak
stationarity as well (see Corollary 2).

Corollary 1 Let α1 < 1. If L is strictly stationary with E(L2
0) < ∞, then the unique

solution (4) is strictly stationary.

In the sequel, we consider a strictly or weakly stationary liquidity (Lt )t∈Z and the
corresponding unique solution given by (4). Therefore, we will implicitly assume that

E(L2
0) < ∞ and α1 < 1.

In order to study covariance function or weak stationarity of the solution (4), we
require that the moments E(σ 4

t ) exist. Necessary and sufficient conditions for this are
given in the following lemma.

Lemma 1 Suppose E(ε40) < ∞ and L is strictly stationary. Then E(σ 4
0 ) < ∞ if and

only if α1 < 1√
E(ε40 )

.

Remark 2 As expected, in order to have finite moments of higher order we needed to
pose a more restrictive assumption α1 < 1√

E(ε40 )
≤ 1, since E(ε20) = 1. For example,

in the case of Gaussian innovations we obtain the well-known condition α1 < 1√
3

[see e.g. Francq and Zakoian (2010) or Lindner (2009)]. An explicit expression of the
fourth moment can be obtained when L is the squared increment of fBm [see Lemma
4 in Bahamonde et al. (2018)].
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We end this section with the following result similar to Corollary 1 on the existence
of weakly stationary solutions.

Corollary 2 Suppose that α1 < 1√
E(ε40 )

and L is weakly stationary. Then the unique

solution (4) is weakly stationary.

2.2 Computation of themodel parameters

In this section we consider the stationary solution and compute the parameters α0, α1,
l1 in (1) by using the autocovariance functions of X2 and L . To this end, we use an
AR(1) characterization of the ARCH process. From this characterization, we derive,
using an idea from Voutilainen et al. (2017), a Yule–Walker equation of quadratic
form for the parameters, that we can solve explicitly. This constitutes the basis of the
construction of the estimators in the next section. From (1) it follows that if (σ 2

t )t∈Z
is stationary, then so is (X2

t )t∈Z. In addition

X2
t = σ 2

t ε2t − σ 2
t + α0 + α1X

2
t−1 + l1Lt−1

= α0 + α1X
2
t−1 + σ 2

t (ε2t − 1) + l1Lt−1.

Now

E(X2
t ) = α0 + α1E(X2

t−1) + l1

and hence

E(X2
t ) = α0 + l1

1 − α1
. (5)

Let us define an auxiliary process (Yt )t∈Z by

Yt = X2
t − α0 + l1

1 − α1
.

Now Y is a zero-mean stationary process satisfying

Yt = α1Yt−1 + α0 + σ 2
t (ε2t − 1) + l1Lt−1 − α0 + l1

1 − α1
+ α1

α0 + l1
1 − α1

= α1Yt−1 + σ 2
t (ε2t − 1) + l1(Lt−1 − 1).

By denoting

Zt = σ 2
t (ε2t − 1) + l1(Lt−1 − 1)

we may write

Yt = α1Yt−1 + Zt
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corresponding to the AR(1) characterization (Voutilainen et al. 2017) of Yt for 0 <

α1 < 1.
In what follows, we denote the autocovariance functions of X2 and L with γ (n) =

E(X2
t X

2
t+n) − (α0+l1

1−α1
)2 and s(n) = E(LnLt+n) − 1 respectively.

Lemma 2 Suppose E(ε40) < ∞ and α1 < 1√
E(ε40 )

. Then for any n �= 0 we have

α2
1γ (n) − α1(γ (n + 1) + γ (n − 1)) + γ (n) − l21s(n) = 0

and for n = 0 it holds that

α2
1γ (0) − 2α1γ (1) + γ (0) − E(X4

0)Var(ε
2
0)

E(ε40)
− l21s(0) = 0.

Now, let first n ∈ Z with n �= 0. Then

α2
1γ (0) − 2α1γ (1) + γ (0) − E(X4

0)Var(ε
2
0)

E(ε40)
− l21s(0) = 0

α2
1γ (n) − α1(γ (n + 1) + γ (n − 1)) + γ (n) − l21s(n) = 0. (6)

From the first equation we get

l21 = 1

s(0)

(
α2
1γ (0) − 2α1γ (1) + γ (0) − E(X4

0)Var(ε
2
0)

E(ε40)

)
.

Substitution to (6) yields

α2
1

(
γ (n) − s(n)

s(0)
γ (0)

)
+ α1

(
2
s(n)

s(0)
γ (1) − (γ (n + 1) + γ (n − 1))

)

+γ (n) + s(n)

s(0)

(
E(X4

0)Var(ε
2
0)

E(ε40)
− γ (0)

)
= 0

Let us denote γγγ 0 = [γ (n + 1), γ (n), γ (n − 1), γ (1), γ (0),E(X4
0)] and

a0(γγγ 0) = γ (n) − s(n)

s(0)
γ (0)

b0(γγγ 0) = 2
s(n)

s(0)
γ (1) − (γ (n + 1) + γ (n − 1))

c0(γγγ 0) = γ (n) + s(n)

s(0)

(
E(X4

0)Var(ε
2
0)

E(ε40)
− γ (0)

)
.

(7)
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Assuming that a0(γγγ 0) �= 0 we have the following solutions for the model parameters
α1 and l1:

α1(γγγ 0) = −b0(γγγ 0) ± √
b0(γγγ 0)

2 − 4a0(γγγ 0)c0(γγγ 0)

2a0(γγγ 0)
(8)

and

l1(γγγ 0) =
√√√√ 1

s(0)

(
α1(γγγ 0)

2γ (0) − 2α1(γγγ 0)γ (1) + γ (0) − E(X4
0)Var(ε

2
0)

E(ε40)

)
. (9)

Finally, denoting μ = E(X2
0) and using (5) we may write

α0(γγγ 0, μ) = μ(1 − α1(γγγ 0)) − l1(γγγ 0). (10)

Now, let n1, n2 ∈ Z with n1 �= n2 and n1, n2 �= 0. Then

α2
1γ (n1) − α1(γ (n1 + 1) + γ (n1 − 1)) + γ (n1) − l21s(n1) = 0 (11)

α2
1γ (n2) − α1(γ (n2 + 1) + γ (n2 − 1)) + γ (n2) − l21s(n2) = 0.

Assuming that n2 is chosen in such a way that s(n2) �= 0 we have

l21 = α2
1γ (n2) − α1(γ (n2 + 1) + γ (n2 − 1)) + γ (n2)

s(n2)
.

