

This is a self-archived – parallel published version of an original article. This version may differ from the original in pagination and typographic details. When using please cite the original.

This is the peer reviewed version of the following article:

CITATION: Møller, AP, Balbontín, J, Dhondt, AA, et al. Effects of interspecific coexistence on laying date and clutch size in two closely related species of hole-nesting birds. *J Anim Ecol.* 2018; 87: 1738–1748.

which has been published in final form at

DOI https://doi.org/10.1111/1365-2656.12896

This article may be used for non-commercial purposes in accordance with <u>Wiley Terms and Conditions for Use of Self-Archived Versions</u>.

# Effects of interspecific co-existence on laying date and clutch size in closely related species of hole-nesting birds

3

4 Anders Pape Møller<sup>1</sup>, Javier Balbontín<sup>2</sup>, André A. Dhondt<sup>3</sup>, Vladimir Remeš<sup>4</sup>,

5 Frank Adriaensen<sup>5</sup>, Clotilde Biard<sup>6</sup>, Jordi Camprodon<sup>7</sup>, Mariusz Cichoń<sup>8</sup>,

6 Blandine Doligez<sup>9</sup>, Anna Dubiec<sup>10</sup>, Marcel Eens<sup>11</sup>, Tapio Eeva<sup>12</sup>, Anne E.

7 Goodenough<sup>13</sup>, Andrew G. Gosler<sup>14</sup>, Lars Gustafsson<sup>15</sup>, Philipp Heeb<sup>16</sup>, Shelley

8 A. Hinsley<sup>17</sup>, Staffan Jacob<sup>18</sup>, Rimvydas Juškaitis<sup>19</sup>, Toni Laaksonen<sup>20</sup>, Bernard

9 Leclercq<sup>21</sup>, Bruno Massa<sup>22</sup>, Tomasz D. Mazgajski<sup>23</sup>, Ruedi G. Nager<sup>24</sup>, Jan-Åke

10 Nilsson<sup>25</sup>, Sven G. Nilsson<sup>26</sup>, Ana C. Norte<sup>27</sup>, Rianne Pinxten<sup>28</sup>, Hugo Robles<sup>29</sup>,

11 Tapio Solonen<sup>30</sup>, Alberto Sorace<sup>31</sup>, Arie J. van Noordwijk<sup>32</sup> and Marcel M.

12 Lambrechts<sup>33</sup>

13

<sup>14</sup> <sup>1</sup>Anders Pape Møller, Ecologie Systematique Evolution, CNRS, AgroParisTech,

15 Université Paris-Saclay, F-91405 Orsay Cedex, France, anders.moller@u-

16 psud.fr

17 <sup>2</sup>Javier Balbontín, Departamento de Zoología, Facultad de Biología, Edificio

18 Verde, Avda. de Reina Mercedes s/n, E-41012 Sevilla, Spain, balbontin@us.es

<sup>3</sup> André A. Dhondt, Laboratory of Ornithology, Cornell University, 159

20 Sapsucker Woods Road, Ithaca, NY 14850, USA, aad4@cornell.edu

<sup>4</sup>*Vladimir Remeš, Laboratory of Ornithology, Department of Zoology, Palacky* 

22 University, CZ-77146 Olomouc, Czech Republic, vladimir.remes@upol.cz

<sup>5</sup>*Frank Adriaensen, Evolutionary Ecology Group, University of Antwerp,* 

24 Department of Biology, Campus CDE, B-2610 Antwerp, Belgium,

25 frank.adriaensen@uantwerpen.be6<sup>5</sup> Clotilde Biard, IEES-Paris - Institut

26 d'Ecologie et des Sciences de l'Environnement, Sorbonne universités, UPMC

27 Univ Paris 06, UPEC,

- 28 <sup>7</sup>Jordi Camprodon, Àrea de Biodiversitat, Grup de Biologia de la Conservació,
- 29 Centre Tecnològic Forestal de Catalunya, Carretera de St. Llorenç de
- 30 Morunys, km. 2, E-25280 Solsona, Spain, jordi.camprodon@ctfc.es
- 31 <sup>8</sup>Mariusz Cichoń, Jagiellonian Univ., Inst. Environm. Sci., Krakow, Poland,
- 32 mariusz.cichon@uj.edu.pl
- <sup>33</sup> <sup>9</sup>Blandine Doligez, CNRS, Université Lyon 1, Université de Lyon, Laboratoire
- 34 *de Biométrie et Biologie Evolutive, UMR 5558, 43 boulevard du 11 novembre*
- 35 1918, F-69622 Villeurbanne Cedex, France, blandine.doligez@univ-lyon1.fr
- <sup>10</sup>Anna Dubiec, Museum and Institute of Zoology, Polish Academy of Sciences,
- 37 Wilcza 64, PL-00-679 Warsaw, Poland, adubiec@miiz.waw.pl
- 38 <sup>11</sup>Marcel Eens, Campus Drie Eiken, Department of Biology, Behavioural
- 39 Ecology & Ecophysiology Group, Building D, B-2610 Antwerp (Wilrijk),
- 40 Belgium, marcel.eens@uantwerpen.be
- 41 <sup>12</sup>Tapio Eeva, Department of Biology, University of Turku, FI-20014 Turku,
- 42 Finland, teeva@utu.fi
- 43 <sup>13</sup>Anne E. Goodenough, Department of Natural and Social Sciences, University
- 44 of Gloucestershire, Glos GL50 4AZ, UK, aegoodenough@glos.ac.uk
- 45 <sup>14</sup>Andrew G. Gosler, Department of Zoology, Edward Grey Institute of Field
- 46 Ornithology & Institute of Human Sciences, Oxford, South Parks Road, Oxford
- 47 OX1 3PS, UK, andrew.gosler@zoo.ox.ac.uk
- 48 <sup>15</sup>Lars Gustafsson, Uppsala Univ., Department of Animal Ecology,
- 49 Evolutionary Biolpgy Centre, SE-75236 Uppsala, Sweden,
- 50 lars.gustafsson@ebc.uu.se
- 51 <sup>16</sup>Philipp Heeb, Laboratoire Évolution & Diversité Biologique, UPS Toulouse
- 52 III, Bât 4R1, salle 122, 118 route de Narbonne, F-31062 Toulouse, France,
- 53 *heeb@cict.fr; philipp.heeb@univ-tlse3.fr*
- 54 <sup>17</sup>Shelley H. Hinsley, CEH Wallingford, Maclean Building, Crowmarsh Gifford,
- 55 Wallingford, OX10 8BB, sahi@ceh.ac.uk

- <sup>18</sup>Staffan Jacob, Station d'Ecologie Expérimentale du CNRS à Moulis, USR
- 57 CNRS 2936, 2 route du CNRS, F-09200 Moulis, France,
- 58 *jacobstaffan@gmail.com*
- 59 <sup>19</sup>Rimvydas Juškaitis, Institute of Ecology of Nature Research Centre,
- 60 Akademijos 2, LT-08412 Vilnius, Lithuania, rjuskaitis@gmail.com
- 61 <sup>20</sup>Toni Laaksonen, Section of Ecology, Department of Biology, University of
- 62 Turku, FI-20014 Turku, Finland, tokrla@utu.fi
- 63 <sup>21</sup>Bernard Leclercq, 6 rue de la Croix St. Pierre, F-21410 Fleurey-sur-Ouche,
- 64 France, bleclercoq@orange.fr
- 65 <sup>22</sup>Bruno Massa, Department of Agricultural, Food and Forest Sciences,
- 66 Università di Palermo, Italy, bruno.massa@unipa.it
- 67 <sup>23</sup>Tomasz D. Mazgajski, Museum and Institute of Zoology, Polish Academy of
- 68 Sciences, Wilcza 64, PL-00-679, Warszawa, Poland, mazgaj@miiz.waw.pl
- 69 <sup>24</sup>*Ruedi G. Nager, Institute of Biodiversity, Animal Health & Comparative*
- 70 Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ,
- 71 UK, Ruedi.Nager@glasgow.ac.uk
- <sup>25</sup>Jan-Åke Nilsson, Department of Biology, Evolutionary Ecology, Lund
- 73 University, SE-223 62 Lund, Sweden, Jan-Ake.Nilsson@biol.lu.se
- <sup>26</sup>Sven G. Nilsson, Dept. of Biology, Biodiversity, Lund University, Ecology
- 75 Building, SE-223 62 Lund, Sweden, sven.nilsson@biol.lu.se,
- 76 sveng.nilsson@telia.com
- <sup>27</sup>Ana C. Norte, MARE Marine and Environmental Sciences Centre,
- 78 Department of Life Sciences, Largo Marquês de Pombal, Faculty of Sciences
- and Technology, University of Coimbra, PT-3004-517 Coimbra, Portugal,
- 80 acgnorte@ci.uc.pt
- 81 <sup>28</sup>*Rianne Pinxten, Campus Drie Eiken, Department of Biology, Behavioural*
- 82 Ecology & Ecophysiology Group, Building D, B-2610 Antwerp (Wilrijk),
- 83 Belgium, and Faculty of Social Sciences, Didactica Research Group, University
- 84 of Antwerp, Belgium, annie.pinxten@uantwerpen.be

