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ABSTRACT
We discuss the problem of the reflection of light on spherical and
quadric surface mirrors. In the case of spherical mirrors, this problem
is known as the Alhazen problem. For the spherical mirror prob-
lem, we focus on the reflection property of an ellipse and show
that the catacaustic curve of the unit circle follows naturally from
the equation obtained from the reflection property of an ellipse.
Moreover, we provide an algebraic equation that solves Alhazen’s
problem for quadric surface mirrors.
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1. Introduction

Alhazen’s problem [1, p.1010] is the problem that asks the following: Given a light source
and a spherical mirror, find the point on the mirror where the light will be reflected to the eye
of an observer. This problem was first formulated by Ptolemy in 150 AD and is, therefore,
also called the Ptolemy–Alhazen problem. We call the reflection point of this problem the
PA-point.

This problem is equivalent to solving the following problem for a disk. For given two
points z1, z2 ∈ D = {z ∈ C : |z| < 1}, find u ∈ ∂D such that

|∠(z1, u, 0)| = |∠(0, u, z2)|.

Many mathematicians and researchers of geometrical optics have investigated this prob-
lem. For a short history of this topic, see [1]. Some of the recent studies on this topic, from
the point of astrophysics and signal transmission, are [2,3]. The bibliographies of [4,5]
include several pointers to the literature.

As above, this problem has a long history, but it has finally been solved algebraically only
recently. Elkin [6] found in 1965 an equation of degree 4 solving this problem.
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His strategy was to find the PA-point as the intersection of the unit circle and a circle
centred at z1. In this paper, we will study algebraic equations that solve reflection problems
on spherical and quadric surfaces.

In [4], we studied Alhazen’s problem and its relation to the triangular ratio metric sG
of a given domain G ⊂ C defined as (see, for instance [7–10] and [11] for other studies on
the triangular ratio metric)

sG(z1, z2) = sup
z∈∂G

|z1 − z2|
|z1 − z| + |z − z2| , z1, z2 ∈ G. (1)

In [4], we discussed an equation that uses the reflection property of an ellipse.
Solutions to Alhazen’s problems for quadric surfaces have also found applications in

many other fields besides mathematics. Taguchi et al. [12] and Agrawal et al. [13] studied
Alhazen’s problem for application to a camera with quadric-shaped mirrors. They con-
structed an equation with six roots that include the PA-points in [13]. In [3], Miller et al.
studied an equation solving Alhazen’s problem and proposed a fast method for choosing
the correct point from the roots. In addition, they mentioned that if their method could be
extended to the case of elliptical surfaces, it could be useful for GPS communication, and
could also be applied to computer rendering. This motivated us to construct an algebraic
equation that yields the PA-point for quadric surfaces.

This paper is organized as follows. In Section 2, we discuss the relation between the
equation using the reflection property of an ellipse and the catacaustic curve of the cir-
cle. We can also use the properties of the circle of Apollonius to construct an equation
that solves Alhazen’s problem. This equation is studied in Section 3. In Section 4, we dis-
cuss Alhazen’s problem for quadric surfaces and provide an equation F4 = 0 that gives the
PA-points in Theorem 4.3. This equation is different from the one formulated by Agrawal
et al. in [13, Section 2]. In fact, the algebraic equation F4 = 0 is obtained by using the
reflective property of an ellipse and a method based on algebraic geometry. Moreover,
using Theorem 4.3, we give the calculation method of the triangular ratio metric on conic
domains in Theorem 4.5. The application to the calculation of the triangular ratio metric
is also discussed in Section 5.

In this paper, several symbolic computation systems are used effectively. For graphics,
we use GeoGebra ,1 dynamic mathematics software, to create Figures 2, 3 and 4, whereas
Figures 1 and 5 are drawn using Mathematica2 and Risa/Asir ,3 symbolic computation
systems, respectively. We also use the techniques of computer algebra such as resultant
to obtain some target equations. In particular, we use Risa/Asir to obtain the result of
Theorem 4.3, which is difficult to calculate manually.

2. Alhazen’s problem on a disk –Solution using ellipses

In this section, we consider Alhazen’s problem on the unit disk.
For z1, z2 ∈ D, let z be the PA-point on ∂D with respect to these two points.

2.1. Solution using ellipses

Using the reflective property of an ellipse, the PA-point can be found as the points of
tangency of an ellipse with foci z1, z2 and the unit circle (see the left figure in Figure 2).
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Figure 1. The catacaustics of the unit circle with radiant points c = 0.5 (left) and c = 0.8 (right). The
thick curves indicate the catacaustics. The thick and thin dotted circles represent E1(c, z) = 0 and
E2(c, z) = 0, respectively.

Figure 2. Solution using an ellipse (left). Solution using the circle of Apollonius (right).

Lemma 2.1: (See, e.g. [4, Theorem 1.1])
For z1, z2 ∈ D, the PA-point z is given as a solution of the equation

z1z2z4 − (z1 + z2)z3 + (z1 + z2)z − z1z2 = 0. (2)

This lemma is also valid for the external reflection, i.e. Equation (2) holds for z1, z2 ∈
C \ D if the line segment [z1, z2] has no intersection with ∂D. Note that if [z1, z2] ∩ ∂D �=
∅, the light is blocked by the boundary (mirror) and never reaches the observer. Moreover,
in this case, supz∈∂D

{|z1 − z2|/(|z1 − z| + |z − z2|)} = 1.

2.2. Number of roots and catacaustic of a circle

A root u ∈ ∂D of the equation

Pz1,z2(u) = z1z2u4 − (z1 + z2) u3 + (z1 + z2) u − z1z2 = 0
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Figure 3. The leaning ellipse indicates C. The points u3 and u6 are tangent points of the thick and dotted
ellipses with C, respectively. The foci of these thick and dotted ellipses are both −1, 1. Here, the points
u1 and u5 are tangent points of C and the hyperbolas with foci−1, 1.

