
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Diversification and obfuscation techniques for software security:
A systematic literature review

Shohreh Hosseinzadeh⁎,a, Sampsa Rautia, Samuel Lauréna, Jari-Matti Mäkeläa,
Johannes Holvitiea, Sami Hyrynsalmib, Ville Leppänena

a Department of Future Technologies, University of Turku, Vesilinnantie 5, Turku 20500, Finland
b Laboratory of Pervasive Computing, Tampere University of Technology, Pohjoisranta 11 A, Pori 28100, Finland

A R T I C L E I N F O

Keywords:
Diversification
Obfuscation
Software security
Systematic literature review

A B S T R A C T

Context: Diversification and obfuscation are promising techniques for securing software and protecting com-
puters from harmful malware. The goal of these techniques is not removing the security holes, but making it
difficult for the attacker to exploit security vulnerabilities and perform successful attacks.

Objective: There is an increasing body of research on the use of diversification and obfuscation techniques for
improving software security; however, the overall view is scattered and the terminology is unstructured.
Therefore, a coherent review gives a clear statement of state-of-the-art, normalizes the ongoing discussion and
provides baselines for future research.

Method: In this paper, systematic literature review is used as the method of the study to select the studies that
discuss diversification/obfuscation techniques for improving software security. We present the process of data
collection, analysis of data, and report the results.

Results: As the result of the systematic search, we collected 357 articles relevant to the topic of our interest,
published between the years 1993 and 2017. We studied the collected articles, analyzed the extracted data from
them, presented classification of the data, and enlightened the research gaps.

Conclusion: The two techniques have been extensively used for various security purposes and impeding
various types of security attacks. There exist many different techniques to obfuscate/diversify programs, each of
which targets different parts of the programs and is applied at different phases of software development life-
cycle. Moreover, we pinpoint the research gaps in this field, for instance that there are still various execution
environments that could benefit from these two techniques, including cloud computing, Internet of Things (IoT),
and trusted computing. We also present some potential ideas on applying the techniques on the discussed en-
vironments.

1. Introduction

In most organizations, information is a key asset that comes in the
form of, for example, financial information, client data, and product
design data. Intentional or accidental leakage of any of this information
exposes both the business and the customers. Therefore, it is highly
significant for any business to have security strategies for protecting the
information and services and ensuring the confidentiality, integrity,
and availability of the information.

Computer security assures that the system functions under the ex-
pected circumstances, and prevents undesired behavior. Many security
breaches begin with identifying and exploiting the vulnerabilities in the

system. Vulnerabilities are the defects that occur in the process of de-
sign and implementation of the software. Defects in design are known
as flaws, and the defects in implementation are known as bugs. To
ensure the security of software, we need to prevent or mitigate the risk
of software vulnerabilities. In other words, we should either eliminate
these bugs and flaws, or make it harder to exploit them.

In this paper, we focus on making exploitation of vulnerabilities harder,
and reducing the possible damage of the attack. To this end, we center
our research around two software security techniques, diversification
and obfuscation.

Code obfuscation is the process of scrambling the code and making it
unintelligible (but still functional), in order to make reverse

https://doi.org/10.1016/j.infsof.2018.07.007
Received 12 May 2017; Received in revised form 2 July 2018; Accepted 7 July 2018

⁎ Corresponding author.
E-mail addresses: shohos@utu.fi (S. Hosseinzadeh), sjprau@utu.fi (S. Rauti), smrlau@utu.fi (S. Laurén), jmjmak@utu.fi (J.-M. Mäkelä), jjholv@utu.fi (J. Holvitie),

sami.hyrynsalmi@tut.fi (S. Hyrynsalmi), ville.leppanen@utu.fi (V. Leppänen).