Substitution to (11) yields

α2
1

(
γ (n1) − s(n1)

s(n2)
γ (n2)

)

−α1

(
γ (n1 + 1) + γ (n1 − 1) − s(n1)

s(n2)
(γ (n2 + 1) + γ (n2 − 1))

)

+γ (n1) − s(n1)

s(n2)
γ (n2) = 0.

Let us denote γγγ = [γ (n1 + 1), γ (n2 + 1), γ (n1), γ (n2), γ (n1 − 1), γ (n2 − 1)] and

a(γγγ ) = γ (n1) − s(n1)

s(n2)
γ (n2)

b(γγγ ) = s(n1)

s(n2)
(γ (n2 + 1) + γ (n2 − 1)) − (γ (n1 + 1) + γ (n1 − 1)).

(12)
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Assuming a(γγγ ) �= 0 we obtain the following solutions for the model parameters α1
and l1:

α1(γγγ ) = −b(γγγ ) ± √
b(γγγ )2 − 4a(γγγ )2

2a(γγγ )
, (13)

and

l1(γγγ ) =
√

α2
1(γγγ )γ (n2) − α1(γγγ )(γ (n2 + 1) + γ (n2 − 1)) + γ (n2)

s(n2)
. (14)

Again, α0 is given by

α0(γγγ , μ) = μ(1 − α1(γγγ )) − l1(γγγ ). (15)

Remark 3 Note that here we assumed s(n2) �= 0 and a(γγγ ) �= 0 which means that
we choose n1, n2 in a suitable way. Notice however, that these assumptions are not a
restriction. Firstly, the case where s(n2) = 0 for all n2 �= 0 corresponds to the more
simple case where L is a sequence of uncorrelated random variables. Secondly, if
s(n2) �= 0 and a(γγγ ) = 0, the second order term vanishes and we get a linear equation
forα1. For detailed discussion on this phenomena, we refer to Voutilainen et al. (2017).

Remark 4 At first glimpse Eqs. (8) and (13) may seem useless as one needs to choose
between signs. However, it usually suffices to know additional values of the covariance
of the noise [see Voutilainen et al. (2017)]. In particular, it suffices that s(n) → 0 [see
Voutilainen et al. (2019)].

3 Parameter estimation

In this section we discuss how to estimate the model parameters consistently from
the observations under some knowledge of the covariance of the liquidity L . At this
point we simply assume that the covariance structure of L is completely known.
However, this is not necessary, as discussed in Remarks 5 and 6. As mentioned in
the introduction, classical methods like maximum likelihood (MLE) or least squares
method (LSE)may fail in the presence ofmemory. Indeed, whileMLE is inmany cases
preferable, it requires the knowledge of the distributions so that the likelihood function
can be computed. Compared to our method, we only require certain kind of asymptotic
independence for the process L in terms of third and fourth order covariances (see
Lemma 3). UnlikeMLE, the LSE estimator does not require distributions to be known.
However, in our model it may fail to be consistent. Indeed, this happens already in
the case of squared increments of the fractional Brownian motion (Bahamonde et al.
2018).

Based on formulas for the parameters provided in Sect. 2.2, it suffices that the
covariances of X2 can be estimated consistently. For simplicity, we assume that the
liquidity (Lt )t∈Z is a strictly stationary sequence. The main reason why we prefer to
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keep the assumption of strict stationarity is that it simplifies the third and fourth order
assumptions of Lemma 3 and also because our main examples of liquidities are strictly
stationary processes (see Sect. 3.3). Nevertheless, the results either hold directly or can
be modified with only a little effort to cover the case of weakly stationary sequences.
We leave the details to the reader.

3.1 Consistency of autocovariance estimators

Assume that (X2
1, X

2
2, . . . , X

2
N ) is an observed series from (Xt )t∈Z that is given by

our model (1). We use the following estimator of the autocovariance function of X2
t

γ̂N (n) = 1

N

N−n∑
t=1

(
X2
t − X̄2

) (
X2
t+n − X̄2

)
for n ≥ 0,

where X̄2 is the sample mean of the observations. We show that the estimator above
is consistent in two steps. Namely, we consider the sample mean and the term

1

N

N−n∑
t=1

X2
t X

2
t+n

separately. If the both terms are consistent, consistency of the autocovariance estimator
follows. Furthermore, if this holds for the lags involved in Theorems 2 and 3, also the
corresponding model parameter estimators are consistent.

Lemma 3 Suppose E(L4
0) < ∞ and E(ε80) < ∞. In addition, assume that for every

fixed n, n1 and n2 it holds that Cov(L0, Lt ) → 0, Cov(L0Ln, L±t ) → 0 and
Cov(L0Ln1, Lt Lt+n2) → 0 as t → ∞. If α1 < 1

E(ε80 )
1
4
, then

1

N − n

N−n∑
t=1

X2
t X

2
t+n

converges in probability to E(X2
0X

2
n) for every n ∈ Z.

The next lemma provides us the missing piece of consistency of the covariance esti-
mators. It can be proven similarly as Lemma 3, but as it is less involved, we leave the
proof to the reader.

Lemma 4 Suppose E(ε40) < ∞ and Cov(L0Lt ) → 0 as t → ∞. If α1 < 1√
E(ε40 )

, then

the sample mean

μ̂N = 1

N

N∑
t=1

X2
t

converges in probability to E(X2
0).
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Remark 5 As one would expect, the assumptions of Lemma 4 are implied by the
assumptions of Lemma 3, which on the other hand are only sufficient for our purpose.
Indeed, it suffices that Yt = X2

t X
2
t+n is mean-ergodic for the relevant lags n (see

Theorems 2 and 3 , and Remark 6). This happens when the dependence within the

stationary process Y vanishes sufficiently fast. The condition α1 < E(ε80)
− 1

4 ensures
the existence of an autocovariance function of Y . Furthermore, the assumptions made
related to the asymptotic behavior of the covariances of L guarantee that the depen-
dence structure of Y (measured by the autocovariance function) is such that the desired
consistency of the autocovariance estimators follows. Finally, the assumptions related
to the liquidity are very natural. Indeed, we only assume that the (linear) dependen-
cies within the process Lt vanish over time. Examples of L satisfying the required
assumptions can be found in Sect. 3.3.

3.2 Estimation of themodel parameters

Set, for N ≥ 1,

μ̂2,N = 1

N

N∑
t=1

X4
t

and

g0(γγγ 0) = b0(γγγ 0)
2 − 4a0(γγγ 0)c0(γγγ 0),

where a0(γγγ 0), b0(γγγ 0) and c0(γγγ 0) are as in (7). In addition, let

γ̂γγ 0,N = [γ̂N (n + 1), γ̂N (n), γ̂N (n − 1), γ̂N (1), γ̂N (0), μ̂2,N ]

and ξ̂ξξ0,N = [γ̂γγ 0,N , μ̂N ] for some fixed n �= 0. The following estimators are motivated
by (8), (9) and (10).