Journal of Animal Ecology: Confidential Review copy

<sup>29</sup>Hugo Robles, Evolutionary Ecology Group (GIBE), Falculty of Sciences,

| 86  | University of A Coruña, Campus Zapateira, E-15008 A Coruña, Spain, and                 |  |  |  |  |
|-----|----------------------------------------------------------------------------------------|--|--|--|--|
| 87  | Evolutionary Ecology Group (EVECO), Department of Biology, University of               |  |  |  |  |
| 88  | Antwerp, Middelheimcampus, Groenenborgerlaan 171, B-2020 Antwerp,                      |  |  |  |  |
| 89  | Belgium, Hugo.RoblesDiez@uantwerpen.be                                                 |  |  |  |  |
| 90  | <sup>30</sup> Tapio Solonen, Luontotutkimus Solonen Oy, Neitsytsaarentie 7b B 147, FI- |  |  |  |  |
| 91  | 00960 Helsinki, Finland, tapio.solonen@pp.inet.fi                                      |  |  |  |  |
| 92  | <sup>31</sup> Alberto Sorace, ISPRA, Via V. Brancati 60, Rome, Italy,                  |  |  |  |  |
| 93  | alberto.sorace@isprambiente.it                                                         |  |  |  |  |
| 94  | <sup>32</sup> Arie J. van Noordwijk, Netherlands Institute of Ecology (NIOO-KNAW),     |  |  |  |  |
| 95  | Doevendaalsesteg, 10, NL-6708 BP Wageningen, The Netherlands,                          |  |  |  |  |
| 96  | a.vanNoordwijk@nioo.knaw.nl                                                            |  |  |  |  |
| 97  | <sup>33</sup> Marcel M. Lambrechts, Centre d'Ecologie Fonctionnelle et Evolutive, CEFE |  |  |  |  |
| 98  | UMR 5175, Campus CNRS, 1919 route de Mende, F-34293 Montpellier Cedex                  |  |  |  |  |
| 99  | 5, France, marcel.lambrechts@cefe.cnrs.fr                                              |  |  |  |  |
| 100 |                                                                                        |  |  |  |  |
| 101 | Word count: 7987                                                                       |  |  |  |  |
| 102 |                                                                                        |  |  |  |  |
| 103 | Address for correspondence (APM):                                                      |  |  |  |  |
| 104 | Tel: (+33) 1 69 15 56 88;                                                              |  |  |  |  |
| 105 | Fax: (+33) 1 69 15 56 96;                                                              |  |  |  |  |
| 106 | E-mail: anders.moller@u-psud.fr                                                        |  |  |  |  |
| 107 |                                                                                        |  |  |  |  |
| 108 | Running headline:                                                                      |  |  |  |  |
| 109 | A. P. Møller et al.                                                                    |  |  |  |  |
| 110 | Intra- and interspecific competition and demographic variables                         |  |  |  |  |
| 111 |                                                                                        |  |  |  |  |

## 112 Summary

Co-existence between great tits *Parus major* and blue tits *Cyanistes caeruleus*, but also other hole nesting taxa, constitutes a classic example of
 species co-occurrence resulting in potential interference and exploitation
 competition for food and for breeding and roosting sites. However, the spatial
 and temporal variation in co-existence and its consequences for competition
 remain poorly understood.

We used an extensive database on reproduction in nest boxes by great
and blue tits based on 87 study plots across Europe and Northern Africa for a
total of more than 35,000 clutches to assess correlative evidence for a
relationship between laying date and clutch size, respectively, and density
consistent with effects of intraspecific and interspecific competition.

In an initial set of analyses, we statistically controlled for a suite of site
specific variables (latitude, longitude, elevation, nest box size and type, habitat,
and others). We found evidence for an effect of intraspecific competition on
blue tit laying date (later laying at higher density) and clutch size (smaller
clutch size at higher density), but no evidence of significant effects of
intraspecific competition in great tits, nor effects of interspecific competition
for either species.

4. To further control for site-specific variation caused by a range of
potentially confounding variables, we compared means and variances in laying
date and clutch size of great and blue tits among three categories of difference
in density between great and blue tits. These comparisons revealed evidence,
for both species, consistent with intraspecific competition and to a smaller
extent with interspecific competition.

137 5. These findings suggest that competition is widespread, but also varies138 across large spatial and temporal scales.

- 140 Key-words: clutch size, density, interspecific competition, intraspecific
- 141 competition, nest boxes, reaction norm, spatio-temporal variation.

# 142 Introduction

143 Numerous experimental studies have demonstrated that intraspecific and 144 interspecific competition can reduce population size or decrease reproductive output (e.g. Schoener 1983; Gurevitch et al. 1992; Dhondt 2012). Competition, 145 defined as the negative effects that one organism has upon another, may be due 146 147 to interference over resources and/or to exploitation of resources that are limited in availability (Keddy 1989; Grover 1997). The limiting resources over which 148 individuals compete vary considerably, as does the timing of competition 149 during the annual cycle. However, factors other than competition such as 150 151 compensation can also drive population dynamics (Houlahan et al. 2007; 152 Ricklefs 2012). Because of such complexity, competition is not inevitable; indeed, a recent study of interspecific competition between two hole-nesting 153 154 bird species in four European populations showed clear evidence of competition in only three of these populations (Stenseth et al. 2015). Similarly, in a review 155 of density dependence of clutch size in titmice, Both (2000) only found a 156 157 negative relationship in half of all study plots, again emphasizing that decreased reproduction is not a ubiquitous outcome. 158

159 Great tits *Parus major* and blue tits *Cyanistes caeruleus*, both secondary hole-nesting passerines, constitute a classic example of competition for food 160 and cavities (review in Dhondt 2012). For example, Dhondt & Eyckerman 161 (1980a) showed that high density of both species reduced reproductive output 162 in great tits. In contrast to great tits, evidence for effects of both intraspecific 163 164 and interspecific competition on reproduction are much weaker in blue tits. In both species, the intensity of competition was the strongest in poor quality 165 habitats (Dhondt 2010). A field experiment based on the exclusion of great tits 166 from nest boxes during winter resulted in an increase in the abundance of blue 167 tits (Dhondt & Eyckerman 1980b), demonstrating that competition for roosting 168 169 sites in winter can limit population size of the smaller blue tit in some habitats. 170 In addition, observational monitoring of natural holes and experimental removal

of access to tree cavities show that a shortage in nest sites can limit breeding

- 172 population density in birds (Aitken & Martin 2008; Robles et al. 2011), even in
- 173 cavity-rich environments (Robles *et al.* 2012), which in turn may lead to
- 174 cascading effects via an increase in the intensity of interspecific competition
- 175 (Aitken & Martin 2008).

176 Food availability is an underlying cause of limitation of population 177 density in numerous organisms (Newton 1998; Ruffino et al. 2014). This has been shown clearly in food supplementation experiments: the addition of food 178 often increases abundance, while food removal has the opposite effect (e.g. 179 Minot 1978, 1981; Dhondt et al. 1992; Török & Tóth 1999; Siriwardena et al. 180 181 2007; Dhondt 2012). Likewise, extensive food provisioning in feeders by 182 humans across broad spatial scales has caused dramatic increases in abundance 183 of birds, and often also earlier timing of reproduction and increased reproductive success (review in Robb et al. 2008), especially in great tits 184 (Tryjanowski et al. 2015). Density of tits in urban locations tends to be higher 185 186 than in nearby rural plots because of higher food availability (Vaugoyeau et al. 2016). Another effect of urbanisation is that laying date advances in urban plots 187 because of food and/or higher temperatures in urban areas (e.g. Dhondt et al. 188 189 1984; Wawrzyniak et al. 2015)

190 While interference competition mainly involves access to territories in 191 spring and fall, and for cavities during the breeding season and in winter, exploitation competition is mainly over limiting food during the breeding 192 193 season (Dhondt 1977) and in winter (Krebs 1971; Perdeck et al. 2000). If there 194 is a change in timing or availability of food due to changing climate (Visser et al. 1998; Visser & Hollemann 2001; Stenseth et al. 2002; Parmesan & Yohe 195 2003; Adler et al. 2006; Visser 2008; Angert et al. 2009), then both density-196 dependent and density-independent processes should affect tit populations 197 (Dhondt & Adriaensen 1999; Wilkin et al. 2006; Stenseth et al. 2015). 198

199 Intraspecific and interspecific competition among tits, but also other 200 secondary hole nesting taxa, and the resources subject to competition, are highly variable across spatial and temporal scales (Alatalo 1984; Minot & 201 202 Perrins 1986; Dhondt 2012). The objective of this study was to assess the generality, at a large spatio-temporal scale, of effects of intraspecific and 203 interspecific competition on laying date and clutch size of great and blue tits 204 across Europe and Northern Africa. We relied on a unique long-term data base 205 from 87 study plots using more than 35,000 breeding events in nest boxes in 206 207 areas where both species nest sympatrically. Based on results from previous studies we predicted that (1) intraspecific competition, and to a lesser extent 208 interspecific competition, would delay and increase the variance in laying dates 209 and reduce clutch sizes, (2) this effect should be more pronounced in great than 210 in blue tits, due to the larger size of the former, and (3) at any one site, 211 212 differences in density and hence differences in competition between great and blue tits would be related to differences in laying date and clutch size. If 213 interspecific competition occurs, we predict a reduction in mean and an increase 214 in variance in clutch size in great tit and blue tit when density of heterospecifics 215 is higher than the density of conspecifics and for intraspecific competition this 216 217 reduction would occur when density of conspecifics is higher than the density of heterospecifics. For laying date we predicted for intraspecific competition a 218 delay in mean laying date of great tits or blue tits when density of conspecifics 219 outnumbers density of heterospecifics and the reverse for interspecific 220 competition. A higher variance is a consequence of laying being delayed and 221 222 clutch size reduced among individuals that suffer the most from competition with conspecifics or heterospecifics. This follows from the observation that at 223 low density only high quality sites are occupied, while at high density poor 224 quality sites (where the birds lay smaller clutches) are also occupied resulting in 225 increased variances at higher density (Solonen et al. 1991; Dhondt et al. 1992; 226 227 Ferrer & Donázar 1996).