Figure 4. The leaning hyperbola indicates C. The two points u1 and u5 are tangent points of the dotted
and thick ellipseswithC, respectively. The foci of thesedotted and thick ellipses are both−1, 1.Moreover,
the two points u3 and u4 are tangent points of C and the hyperbolas with foci−1, 1.
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Figure 5. The level sets of G = {||z − (−1/2 − 1/2i)| − |z − (1 − i)|| < 4/5} (left) and G = {|z −
3/2| + |z − (−1/3 − 1/2i)| < 11/5} (right). Note that each red curve passes through all edge points
of the contour curves.

is a PA-point if and only if

Re
(
z1z2u2 − (z1 + z2) u

) + 1 > 0,

as follows from [4, Lemma 3.1]. If z1, z2 ∈ D\{0}, then the above inequality holdswhenever
u ∈ ∂D ; therefore, all the roots of Pz1,z2 = 0 that lie on the unit circle, called unimodular
roots, are PA-points.

If z1 = 0 and z2 = |z2|eiα �= 0, then the roots of (2) are 0 and±ei
α
2 . In the following, we

will assume z1, z2 ∈ C\{0}, therefore (2) is a quartic equation.
The equationPz1,z2 = 0 has always at least two distinct unimodular roots [4, Lemma2.4]

and both cannot have multiplicity 2 [4, Lemma 4.1]. Moreover, Pz1,z2 = 0 has four simple
unimodular roots if z1, z2 ∈ C\D. If Pz1,z2 = 0 has a triple root a and a simple root b, then
|a| = 1 and b = −a [4, Lemma 4.3]. We characterize in terms of z1 and z2 all the possi-
ble cases for the number of unimodular roots of Pz1,z2 = 0 and their multiplicities, both
algebraically and geometrically. Various approaches to particular cases of this problem are
scattered through the literature [4,14,15].

We will denote by D(P) the discriminant of the complex polynomial P.

Proposition 2.2: Let z1, z2 ∈ C\{0} and

Pz1,z2 (u) = z1z2u4 − (z1 + z2) u3 + (z1 + z2) u − z1z2.

Then

(1) Pz1,z2 = 0 has four simple unimodular roots if and only if D(Pz1,z2) < 0;
(2) Pz1,z2 = 0 has two simple unimodular roots and two distinct roots off the unit circle if

and only if D(Pz1,z2) > 0;
(3) Pz1,z2 = 0 has at least one multiple root if and only if D(Pz1,z2) = 0.
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Moreover, in case (3) all the roots of Pz1,z2 = 0 are unimodular and Pz1,z2 = 0 has either
a double root and two simple roots, or a triple root v and −v as a simple root.

Proof: Denote s = z1 + z2 = s1 + is2 and p = z1z2 = p1 + ip2, where s1, s2 and p1, p2 are
real numbers. Then Pz1,z2(u) = pu4 − su3 + su − p.

As in [14], using the substitution u = (1 + it)/(1 − it) we see that (2) turns into an
algebraic equation with real coefficients. We have

Pz1,z2

(
1 + it
1 − it

)
= (−2i)

(1 − it)4
Qz1,z2(t), t ∈ C\ {−i}

where

Qz1,z2 (t) = (
s2 + p2

)
t4 + 2

(
s1 + 2p1

)
t3 − 6p2t2 + 2

(
s1 − 2p1

)
t − (

s2 − p2
)
.

There is a one-to-one correspondence between the unimodular zeros ofPz1,z2 = 0 different
from (−1) and the real roots of Qz1,z2 = 0, as Pz1,z2(eiϕ) = 0 if and only if Qz1,z2(tan

ϕ
2 ) =

0, where ϕ ∈ (−π ,π).
Similarly, we consider the reciprocal polynomials P∗

z1,z2 and Q∗
z1,z2 of Pz1,z2 and Qz1,z2 ,

respectively:

P∗
z1,z2(u) = −pu4 + su3 − su + p,

Q∗
z1,z2 (t) = − (

s2 − p2
)
t4 + 2

(
s1 − 2p1

)
t3 − 6p2t2 + 2

(
s1 + 2p1

)
t + (

s2 + p2
)
.

We have P∗
z1,z2((t + i)/(t − i)) = (−2i)/(t − i)4Q∗

z1,z2(t), t ∈ C\{i}. There is a one-to-one
correspondence between the unimodular zeros of P∗

z1,z2 = 0 different from 1 and the real
roots of Q∗

z1,z2 = 0, as Pz1,z2(eiϕ) = 0 if and only if Q∗
z1,z2(cot

ϕ
2 ) = 0, where ϕ ∈ (0, 2π).

Note that Q∗
z1,z2 is a quartic polynomial if and only if s2 − p2 �= 0, which is equivalent

to Pz1,z2(1) �= 0.
Wediscuss the number of real roots ofQz1,z2 = 0 andQ∗

z1,z2 = 0. It is known that the dis-
criminant of a quartic equation with real coefficients is positive if and only if the equation
has four simple roots that are either all real or two pairs of complex conjugates (see, e.g.
[16]).

Case 1. Assume that s2 + p2 �= 0. Then Pz1,z2(−1) �= 0 and Qz1,z2 is a quartic polyno-
mial. The discriminant of the polynomial Pz1,z2 is the real number

D(Pz1,z2) = 1
27

(
4I3 − J2

)
,

where I = −12|p|2 + 3|s|2 and J = −27(s2p − s2p), hence

D
(
Pz1,z2

) = 4
( |s|2 − 4

∣∣p∣∣2 )3 − 27
(
s2p − s2p

)2
= 4 |s|6 + 6 |s|4 ∣∣p∣∣2 + 192 |s|2 ∣∣p∣∣4 − 256

∣∣p∣∣6 − 54Re
(
s4p2

)
. (3)

The above formula appears in [14]. Using the properties of the discriminant of a binary
form as a projective invariant [17, Definition 2.2] it follows thatD(Qz1,z2) = −64D(Pz1,z2),
see also [14].
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Since Pz1,z2 = 0 has at least two distinct unimodular roots, Qz1,z2 = 0 has at least two
distinct real roots. The discriminant D(Qz1,z2) = 0 if and only Qz1,z2 = 0 has multiple
roots. D(Qz1,z2) > 0 if and only if all the roots of Qz1,z2 = 0 are real, since the equation
Qz1,z2 = 0 can have at most 2 non-real roots. Then D(Qz1,z2) < 0 if and only if Qz1,z2 = 0
has two distinct real roots and two conjugated non-real roots. For the relation between the
roots of a quartic equation and the discriminant, see also [16]. We obtain the following:

(i) Pz1,z2 = 0 has four simple unimodular roots if and only if all the roots ofQz1,z2 = 0
are real, which is equivalent to D(Qz1,z2) > 0, i.e. to D(Pz1,z2) < 0.