Definition 1 We define estimators α̂1, l̂1 and α̂0 for the model parameters α1, l1 and
α0 respectively through

α̂1 = α1(γ̂γγ 0,N ) = −b0(γ̂γγ 0,N )±√
g0(γ̂γγ 0,N )

2a0(γ̂γγ 0,N )
, (16)

l̂1 = l1(γ̂γγ 0,N )

=
√

1
s(0)

(
α1(γ̂γγ 0,N )2γ̂N (0) − 2α1(γ̂γγ 0,N )γ̂N (1) + γ̂N (0) − μ̂2,NVar(ε20 )

E(ε40 )

)
(17)

and

α̂0 = α0(ξ̂ξξ0,N ) = μ̂N (1 − α1(γ̂γγ 0,N )) − l1(γ̂γγ 0,N ), (18)

where n �= 0.
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Theorem 2 Assume that a0(γγγ 0) �= 0 and g0(γγγ 0) > 0. Let the assumptions of Lemma 3
prevail. Then α̂1, l̂1 and α̂0 given by (16), (17) and (18) are consistent.

Remark 6 In addition to the mean-ergodicity discussed in Remark 5, it suffices that
the autocovariance function s(·) of the liquidity L is known for the chosen lags 0 and
n. Furthermore, if we can observe L , which is often the case, these quantities can also
be estimated.

Let us denote

g(γγγ ) = b(γγγ )2 − 4a(γγγ )2,

where a(γγγ ) and b(γγγ ) are as in (12). In addition, let

γ̂γγ N = [γ̂N (n1 + 1), γ̂N (n2 + 1), γ̂N (n1), γ̂N (n2), γ̂N (n1 − 1), γ̂N (n2 − 1)]

and ξ̂ξξ N = [γ̂γγ N , μ̂N ] for somefixedn1, n2 �= 0withn1 �= n2. The following estimators
are motivated by (13), (14) and (15).

Definition 2 We define estimators α̂1, l̂1 and α̂0 for the model parameters α1, l1 and
α0 respectively through

α̂1 = α1(γ̂γγ N ) = −b(γ̂γγ N ) ± √
g(γ̂γγ N )

2a(γ̂γγ N )
, (19)

l̂1 = l1(γ̂γγ N )

=
√

α2
1(γ̂γγ N )γ̂N (n2) − α1(γ̂γγ N )(γ̂N (n2 + 1) + γ̂N (n2 − 1)) + γ̂N (n2)

s(n2)
(20)

and

α̂0 = α0(ξ̂ξξ N ) = μ̂N (1 − α1(γ̂γγ N )) − l1(γ̂γγ N ), (21)

where n1, n2 �= 0 and n1 �= n2.

The proof of the the next theorem is basically the same as the proof of Theorem 2.

Theorem 3 Assume that s(n2) �= 0, a(γγγ ) �= 0 and g(γγγ ) > 0. Let the assumptions of
Lemma 3 prevail. Then α̂1, l̂1 and α̂0 given by (19), (20) and (21) are consistent.

Remark 7 – Statements of Theorems 2 and 3 hold true also when g0(γγγ 0) = 0 and
g(γγγ ) = 0, but in these cases the estimators do not necessarily become real valued
as the sample size grows.

– The estimators from Definitions 1 and 2 are of course related. In practice (see the
next section) we use those from Definition 1 while those from Definition 2 are
needed just in case when we need more information in order to choose the correct
sign for α̂1, see Remark 4.
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– Note that here we implicitly assumed that the correct sign can be chosen in α̂1.
However, this is not a restriction as discussed.

The approach of Voutilainen et al. (2017) was motivated by the classical Yule–
Walker equations of an AR(p) process, for which the corresponding estimators have
the property that they yield a causal AR(p) process agreeing with the underlying
assumption of the equations [see e.g. Brockwell and Davis (2013)]. In comparison,
with finite samples, the above introduced estimators may produce invalid values, such
as complex numbers or negative reals. Moreover, for α1 we may obtain an estimate

α̂1 ≥ E(ε80)
− 1

4 violating assumptions of Lemma 3. However, we would like to empha-
size that, as discussed before, the assumptions of the lemma are not necessary for
a consistent estimation procedure. It may also happen that α̂1 ≥ 1 and in this case,
Theory 1 does not guarantee the existence of the unique solution for (1) together with
its stationarity. However, even in this case, there might still exist a (unique) stationary
solution (cf. AR(1) with |φ| > 1). A further analyze of properties of (1) could be
a potential topic for future research. The above described unwanted estimates are of
course more prone to occur with small samples, although the probability of producing
such values depends also on the different components of the model (1), such as the
true values of the parameters. In practice, the issue can be avoided e.g. by using indi-
cator functions as in Voutilainen et al. (2017) forcing the estimators to the demanded
intervals.We also refer to our simulation study in Sect. 4 and Appendix B, which show
that with the largest sample size we always obtained valid estimates.

3.3 Examples

We will present several examples of stationary processes for which our main result
stated in Theorem 2 apply. Our examples are constructed as

Lt := (Yt+1 − Yt )
2 , for every t ∈ Z

where (Yt )t∈R is a stochastic process with stationary increments. We discuss below
the case when Y is a continuous Gaussian process (the fractional Brownian motion),
a continuous non-Gaussian process (the Rosenblatt process), or a jump process (the
compensated Poisson process).

3.3.1 The fractional Brownian motion

Let Yt := BH
t for every t ∈ R where (BH

t )t∈R is a two-sided fractional Brownian
motion with Hurst parameter H ∈ (0, 1). Recall that BH is a centered Gaussian
process with covariance

E(Bt Bs) = 1

2
(|t |2H + |s|2H − |t − s|2H ), s, t ∈ R.

Let us verify that the conditions from Lemma 3 and Theorem 2 are satisfied by Lt =
(BH

t+1 − BH
t )2. First, notice that [see Lemma 2 in Bahamonde et al. (2018)] that for
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t ≥ 1

Cov(L0, Lt ) = E

(
(BH

1 )2(BH
t+1 − BH

t )2
)

− 1 = 2(rH (t))2

with

rH (t) = 1

2

[
(t + 1)2H + (t − 1)2H − 2t2H

]
→t→∞ 0 (22)

since rH (t) behaves as t2H−2 for t large.
Let us now turn to the third-order condition, i.e. Cov(L0Ln, Lt ) = E(L0LnLt ) −

E(L0Ln) → 0 as t → ∞. We can suppose n ≥ 1 is fixed and t > n. For any
three centered Gaussian random variables Z1, Z2, Z3 with unit variance we have
E(Z2

1 Z
2
2) = 1 + 2(E(Z1Z2))

2 and

E(Z2
1 Z

2
2 Z

2
3) = 2

(
(E(Z1Z2))

2 + (E(Z1Z3))
2 + (E(Z2Z3))

2
)

+8E(Z1Z2)E(Z1Z3)E(Z2Z3) + 1

= E(Z2
1 Z

2
2) + 2

(
(E(Z1Z3))

2 + (E(Z2Z3))
2
)

+8E(Z1Z2)E(Z1Z3)E(Z2Z3).