## 228

# 229 Materials and methods

## 230 DATA SETS

We made an attempt to obtain information on density, nest box size, clutch size, 231 laying date and ecological variables from all studies of two common species of 232 233 secondary hole-nesters, the great tit and the blue tit, across Europe and North Africa, as described in detail elsewhere (Møller *et al.* 2014a, b). Briefly, we 234 attempted to obtain data on first clutches, or early clutches known to be initiated 235 less than 30 days after the first egg was laid in a given year in a local study plot 236 (cf. Nager & van Noordwijk 1995). In total, we obtained information on 87 237 study plots with both great and blue tits breeding (Møller et al. 2014a, b). We 238 chose study plots where both great and blue tits had been recorded breeding at 239 240 least once in order to ensure that all study plots contained suitable habitats, 241 breeding sites and nest boxes for both species.

242 The study plots differed in a number of features that were controlled statistically as covariates or factors in the analyses because our previous studies 243 have indicated that each of these variables are significant predictors of laying 244 245 date and clutch size (Lambrechts et al. 2010; Møller et al. 2014a, b; Vaugoyeau et al. 2016). These variables were latitude (°N) and longitude (°E), main habitat 246 type (deciduous, coniferous, evergreen, or mixed), urbanisation (urbanised, or 247 natural/semi-natural habitat), altitude at the centre of the study plot, nest floor 248 249 surface as the internal nest base area (in cm<sup>2</sup>), and the material used to construct 250 nest boxes (a binary variable classified as either wood or concrete). Further 251 details of how these variables were obtained and quantified can be found in Lambrechts et al. (2010), Møller et al. (2014a, b) and Vaugoyeau et al. (2016). 252 253

### 254 STATISTICAL ANALYSES

255 We conducted eight LMMs with laying date and clutch size of great and blue

tits as untransformed response variables. These 8 models corresponded to

laying date and clutch size of both species according to density of the species (= 257 258 2 variables x 2 species x 2 competition conditions (intraspecific/interspecific 259 competition)). We calculated variance inflation factors (VIF) to identify 260 problems of collinearity. All VIFs were smaller than 5, and in almost all cases smaller than 3, indicating that there were no problems of collinearity (McClave 261 & Sincich 2003). Study plot and year were included as two cross random 262 263 intercepts to account for differences among sites and years in the model testing for interspecific competition. In the models testing for intraspecific competition 264 265 we included random intercepts for study plot and year. In addition, when analysing breeding variables for blue tits, the relationships between density and 2.66 267 both laying date and clutch size were estimated for each individual plot and the estimate slopes from these relationships were entered as random factors. The 268 same approach was used for great tits. The significance of the random slope in 269 270 these models was tested using Likelihood Ratio Tests (LRT), including only the intercept in the fixed part of the models (Crawley 2002). The random slope was 271 removed from the models when P > 0.05. In the models testing for interspecific 272 competition a random slope could not be fitted in the models because data at the 273 interspecific level did not match. Density of great tits and blue tits in the study 274 275 plots was estimated as the number of occupied nest boxes / study area (ha) for each year and each species. The analyses of intraspecific and interspecific 276 competition were restricted to those study plots where the duration of the study 277 was at least five years, in order to be able to fit a random slope in the models of 278 intraspecific competition. In addition, the other factors listed above describing 279 280 site location and nestbox parameters were entered as fixed factors. All eight analyses were weighted by abundance to account for differences in sampling 281 effort among study plots (Garamszegi & Møller 2010). We used the standardize 282 function for standardizing regression predictors by centring (i.e. subtracting the 283 mean and dividing by 2 SD). Therefore, numeric variables that take on more 284 285 than two values were each rescaled to have a mean of 0 and a SD of 0.5 and

#### Journal of Animal Ecology: Confidential Review copy

12

binary variables were rescaled to have a mean of 0 and a difference of 1
between their two categories and the factors with more than two categories
remained unchanged (Gelman 2008).

289 We also tested whether differences in clutch size between great and blue tits were related to differences in laying date between the two species and 290 differences in density between great and blue tits, including their two-way 291 292 interaction in standard least squares analyses, again weighted by sample size. 293 We included the interaction in order to test whether the difference in laying date 294 had a stronger effect on difference in clutch size when the difference in density 295 was larger. In addition, we tested whether differences in laying date were related to differences in density. In these analyses, we restricted the sample size 296 to study plots with five or more years of study. Sample sizes differed slightly 297 298 for different analyses due to missing values. Larger variances were the result of 299 more heterogeneity in relationships between laying date or clutch size and density among study sites. 300

We used difference in log-transformed great tit density minus log-301 302 transformed blue tit density (henceforth density difference) as the predictor 303 variable in analyses to test for effects of competition on laying date and on 304 clutch size (Table 3, Fig. 3). By doing so we controlled for any variable that 305 would influence the breeding of the two tit species in a similar way at each site and year. When the density difference was negative, blue tits were more 306 abundant than great tits. The relative strength of intraspecific compared to 307 interspecific competition in blue tits will change from negative to positive 308 309 density difference values (i.e. the relative strength of interspecific competition will increase), while the opposite is true for great tits. 310

We categorized density difference at three levels with similar number of data points: level 1: great tit density lower than blue tit density with log great tit density – log blue tit density being on average -0.58, SE = 0.02, range -1.78 to -0.12; level 2: great tit density similar to blue tit density with log great tit density