(ii) Pz1,z2 = 0 has two simple unimodular roots and two distinct roots off the unit circle
if and only if Qz1,z2 = 0 has two distinct real roots and two non-real roots, which
is equivalent to D(Qz1,z2) < 0, i.e. to D(Pz1,z2) > 0.

(iii) Pz1,z2 = 0 has at least one multiple root if and only if D(Pz1,z2) = 0. Assuming that
Pz1,z2 = 0 has at least onemultiple root the claim is obtained by [4, Lemmas 4.2 and
4.3].

Case 2. Assume that s2 − p2 �= 0. Then Pz1,z2(1) = P∗
z1,z2(1) �= 0 and Q∗

z1,z2 is a quartic
polynomial.

We have D(Pz1,z2) = D(P∗
z1,z2) and the discriminants of P∗

z1,z2 and Q∗
z1,z2 are related by

D(Q∗
z1,z2) = −64D(P∗

z1,z2).
The discussion continues as in Case 1, replacing Pz1,z2 by P∗

z1,z2 and Qz1,z2 by Q∗
z1,z2 .

Case 3. The remaining case s2 = p2 = 0. We can assume that s and p are real numbers.
In this case Pz1,z2(u) = (u − 1)(u + 1)(pu2 − su + p). The polynomial Pz1,z2 has only real
coefficients andD(Pz1,z2) = 4(s2 − 4p2)3. The roots of Pz1,z2 = 0 are 1, (−1) and the roots
of R(u) = pu2 − su + p.

If D(Pz1,z2) > 0, i.e. |s| > 2|p|, then the roots of R = 0 are (s ± √
s2 − 4p2)/(2p) and

cannot be unimodular.
If |s| < 2|p|, then the roots (s ± i

√
4p2 − s2)/(2p) of R = 0 are unimodular.

If |s| = 2|p|, then the double root s/(2p) of R = 0 belongs to {±1}.
Claims (1), (2) and (3) follow straightforward in this case. Moreover, if D(Pz1,z2) = 0,

then Pz1,z2 has a triple root and one simple root. �

Using Proposition 2.2, we get a purely algebraic proof of [4, Proposition 4.5], whose
original proof usedComplexAnalysis arguments and results on self-inversive polynomials.

Corollary 2.3: Let z1, z2 ∈ C\{0}. Denote

Pz1,z2(u) = z1z2u4 − (z1 + z2) u3 + (z1 + z2) u − z1z2,

E1 (z1, z2) = |z1 + z2| − |z1z2| and E2 (z1, z2) = |z1 + z2| − 2 |z1z2| .

Assume that Im((z1 + 1)(z2 + 1)) �= 0.

(a) If E2(z1, z2) > 0, then Pz1,z2 = 0 has two distinct unimodular roots and two roots off the
unit circle.

(b) If E1(z1, z2) < 0, then Pz1,z2 = 0 has four distinct unimodular roots.
(c) If Pz1,z2 = 0 has four distinct unimodular roots, then E2(z1, z2) < 0.
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(d) If Pz1,z2 = 0 has two distinct unimodular roots and two roots off the unit circle, then
E1(z1, z2) > 0.

Proof: Denote s = z1 + z2 and p = z1z2.
(a) From (3), we have

D
(
Pz1,z2

) = 4
( |s|2 − 4

∣∣p∣∣2 )3 + 108
(
Im

(
s2p

) )2. (4)

If E2(z1, z2) > 0, then |s|2 − 4|p|2 > 0, hence D(Pz1,z2) > 0 and by Proposition 2.2 (2)
Pz1,z2 = 0 has two distinct unimodular roots and two roots off the unit circle.

(b) We may write

D(Pz1,z2) = 4
( |s|2 − ∣∣p∣∣2 )( |s|2 + 8

∣∣p∣∣2 )2 − 54
( |s|4 ∣∣p∣∣2 + Re

(
s4p2

) )
.

Note that |s|4|p|2 = |s4p2| ≥ −Re(s4p2). If E1(z1, z2) < 0, then |s|2 − |p|2 < 0, therefore
D(Pz1,z2) < 0 and by Proposition 2.2 (1) Pz1,z2 = 0 has four distinct unimodular roots.

(c) Assume that Pz1,z2 = 0 has four distinct unimodular roots. By Proposition 2.2 (1)
D(Pz1,z2) < 0, but

4
(
E2(z1, z2)

)2
(|s| + 2

∣∣p∣∣)3 = D(Pz1,z2) − 108
(
Im(s2p)

)2
< 0,

therefore, E2(z1, z2) < 0.
(d) Assume that Pz1,z2 = 0 has two distinct unimodular roots and two roots off the unit

circle. By Proposition 2.2 (b) D(Pz1,z2) > 0, but

4E1 (z1, z2)
(|s| + ∣∣p∣∣) ( |s|2 + 8

∣∣p∣∣2 )2 = D
(
Pz1,z2

) + 54
( |s|4 ∣∣p∣∣2 + Re(s4p2)

)
> 0;

therefore, E1(z1, z2) > 0. �

Remark 2.4: The domain E1(z1, z) < 0 is the interior of the circle E1(z1, z) = 0 if 0 <

|z1| < 1, the exterior of the circle E1(z1, z) = 0 if |z1| > 1 and a half-plane not containing
the origin for |z1| = 1. The domain E2(z1, z) > 0 is the exterior of the circle E2(z1, z) = 0 if
|z1| < 1

2 , the interior of the circle E1(z1, z) = 0 if |z1| > 1
2 and a half-plane not containing

the origin for |z1| = 1
2 .