By applying this formula to Z1 = BH
1 , Z2 = BH

n+1 − BH
n , Z3 = BH

t+1 − BH
t , we find

Cov(L0Ln, Lt ) = 2rH (t)2 + 2rH (t − n)2 + 8rH (n)rH (t)rH (t − n)

where rH is given by (22). By (22), the above expression converges to zero as t → ∞.
Similarly for the fourth-order condition, the formulas are more complex but we

can verify by standard calculations that, for every n1, n2 ≥ 1 and for every t >

max(n1, n2), the quantity

E(L0Ln1Lt Lt+n2) − E(L0Ln1)E(Lt Lt+n2)

can be expressed as a polynomial (without term of degree zero) in rH (t), rH (t − n1),
rH (t + n2), rH (t + n2 − n1) with coefficients depending on n1, n2. The conclusion is
obtained by (22).

3.3.2 The compensated Poisson process

Let (Nt )t∈R be a Poisson process with intensity λ = 1. Recall that N is a cadlag
adapted stochastic process, with independent increments, such that for every s < t ,
the random variable Nt − Ns follows a Poisson distribution with parameter t − s.
Define the compensated Poisson process (Ñt )t∈R by Ñt = Nt − t for every t ∈ R and
let Lt = (Ñt+1 − Ñt )

2. Clearly ELt = 1 for every t and, by the independence of the
increments of Ñ , we have that for t large enough

Cov(L0, Lt ) = Cov(L0Ln, Lt ) = Cov(L0Ln1, Lt Lt+n2) = 0,
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so the conditions in Theorem 2 are fulfilled.

3.3.3 The Rosenblatt process

The (one-sided) Rosenblatt process (ZH
t )t≥0 is a self-similar stochastic process with

stationary increments and long memory in the second Wiener chaos, i.e. it can be
expressed as a multiple stochastic integral of order two with respect to the Wiener
process. The Hurst parameter H belongs to ( 12 , 1) and it characterizes the main prop-
erties of the process. Its representation is

ZH
t =

∫
R

∫
R

fH (y1, y2)dW (y1)dW (y2)

where (W (y))y∈R is Wiener process and fH is deterministic function such that∫
R

∫
R
fH (y1, y2)2dy1dy2 < ∞. See e.g. Tudor (2013) for a more complete exposition

on the Rosenblatt process. The two-sided Rosenblatt process has been introduced in
Coupek (2018). In particular, it has the same covariance as the fractional Brownian
motion, so E(Lt ) = E(ZH

t+1 − ZH
t )2 = 1 for every t . The use of the Rosenblatt

process can be motivated by the presence of the long-memory in the emprical data for
liquidity in financial markets, see Tsuji (2002).

The computation of the quantities Cov(L0, Lt ), Cov(L0Ln, Lt ) and
Cov(L0Ln1, Lt Lt+n2) requires rather technical tools from stochastic analysis includ-
ing properties of multiple integrals and product formula which we prefer to avoid here.
We only mention that the term Cov(L0, Lt ) can be written as
P(rH (t), rH ,1(t)) where P is a polynomial without term of degree zero, rH is given
by (22), while

rH ,1(t) =
∫ 1

0

∫ 1

0

∫ t+1

t

∫ t+1

t
du1du2du3du4|u1 − u2|H−1|u2 − u3|H−1

|u3 − u4|H−1|u4 − u1|H−1.

Note that

rH ,1(t) =
∫

[0,1]4
du1du2du3du4|u1 − u2|H−1|u2 − u3 + t |H−1

|u3 − u4|H−1|u4 − u1 + t |H−1.

Since |u1 − u2|H−1|u2 − u3 + t |H−1|u3 − u4|H−1|u4 − u1 + t |H−1 converges to
zero as t → ∞ for every ui and since this integrand is bounded for t large by
|u1−u2|H−1|u2−u3|H−1|u3−u4|H−1|u4−u1|H−1, which is integrable over [0, 1]4,
we obtain, via the dominated convergence theorem, that Cov(L0, Lt ) →t→∞ 0. Sim-
ilarly, the quantities Cov(L0Ln, Lt ) and Cov(L0Ln1, Lt Lt+n2) can be also expressed
as polynomials (without constant terms) of rH , rH ,k , k = 1, 2, 3, 4 where

rH ,k(t) =
∫
A1×...A2k

du1 . . . du2k |u1 − u2|H−1 . . . |u2k−1 − u2k |H−1|u2k − u1|H−1,
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Fig. 1 Fractional Brownian motion liquidity with H = 4
5 and N = 100

where at least one set Ai is (t, t +1). Thus we may apply a similar argument as above.

4 Simulations

This section provides a visual illustration of convergence of the estimators (16), (17)
and (18) when the liquidity process L is given by Lt = (BH

t+1 − BH
t )2 with H = 4

5 .
The simulation setting is the following. The i.i.d. process (εt )t∈Z is assumed to be

a sequence of standard normals. In this case the restriction given by Lemma 3 reads
α1 < 1

105
1
4

≈ 0.31. The used lag is n = 1 and the true values of the model parameters

are α0 = 1, α1 = 0.1 and l1 = 0.5. The used sample sizes are N = 100, N = 1000
and N = 10000. The initial X2

0 is set equal to 1.7. After the processes Lt with
t = 0, 1, . . . N − 2 and εt with t = 1, 2, . . . N − 1 are simulated, the initial is used
to generate σ 2

1 using (1). Together with ε1 this gives X2
1, after which (1) yields the

sample {X2
0, X

2
1, . . . , X

2
N−1}.

We have simulated 1000 scenarios with each sample size and the corresponding
histograms of the model parameter estimates are provided in Figs. 1, 2 and 3. Our
simulations show that the behaviour of the limit distributions are close to Gaussian
ones, as N increases. We also note that, since the estimators involve square roots,
they may produce complex valued estimates. However, asymptotically the estimates
become real. In the simulations, the sample sizes N = 100 and N = 1000 resulted
complex valued estimates in 47.9% and 4.3% of the iterations respectively, whereas
with the largest sample size all the estimates were real. For the histograms the complex
valued estimates have been simply removed. Some illustrative tables are given in
Appendix B.