| 315                                                                                                                                          | $-\log$ blue tit density being on average 0.11, SE = 0.01, range -0.12 to 0.30; and                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 316                                                                                                                                          | level 3: great tit density higher than blue tit density with log great tit density –                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 317                                                                                                                                          | log blue tit density being on average 0.66, $SE = 0.02$ , range 0.30 to 1.76. These                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 318                                                                                                                                          | data were used in a Welch ANOVA for unequal variances by comparing means                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 319                                                                                                                                          | between the three groups. We also compared variances among these three                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 320                                                                                                                                          | categories of density difference using Levene's test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 321                                                                                                                                          | We included latitude, latitude squared, longitude, longitude squared and                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 322                                                                                                                                          | the interaction between latitude and longitude in the models to control                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 323                                                                                                                                          | statistically for spatial autocorrelation (Lichtstein et al. 2002; Legendre 2003;                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 324                                                                                                                                          | Dorman et al. 2007; Diniz-Filho et al. 2008; Legendre & Legendre 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 325                                                                                                                                          | Analyses were made with JMP (SAS 2010) and the library lme4 (Bates and                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 326                                                                                                                                          | Maechler 2009) using R version 3.3.2 (R Development Core Team 2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 327                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 328                                                                                                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 329                                                                                                                                          | SUMMARY STATISTICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 330                                                                                                                                          | The analyses of competition were based on a maximum of 978 plot by year                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 330<br>331                                                                                                                                   | The analyses of competition were based on a maximum of 978 plot by year<br>estimates of laying date and clutch size varying due to differences in availability                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 331                                                                                                                                          | estimates of laying date and clutch size varying due to differences in availability                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 331<br>332                                                                                                                                   | estimates of laying date and clutch size varying due to differences in availability<br>of data. We had data for a total of 87 plots where both species bred at least                                                                                                                                                                                                                                                                                                                                                                              |
| <ul><li>331</li><li>332</li><li>333</li></ul>                                                                                                | estimates of laying date and clutch size varying due to differences in availability of data. We had data for a total of 87 plots where both species bred at least once. For great tits, mean laying date was April 24 (SE = $0.35$ , N = $924$ ) and                                                                                                                                                                                                                                                                                              |
| <ul><li>331</li><li>332</li><li>333</li><li>334</li></ul>                                                                                    | estimates of laying date and clutch size varying due to differences in availability of data. We had data for a total of 87 plots where both species bred at least once. For great tits, mean laying date was April 24 (SE = $0.35$ , N = $924$ ) and mean clutch size was 8.61 eggs (SE = $0.04$ , N = $970$ ). For blue tits, mean laying                                                                                                                                                                                                        |
| <ul> <li>331</li> <li>332</li> <li>333</li> <li>334</li> <li>335</li> </ul>                                                                  | estimates of laying date and clutch size varying due to differences in availability<br>of data. We had data for a total of 87 plots where both species bred at least<br>once. For great tits, mean laying date was April 24 (SE = $0.35$ , N = 924) and<br>mean clutch size was 8.61 eggs (SE = $0.04$ , N = 970). For blue tits, mean laying<br>date was April 24 (SE = $0.34$ , N = 930) and mean clutch size was 9.93 eggs (SE                                                                                                                 |
| <ul> <li>331</li> <li>332</li> <li>333</li> <li>334</li> <li>335</li> <li>336</li> </ul>                                                     | estimates of laying date and clutch size varying due to differences in availability<br>of data. We had data for a total of 87 plots where both species bred at least<br>once. For great tits, mean laying date was April 24 (SE = $0.35$ , N = 924) and<br>mean clutch size was 8.61 eggs (SE = $0.04$ , N = 970). For blue tits, mean laying<br>date was April 24 (SE = $0.34$ , N = 930) and mean clutch size was 9.93 eggs (SE                                                                                                                 |
| <ul> <li>331</li> <li>332</li> <li>333</li> <li>334</li> <li>335</li> <li>336</li> <li>337</li> </ul>                                        | estimates of laying date and clutch size varying due to differences in availability<br>of data. We had data for a total of 87 plots where both species bred at least<br>once. For great tits, mean laying date was April 24 (SE = 0.35, N = 924) and<br>mean clutch size was 8.61 eggs (SE = 0.04, N = 970). For blue tits, mean laying<br>date was April 24 (SE = 0.34, N = 930) and mean clutch size was 9.93 eggs (SE<br>= 0.06, N = 973).                                                                                                     |
| <ul> <li>331</li> <li>332</li> <li>333</li> <li>334</li> <li>335</li> <li>336</li> <li>337</li> <li>338</li> </ul>                           | estimates of laying date and clutch size varying due to differences in availability<br>of data. We had data for a total of 87 plots where both species bred at least<br>once. For great tits, mean laying date was April 24 (SE = 0.35, N = 924) and<br>mean clutch size was 8.61 eggs (SE = 0.04, N = 970). For blue tits, mean laying<br>date was April 24 (SE = 0.34, N = 930) and mean clutch size was 9.93 eggs (SE<br>= 0.06, N = 973).<br>EFFECTS OF INTRA- AND INTERSPECIFIC COMPETITION ON LAYING                                        |
| <ul> <li>331</li> <li>332</li> <li>333</li> <li>334</li> <li>335</li> <li>336</li> <li>337</li> <li>338</li> <li>339</li> </ul>              | estimates of laying date and clutch size varying due to differences in availability<br>of data. We had data for a total of 87 plots where both species bred at least<br>once. For great tits, mean laying date was April 24 (SE = 0.35, N = 924) and<br>mean clutch size was 8.61 eggs (SE = 0.04, N = 970). For blue tits, mean laying<br>date was April 24 (SE = 0.34, N = 930) and mean clutch size was 9.93 eggs (SE<br>= 0.06, N = 973).<br>EFFECTS OF INTRA- AND INTERSPECIFIC COMPETITION ON LAYING<br>DATE AND CLUTCH SIZE                |
| <ul> <li>331</li> <li>332</li> <li>333</li> <li>334</li> <li>335</li> <li>336</li> <li>337</li> <li>338</li> <li>339</li> <li>340</li> </ul> | estimates of laying date and clutch size varying due to differences in availability<br>of data. We had data for a total of 87 plots where both species bred at least<br>once. For great tits, mean laying date was April 24 (SE = 0.35, N = 924) and<br>mean clutch size was 8.61 eggs (SE = 0.04, N = 970). For blue tits, mean laying<br>date was April 24 (SE = 0.34, N = 930) and mean clutch size was 9.93 eggs (SE<br>= 0.06, N = 973).<br>EFFECTS OF INTRA- AND INTERSPECIFIC COMPETITION ON LAYING<br>DATE AND CLUTCH SIZE<br>Laying date |

consistent among study plots as shown by the non-significant variance among study plots in the estimated slopes of the relationship between great tit density and great tit laying date for each study plot (variance explained = 13.71%, LRT = 2.33, d.f. = 2, P = 0.31). This is opposite to what is expected if intraspecific competition influences laying date and does not strongly support an effect of interspecific competition on great tit laying date.

Blue tit laying date was significantly later at higher conspecific density 350 (Fig. 1D, Table 1) supporting the hypothesis that intraspecific competition 351 352 influences laying date. There was a large and statistically significant variance amongst study plots in the estimated slopes between blue tit density and blue tit 353 laying date (variance explained = 25.20%, LRT = 78.79, d.f. = 2, P < 0001) 354 showing that the intensity of intraspecific competition varies strongly between 355 study plots. Blue tit laying date was earlier when density of great tits was 356 357 higher which is opposite to predictions if interspecific competition were to influence laying date (Fig. 1C). 358

359

360 *Clutch size* 

Across study plots, great tit average clutch size did not vary significantly with conspecific density (Fig. 2A, 2B; Table 2). This analysis yielded a large and statistically significant variance in the estimated slopes amongst study plots (variance explained = 27.78%, LRT = 24.85, d.f. = 2, P < 0.0001) showing that the intensity of intraspecific competition varied strongly between study populations. We also found that great tit clutch size did not vary with blue tit density (Fig. 2B).

Blue tit average clutch size decreased with increasing conspecific density (Fig. 2D, Table 2) documenting an effect of intraspecific competition on clutch size across the range. Here we also found that the variance in the estimated slopes amongst study plots was large and statistically significant (blue tit: variance explained = 26.08%, LRT = 38.63, d.f. = 2, *P* < 0.0001; Table 2),

- indicating important differences in the intensity of intraspecific competition.
- Blue tit clutch size was independent of great tit density (Fig. 2C) showing no
- 375 effect of interspecific competition on blue tit clutch size.
- 376

# 377 USING DIFFERENCES IN DENSITY TO DETECT COMPETITION

378 We categorized density difference at three levels of similar number of study 379 plots: level 1: great tit density lower than blue tit density with log great tit density  $-\log$  blue tit density being on average -0.58, SE = 0.02, range -1.78 to -380 381 0.12; level 2: great tit density similar to blue tit density with log great tit density  $-\log$  blue tit density being on average 0.11, SE = 0.02, range -0.12 to 0.30; and 382 383 level 3: great tit density higher than blue tit density with log great tit density – log blue tit density being on average 0.66, SE = 0.02, range 0.30 to 1.76. These 384 data were used in a Welch ANOVA for unequal variances by comparing means 385 386 between the three groups. We also compared variances among these three categories of density difference using Levene's test. 387

Mean clutch size of great tit and blue tit was the smallest at relative 388 density level 1 (i.e. when blue tits outnumber great tits) and it was higher at 389 390 relative density 2 and 3 (i.e., when either great tit and blue tit numbers are 391 similar or great tits outnumber blue tits). Likewise, variance in clutch size for both great tit and blue tit decreased from relative density level 1 to levels 2 and 392 3 (Table 3). For great tits, these results are consistent with interspecific 393 394 competition being more important than intraspecific competition, and for blue 395 tits the reverse occurred with intraspecific competition being more important 396 than interspecific competition.

Mean laying date of blue and great tit was earlier at relative density level 2 (i.e. when great tit and blue tit numbers are similar) compared to level 1 and 3. For great tit variance in laying date was also the lowest at relative density level 2 whereas for blue tit variance in laying date decreased progressively from relative density level 1 to level 3 (Table 3). These results are consistent with

402 both intraspecific and interspecific competition in great tit and for interspecific403 competition in blue tit.

The difference in clutch size between great tit and blue tit tended to become more negative (i.e. blue tit clutch size greater than great tit clutch size) from relative density level 1 to level 3. Therefore, when blue tits outnumbered great tits (level 1) the difference in clutch size between the two species was the smallest, and this difference became larger and favoured blue tits when great tits outnumbered blue tit (level 3). This is also consistent with intraspecific competition affecting blue tits (Table 3; Fig. 3).

Great tits laid their eggs later than blue tit (i.e. the difference in mean laying date between great tit and blue tit was positive) at relative density level 1, and these differences decreased progressively to relative density level 2 and 3. Therefore, when great tits outnumbered blue tits (level 3) the laying date of the two species became similar.

416

# 417 **Discussion and conclusions**

This extensive study of spatial patterns in density dependence of laying date and clutch size in two species of secondary hole-nesting birds revealed several novel observations. The slope of conspecific density on laying date in blue tits (but not great tits) differed among study plots. Similar heterogeneity among study plots was found in slopes of conspecific density on clutch size of great and blue tits.

In the analyses of laying date and clutch size depending on conspecific and heterospecific density we controlled for a large number of possible effects on clutch size and on laying date (such as habitat type, degree of urbanization, latitude and longitude among others), but nevertheless only found evidence for an effect of intraspecific competition on blue tit laying date and blue tit clutch size. We did not find effects of intraspecific competition between great tit

Journal of Animal Ecology: Confidential Review copy

laying date and clutch size for great tits, nor effects of interspecific competitionfor either species.