Information and Software Technology 104 (2018) 72–93

Available online 10 July 2018
0950-5849/ © 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.07.007
https://doi.org/10.1016/j.infsof.2018.07.007
mailto:shohos@utu.fi
mailto:sjprau@utu.fi
mailto:smrlau@utu.fi
mailto:jmjmak@utu.fi
mailto:jjholv@utu.fi
mailto:sami.hyrynsalmi@tut.fi
mailto:ville.leppanen@utu.fi
https://doi.org/10.1016/j.infsof.2018.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.07.007&domain=pdf


engineering more difficult [1]. The transformed code is functionally
and semantically equivalent to the original code, but is more compli-
cated and harder to comprehend [33]. With the help of code obfusca-
tion, even if adversaries get access to source code, analysis of the code
and finding the vulnerabilities will no longer be a simple task. This
requires more time and energy and makes the reverse engineering of
the code harder and more costly. Obfuscation does not guarantee that
the program is not tampered/reverse engineered, but adds an addi-
tional level of defence by increasing the effort and cost for an attacker
to learn the underlying functionality of the protected program. Various
obfuscation techniques exist that obfuscate different parts of the code at
different phases of software development process. For instance, using
opaque predicates [75] is a common way of obfuscating the control
flow of a program, at source code [109] or binary code level [247], at
implementation [109] or compile-time [17].

Software diversification refers to changing the internal interfaces and
structure of the software to generate unique diversified versions of it.
The users receive unique instances of the software that all function the
same, although differently diversified. In other words, diversification
breaks the ”monoculturalism” and introduces ”multiculturalism” in the
software deployment process.

Malware (malicious software) is any software that intends to run its
code on user’s computer to disrupt the computer’s operation or ma-
nipulate the system towards the attacker’s desire [2]. To do this, it
needs knowledge on how to interact with environment and access the
resources. Software diversification alters the internal interfaces of the
software and makes it challenging for malware to gain this knowledge.
Thus, malware becomes incompatible with the environment and
eventually becomes unable to take effective actions to harm the system.
It should however be noted that, in order to maintain the access of
legitimate applications to resources, we need to propagate the changes
to trusted applications, i.e., they will be diversified as well to be com-
patible with inner layers.

Diversification does not attempt to eliminate the vulnerabilities of a
software, but tries to avoid or at least make it toilsome for malware to
exploit them and perform a successful attack. In a worst-case scenario,
even if the malware succeeds in running its malicious code and attack a
computer, this attack can only work on that particular computer. The
designed attack model does not work on other computers, since their
software are diversified differently with different diversification secrets.
To take a large number of computers under control, different attack
models should be designed specifically for each software instance,
which makes it an expensive and arduous task for the attacker. On that
account, diversification is considered as an outstanding approach for
securing largely-distributed systems, and mitigating the risk of massive-
scale attacks.

It is worthwhile mentioning that the terms obfuscation and di-
versification, sometimes, have been used interchangeably in the lit-
erature. In this paper, we make a clear distinction between these two
concepts.

1.1. Method of the study

The method of study we chose in this research is Systematic
Literature Review (SLR). A SLR is a means of research that identifies,
evaluates and interprets all high quality studies related to a particular
research question, or an area of interest [3]. This method of study was
originally used in medical sciences [4], but later gained interest in other
fields as well. A systematic review can improve a traditional review [4],
in a way that the set of studies is not restricted to better-known and
frequently-cited publications, and not biased towards the research
area/interest of the researcher, as all studies in the field are captured. A
systematic review, by classifying and mapping the scattered research
studies, identifies research gaps and produce baselines for future re-
search.

We conducted a SLR on studies that deal with the two techniques,

obfuscation and diversification, with the aim of securing the code and
software. There have been previously some other reviews [5,6,248].
However, they (a) cover a more limited number of studies (14, 69, and
10 papers respectively), (b) consider these two mechanisms from other
perspectives than security, (c) focus on one of these two mechanisms, or
d) discuss only one particular technique.

The surveys studying the obfuscation related studies include a re-
view on control-flow obfuscation techniques [6], and a review on code
obfuscation approaches [5]. These research works cover less than 15
studies and are published, respectively, in 2005 and 2006, which im-
plies that the studies published after that are missing. Larsen
et al. [248] authored a survey that reviews the state-of-the-art in au-
tomated software diversity with the aim of security and privacy. An-
other recent literature review on software diversification, surveyed by
Baudry et al. [284], investigates diversification from five various per-
spectives aimed at different goals, including fault tolerance, security,
testing, and reusability.