It is straightforward to repeat the simulations with other Hurst indexes, or with
completely different liquidities such as squared increments of the compensatedPoisson
process. In these cases, we obtain similar results.

The simulations have been carried out by using the version 1.1.456 of RStudio
software on Ubuntu 16.04 LTS operating system. Fractional Brownian motion was
simulated by using circFBM function from the package dvfBm.
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Fig. 2 Fractional Brownian motion liquidity with H = 4
5 and N = 1000
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Fig. 3 Fractional Brownian motion liquidity with H = 4
5 and N = 10000
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Appendix A: Auxiliary lemmas and proofs

The following lemma ensures that we are able to continue the recursion in (3) infinitely
many times.

Lemma 5 Suppose α1 < 1 and supt∈Z E(σ 2
t ) ≤ M1 < ∞. Then, as k → ∞, we have

(
k∏

i=0

At−i

)
σ 2
t−k → 0

in L1. Furthermore, if α1 < 1√
E(ε40 )

and supt∈Z E(σ 4
t ) ≤ M2 < ∞, then the conver-

gence holds also almost surely.

Proof By independence of ε, we have

E

∣∣∣∣∣
(

k∏
i=0

At−i

)
σ 2
t−k

∣∣∣∣∣ = αk+1
1 E(σ 2

t−k) ≤ αk+1
1 M1 → 0

proving the first part of the claim.
For the second part, Chebysev’s inequality implies

P

(∣∣∣∣∣
(

k∏
i=0

At−i

)
σ 2
t−k − αk+1

1 E(σ 2
t−k)

∣∣∣∣∣ > ε

)

≤
Var

((∏k
i=0 At−i

)
σ 2
t−k

)
ε2

=
α2k+2
1 E

((∏k
i=0 ε4t−i

)
σ 4
t−k

)
− α2k+2

1 E(σ 2
t−k)

2

ε2

≤
(
α2
1E(ε40)

)k+1
M2 − α2k+2

1 M2
1

ε2
,

which is summable by assumptions. Borel–Cantelli then implies

(
k∏

i=0

At−i

)
σ 2
t−k − αk+1

1 E(σ 2
t−k) → 0

almost surely proving the claim. 
�
Proof of Theorem 1 We begin by showing that (4) is well-defined. That is, we prove
that

lim
k→∞

k∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i
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defines an almost surely finite random variable. First we observe that the summands
above are non-negative and hence, the pathwise limits exist in [0,∞]. Write

∞∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i = α0

∞∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ + l1

∞∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Lt−i (23)

and denote

an =
⎛
⎝n−1∏

j=0

At− j

⎞
⎠ Lt−n, bn =

⎛
⎝n−1∏

j=0

At− j

⎞
⎠ .

By the root test it suffices to prove that

lim sup
n→∞

a
1
n
n < 1 (24)

lim sup
n→∞

b
1
n
n < 1. (25)

Here

a
1
n
n = e

1
n log an = L

1
n
t−ne

1
n

∑n−1
j=0 log At− j ,

where

e
1
n

∑n−1
j=0 log At− j a.s.−→ eE log A0 = α1e

E log ε20

by the law of large numbers and continuous mapping theorem. By Jensen’s inequality
we obtain that

α1e
E log ε20 ≤ α1e

logE(ε20 ) = α1 < 1.

That is

lim
n→∞ e

1
n

∑n−1
j=0 log At− j < 1

almost surely. This proves (25) which implies that the first series in (23) is almost

surely convergent. To obtain (24), it remains to show lim supn→∞ L
1
n
t−n ≤ 1 almost

surely. We have

L
1
n
t−n = 1Lt−n<1L

1
n
t−n + 1Lt−n≥1L

1
n
t−n ≤ 1 + 1Lt−n≥1L

1
n
t−n − 1Lt−n≥1 (26)
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where we have used

1Lt−n<1L
1
n
t−n ≤ 1Lt−n<1 = 1 − 1Lt−n≥1.

Now

P

(∣∣∣∣1Lt−n≥1L
1
n
t−n − 1Lt−n≥1

∣∣∣∣ ≥ ε

)
≤

E

∣∣∣∣1Lt−n≥1L
1
n
t−n − 1Lt−n≥1

∣∣∣∣
2

ε2

=
E

(
1Lt−n≥1

(
L

1
n
t−n − 1

)2
)

ε2
.

Consider now the function fx (a):=xa for x ≥ 1 and a ≥ 0. Since f ′
x (a) = xa log x

we obtain by the mean value theorem that

| fx (a) − fx (0)| ≤ max
0≤b≤a

∣∣ f ′
x (b)

∣∣ a = axa log x .

Hence

1Lt−n≥1

(
L

1
n
t−n − 1

)2

≤ 1Lt−n≥1
1

n2
L

2
n
t−n (log Lt−n)

2 .

On the other hand, for n ≥ 2 and Lt−n ≥ 1 it holds that

L
2
n
t−n (log Lt−n)

2

L2
t−n

≤ (log Lt−n)
2

Lt−n
< 1,

since for x ≥ 1, the function g(x):= (log x)2 x−1 has the maximum g(e2) = 4e−2.
Consequently,

E

(
1Lt−n≥1

(
L

1
n
t−n − 1

)2
)

ε2
<

E
(
1Lt−n≥1L2

t−n

)
ε2n2

≤ E
(
L2
t−n

)
ε2n2

≤ C

ε2n2
.

Hence Borel–Cantelli implies

1Lt−n≥1L
1
n
t−n − 1Lt−n≥1

a.s.−→ 0
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which by (26) shows (24). Let us next show that (4) satisfies (2):

Atσ
2
t + Bt =

∞∑
i=0

⎛
⎝ i∏

j=0

At− j

⎞
⎠ Bt−i−1 + Bt =

∞∑
i=1

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i + Bt

=
∞∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i = σ 2

t+1.

This shows that (4) is a solution.
It remains to prove the uniqueness.By (3)wehave for every t ∈ Z and k ∈ {0, 1, . . .}

that

σ 2
t+1 =

(
k∏

i=0

At−i

)
σ 2
t−k +

k∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i .

Suppose now that there exists two solutions σ 2
t and σ̃ 2

t satisfying supt∈Z E(σ 2
t ) < ∞

and supt∈Z E(σ̃ 2
t ) < ∞. Then

|σ 2
t+1 − σ̃ 2

t+1| ≤
(

k∏
i=0

At−i

)
σ 2
t−k +

(
k∏

i=0

At−i

)
σ̃ 2
t−k .