432 In order to further test our predictions, we also analysed patterns within 433 study plots because such analyses are more powerful than within-plot analyses that automatically control for many potentially confounding variables showing 434 the highest variation among plots. We investigated the relative impact of great 435 436 and blue tit density on laying date and clutch size by testing the relation 437 between the difference in density (density difference) of great and blue tits and 438 laying date/clutch size. We started from the assumption that in coexisting species (and as found in previous work), intraspecific competition in tits is 439 440 stronger than interspecific competition (Dhondt 2012). We found the earliest laying date at density difference level 2 (great tit density similar to blue tit 441 density) for both great and blue tit. Thus, laying date was later for both species 442 443 when either the density of conspecifics or heterospecific increased, consistent with laying date being affected by intra- and interspecific competition in both 444 445 species. The variance in laying date was also the lowest at density level 2 for great tit further suggesting intra- and interspecific competition for great tits, 446 447 whereas the variance was the largest at density level 1 for blue tits consistent 448 with intraspecific competition, Furthermore, given the previous results, we expected that if intraspecific competition generally occurred across our 87 study 449 plots, blue tit clutch size should be the smallest at density difference level 1, 450 451 and the largest in level 2 (great tit density = blue tit density). Our results suggest that among blue tits intraspecific competition generally occurs, while 452 453 interspecific competition may occur.

Laying date was the earliest at density level 2 for both great tit and blue tit. This latter result implies that, when analysing data across Europe and Northern Africa, controlling for differences in density is probably a more powerful approach than controlling for site-specific variation resulting from differences in latitude, longitude and elevation. The likely reason is that the

density difference approach does not make assumptions regarding the shape of
the relationships between the parameters of interest (laying date, clutch size) as,
for example, latitude or elevation.

We can take this line of reasoning one step further by investigating the 462 463 relationship between difference in laying date and difference in clutch size, on 464 the one hand, and difference in density between great and blue tits on the other. 465 Great tits laid their eggs later than blue tits at relative density level 1 (i.e., when blue tits outnumbered great tits). The difference in laying date of great tit in 466 467 relation to blue tit tended to be more similar from density level 2 to level 3. Furthermore, the variance in difference in laying date differed significantly 468 469 among categories of difference in density of great and blue tits, and the variance was significantly smaller when great tits were relatively abundant (density 470 difference level 3). These outcomes are as expected for interspecific 471 472 competition in great tits. The average difference in clutch size between great 473 and blue tits was negatively correlated with the difference in density between 474 great and blue tits, consistent with intraspecific and interspecific competition. The variance of the difference in clutch size between great and blue tits peaked 475 476 when the difference in density was the smallest, consistent with intraspecific competition. At high density of great tit relative to blue tit, the difference in 477 clutch size was smaller relative to clutch size of blue tit (Fig. 3). The variance in 478 the difference in clutch size was the largest for levels of difference in density 1 479 480 and 2, consistent with intraspecific and interspecific competition.

Food availability is an underlying cause of limitation of population density in numerous organisms (Newton 1998; Ruffino *et al.* 2014). This has been shown clearly in food supplementation experiments: the addition of food often increases bird abundance, while the removal of food has the opposite effect (e.g. Minot 1978, 1981; Dhondt *et al.* 1992; Török & Tóth 1999; Siriwardena *et al.* 2007; Dhondt 2012). Likewise, extensive food provisioning in feeders by humans across broad spatial scales has caused dramatic increases

in abundance of birds, and often also earlier timing of reproduction and 488 489 increased reproductive success (review in Robb et al. 2008), especially in great 490 tits (Tryjanowski et al. 2015). Density of tits in urban locations tends to be 491 higher than in nearby rural locations (Vaugoyeau et al. 2016). Another effect of 492 urbanisation is that in urban sites tit laying dates are earlier (e.g. Dhondt et al. 493 1984; Wawrzyniak et al. 2015). We could not quantify the effects of food on 494 laying date and clutch size, but we assume that the effects of density are at least partially due to effects of food limitation. 495

Because means and variances are generally positively correlated (Wright 496 497 1964), opposite results require a biological explanation. The habitat 498 heterogeneity hypothesis predicts an increase in the variance in reproductive 499 parameters because at low density only high quality sites are occupied, while at high density poor quality sites (where birds lay a smaller and later clutch) are 500 occupied (Dhondt et al. 1992; Ferrer and Donázar 1996; Krüger et al. 2012). 501 502 Habitat heterogeneity is the mechanism that predicts that at higher density 503 variance in clutch size should increase (Solonen et al. 1991; Dhondt et al. 1992; 504 Ferrer & Donázar 1996). The analyses of effects of density are consistent with these predictions. 505

We analysed effects of competition in two congeneric secondary hole 506 507 nesting birds. It is likely that the hole nesting community of birds and other animal taxa will have a similar or even stronger effect on the structure of the 508 community of hole nesters. The present study predicts that similar analyses of 509 laying date and clutch size in competing species such as sympatric tits and 510 511 flycatchers may allow quantification of the effects of intra- and interspecific competition (Gustafsson 1987). Analyses of such effects may be particularly 512 513 powerful in a climate change scenario where the interacting parties are 514 differently impacted by temperature and precipitation while the effects of study 515 plot remain constant.

| 516 | In conclusion, we have documented that within-plot analyses of laying             |
|-----|-----------------------------------------------------------------------------------|
| 517 | date and clutch size in great and blue tits across 87 sites with known common     |
| 518 | breeding records distributed across Europe and North Africa provide a powerful    |
| 519 | tool for quantifying the effects of intraspecific and interspecific competition.  |
| 520 | We conclude that a similar approach may potentially be adopted in analyses of     |
| 521 | intraspecific and interspecific interactions among other taxa.                    |
| 522 |                                                                                   |
| 523 | Acknowledgements                                                                  |
| 524 | We would like to warmly thank the hundreds of collaborators and contributors      |
| 525 | who helped with study plot management, data collection, data management,          |
| 526 | administration, financial support, and scientific discussion. Listing their names |
| 527 | individually would most probably provide a biased picture of all of their         |
| 528 | contributions. T. Eeva acknowledges funding by the Academy of Finland             |
| 529 | (project 265859).                                                                 |
| 530 |                                                                                   |
| 531 | Data accessibility                                                                |
| 532 | Data available from the Dryad Digital Repository upon acceptance.                 |
| 533 |                                                                                   |
| 534 | Author contribution                                                               |
| 535 | Conceived idea: APM. Analysed data: APM and JB. Collected data: APM,              |
| 536 | JB, AAD, FA, CB, JC, MC, BD, AD, ME, TE, AEG, AGG, LG, PH, SAH, SJ,               |
| 537 | RJ, TL, BL, BM, TDM, RGN, JÅN, SGN, ACN, RP, VR, HR, TS, AS, AJVN                 |
| 538 | and MML. Wrote paper: APM, AAD, JB. Approved final manuscript: APM,               |
| 539 | JB, AAD, FA, CB, JC, MC, BD, AD, ME, TE, AEG, AGG, LG, PH, SAH, SJ,               |
| 540 | RJ, TL, BL, BM, TDM, RGN, JÅN, SGN, ACN, RP, VR, HR, TS, AS, AJVN                 |
| 541 | and MML.                                                                          |
| 542 |                                                                                   |

# 543 **References**

569

Ecology, 79, 257-265.

544 Adler, P.B., Hille Ris Lambers, J., Kyriakidis, P.C., Guan, Q. & Levine, J.M. (2006) Climate variability has a stabilizing effect on the coexistence of 545 prairie grasses. Proceedings of the National Academy of Sciences of the 546 547 United States of America, 103, 12 793–12 798. Aitken, K.E.H. & Martin, K. (2008) Resource selection plasticity and 548 community responses to experimental reduction of a critical resource. 549 *Ecology*, **89**, 971–980. 550 Alatalo, R.V. (1984) Evidence for interspecific competition among European 551 tits Parus sp.: A review. Annales Zoologici Fennici, 19, 309-317. 552 553 Angert, A.L., Huxman, T.E., Chesson, P. & Venable, D.L. (2009) Functional 554 tradeoffs determine species coexistence via the storage effect. Proceedings of the National Academy of Sciences of the United States of 555 America, 106, 11 641–11 645. 556 Bates, D. & Maechler, M. (2009) lme4: Linear mixed-effects models using S4 557 558 classes. R package, version 0.999375-31. Available at: http://CRAN.R-559 project.org/package=lme4. Both, C. (2000) Density dependence of avian clutch size in resident and migrant 560 561 species: Is there a constraint on the predictability of competitor density? Journal of Avian Biology, **31**, 412–417. 562 563 Crawley, J.M. (2002) Statistical Computing. An Introduction to Data Analysis Using S-Plus. Wiley, Chichester, UK. 564 Dhondt, A.A. (1977) Interspecific competition between great and blue tit. 565 566 Nature, 268, 521-523. Dhondt, A.A. (2010) Effects of competition on great and blue tit reproduction: 567 Intensity and importance in relation to habitat quality. Journal of Animal 568