Next, wewill give geometrical interpretations of Proposition 2.2 and [4, Proposition 4.5]
relying on the catacaustic of the unit circle with radiant point z1. Recall that the catacaus-
tic of a curve is the envelope of the family of the reflected rays by that curve, for a light
source at a given point, called the radiant point. In [15], Drexler and Gander studied the
equationQz1,z2(t) = 0 [14, Equation (9)] for z1, z2 ∈ D, assumingwithout loss of generality
that z1 = c ∈ (−1, 0). They determined the parametrical equations of a curve, called sep-
aratrix, bounding the regions that correspond to the cases when the polynomial equation
Qz1,z2 = 0 has two simple roots, respectively, four simple roots. If z2 is on the separatrix,
then Qz1,z2 = 0 has only real roots, either one double root and two simple roots (if z2 is a
regular point) or a triple root and one simple root (if z2 is a cusp). In [15], the separatrix was
represented for six particular values of the parameter c and highlighted through computer
and optical experiments. One can see that for a fixed z1 = c ∈ (−1, 0) the separatrix from
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[15] is the catacaustic of the unit circle with the radiant point z1, denoted in the following
by Kz1 .

Our graphical experiments have shown that the (generalized) circle given byE1(z1, z) :=
|z1 + z| − |z1z| = 0 is tangent to the catacaustic Kz1 and that the (generalized) cir-
cle given by E2(z1, z) := |z1 + z| − 2|z1z| = 0 intersects Kz1 exactly at the cusps of Kz1
(see, Figure 1). In the following, we will explain the results of these experiments using
the connection between the discriminant of the polynomial Pz1,z2 and the resultant
resulu(Pz1,z2 ,P′

z1,z2).
The equation of the reflected ray for the incident ray passing through z1, with the

reflection point u = eiϕ , is ∣∣∣∣∣∣
z z 1
u 1/u 1

z1u2 z1/u2 1

∣∣∣∣∣∣ = 0,

which is equivalent to

Fz1(z, z, u) := (u − z1)z + u3 (z1u − 1) z − u(z1u2 − z1) = 0.

Note that Fz1(z, z, u) = Pz1,z(u) for all u, z1, z ∈ C.
The envelope of the family of curves Fz1(z, z, u) = 0, u ∈ ∂D is the catacaustic of the

circle, with radiant point z1, which will be denoted by Kz1 . The standard equations of Kz1
are {

Fz1(z, z, u) = 0,
∂

∂u
Fz1(z, z, u) = 0,

u ∈ ∂D. (5)

Solving (5) as a linear system with respect to z and z, it follows that

z = u(z12u3 − 3 |z1|2 u + 2z1)
3z1u2 − 2(2 |z1|2 + 1)u + 3z1

and z = 2z1u3 − 3 |z1|2 u2 + z21
u2

(
3z1u2 − 2(2 |z1|2 + 1)u + 3z1

) .
The parametric equations of the catacaustic, obtained from the above equalities foru = eiϕ ,
are ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
x = 1

2
Re(z12u3 − 3 |z1|2 u + 2z1)
3Re (z1u) − (2 |z1|2 + 1)

,

y = 1
2
Im(z12u3 − 3 |z1|2 u + 2z1)
3Re (z1u) − (2 |z1|2 + 1)

,
where u = eiϕ and z = x + iy.

Due to rotation invariance, we may assume that z1 is a positive number. In the case
when z1 = c is a positive real number, we get the well-known parametric equations of the
catacaustic of the circle with a radiant point on the positive real axis [18]:⎧⎪⎨

⎪⎩
x = c

2
c cos 3ϕ − 3c cosϕ + 2
3c cosϕ − (2c2 + 1)

,

y = c
2

c sin 3ϕ − 3c sinϕ

3c cosϕ − (2c2 + 1)
.

System (5) is equivalent to resulu(Fz1(z, z, u),
∂
∂uFz1(z, z, u)) = 0, which is an implicit

equation of the catacaustic Kz1 .
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Since Fz1(z, z, u) = Pz1,z(u) for all u, z1, z ∈ C, using the connection between the
discriminant of a polynomial f (x) and the resultant resulx(f , f ′), we see that

D
(
Pz1,z

) = 1
z1z

resulu
(
Fz1(z, z, u),

∂

∂u
Fz1(z, z, u)

)
.

It follows that a simpler implicit equation of the catacaustic Kz1 is

(
Kz1

)
:D

(
Pz1,z

) = 0.

Using formula (4) with s = z1 + z and p = z1z, we get

D
(
Pz1,z

) = 4
(

|z + z1|2 − 4 |z1|2 |z|2
)3 + 108

(
Im

(
(z + z1)2 z1z

))2
. (6)

Therefore, an implicit equation of the catacaustic of the circle with the radiant point z1 is

4
(

|z + z1|2 − 4 |z1|2 |z|2
)3 + 108

(
Im

(
(z + z1)2 z1z

))2 = 0.

Note that we may write

D
(
Pz1,z

) = 4
( |z + z1|2 − |z1|2 |z|2 )( |z + z1|2 + 8 |z1|2 |z|2 )2

− 54
(

|z + z1|4 |z1|2 |z|2 + Re
(
(z + z1)4 z12z2

))
.

In conclusion, z2 ∈ Kz1 if and only ifD(Pz1,z2) = 0. By Proposition 2.2 (3), ifD(Pz1,z2) = 0,
then all the roots u of Pz1,z2 = 0 are unimodular and Pz1,z2 = 0 has either a double root and
two simple roots, or a triple root and one simple root. The latter case occurs if and only
if z2 is a cusp of the catacaustic of the circle with radiant point z1, as shown in [19] in the
case where z1 = c is a positive number, see also [4, Lemma 4.3].

If z2 belongs to a connected component of the complement of the catacausticD(Pz1,z) =
0, we have either D(Pz1,z2) > 0 (hence Pz1,z2 = 0 has two simple unimodular roots and
two distinct roots off the unit circle) or D(Pz1,z2) < 0 (hence Pz1,z2 = 0 has four simple
unimodular roots).