The main factors that differentiate our survey from the existing
ones, are: (1) the systematic process for collecting the data, (2) a
thorough list of covered studies on both obfuscation and diversification,
(3) the focused scope of the study (security), and (4) classification and
analysis of the collected studies.

1.2. Structure of the study

The remainder of this paper is structured as follows: Section 2 dis-
cusses the aim of our study, and specifies the research questions we
have formulated and addressed in this research. Section 3 reports the
process of search and selection of the relevant studies, and also the data
extraction from these papers. Section 4 presents the results of the data
collection and analysis of the results. In Section 5, we present the dis-
cussion. Limitations of the study, concluding remarks, and the future
work come in Section 6.

2. Aims and research questions

We undertook a SLR of the papers reporting the use of obfuscation
and diversification techniques in software security domain. Before
starting the search, we determined the research questions, and formed
the search strings. Our SLR addresses the following research questions:

• RQ1: What is the aim of obfuscation/diversification being used?

• RQ2: What is the status of this field of study? (E.g., outputs per
annum, types of studies reported, collaboration of academia and
industry)

• RQ3 In what environments the techniques are used/studied in order
to boost the security (i.e., the programming language and execution
environment the techniques are used for).

• RQ4: What mechanisms have been proposed/studied? (i.e., the ob-
fuscation/diversification method used, (b) target of transformation,
(c) level and stage, (d) cost and effectiveness of the approach.

3. Search and selection process

In order to carry out the research review systematically, we need to
follow a protocol that defines the search strings and strategy, inclusion
and exclusion criteria, and methods to extract data and synthesis the
results. In this regard, we based our SLR on the research protocol
suggested by Kitchenham et al. [7], and conducted our SLR in seven
different phases. These phases are as follow: search and selection pro-
cess (Phase I), inclusion and exclusion (Phase II to IV), snowballing
(Phase V), data extraction (Phase VI), data analysis (VII). Fig. 1 illus-
trates the different phases in this process. The numbers on the arrows
indicate the number of search results and included papers after each
phase. In what follows, the details of the protocol developed for our SLR
are presented.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

73



3.1. Search

3.1.1. Initial search
Before starting the search process, we conducted an initial search to

assure that there are sufficient numbers of articles available in the
target field to study. In this stage, we found 48 articles discussing the
improvement of software security using diversification/obfuscation
techniques, which confirmed that this could be an appropriate topic to
conduct a SLR on.

3.1.2. Manual search
For the manual search, Phase I, we selected a set of proper search

strings, with which we assumed we would find the majority of the re-
lated articles. We also selected six of the largest digital databases, in-
cluding IEEEXplore Digital Library, ACM Digital Library, Wiley online
library, ScienceDirect, dblp, and SpringerLink. We limited our search to
titles, abstracts and keywords of the articles to avoid false positive re-
sults of the full-text search. In some cases, search query was adapted
according to requirements of the search engine. The following search
command was used to retrieve studies from the databases:

(software OR code OR program) AND (diversification OR
obfuscation

OR obfuscate OR obfuscator)
We undertook the manual search separately in the databases and

combined the results in a large spreadsheet. After removing the dupli-
cates, 6040 articles proceeded to Phase II for inclusion and exclusion
(Section 3.2).

3.1.3. Automatic (citation-based) search
To complete the manual search, we performed an automatic search

(backward snowballing), in Phase V. Backward snowballing is done by
analyzing the reference lists of selected papers to find any missing re-
lated paper [7]. Therein, 268 papers were collected, for which we re-
peated the inclusion/exclusion process (Phase II to IV).

3.2. Selection of the studies

After collecting the papers in Phase I, we should include relevant
and drop irrelevant papers. For that, we defined some inclusion/ex-
clusion criteria, based on which we make decision (in Phase II-IV)
whether to include/drop a paper. The followings are the inclusion cri-
teria in our study:

• papers that are written in the English language;

• peer-reviewed papers (however, we did not exclude technical re-
ports and books, since there exists some widely cited high quality
technical reports in this domain, e.g., [13]);

• papers in the context of software production/development;

• papers related to software security;

• papers related to obfuscation/diversification; and

• obfuscation/diversification in the paper is used/discussed with the
aim of improving/enhancing the security in software/code/pro-
gram.