| 570 | Dhondt, A.A. (2012) Interspecific competition in birds. Oxford University    |
|-----|------------------------------------------------------------------------------|
| 571 | Press, Oxford, UK.                                                           |
| 572 | Dhondt, A.A. & Adriaensen, F. (1999) Experiments on competition between      |
| 573 | Great and Blue Tit: Effects on Blue Tit reproductive success and             |
| 574 | population processes. Ostrich, 70, 39-48.                                    |
| 575 | Dhondt, A.A. & Eyckerman, R. (1980a) Competition and the regulation of       |
| 576 | numbers in great and blue tit. Ardea, 68, 121-132.                           |
| 577 | Dhondt, A.A. & Eyckerman, R. (1980b) Competition between the great tit and   |
| 578 | the blue tit outside the breeding season in field experiments. Ecology,      |
| 579 | <b>61</b> , 1291-1296.                                                       |
| 580 | Dhondt, A.A., Eyckerman, R., Moermans, R. & Hublé, J. (1984) Habitat and     |
| 581 | laying date of great and blue tit Parus major and Parus caeruleus. Ibis,     |
| 582 | <b>126</b> , 388-397.                                                        |
| 583 | Dhondt, A.A., Kempenaers, B. & Adriaensen, F. (1992) Density-dependent       |
| 584 | clutch size caused by habitat heterogeneity. Journal of Applied Ecology,     |
| 585 | <b>61,</b> 643-648.                                                          |
| 586 | Diniz-Filho, J.A.F., Rangel, T.F.L.V.B. & Bini, L.M. (2008) Model selection  |
| 587 | and information theory in geographical ecology. Global Ecology and           |
| 588 | <i>Biogeography</i> , <b>17</b> , 479–488.                                   |
| 589 | Dorman, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, |
| 590 | G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kühn, I.,            |
| 591 | Ohlemüller, R., Peres-Neto, P.R., Reineking, B., Schröder, B., Schurr,       |
| 592 | F.M. & Wilson, R. (2007) Methods to account for spatial                      |
| 593 | autocorrelation in the analysis of species distribution data: A review.      |
| 594 | <i>Ecography</i> , <b>30</b> , 609–628.                                      |
| 595 | Ferrer, M. & Donázar, J.A. (1996) Density-dependent fecundity by habitat     |
| 596 | heterogeneity in an increasing population of Spanish imperial eagles.        |
| 597 | <i>Ecology</i> , <b>77</b> , 69-77.                                          |

Page 24 of 34

| 598 | Garamszegi, L.Z. & Møller, A.P. (2010) Effects of sample size and intraspecific |
|-----|---------------------------------------------------------------------------------|
| 599 | variation in phylogenetic comparative studies: A meta-analytic review.          |
| 600 | Biological Reviews, 85, 797-805.                                                |
| 601 | Gelman, A. (2008) Scaling regression inputs by dividing by two standard         |
| 602 | deviations. Statistics in Medicine, 27, 2865–2873.                              |
| 603 | Grover, J.P. (1997) Resource Competition. Chapman & Hall, London, UK.           |
| 604 | Gurevitch, J., Morrow, L.L., Wallace, A. & Walsh, J.S. (1992) A meta-analysis   |
| 605 | of competition in field experiments. American Naturalist, 140, 539-572.         |
| 606 | Gustafsson, L. (1987) Interspecific competition lowers fitness in collared      |
| 607 | flycatchers Ficedula albicollis: An experimental demonstration.                 |
| 608 | <i>Ecology</i> , <b>68</b> , 291-296.                                           |
| 609 | Houlahan, J.E., Currie, D.J., Cottenie, K., Cumming, G.S., Ernest, S.K.M.,      |
| 610 | Findlay, C.S., Fuhlendorf, S.D., Gaedke, U., Legendre, P., Magnuson,            |
| 611 | J.J., McArdle, B.H., Muldavin, E.H., Noble, D., Russell, R., Stevens,           |
| 612 | R.D., Willis, T.J., Woiwod, I.P. & Wondzell, S.M. (2007)                        |
| 613 | Compensatory dynamics are rare in natural ecological communities.               |
| 614 | Proceedings of the National Academy of Sciences of the United States of         |
| 615 | America, 104, 3273–3277.                                                        |
| 616 | Keddy, P.A. (1989) Competition. Chapman and Hall, London, UK.                   |
| 617 | Krüger, O., Chakarov, N., Nielsen, J.T., Looft, V., Grünkorn, T., Struwe-Juhl,  |
| 618 | B. & Møller, A.P. (2012) Population regulation by habitat heterogeneity         |
| 619 | or individual adjustment? Journal of Animal Ecology, 81, 330-340.               |
| 620 | Lambrechts, M.M., Adriaensen, F., Ardia, D.R. et al. (2010) The design of       |
| 621 | artificial nest boxes for the study of secondary hole-nesting birds: A          |
| 622 | review of methodological inconsistencies and potential biases. Acta             |
| 623 | Ornithologica, 45, 1-26.                                                        |
| 624 | Legendre, P. (1993) Spatial autocorrelation: Trouble or new paradigm?           |
| 625 | <i>Ecology</i> , <b>74</b> , 1659–1673.                                         |

| 626 | Legendre, P. & Legendre, L. (2012) Numerical ecology. Elsevier, New York,        |
|-----|----------------------------------------------------------------------------------|
| 627 | NY.                                                                              |
| 628 | Lichtstein, J.W., Simons, T.R., Shriner, S.A. & Franzreb, K.E. (2002) Spatial    |
| 629 | autocorrelation and autoregressive models in ecology. Ecology, 72, 445-          |
| 630 | 463.                                                                             |
| 631 | McClave, J.T. & Sincich, T. (2003) Statistics. 9th Edition. Prentice-Hall,       |
| 632 | Englewood Cliffs, NJ.                                                            |
| 633 | Minot, E.O. (1978) Interspecific competition in tits. Nature, 275, 463.          |
| 634 | Minot, E.O. (1981) Effects of interspecific competition for food in blue tits    |
| 635 | (Parus caeruleus) and great tits (Parus major). Journal of Animal                |
| 636 | <i>Ecology</i> , <b>50</b> , 125-137.                                            |
| 637 | Minot, E.O. & Perrins, C.M. (1986) Interspecific interference competition: Nest  |
| 638 | sites for blue and great tits. Journal of Animal Ecology, 55, 331-350.           |
| 639 | Møller, A.P. (1988) Parasites, predators and nest boxes: Facts and artefacts in  |
| 640 | nest box studies of birds? Oikos, 56, 421-423.                                   |
| 641 | Møller, A.P., Adriaensen, F., Artemyev, A., Bańbura, J. et al. (2014a) Clutch    |
| 642 | size in European secondary hole-nesting passerines in relation to nest-          |
| 643 | box floor area, habitat, geographic location and study year. Methods in          |
| 644 | Ecology and Evolution, 5, 353-362.                                               |
| 645 | Møller, A.P., Adriaensen, F., Artemyev, A., Bańbura, J. et al. (2014b) Variation |
| 646 | in clutch size in relation to nest size in birds. Ecology and Evolution, 4,      |
| 647 | 3583-3595.                                                                       |
| 648 | Nager, R.G. & van Noordwijk, A.J. (1995) Proximate and ultimate aspects of       |
| 649 | phenotypic plasticity in timing of great tit breeding in a heterogeneous         |
| 650 | environment. American Naturalist, 146, 454–474.                                  |
| 651 | Newton, I. (1998) Population limitation in birds. Academic, Amsterdam,           |
| 652 | Netherlands.                                                                     |
| 653 | Parmesan, C. & Yohe, G. (2003) A globally coherent fingerprint of climate        |
| 654 | change impacts across natural systems. Nature, 421, 37-42.                       |

| 655 | Perdeck, A.C., Visser, M.E. & Van Balen, J.H. (2000) Great Tit Parus major    |
|-----|-------------------------------------------------------------------------------|
| 656 | survival, and the beech-crop cycle. Ardea, 88, 99-108.                        |
| 657 | R Core Team (2016) R: A language and environment for statistical computing.   |
| 658 | R Foundation for Statistical Computing, Vienna, Austria.                      |
| 659 | Ricklefs, R.E. (2012) Habitat-independent spatial structure in populations of |
| 660 | some forest birds in eastern North America. Journal of Animal Ecology,        |
| 661 | <b>82</b> , 145–154.                                                          |
| 662 | Robb, G.N., McDonald, R.A., Chamberlain, D.E. & Bearhop, S. (2008) Food       |
| 663 | for thought: supplementary feeding as a driver of ecological change in        |
| 664 | avian populations. Frontiers in Ecology and the Environment, 6, 476-484.      |
| 665 | Robles, H., Ciudad, C. & Matthysen, E. (2011) Tree-cavity occurrence, cavity  |
| 666 | occupation and reproductive performance of secondary cavity-nesting           |
| 667 | birds in oak forests: The role of traditional management practices. Forest    |
| 668 | Ecology and Management, 261, 1428-1435.                                       |
| 669 | Robles, H., Ciudad, C. & Matthysen, E. (2012) Responses to experimental       |
| 670 | reduction and increase of cavities by a secondary cavity-nesting bird         |
| 671 | community in cavity-rich Pyrenean oak forests. Forest Ecology and             |
| 672 | Management, <b>277</b> , 46-53.                                               |
| 673 | Ruffino, L., Salo, P., Koivisto, E., Banks, B.P. & Korpimäki, E. (2014)       |
| 674 | Reproductive responses of birds to experimental food supplementation:         |
| 675 | A meta-analysis. Frontiers in Zoology, 11, 80. doi:10.1186/s12983-014-        |
| 676 | 0080-у                                                                        |
| 677 | SAS (2012) JMP version 10.0. SAS Institute Inc., Cary, NC.                    |
| 678 | Schoener, T.W. (1983) Field experiments on interspecific competition.         |
| 679 | American Naturalist, 122, 240-285.                                            |
| 680 | Siriwardena, G.M., Stevens, D.K., Anderson, G.Q.A., Vickery, J.A., Calbrade,  |
| 681 | N.A. & Dodd, S. (2007) The effect of supplementary winter seed food on        |
| 682 | breeding populations of farmland birds: Evidence from two large-scale         |
| 683 | experiments. Journal of Applied Ecology, 44, 920-932.                         |