Assuming that z1 �= 0, using Corollary 2.3 we easily identify the regions D(z1, z) > 0
and D(z1, z) < 0, since

0 ∈ {z ∈ C : E2 (z1, z) > 0} ⊂ {z ∈ C : D (z1, z) < 0}
and (−z1) ∈ {z ∈ C : E2 (z1, z) < 0} ⊂ {z ∈ C : D (z1, z) > 0} .

Remark 2.5: If |z1| > 1, then the catacaustic Kz1 is a Jordan curve contained in the
closed unit disk. If |z1| > 1 and |z2| > 1 it follows that D(Pz1,z2) < 0 ; hence, the equation
Pz1,z2(u) = 0 has four simple unimodular roots, as it is proved geometrically in [4,
Proposition 3.8 (i)].



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 11

3. Alhazen’s problem and the circle of Apollonius

The circle of Apollonius is the locus of points that have a constant ratio of distances from
two given points. Figure 2 illustrates the two geometric ideas to find the PA-point on the
unit circle, the ellipse method (on the left) and the angle bisection property of the circle of
Apollonius (on the right).

Lemma 3.1: Assume that the segment [z1, z2] is either in D, or in C \ D, and that 0, z1, z2
are not collinear.

Then, z ∈ ∂D is a PA-point if and only if there exists some t ∈ (0, 1) such that z = ±(tz2 +
(1 − t)z1)/|tz2 + (1 − t)z1| and z belongs to the circle of Apollonius with respect to the two
points z1, z2 and the ratio t.

Proof: Sufficiency follows from the angle bisector property for the circle of Apollonius.
Necessity: Let z ∈ ∂D be a PA-point. The line Lz joining z to the origin bisects the angle

∠(z1, z, z2). If |z1| = |z2| and Lz is the perpendicular bisector of the segment [z1, z2], the
claim follows with t = 1/2. This corresponds to the case in which the circle of Apollonius
is a straight line.

In the remaining case, the intersection between Lz and the segment [z1, z2] is a point
v = tz2 + (1 − t)z1 for some t ∈ (0, 1) \ {1/2}. Let u be the harmonic conjugate of v with
respect to z1 and z2. Then z belongs to the circle of diameter [u, v], which is the circle of
Apollonius with respect to the two points z1, z2 and the ratio t. �

Proposition 3.2: Assume that the segment [z1, z2] is either in D, or in C \ D, and that
0, z1, z2 are not collinear. Then the point z ∈ ∂D is a PA-point if and only if z is written
as z = ±(tz2 + (1 − t)z1)/|tz2 + (1 − t)z1| for some t ∈ (0, 1) such that

(1 − 2t)2
(
(1 − t)2|z1|2 + t2|z2|2 + 2t(1 − t)Re (z1z2)

)
=

(
(1 − t)2|z1|2 − t2|z2|2

)2
.
(7)

Proof: By Lemma 3.1, z ∈ ∂D is a PA-point if and only if there exists some t ∈ (0, 1)
such that z = ±(tz2 + (1 − t)z1)/|tz2 + (1 − t)z1| belongs to the circle of Apollonius with
respect to the two points z1, z2 and the ratio t.

For |z1| = |z2| and t = 1/2, (7) holds, and z is a PA-point.
We will consider other cases. Let v be the internal division point of the segment [z1, z2]

in the ratio t : (1 − t) and u the external division point of [z1, z2] in the same ratio, i.e.

v = tz2 + (1 − t)z1, u = −tz2 + (1 − t)z1
1 − 2t

.

The corresponding circle of Apollonius is given by |ζ − (u + v)/2| = |(u + v)/2c − v|,
which is equivalent to

|z|2 − Re
(
(u + v)z

) + Re (uv) = 0. (8)

By (8), z = ±v/|v| is on the corresponding circle of Apollonius if and only if

Re (uv)
(
1 ∓ 1

|v|
)

= ±|v| − 1.



12 M. FUJIMURA ET AL.

As the segment [z1, z2] does not intersect the unit circle, we have |v| − 1 �= 0. Then z =
±v/|v| is on the circle of Apollonius with diameter |u − v| if and only if Re (uv) = ±|v|,
i.e. (

Re (uv)
)2 = |v|2.

Inserting here the formulas of u and v, we get (7). �

Remark 3.3: Equation (7) can also be written as follows:

T(z1, z2) = (
(|z1|2 − |z2|2)2 − 4|z1 − z2|2

)
t4

− 4
(|z1|2(|z1|2 − |z2|2) − 2|z1 − z2|2 − |z1|2 + |z2|2

)
t3

+ (
2|z1|2(3|z1|2 − |z2|2) − 8|z1|2 + 4|z2|2 − 5|z1 − z2|2

)
t2

− (|z1|2(4|z1|2 − 5) + |z2|2 − |z1 − z2|2
)
t + |z1|2(|z1|2 − 1) = 0.

Therefore, if z1, z2 ∈ D, the equationT(z1, z2) = 0 has at least two real roots t1, t2 satisfying
0 < t1 ≤ 1/2 ≤ t2 < 1 since the following hold

T(z1, z2)|t=0 = z1z1(z1z1 − 1) < 0, T(z1, z2)|t=1 = z2z2(z2z2 − 1) < 0,

and T(z1, z2)|t= 1
2

= 1
16

(z1z1 − z2z2)2 ≥ 0.

So, the PA-point that attains the supremum in the definition of the triangular ratio metric
sD(z1, z2) is on the shorter of the two arcs connecting ei arg(z1) and ei arg(z2).

4. Alhazen’s problem on a conic domain

In this section, we consider Alhazen’s problem for quadric surfaces. Since the section of a
quadric surface (conicoid) by each plane is a quadratic curve (conic), we will consider this
problem in a planar domain whose boundary is a conic.

Problem 4.1: For two points z1, z2 ∈ C and a conic domain D, find the PA-points on ∂D.

Since it is difficult to extend the solution method using the circle of Apollonius, we will
apply the solution method using ellipses to this problem.