As both terms on the right-side converges in L1 to zero by Lemma 5, we observe that

E|σ 2
t+1 − σ̃ 2

t+1| = 0

for all t ∈ Z which implies the result. 
�

Proof of Corollary 1 Let k be fixed and define

Hk,t =
k∑

i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i . (27)

If L is strictly stationary, then so is (At , Bt ). Consequently, we have

k∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i

law=
k∑

i=0

⎛
⎝i−1∏

j=0

A− j

⎞
⎠ B−i
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for every t . That is, Hk,t
law= Hk,0. Since the limits of the both sides exist as k → ∞

we have

σ 2
t+1 =

∞∑
i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i

law=
∞∑
i=0

⎛
⎝i−1∏

j=0

A− j

⎞
⎠ B−i = σ 2

1 .

Treating multidimensional distributions similarly concludes the proof. 
�
Proof of Lemma 1 The ”if” part follows from Theorem 3.2 of Karlsen (1990). For the
converse, denote E(ε40) = Cε and E(L2

0) = CL . By (4) we have

E(σ 4
t+1) = E

⎛
⎝ ∞∑

i=0

⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i

⎞
⎠

2

,

and since all the terms above are positive, both sides are simultaneously finite or
infinite. Note also that, as the terms all positive, we may apply Tonelli’s theorem to
change the order of summation and integration obtaining

E(σ 4
t+1) =

∞∑
i=0

E

⎛
⎜⎝
⎛
⎝i−1∏

j=0

At− j

⎞
⎠

2

B2
t−i

⎞
⎟⎠

+
∞∑

i,k=0
i �=k

E

⎛
⎝
⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i

⎛
⎝k−1∏

j=0

At− j

⎞
⎠ Bt−k

⎞
⎠ .

Consider now the first term above. By independence, we obtain

∞∑
i=0

E

⎛
⎝
⎛
⎝i−1∏

j=0

A2
t− j

⎞
⎠ B2

t−i

⎞
⎠ =

∞∑
i=0

⎛
⎝i−1∏

j=0

α2
1Cε

⎞
⎠E(B2

t−i )

= E(B2
0 )

∞∑
i=0

(α2
1Cε)

i .

Consequently, E(σ 4
0 ) < ∞ implies α1 < 1√

Cε
, since it is the radius of convergence of

the series above. 
�
Proof of Corollary 2 Let Hk,t be defined by (27). By the proof of Lemma 1 we get

∞∑
i=0

⎛
⎜⎝E

⎛
⎝
⎛
⎝i−1∏

j=0

At− j

⎞
⎠ Bt−i

⎞
⎠

2
⎞
⎟⎠

1
2

< ∞.
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Thus Hk,t converges to σ 2
t+1 in L2. To conclude the proof, it is straightforward to

check that weak stationarity of L implies weak stationarity of Hk,t for every k. 
�

Proof of Lemma 2 First we notice that

E(X4
0) = E(σ 4

0 ε40) = E(σ 4
0 )E(ε40) < ∞ (28)

by Lemma 1. Hence, the stationary processes Y and Z have finite second moments.
Furthermore, the covariance of Y coincides with the one of X2. Applying Lemma 1
of Voutilainen et al. (2017) we get

α2
1γ (n) − α1(γ (n + 1) + γ (n − 1)) + γ (n) − r(n) = 0

for every n ∈ Z, where r(·) is the autocovariance function of Z . For r(n) with n ≥ 1
we obtain

r(n) = E(Z1Zn+1)

= E[(σ 2
1 (ε21 − 1) + l1(L0 − 1))(σ 2

n+1(ε
2
n+1 − 1) + l1(Ln − 1))]

= l21E[(L0 − 1)(Ln − 1)] = l21s(n),

(29)

since the sequences (εt )t∈Z and (Lt )t∈Z are independent of each other, and εt is
independent of σs for s ≤ t . By the same arguments, for n = 0 we have

r(0) = E

[(
σ 2
1 (ε21 − 1) + l1(L0 − 1)

)2]

= E

[
σ 4
1 (ε21 − 1)2

]
+ l21E

[
(l0 − 1)2

]
= E(σ 4

1 )Var(ε20) + l21s(0).

Now using (28) and γ (−1) = γ (1) completes the proof. 
�

In the remaining we denote

f (t − s) = E(Lt Ls) = Cov(Lt , Ls) + 1 = s(t − s) + 1.

Lemma 6 Let t, s ∈ Z. Then

E(σ 2
t Ls) = α0

1 − α1
+ l1

∞∑
i=0

αi
1 f (t − s − i − 1)
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Proof By (4) and Fubini-Tonelli

E(σ 2
t Ls) =

∞∑
i=0

⎛
⎝i−1∏

j=0

α1E(ε2t−1− j )

⎞
⎠E ((α0 + l1Lt−1−i )Ls)

= α0

∞∑
i=0

αi
1 + l1

∞∑
i=0

αi
1E(Lt−1−i Ls)

= α0

∞∑
i=0

αi
1 + l1

∞∑
i=0

αi
1 f (t − s − i − 1),

where the series converges since α1 < 1 and E(L2
0) < ∞. 
�

We use the following variant of the law of large numbers for consistency of the
covariance estimators. The proof based on Chebyshev’s inequality is rather standard
and hence omitted. In the case of a weakly stationary sequence, a proof can be found
from (Kreiß and Neuhaus 2006, p. 154), or from (Lindgren 2012, p. 65) concerning
the continuous time setting.

Lemma 7 Let (U1,U2, . . .) be a sequence of random variables with a mutual expec-
tation. In addition, assume thatVar(Uj ) ≤ C and

∣∣Cov(Uj ,Uk)
∣∣ ≤ g(|k− j |), where

g(i) → 0 as i → ∞. Then

1

n

n∑
k=1

Uk → E(U1)

in L2.

Proof of Lemma 3 By Lemma 7 it suffices to show that Cov(X2
0X

2
n, X

2
t X

2
t+n) con-

verges to zero as t tends to infinity. Hence we assume that t > n. By (4)

E(X2
0X

2
n X

2
t X

2
t+n)

= E

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

⎛
⎝i1−1∏

j=0

A−1− j

⎞
⎠ B−1−i1ε

2
0

⎛
⎝i2−1∏

j=0

An−1− j

⎞
⎠ Bn−1−i2ε

2
n

⎛
⎝i3−1∏

j=0

At−1− j

⎞
⎠ Bt−1−i3ε

2
t

⎛
⎝i4−1∏

j=0

At+n−1− j

⎞
⎠ Bt+n−1−i4ε

2
t+n .