| 684 | Solonen, T., Tiainen, J., Korpimäki, E. & Saurola, P. (1991) Dynamics of         |
|-----|----------------------------------------------------------------------------------|
| 685 | Finnish Starling Sturnus vulgaris populations in recent decades. Ornis           |
| 686 | <i>Fennica</i> , <b>68</b> , 158-169.                                            |
| 687 | Stenseth, N.C., Durant, J.M., Fowler, M.S., Matthysen, E., Adriaensen, F. et al. |
| 688 | (2015) Testing for effects of climate change on competitive relationships        |
| 689 | and coexistence between two bird species. Proceedings of the Royal               |
| 690 | Society of London B – Biological Sciences, <b>282</b> , 20142929.                |
| 691 | Stenseth, N.C., Mysterud, A., Ottersen, G., Hurrell, J.W., Chan, K.S. & Lima,    |
| 692 | M. (2002) Ecological effects of climate fluctuations. Science, 297, 1292-        |
| 693 | 1296.                                                                            |
| 694 | Tryjanowski, P., Morelli, F., Skórka, P., Goławski, A., Indykiewicz, P., Møller, |
| 695 | A.P. & Zduniak, P. (2015) Who started first? Bird species visiting novel         |
| 696 | birdfeeders. Scientific Reports, 5, 11858.                                       |
| 697 | Török, J. & Tóth, L. (1999) Asymmetric competition between two tit species: A    |
| 698 | reciprocal removal experiment. Journal of Animal Ecology, 68, 338-345.           |
| 699 | Vaugoyeau, M., Adriaensen, F., Artemyev, A., Bańbura, J., Barba, E. et al.       |
| 700 | (2016) Interspecific variation in the relationship between clutch size,          |
| 701 | laying date and intensity of urbanisation in four species of hole-nesting        |
| 702 | birds. <i>Ecology and Evolution</i> , <b>6</b> , 16.                             |
| 703 | Visser, M.E. (2008) Keeping up with a warming world: Assessing the rate of       |
| 704 | adaptation to climate change. Proceedings of the Royal Society of London         |
| 705 | <i>B</i> – <i>Biological Sciences</i> , <b>275</b> , 649–659.                    |
| 706 | Visser, M.E. & Holleman, L.J.M. (2001) Warmer springs disrupt the synchrony      |
| 707 | of oak and winter moth phenology. Proceedings of the Royal Society of            |
| 708 | London B – Biological Sciences, <b>268</b> , 289–294.                            |
| 709 | Visser, M.E., van Noordwijk, A.J., Tinbergen, J.M. & Lessells, C.M. (1998)       |
| 710 | Warmer springs lead to mistimed reproduction in great tits (Parus major).        |
| 711 | Proceedings of the Royal Society of London B, 265, 1867–1870.                    |

| 712 | Visser, M.E., Adriaensen, F., van Balen, J.H. et al. (2003) Variable responses to |
|-----|-----------------------------------------------------------------------------------|
| 713 | large-scale climate change in European Parus populations. Proceedings             |
| 714 | of the Royal Society of London B – Biological Sciences, <b>270</b> , 367-372.     |
| 715 | Wilkin, T.A., Garant, D., Gosler, A.G. & Sheldon, B.C. (2006) Density effects     |
| 716 | on life-history traits in a wild population of the great tit Parus major:         |
| 717 | Analysis of long-term data with GIS techniques. Journal of Animal                 |
| 718 | <i>Ecology</i> , <b>75</b> , 604-615.                                             |
| 719 | Wright, S. (1964) Evolution and the Genetics of Populations: Genetics and         |
| 720 | Biometric Foundations. University of Chicago Press, Chicago, IL.                  |
| 721 |                                                                                   |
| 722 |                                                                                   |
|     |                                                                                   |

## 723 Legends to figures

724

**Fig. 1.** Laying date of great tit (1 = March 1st; A, B) and blue tit (C, D) in

relation to density of great tit (number of occupied nest boxes per ha; A, C) and

727 blue tit (B, D). The lines are the predicted values with 95% confidence intervals

obtained from the linear mixed effect models while maintaining latitude,

129 longitude and nest floor surface as their mean values. Main habitat type,

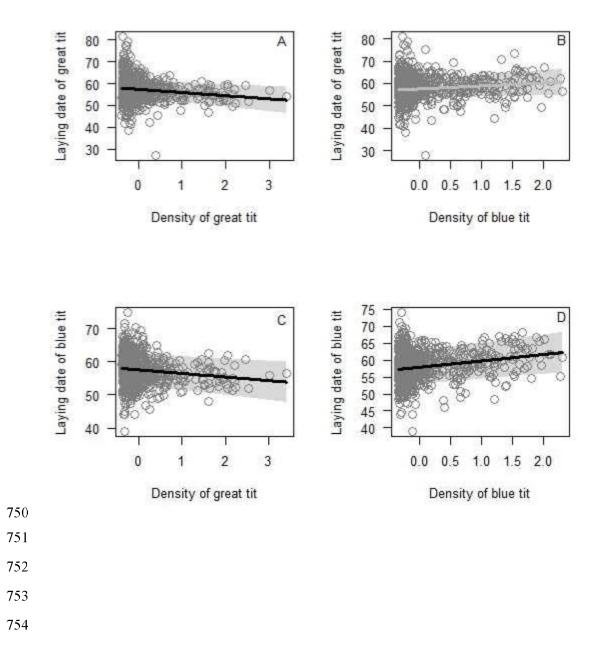
r30 urbanisation and nest box material as their reference values (i.e., conifer,

concrete and no urbanization, respectively). Black lines show significant trends

and grey lines non-significant trends.

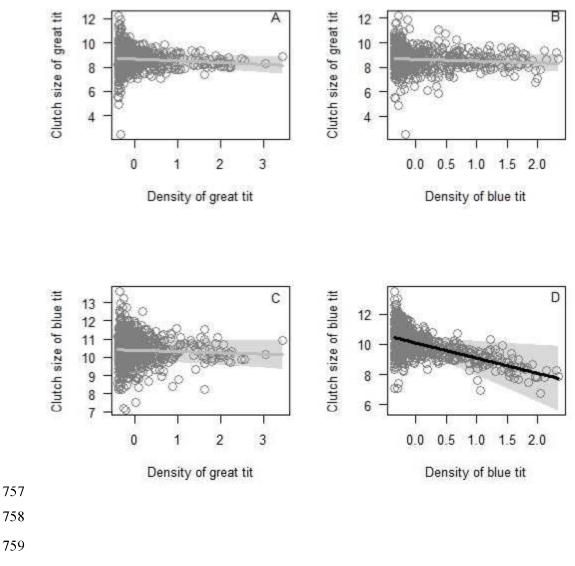
733

Fig. 2. Clutch size of great tit (A, B) and blue tit (C, D) in relation to density of 734 great tit (number of occupied nest boxes per ha; A, C) and blue tit (B, D). The 735 lines are the predicted values with 95% confidence intervals obtained from the 736 linear mixed effect models while maintaining latitude, longitude and nest floor 737 738 surface as their mean values. Main habitat type, urbanisation and nest box material as their reference values (i.e., conifer, concrete and no urbanization, 739 740 respectively). Black lines show significant trends and grey lines non-significant 741 trends.

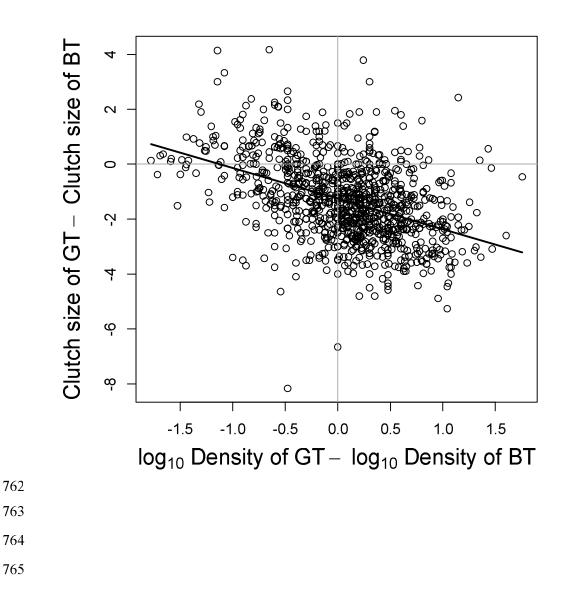

742

**Fig. 3.** Difference in clutch size between great tits (GT) and blue tits (BT) in each site/year in relation to the difference in  $log_{10}$  density (number of occupied nest boxes per ha) between great tits and blue tits in each site/year. The line

shows the best fit ordinary least squares line with its 95% confidence band for


747 illustrative purposes only. For statistical analysis, see Results.