Considering that obfuscation and diversification techniques have
been used in different domains for various purposes, we decided to
narrow down our results. To this end, we focused our search on studies
that are using obfuscation/diversification with the aim of software se-
curity and leave out the papers that were falling in our exclusion cri-
teria:

• studying the possibility/impossibility of obfuscation;

• studying the use of obfuscation/diversification by malware, to hide
their malicious code from scanners and malware analyzers;

• studying the techniques at a level other than software (e.g., hard-
ware/network);

• proposing an approach that needs hardware assistance;

• studying obfuscation/diversification from cryptographic point of
view;

• using the approaches to protect software watermark, birthmark and
intellectual property rights; and

• unavailable studies, that we were not able to access in anyway.

Considering the defined criteria, we followed this process to select
the relevant studies:

1. In Phase II, we screened the papers based on their titles. Each paper
title was checked by four authors to determine whether it is relevant
to our study or not, according to the defined inclusion/exclusion
criteria.

2. In Phase III, two of the authors screened the papers based on their
abstracts, and included the papers that were compatible with the
inclusion criteria and dropped the papers that were not.

3. In Phase IV, the same process was repeated as Phase III, but based on
the full text of the papers this time. There were several cases in
which the full texts were not available in online databases. We tried

Fig. 1. The systematic search and selection process. On the left are the online databases and on the right are various inclusion and exclusion phases in the study. The
number of articles left after each phase are shown on arrows.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

74



to contact the author(s) or find the text from other sources. If we
were not successful finding the text in any way, we dropped the
paper.

3.3. Data extraction

Each of the 357 selected papers was read through by two reviewers.
The first reviewer extracted the data from the papers using a data ex-
traction form, and the second reviewer checked the correctness of the
extracted data. In case of any disagreement, the paper was discussed in
a meeting with other authors, till reaching an agreement.

We divided the papers into two main categories, Constructive and
Empirical, and defined different sets of questions to extract data form
them. The papers that propose a new (implementable) obfuscation/
diversification method, or apply/implement a technique fall into the
category of constructive papers. The papers that evaluate/assess/ex-
periment/discuss/review some (existing) obfuscation/diversification
techniques fall into the category of empirical papers. There also exist
papers that could be considered as both constructive and empirical.
This class includes the papers that carry out an empirical study and at
the same time conduct a constructive work.

For the category of constructive papers we extracted the following
data, and presented the classification of the captured data in
Section 4.1:

Aim: For what purpose is obfuscation/diversification used and what
types of software security problems is solved (e.g., what type of attack is
mitigated)?

Level: At what level is obfuscation/diversification applied (e.g.,
source code, binary level)?

Stage: At what stage of software production is obfuscation/diversi-
fication applied (e.g., compile-time, run-time)?

Target: What is the subject of obfuscation/diversification transfor-
mation (e.g., control flow)?

Mechanism: What type of obfuscation/diversification method is
used/proposed?

Language: What language is the paper targeting?
Execution environment: What environment is the obfuscation/di-

versification techniques proposed for?
Overhead: What kind of overhead does the proposed obfuscation/

diversification technique introduce?
Resiliency: How has the resiliency of the proposed approach been

tested, and what results have been achieved?
For the category of empirical papers, we extracted the following data,

and presented the classification of the captured data in Section 4.2:
Relevance: How is the paper related to obfuscation/diversification?
Outcome: What are the outcomes/findings/results of the study?

4. Results

As mentioned before, based on the method of the study used, we
divided the selected studies into three main categories of (a) con-
structive, (b) empirical, and (c) constructive and empirical. Fig. 2 shows
the distribution and the number of papers in each category. As is seen,
the highest interest has been on constructive methods and obfuscation
studies.

4.1. Constructive studies

By analyzing the data we captured from the data extraction phase,
we answered the research questions defined in the beginning of our
study.