Here, we consider similarity transformations of the form A(z) = αz + β , where α, β ∈
C. Then A maps each subdomain D of C onto A(D) which is a translated, rotated, and
rescaled version of D. The similarity transformation

A(z) = 2
z1 − z2

z − z1 + z2
z1 − z2

sends the points z1 and z2 to 1 and −1, respectively, and maps conics to conics. So, instead
of Problem 4.1, we just need to solve the following problem.

Problem 4.2: For two points z1, z2 ∈ C and a conic domain D, let C be the boundary of
A(D), where A(z) = 2/(z1 − z2)z − (z1 + z2)/(z1 − z2). Then, find u ∈ C such that

|∠(−1, u, 0)| = |∠(0, u, 1)|.



COMPLEX VARIABLES AND ELLIPTIC EQUATIONS 13

Let C(= ∂A(D)) be a conic given by

C : c(z) = az2 + pzz + az2 + bz + bz + q = 0 (a, b ∈ C, p, q ∈ R), (9)

and E the ellipse with foci 1 and −1

E : |z − 1| + |z + 1| = r (r > 2). (10)

The ellipse E is also expressed as

e(z) = z2 + (2 − 2r2)zz + z2 + r22 − 2r2 = 0, (11)

where r2 := r2/2 (> 2).
Note that (11) is obtained by squaring both sides of Equation (10), so it includes the

hyperbola ||z − 1| − |z + 1|| = r as well as the ellipse E.
From now on, we assume that C is a non-degenerate conic, i.e. C is an ellipse, a hyper-

bola, or a parabola. A conic (9) can be classified as follows. For p2 − 4aa < 0, C represents
a hyperbola or its degenerate form; for p2 − 4aa > 0,C represents an ellipse or its degener-
ate form; and for p2 − 4aa = 0, C represents a parabola or its degenerate form. For a more
detailed classification of conics C, see, e.g. [20, Lemma 3].

The following result is an extension of Lemma 2.1. Since the boundary of the domain
is extended from the unit circle to a conic, the technique of the proof of Lemma 2.1,
i.e. Theorem 1.1 in [4], is not available. However, it is difficult to calculate it manually
and directly. Here we use the Risa/Asir, the symbolic computation system, to process the
equation.

Theorem 4.3: Let C be a conic given by c(z) = az2 + pzz + az2 + bz + bz + q = 0 (a, b ∈
C, p, q ∈ R), and E the ellipse given by e(z) = z2 + (2 − 2r2)zz + z2 + r22 − 2r2 = 0. Sup-
pose E does not coincide with C for some r, and has a point of tangency on C for some r. The
point of tangency is given by the solution of F4 = W6z6 + W5z5 + W4z4 + W3z3 + W2z2 +
W1z + W0 = 0, where

W6 = 4a(bbp − b
2
a − ab2)(p2 − 4aa),

W5 = −2
[
bp5 − b(a + a)p4 − b(4aq + 8aa + b

2
)p3 + b

(
8aaq + 8aa2 + (8a2 + b

2
)a

− 3ab2
)
p2 + 4ab(4aaq + 4aa2 + 4b

2
a + ab2)p − 4aab

(
8aaq + 4aa2

+ (4a2 + 3b
2
)a + 3ab2

)]
,

W4 = −
[
p6 − (

(4a + 4a)q + a2 + 10aa − 9b2 + a2 + b
2)
p4 − 2bb(2q + 11a + a)p3

+
(
16aaq2 + 4

(
8aa2 + (8a2 + 2b

2
)a − 5ab2

)
q + 8aa3 + (32a2 + 14b

2
)a2

+ (−42ab2 + 8a3 + 18b
2
a)a + (−6a2 − 5b

2
)b2

)
p2 + 2bb

(
48aaq + 44aa2

+ (4a2 + 7b
2
)a + ab2

)
p − 64a2a2q2 − 16a2a(4aa + 4a2 + 7b

2
)q − 16a2a4 − (32a3

+ 56b
2
a)a3 + (24a2b2 − 16a4 − 56b

2
a2 − 9b

4
)a2 + (24a3 − 6b

2
a)b2a + 3a2b4

]
,
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W3 = −2
[
2bp5 − b(q + 4a)p4 − b