749 Fig. 1




755 Fig. 2

756



761 Fig. 3



| 766 | <b>Table 1</b> Linear Mixed Models of laying date of great and blue tits in       |
|-----|-----------------------------------------------------------------------------------|
| 767 | relation to density of great and blue tits after controlling statistically for    |
| 768 | latitude, latitude squared, longitude, longitude squared, longitude by latitude,  |
| 769 | main habitat type (fixed effect), urbanisation (fixed effect), nest box material, |
| 770 | altitude and nest floor surface as fixed effects, and year and study site as      |
| 771 | random factors. Only the partial effects of density are shown here after          |
| 772 | controlling statistically for the variables listed above. The analyses were       |
| 773 | weighted by sample size. Effect sizes were Pearson's product-moment               |
| 774 | correlation coefficients. The analyses were based on 924 observations from 87     |
| 775 | plots for great tit and on 930 observations from 87 sites for blue tits. The      |
| 776 | majority of sites (more than 99%) had at least five years of study or more.       |
| 777 |                                                                                   |

777

| Term             | LRT  | Р    | Estimate | SE    | Effect size |
|------------------|------|------|----------|-------|-------------|
| Great tit laying |      |      |          |       |             |
| date             |      |      |          |       |             |
| Density of great | 6.13 | 0.01 | -1.458   | 0.597 | 0.29        |
| tits             |      |      |          |       |             |
| Density of blue  | 3.04 | 0.08 | 1.304    | 0.775 | 0.20        |
| tits             |      |      |          |       |             |
|                  |      |      |          |       |             |
| Blue tit laying  |      |      |          |       |             |
| date             |      |      |          |       |             |
| Density of great | 4.34 | 0.04 | -1.051   | 0.511 | 0.24        |
| tits             |      |      |          |       |             |
| Density of blue  | 4.69 | 0.03 | 2.000    | 0.904 | 0.25        |
| tits             |      |      |          |       |             |

779

Page 34 of 34

33

| <b>78</b> 0 | <b>Table 2</b> Linear Mixed Models of clutch size of great and blue tits in         |
|-------------|-------------------------------------------------------------------------------------|
| 781         | relation to density of great and blue tits after controlling statistically for      |
| 782         | latitude, latitude squared, longitude, longitude squared, longitude by latitude,    |
| 783         | main habitat type, urbanisation, nest box material, altitude and nest floor surface |
| 784         | as fixed terms, and study site and year as random factors. Only the partial         |
| 785         | effects of density are shown here after controlling statistically for the variables |
| 786         | listed above. The analyses were weighted by sample size. Effect sizes were          |
| 787         | Pearson's product-moment correlation coefficients. The analyses were based on       |
| 788         | 966 observations from 87 sites for great tit and on 969 observations from 87        |
| 789         | sites for blue tits. The majority of sites (more 99%) had at least five years of    |
| 790         | study or more.                                                                      |

| Term                 | LRT  | Р    | Estimate | SE    | Effect |
|----------------------|------|------|----------|-------|--------|
|                      |      |      |          |       | size   |
| Great tit clutch     |      |      |          |       |        |
| size                 |      |      |          |       |        |
| Density of great     | 2.04 | 0.15 | -0.120   | 0.080 | 0.15   |
| tits                 |      |      |          |       |        |
| Density of blue tits | 2.36 | 0.12 | -0.157   | 0.102 | 0.17   |
|                      |      |      |          |       |        |
| Blue tit clutch      |      |      |          |       |        |
| size                 |      |      |          |       |        |
| Density of great     | 0.78 | 0.38 | -0.073   | 0.079 | 0.10   |
| tits                 |      |      |          |       |        |
| Density of blue tits | 6.41 | 0.01 | -1.135   | 0.433 | 0.27   |

Table 3 Tests for differences in mean and variance in clutch size and laying date of great and blue tits with mean, variance and sample size for three similarly sized groups differing in population density (number of occupied nest boxes per ha) between blue tit and great tit. Welch ANOVA for means with unequal variances testing for homogeneity of means, while Levene's test analyses homogeneity of variances. The analyses

were weighted by sample size. 792 793 794 795

| $ \begin{array}{l l l l l l l l l l l l l l l l l l l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |       | Great tit |     |       | Great tit |     |       | Great tit |     |        | Welch    |          |       | Levene's |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|-----------|-----|-------|-----------|-----|-------|-----------|-----|--------|----------|----------|-------|----------|---------|
| blue tit         density         dent         dent         dent <th< th=""><th></th><th></th><th>density &lt;</th><th></th><th></th><th>density =</th><th></th><th></th><th>density &gt;</th><th></th><th></th><th>ANOVA</th><th></th><th></th><th>test</th><th></th></th<> |                              |       | density < |     |       | density = |     |       | density > |     |        | ANOVA    |          |       | test     |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |       | blue tit  |     |       | blue tit  |     |       | blue tit  |     |        |          |          |       |          |         |
| -0.576 $0.109$ $0.662$ $3.24$ $3.25$ $3.25$ $3.25$ $3.25$ $3.26$ $4f$ $P$ $F$ $4f$ $P$ $P$ $F$ $4f$ $P$ $F$ $4f$ $P$ $F$ $4f$ $P$ $P$ $F$ $4f$ $P$ $F$ $4f$ $P$ $P$ $F$ $4f$ $P$ $F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |       | density   |     |       | density   |     |       | density   |     |        |          |          |       |          |         |
| B)N $(0.020)$ $(0.07)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ $(0.01)$ <t< th=""><th>Difference in</th><th></th><th>-0.576</th><th></th><th></th><th>0.109</th><th></th><th></th><th>0.662</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Difference in                |       | -0.576    |     |       | 0.109     |     |       | 0.662     |     |        |          |          |       |          |         |
| 324         325         326 $326$ $326$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | density (SE) N               |       | (0.020)   |     |       | (0.007)   |     |       | (0.015)   |     |        |          |          |       |          |         |
| Mean         Variance         N         Mean         Variance         N         Mean         Variance         N         Mean         Variance         N         F         df         P         F         df         P           ate         55.5         134.2         305         53.4         89.6         311         55.9         64.1         311         53.26         2,7415.8         <0.0001         9.13         2,921           ze         53.5         4896         308         47.6         1938         311         55.9         64.1         311         53.26         2,8157.6         <0.0001         9.13         2,921           ze         8.27         2.38         312         85.9         64.1         311         53.26         2,8157.6         <0.0001         34.73         2,927           ze         8.27         2.38         32.1         8.3         1.24         32.3         8.74         1.21         326         2,8671.2         <0.0001         34.75         2,927         <           se         3.19         3.24         10.39         2.30         32.6         240.86         2,8671.2         <0.0001         34.75         2,907         <         <                                                                                                                                                                                                                                                                                                                                               |                              |       | 324       |     |       | 325       |     |       | 326       |     |        |          |          |       |          |         |
| ate         53.5         134.2         305         47.6         331         56.9         111.5         308         46.0         2.7415.8         <00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | Mean  | Variance  | z   | Mean  | Variance  | Z   | Mean  | Variance  | N   | F      | df       | Ρ        | F     | df       | Ρ       |
| 55.5       134.2       305       53.4       89.6       311       56.9       111.5       308       46.0       2.7415.8       <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aying date                   |       |           |     |       |           |     |       |           |     |        |          |          |       |          |         |
| 53.5         4896         308         47.6         1938         311         55.9         641         311         53.26         28157.6         <0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Great tit                    | 55.5  | 134.2     | 305 | 53.4  | 89.6      | 311 | 56.9  | 111.5     | 308 | 46.0   | 2,7415.8 | <0.0001  | 9.13  | 2,921    | <0.0001 |
| xe       8.27       2.58       321       8.83       1.24       323       8.74       1.21       326       2.046.6       <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Blue tit                     | 53.5  | 4896      | 308 | 47.6  | 1938      | 311 | 55.9  | 641       | 311 | 53.26  | 2,8157.6 | < 0.0001 | 34.73 | 2,927    | <0.0001 |
| 8.27         2.58         321         8.83         1.24         323         8.74         1.21         326         2.7046.6         <0.001         38.6         2.967           8.77         3.19         3.29         3.20         323         10.64         2.20         326         240.86         <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lutch size                   |       |           |     |       |           |     |       |           |     |        |          |          |       |          |         |
| 8.77         3.19         324         10.39         2.30         323         10.64         2.20         326         240.86         2,8671.2         <0.001         24.06         2,970           in         2.22         890         304         1.71         745         311         0.97         462         308         6.53         2,21813         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | reat tit                     | 8.27  | 2.58      | 321 | 8.83  | 1.24      | 323 | 8.74  | 1.21      | 326 | 22.23  | 2,7046.6 | <0.0001  | 38.6  | 2,967    | <0.0001 |
| in 2.22 890 304 1.71 745 311 0.97 462 308 6.53 2,21813 <0.0001 11.81 2,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | due tit                      | 8.77  | 3.19      | 324 | 10.39 | 2.30      | 323 | 10.64 | 2.20      | 326 | 240.86 | 2,8671.2 | <0.0001  | 24.06 | 2,970    | <0.0001 |
| in -0.50 2.16 321 -1.57 1.56 323 -1.90 1.76 326 146.18 2,22759 <0.0001 7.89 2,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Difference in<br>laying date | 2.22  | 890       | 304 | 1.71  | 745       | 311 | 0.97  | 462       | 308 | 6.53   | 2,21813  | < 0.0001 | 11.81 | 2,920    | <0.0001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | difference in<br>lutch size  | -0.50 | 2.16      | 321 | -1.57 | 1.56      | 323 | -1.90 | 1.76      | 326 | 146.18 | 2,22759  | < 0.0001 | 7.89  | 2,920    | <0.0001 |