4.1.1. RQ1: Status of the field of study
After the search and selection step, we extracted data from the 357

included studies. The studies come in six different types, including
conference paper, journal article, workshop papers, book section,

technical report, and doctoral theses. Also, there were 2 studies in other
formats that did not fit into these categories. Table 1 shows different
types of studies and the number of studies found in each type. The
numbers indicate that the majority of the studies were published in
conferences.

We analyzed the author affiliations for the included papers to as-
sociate the papers to their originating organizations and countries.

Fig. 3 captures the ten most associated countries for the considered
set of studies. United States has by far the largest (c. 39, 5%) share,
followed by China (c. 10,1%). However, as a continent, UK and Europe
lead the statistics (c. 40,1%), with research divided mainly among
Germany, Belgium, and Italy. The list also includes Japan and India –
Asia as a whole contributed to one third (c. 32,2%) of the papers in the
study. The research is relatively concentrated to a selected number of
regions as the five and ten most affiliated countries count for circa
60,8% and 80,1% of all the affiliations.

Fig. 4 captures the ten most associated organizations for the con-
sidered set of studies. From this, we note that Microsoft Corporation
(inclusive of Microsoft Research) is the only non-academic organization
to be prolific in this area. Further, the ten most prolific organizations
correspond to almost a third (c. 29, 1%) of the total affiliations for these
studies. This is a notable portion from the affiliations, and arguably,
indicates that majority of the research is concentrated to a rather small
set of organizations. In Belgium, Finland, and New Zealand, the ma-
jority of research can be traced to a single organization.

It was of our interest to know the annual growth and decrease rates
of the publications in this field of study. This can indicate the changes in
interests and the significance of the field of study. An upward trend can
be a sign of increasing interest to the field; while, a downward trend
could state that the field is reaching a dead end. Fig. 5 illustrates the
distribution of the selected studies in the SLR, between the years of
1993 to 2017. There is a relative fluctuation in the whole period, with
an overall upward trend in the number of published studies, except for
the slight decline in 2017. This implies that while the field has been
fairly unpopular research subject, it has recently drawn fair attention
among researchers. Between obfuscation and diversification, the former
has almost always been a more popular technique – significantly so
between 2000–2010, while diversification has grained in popularity
since then.

We also examined the articles’ publication forum types as a function
of their publication years and the distribution is captured in Fig. 6. We
note that through the queried year span, the dominant publication
forum type is conference. However, the type selection gets more varied
as we approach the present day, and as a publication forum, the journal
type is almost on par with the conference in the year 2014. The ob-
served increase in variety could be taken as evidence for the domain
getting more mature: existence of more established research in the
domain shows as increase in the number of journal articles and book
chapters while the discovery of new sub-domains shows as an in-
creasing number of workshop publications.

Fig. 7 displays, for the considered set of studies, the associated or-
ganizations’ sector as a function of the publication year. Observations
made here relate closely to the ones made for Fig. 4: while some pub-
lications are affiliated solely to industrial organizations (c. 2, 6% pub-
lications in the year 2015 and c. 5, 6% in total for the considered time-
span) or to both industrial and academic bodies (c. 13, 2% in the year
2015 and c. 12, 6% in total), majority of the considered studies are
made in an academic vacuum. While the distribution is understandable
for theoretical research, it raises concerns regarding the applicability
and correspondence of the research in this domain.

4.1.2. RQ2: Aim
In the reviewed literature, we identified a set of aims for which

obfuscation and diversification were used for securing code and soft-
ware and defeating known attacks, and hopefully unknown future at-
tacks [238]. In Table 2, we summarize the generic aims that the related

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

75



studies were following.
In the process of reviewing the selected studies, we identified four

broad categories that could encompass most of the presented literature.
We acknowledge that these categories are not completely orthogonal,
that is, there is some overlap between the different categories and a
single piece of research could reasonably be classified as belonging to
multiple categories. Still, being aware of the common aims or use cases
associated with obfuscation and diversification research can be a va-
luable resource. With this classification, we try to answer the question
what real-world problems are being solved by the use of diversification
and obfuscation methods.