(30)

Since the summands are non-negative,we can take the expectation inside. Furthermore,
by independence of the sequences εt and Lt we observe

E(X2
0X

2
n X

2
t X

2
t+n) =

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

E
(
B−1−i1 Bn−1−i2 Bt−1−i3 Bt+n−1−i4

)
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E

⎛
⎝ε20ε2nε2t ε2t+n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

At−1− j

i4−1∏
j=0

At+n−1− j

⎞
⎠ .

Next we justify the use of the dominated convergence theorem in order to change the
order of the summations and taking the limit. Consequently, it suffices to study the
limits of the terms

E

⎛
⎝ε20ε

2
nε

2
t ε

2
t+n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

At−1− j

i4−1∏
j=0

At+n−1− j

⎞
⎠

E
(
B−1−i1Bn−1−i2Bt−1−i3Bt+n−1−i4

)
. (31)

Step 1: finding summable upper bound.
First note that the latter term is bounded by a constant. Indeed, by stationarity of

(Bt )t∈Z we can write

E
(
B−i1Bn−i2Bt−i3Bt+n−i4

)
= α4

0 + 4α3
0l1 + α2

0l
2
1

(
E(L−i1Ln−i2) + E(L−i1Lt−i3)

+ E(L−i1Lt+n−i4) + E(Ln−i2Lt−i3) + E(Ln−i2Lt+n−i4)

+ E(Lt−i3Lt+n−i4)
) + α0l

3
1

(
E(L−i1Ln−i2Lt−i3)

+ E(L−i1Lt−i3Lt+n−i4) + E(L−i1Ln−i2Lt+n−i4)

+ E(Ln−i2Lt−i3Lt+n−i4)
) + l41E(L−i1Ln−i2Lt−i3Lt+n−i4),

(32)

which is bounded by a repeated application of Cauchy-Schwarz inequality and the
fact that the fourth moment of L0 is finite.

Consider now the first term in (31). First we recall the elementary fact

1 = E(ε20) ≤
√
E(ε40) ≤ E(ε60)

1
3 ≤ E(ε80)

1
4 < ∞. (33)

Next note that the first term in (31) is bounded for every set of indices. Indeed, this
follows from the independence of ε and the observation that we obtain terms up to
power 8 at most. That is, terms of form ε8t and by assumption, E(ε8t ) < ∞. Let now
n > 0. Then

E

⎛
⎝ε20ε

2
nε

2
t ε

2
t+n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

At−1− j

i4−1∏
j=0

At+n−1− j

⎞
⎠

= E

(
ε2t+n

)
E

⎛
⎝ε20ε

2
nε

2
t

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

At−1− j

i4−1∏
j=0

At+n−1− j

⎞
⎠

≤ E

(
ε2t+n

)
E

(
ε4t

)
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E

⎛
⎜⎜⎝ε20ε

2
n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

At−1− j

i4−1∏
j=0

j �=n−1

At+n−1− j

⎞
⎟⎟⎠

≤ E

(
ε2t+n

)
E

(
ε4t

)
E

(
ε6n

)

E

⎛
⎜⎜⎜⎜⎜⎝ε20

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

j �=t−1−n

At−1− j

i4−1∏
j=0

j �=n−1
j �=t−1

At+n−1− j

⎞
⎟⎟⎟⎟⎟⎠

≤ E

(
ε2t+n

)
E

(
ε4t

)
E

(
ε6n

)
E

(
ε80

)

E

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i1−1∏
j=0

A−1− j

i2−1∏
j=0

j �=n−1

An−1− j

i3−1∏
j=0

j �=t−1−n
j �=t−1

At−1− j

i4−1∏
j=0

j �=n−1
j �=t−1

j �=t+n−1

At+n−1− j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

By computing similarly for n = 0, using stationarity of A and Eq. (33), we deduce
that

E

⎛
⎝ε20ε

2
nε

2
t ε

2
t+n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

At−1− j

i4−1∏
j=0

At+n−1− j

⎞
⎠

≤ CE

⎛
⎝i1−1∏

j=0

A− j

i2−1∏
j=0

An− j

i3−1∏
j=0

At− j

i4−1∏
j=0

At+n− j

⎞
⎠ ,

where C is a constant. Moreover, by using similar arguments we observe

E

⎛
⎝i1−1∏

j=0

A− j

i2−1∏
j=0

An− j

i3−1∏
j=0

At− j

i4−1∏
j=0

At+n− j

⎞
⎠

≤ E

⎛
⎝i1−1∏

j=0

A− j

i2−1∏
j=0

A− j

i3−1∏
j=0

A− j

i4−1∏
j=0

A− j

⎞
⎠ .
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Combining all the estimates above, it thus suffices to prove that

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

E

⎛
⎝i1−1∏

j=0

A− j

i2−1∏
j=0

A− j

i3−1∏
j=0

A− j

i4−1∏
j=0

A− j

⎞
⎠

≤ 4!
∞∑

i4=0

i4∑
i3=0

i3∑
i2=0

i2∑
i1=0

E

⎛
⎝i1−1∏

j=0

A− j

i2−1∏
j=0

A− j

i3−1∏
j=0

A− j

i4−1∏
j=0

A− j

⎞
⎠ < ∞.

Now for i1 ≤ i2 ≤ i3 ≤ i4 we have

E

⎛
⎝i1−1∏

j=0

A− j

i2−1∏
j=0

A− j

i3−1∏
j=0

A− j

i4−1∏
j=0

A− j

⎞
⎠

= α
i1+i2+i3+i4
1 E(ε80)

i1E(ε60)
i2−i1E(ε40)

i3−i2

which yields

4!
∞∑

i4=0

i4∑
i3=0

i3∑
i2=0

i2∑
i1=0

E

⎛
⎝i1−1∏

j=0

A− j

i2−1∏
j=0

A− j

i3−1∏
j=0

A− j

i4−1∏
j=0

A− j

⎞
⎠

= 4!
∞∑

i4=0

i4∑
i3=0

i3∑
i2=0

i2∑
i1=0

α
i1+i2+i3+i4
1 E(ε80)

i1E(ε60)
i2−i1E(ε40)

i3−i2

= 4!
∞∑

i4=0

α
i4
1

i4∑
i3=0

(
α1E(ε40)

)i3 i3∑
i2=0

(
α1

E(ε60)

E(ε40)

)i2 i2∑
i1=0

(
α1

E(ε80)

E(ε60)

)i1

.

Denote

a1 = α1
E(ε80)

E(ε60)
, a2 = α1

E(ε60)

E(ε40)
and a3 = α1E(ε40).