(
(14a + 2a)q + 2a2 + 12aa − 8b2 + 2a2 + b

2)
p3

+ b
(
4aq2 + (20a2 + 20aa − 7b2)q + 4a3 + 24aa2 + (−24b2 + 4a2 + 3b

2
)a − ab2

)
p2

+ b
(
32aaq2 + (

56aa2 + (8a2 + 26b
2
)a − 6ab2

)
q + 8aa3 + (16a2 + 26b

2
)a2

+ (−18ab2 + 8a3 + 2b
2
a)a + (−6a2 − b

2
)b2

)
p − b

(
80aa2q2 + 4a

(
20aa2

+ (16a2 + 6b
2
)a − 3ab2

)
q + 16aa4 + (32a2 + 12b

2
)a3 + (−28ab2 + 16a3 + 16b

2
a)a2

+ (−24a2 − b
2
)b2a − ab4

)]
,

W2 = 2
[(

(3a − a)q − 3b2
)
p4 + bb(3q + 9a + a)p3 +

(
− 2(6a2 + 2aa − b2)q2 − (

4a3

+ 16aa2 + (−27b2 − 4a2 + 9b
2
)a + 4ab2

)
q + 3(b2 − 3b

2
)a2 + (9ab2 − b

2
a)a − 7b4

+ 2a2b2
)
p2 − bb

(
28aq2 + (60a2 − 5b2)q + 8a3 + 20aa2 − (19b2 − 12a2)a − 5ab2

)
p

+ 32aa2q3 + 4a
(
12aa2 + (4a2 + 11b

2
)a − 3ab2

)
q2 + (

16aa4 + (16a2 + 44b
2
)a3

+ (−32ab2 + 40b
2
a)a2 − (12a2 + 9b

2
)b2a + ab4

)
q + 8b

2
a4 + (−4ab2 + 20b

2
a)a3

+ ( − (4a2 + 15b
2
)b2 + 12b

2
a2 + 3b

4)
a2 + (5ab4 − 15b

2
ab2)a + 2a2b4

]
,

W1 = 2
[
2b

(
q2 + (3a − a)q − b2

)
p3 − b

(
8aq2 + (12a2 − 4aa + b2)q − 6b2a − 2ab2

)
p2

− b
(
8aq3 + (32a2 − 8aa − 2b2)q2 + (

8a3 + 8aa2 + (−20b2 − 2b
2
)a + 2ab2

)
q

+ (−2b2 + 6b
2
)a2 + (−2ab2 + 6b

2
a)a + 3b4 − b

2
b2

)
p + b

(
32a2q3

+ 4a(12a2 + 4aa − 3b2)q2 + (
16a4 + 16aa3 + (−32b2 + 8b

2
)a2 − 12ab2a + b4

)
q

+ (−4b2 + 4b
2
)a3 + (−4ab2 + 4b

2
a)a2 + (5b4 − 3b

2
b2)a + 2ab4

)]
,

W0 = q2p4 − 2bbqp3 + ( − 8aq3 + (−8a2 + 2b2)q2 + (6b2 + 2b
2
)aq − b4 + b

2
b2

)
p2

+ 2bb
(
4aq2 + (−4a2 − b2)q + (b2 − b

2
)a

)
p + 16a2q4 + 8a(4a2 − b2)q3

+ (
16a4 + (−32b2 + 8b

2
)a2 + b4

)
q2 − 2a

(
(4b2 − 4b

2
)a2 − 5b4 + 3b

2
b2

)
q

+ (b − b)(b + b)
(
(b2 − b

2
)a2 − b4

)
.

Proof: Note that, if a = 0, the conic C is a circle and we can apply Lemma 2.1. Therefore,
we assume that a �= 0.

From the assumption of Theorem 4.3, there is an intersection point of E and C.
Eliminating z from c(z) = 0 and e(z) = 0, we have the following quartic equation of z
variable,

S(z) = (
4aar22 + 2((a + a)p − 4aa)r2 + (p − a − a)2

)
z4

+ (
4bar22 + 2(bp + (b − 4b)a + ab)r2 + 2(b − b)(p − a − a)

)
z3
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+ (
2apr32 + (p2 − 6ap + 4aq + 2a2 − 2aa)r22 − 2(p2 − (q + 2a)p + 4aq + 2a2

− 2aa − bb)r2 − 2qp + (2a + 2a)q + b2 − 2bb + b
2)
z2

+ (
2bar32+2(bp + (−3b − b)a)r22 − 2(2bp − bq + (−2b−2b)a)r2 − 2(b−b)q

)
z

+ a2r42 − 4a2r32 + (−2aq + 4a2 + b2)r22 + (4aq − 2b2)r2 + q2 = 0.

As there is a point of tangency of two curves C and E, the equation S(z) = 0 must have
multiple roots. This condition is equivalent to the requirement that the system of equations

S(z) = 0, and S′(z) = 0 (12)

has a common root.
Here, we remark that the leading coefficient of S(z) = 0 as z variable is not constant

zero. In fact, if

4aar22 + 2
(
(a + a)p − 4aa

)
r2 + (p − a − a)2 ≡ 0

then a = p = 0 holds, and C : c(z) = bz + bz + q = 0 degenerates to a line. Moreover,
the leading term a2r42 of S(z) = 0 as r2 variable does not vanish by the assumption.

Now, eliminating r2 from (12) by calculating

resulr2(S(z), S
′(z)) = 0, (13)

we have a2F1F2F23F4 = 0, where

F1(z) = (p − a − a)z2 + (b − b)z − q,

F2(z) = (p + a + a)z2 + (b + b)z + q,

F3(z) = (4a2 − 4aa)z4 − 4baz3 + (p2 − 4aq − 4a2)z2 + 2bpz + b2.

Here, we use Risa/Asir, a symbolic computation system, for computing the resultant in
(13). (See, e.g. [21] for details on the relationship between the resultant and the solution of
a system of equations.)

We need to examine the properties of factors F1, . . . , F4.

• The factor a �= 0 from the assumption. (If a = 0, C is a circle.)
• The equation F1 = 0 is obtained from substituting −z for z in c(z) = 0. Therefore

F1 = 0 gives the intersection points of C and the imaginary axis.
• The equation F2 = 0 is obtained from substituting z for z in c(z) = 0. Therefore F2 =

0 gives the intersection points of C and the real axis.
• The solutions of F3 = 0 give the condition that there exist multiple roots for r2. In

fact, we have the following,

resulr2

(
S,

∂

∂r2
S
)

= 16a4(z − 1)2(z + 1)2(az2 + (−p + b)z + q + a − b)

× (az2 + (p + b)z + q + a + b)((p2 − 4aa)z2 + (2bp − 4ba)z − 4aq + b2)2
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× ((4a2 − 4aa)z4 − 4baz3 + (p2 − 4aq − 4a2)z2 + 2bpz + b2)2.

Therefore, the equality aF1F2F3 = 0 does not give the condition that the equation S = 0
has multiple roots. Hence, the equation F4 = 0 gives the condition that the equation S = 0
has multiple roots and includes a point of tangency as its solution. �

Remark 4.4: In the above proof, the conic C is assumed not to be the circle. In the case
that a = 0 and p �= 0, C represents a circle. Moreover, we can set p = 1 without loss of
generality, and if |b|2 > q, C : c(z) = zz + bz + bz + q = 0 represents a circle of radius√|b|2 − q with centre b.

Substituting a = 0 and p = 1 for F4, we have

F4(0, b, 1, q, z) = (2bz + b2 + 1)
(
(b

2 − 1)z4 + (2bq + (2b
2 − 4)b)z3 + (6bbq − 6b2)z2

+ (2bq2 + 2bb2q − 4b3)z + (b2 + 1)q2 − 2bbq − b4 + b
2
b2

) = 0.

The first factor represents a single point. If the second factor is transformedby the similarity
transformation z = sw − b (s2 = |b|2 − q), the equation that gives the PA-point for the
unit circle is obtained as follows:

(|b|2 − q)2
(
(b

2 − 1)w4 − 2b
√

|b|2 − qw3 + 2b
√

|b|2 − qw − b2 + 1
) = 0. (14)

Then, by the transformation z = sw − b, the foci 1 and −1 correspond to (1 + b)/s and
(−1 + b)/s, respectively. For these two points, Equation (2) of the PA-point is

(b
2 − 1)z4 − 2b

√
|b|2 − qz3 + 2b

√
|b|2 − qz − b2 + 1 = 0.