Then we need to show that

∞∑
i4=0

α
i4
1

i4∑
i3=0

ai33

i3∑
i2=0

ai22

i2∑
i1=0

ai11 < ∞. (34)

For this suppose first that 1 /∈ S:={a1, a2, a3, a1a2, a2a3, a1a2a3}. Then we are able
to use geometric sums to obtain

i2∑
i1=0

ai11 = 1 − ai2+1
1

1 − a1
for a1 �= 1.
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Continuing like this in the iterated sums in (34) we deduce

i3∑
i2=0

ai22 (1 − ai2+1
1 ) =

i3∑
i2=0

ai22 − a1

i3∑
i2=0

(a1a2)
i2

= 1 − ai3+1
2

1 − a2
− a1

1 − (a1a2)i3+1

1 − a1a2
,

i4∑
i3=0

ai33 (1 − ai3+1
2 ) = 1 − ai4+1

3

1 − a3
− a2

1 − (a2a3)i4+1

1 − a2a3
,

and

i4∑
i3=0

ai33 (1 − (a1a2)
i3+1) = 1 − ai4+1

3

1 − a3
− a1a2

1 − (a1a2a3)i4+1

1 − a1a2a3
.

Consequently, it suffices that the following three series converge

∞∑
i4=0

α
i4
1 a

i4+1
3 ,

∞∑
i4=0

α
i4
1 (a2a3)

i4+1 and
∞∑

i4=0

α
i4
1 (a1a2a3)

i4+1

yielding constraints

α1 <
1√

E(ε40)

, α1 <
1

E(ε60)
1
3

and α1 <
1

E(ε80)
1
4

.

However, these follow from the assumption α1 < 1

E(ε80 )
1
4
. Finally, if 1 ∈ S it simply

suffices to replace a1, a2, a3 with

ã1 = α1

(
E(ε80)

E(ε60)
+ δ

)
, ã2 = α1

(
E(ε60)

E(ε40)
+ δ

)
and ã3 = α1

(
E(ε40) + δ

)

such that

1 /∈ {ã1, ã2, ã3, ã1ã2, ã2ã3, ã1ã2ã3}.

Choosing δ < 0 small enough the claim follows from the fact that the inequality
α1 < 1

E(ε80 )
1
4
is strict.

Step 2: computing the limit of (30).
By step 1 we can apply dominated convergence theorem in (30). For this let us

analyze the limit behaviour of (31). For the latter term we use (32). By assumptions,
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we have e.g. the following identities:

lim
t→∞E(Lt−i3Lt+n−i4) = 1

lim
t→∞E(L−i1Lt−i3Lt+n−i4) = f (n + i3 − i4)

lim
t→∞E(L−i1Ln−i2Lt−i3Lt+n−i4) = f (n + i1 − i2) f (n + i3 − i4).

Therefore the limit of the latter term of (31) is given by

lim
t→∞E

(
B−i1Bn−i2Bt−i3Bt+n−i4

)
= α4

0 + 4α3
0l1 + α2

0l
2
1

(
4 + f (n + i1 − i2) + f (n + i3 − i4)

)
+ α0l

3
1

(
f (n + i1 − i2) + f (n + i3 − i4) + f (n + i1 − i2)

+ f (n + i3 − i4)
) + l41 f (n + i1 − i2) f (n + i3 − i4)

= (α2
0 + 2α0l1 + l21 f (n + i1 − i2))(α

2
0 + 2α0l1 + l21 f (n + i3 − i4)).

The first term of (31) can be divided into two independent parts whenever t is large
enough. More precisely, for t > max{n + i3, i4}, we have

E

⎛
⎝ε20ε

2
nε

2
t ε

2
t+n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

i3−1∏
j=0

At−1− j

i4−1∏
j=0

At+n−1− j

⎞
⎠

= E

⎛
⎝ε20ε

2
n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

⎞
⎠E

⎛
⎝ε2t ε

2
t+n

i3−1∏
j=0

At−1− j

i4−1∏
j=0

At+n−1− j

⎞
⎠

= E

⎛
⎝ε20ε

2
n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

⎞
⎠E

⎛
⎝ε20ε

2
n

i3−1∏
j=0

A−1− j

i4−1∏
j=0

An−1− j

⎞
⎠ ,

where the last equality follows from stationarity of At . Hence

lim
t→∞E(X2

0X
2
n X

2
t X

2
t+n)

=
∞∑

i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

E

⎛
⎝ε20ε

2
n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

⎞
⎠

E

⎛
⎝ε20ε

2
n

i3−1∏
j=0

A−1− j

i4−1∏
j=0

An−1− j

⎞
⎠

(α2
0 + 2α0l1 + l21 f (n + i1 − i2))(α

2
0 + 2α0l1 + l21 f (n + i3 − i4)).
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Table 1 Table of means and
standard deviations
corresponding to fBm liquidity
with H = 4

5

N α0 α1 l1

100 1.068 (0.322) 0.090 (0.139) 0.535 (0.336)

1000 1.042 (0.163) 0.098 (0.052) 0.467 (0.180)

10000 1.009 (0.059) 0.099 (0.018) 0.491 (0.064)

Table 2 Table of percentages of
the estimates lying on their
theoretical intervals
corresponding to fBm liquidity
with H = 4

5

N α0 α1 l1

100 52.0 65.2 52.1

1000 95.7 98.5 95.7

10000 100 100 100

On the other hand, by (4)

E(X2
0X

2
n) =

∞∑
i1=0

∞∑
i2=0

E

⎛
⎝ε20ε

2
n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

⎞
⎠

E
(
(α0 + l1L−1−i1)(α0 + l1Ln−1−i2)

)
=

∞∑
i1=0

∞∑
i2=0

E

⎛
⎝ε20ε

2
n

i1−1∏
j=0

A−1− j

i2−1∏
j=0

An−1− j

⎞
⎠

(α2
0 + 2α0l1 + l21 f (n + i1 − i2)).

Consequently, we conclude that

lim
t→∞E(X2

0X
2
n X

2
t X

2
t+n) = E(X2

0X
2
n)

2

proving the claim. 
�
Proof of Theorem 2 Since the assumptions of Lemma 3 are satisfied, so are the assump-
tions of Lemma4 implying that the autocovariance estimators, themean and the second
moment estimator of X2

t are consistent. The claim follows from the continuous map-
ping theorem. 
�

Appendix B: Tables

In Table 1 we have presented means and standard deviations of the estimates with
different sample sizes. In addition, we have provided Table 2 demonstrating how the

estimates match their theoretical intervals 0 ≤ α0, 0 < α1 < 105− 1
4 and 0 < l1. We

can see that multiplying the mean squared error (RMSE) provided by Table 1 with
NH , the power H of the sample size, gives us evidence of the convergence rates of
the estimators.
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