The above equation coincides with (14).
Thus, the equation F4 = 0 is also valid for the case that C is a circle.

Theorem 4.5: If the segment [−1, 1] does not intersect with C, the point z ∈ C such that the
sum |z − 1| + |z + 1| is minimal is given as a root of the equation F4 = 0 of degree 6.

The following examples show how to find the reflection points.

Example 4.6: Let D = {z ∈ C : |z − 2| + |z − (1 + 2i)| >
√
6}. The PA-point u ∈ ∂D

can be found by the following procedure.
The boundary C = ∂D is the ellipse written as

c(z) = (−3 + 4i)z2 − 14zz + (−3 − 4i)z2 + (38 − 20i)z + (38 + 20i)z − 71 = 0.

In this case, the equation F4 = 0 is given by

(924 − 1232i)z6 + (−15308 + 7432i)z5 + (81677 + 2608i)z4 + (−189086 − 106196i)z3

+ (185621 + 278356i)z2 + (−37976 − 281192i)z + (−29632 + 97824i) = 0,
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and its roots are

u1≈1.923740 − 0.117041i, u2≈1.772166 + 0.309916i, u3≈1.259144 + 0.426617i,
u4≈2.808489 + 0.435057i, u5≈0.825548 + 1.934592i, u6≈1.235845 + 2.067480i.

It is easy to see that four roots u1, u3, u5, and u6 are in C, and the function |z − 1| + |z + 1|
attains its minimum at the point u6 ∈ C (see Figure 3 for details). Note that the case D =
{|z − 2| + |z − (1 + 2i)| <

√
6} can be calculated exactly in the same way.

Example 4.7: LetD be the region given by {z ∈ C : ||z − 3| − |z − (1 + 2i)|| >
√
5}. The

PA-point u ∈ ∂D can be found by the following procedure.
The boundary C = ∂D is the hyperbolic curve defined by

c(z) = 8iz2 − 4zz − 8iz2 + (24 − 36i)z + (24 + 36i)z − 99 = 0.

In this case, the equation F4 = 0 is given by

6048z6 + (−66960 − 34992i)z5 + (212760 + 346428i)z4 + (47268 − 1215900i)z3

+ (−1363032 + 1675647i)z2 + (2156652 − 408726i)z + (−850176 − 550557i) = 0,

and its roots are

u1≈2.542018 − 0.357669i, u2≈2.645886 + 0.629896i, u3≈3.393387 + 0.463604i,
u4≈1.323205 + 1.940610i, u5≈1.5i, u6≈1.166931 + 1.609271i.

It is easy to check that four roots u1, u3, u4, and u5 are in C, and the function |z − 1| +
|z + 1| attains its minimum at the point u5 ∈ C (see Figure 4 for details). Note that the
case D = {||z − 3| − |z − (1 + 2i)|| <

√
5} can be calculated just the same way.

5. Triangular ratio metric on conic domains

5.1. The procedure for calculating the triangular ratio distance

For two points z1, z2 ∈ C and the domain D whose boundary is given by a conic �, the
triangular ratio metric

sD(z1, z2) = sup
z∈�

|z1 − z2|
|z1 − z| + |z − z2|

is obtained as follows.

(1) Let C : c(z) = az2 + pzz + az2 + bz + bz + q = 0 be the conic given by A(�),
where A is the similarity transformation A(z) = 2/(z1 − z2)z − (z1 + z2)/(z1 −
z2).

(2) For C, solve the equation F4(z) = 0.
(3) Find the points ζ ∈ C for which the minimum minF4(z)=0{|z + 1| + |z − 1|} is

attained.
(4) Then, we have sC(1,−1) = 2/(|1 − ζ | + |ζ + 1|).
(5) Because a similarity transformation preserves the quotient of distances, we have

sD(z1, z2) = sup
z∈�

|z1 − z2|
|z1 − z| + |z − z2| = sC(1,−1).
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5.2. Examples of level sets

For a given domain G ⊂ C and 0 < t < 1, the set Bs(z, t) = {ζ ∈ G : sG(z, ζ ) < t} is
called the contour domain of the level t.

Here, we will draw the level sets by solving the equation F4 = 0. The used algorithm is
the same as [4, p.145 Algorithm].

Example 5.1: The left figure of Figure 5 indicates the level sets Bs(0, t) = {ζ ∈ G :
sG(0, ζ ) < t} for t = 0.05, 0.1, . . . , 0.95, and 1 and the hyperbolic domain G = {||z −
(−1/2 − 1/2i)| − |z − (1 − i)|| < 4/5}. It seems that the edges of each contour curve are
located on the set {∣∣|z − (−1/2 − 1/2i)| − |z − (1 − i)|∣∣ =

√
1/2

}
.

The right figure indicates the level sets for the elliptic domain G = {|z − 3/2| + |z −
(−1/3 − 1/2i)| < 11/5}. It seems that the edges of each contour curve are located on the
set {

|z − 3/2| + |z − (−1/3 − 1/2i)| = (9 + √
13)/6

}
.

The above example leads to the following conjecture.

Conjecture 5.2: Let G be the domain defined by {|z − f1| + |z − f2| < r} or {||z − f1| −
|z − f2|| < r}, and Bs(z, t) = {ζ ∈ G : sG(z, ζ ) < t}. Using a similarity transformation, we
can set the centre point z to 0. Then, the edge points of ∂Bs(0, t) are on the conic |z − f1| +
|z − f2| = |f1| + |f2| or ||z − f1| − |z − f2|| = ||f1| − |f2|| if G = {|z − f1| + |z − f2| < r}
or {||z − f1| − |z − f2|| < r}, respectively.

Notes

1. https://www.geogebra.org/.
2. https://www.wolfram.com/.
3. http://www.math.kobe-u.ac.jp/Asir/asir.html (Kobe Distribution).
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