a) Making reverse engineering of the program logic more difficult: The most
commonly stated aim of this research area was simply to make
malicious reverse engineering of programs harder
[113,165,171,277], i.e., making the act of debugging and dis-
assembling of the software more complex to get the original source
code [71,91,123,198,247]. By reducing the readability and under-
standability [47,110] of the software through these techniques, it

becomes more resistant to unauthorized modification, i.e., becomes
more tamper-proof [25]. Making understanding programs harder
might be a desirable aim in order to protect proprietary algorithms
or other intellectual property. Assembly code obfuscation [211],
increasing complexity of dynamic analysis [240], preventing con-
trol-flow analysis [75], and introducing parallelism in order to ob-
fuscate control-flows [239] are examples of research aiming to make
programs harder to understand. Furthermore, obfuscation is an ef-
fective approach to counter both static [60,226,268] and dynamic
analysis [122,126,240].

b) Prevent widespread vulnerabilities: Obfuscation and diversification
techniques were also employed for their potential security benefits
in preventing widespread vulnerabilities [81,262,268]. Exploits
often depend on minute details about program internals. Introdu-
cing diversity into deployed applications can make it more chal-
lenging to construct exploits that reliably work against multiple
targets. Diversification works by introducing variability in the
software. Increased diversity makes the number of assumptions an
adversary can make about the system smaller. Aside from diversi-
fication, obfuscation can also serve as a method of making software
more secure. By making it more challenging for an attacker to un-
derstand the piece of software, obfuscation helps to increase the
costs associated with exploit development. Examples of research
specifically targeting security include randomization measures to
defeat Return-Oriented Programming (ROP) attacks [216], rando-
mized instruction set emulation [66], metamorphic code generation
[230], and diversifying system call interface to defeat code injection
attacks [159,233,282].

c) Preventing unauthorized modification of software: Research on tamper-
resistance tries to find ways for making it more challenging for an
adversary to produce derived version of programs [26,107,127].

Fig. 2. Distribution of the studies.

Table 1
Types of studies.

Type Diversification Obfuscation Both Total

Conference paper 68 134 7 209
Journal article 29 51 2 82
Workshop paper 12 17 1 30
Book section 10 8 2 20
Technical report 3 8 0 11
Doctoral Thesis 0 3 0 3
Other 1 1 0 2

122 223 12 357

Fig. 3. Prolific countries: ten most associated countries
in the considered studies (total number of country level
affiliations =N 420).

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

76



This might be desirable in order to preserve the intended operation
of a program in an uncontrolled environment. For example, appli-
cations employing some form of digital rights management or
computer games trying to prevent players from cheating might
employ such techniques in order to make it harder to circumvent the
protection mechanisms [30,259]. Techniques aiming for tamper-
resistance often utilize methods for making understanding the pro-
gram more difficult but they can also include methods for verifying
program authenticity. Tamper-resistance was explicitly mentioned
as one of the aims in the context of obfuscating Java bytecode [30],
run-time randomization in order to slow down the adversary’s lo-
cate-alter-test cycle [103] and obfuscation of sequential program
control-flow [24]. Control flow obfuscation conceals the real control
flows of the program and generates a fake control flow [145,175].
This makes it difficult for an analyzer to comprehend the logic of the
program [245], also prevents spying and manipulating the control
flow [75].

d) Hiding data: Aside from making programs more complex to analyze,
obfuscation was also utilized for hiding static non-executable data
within programs [99,231,281]. Hiding cryptographic keys and
protecting intellectual property are few examples of scenarios were
such measures are considered. Such techniques have been used to
hide static integers [138,191] and obfuscate arrays by splitting them
[97].

The results signify that the two techniques are used to mitigate the
risk of a wide range of attacks, and in best case scenario hamper them.
Table 3 presents the top attacks that were impeded with the help of
obfuscation and diversification, such as code injection attacks
[55,105,108,197], ROP attacks [195,215,260,263], buffer over-flow
attacks [35,57,268], and Just-in-Time (JIT) spraying attacks
[186,208,263]. From Table 3 we can deduce that not all the studies
(209 papers) were explicitly discussing particular attacks that they aim
to impede.

4.1.3. RQ3: Environment
For classifying the environments, two subcategories were chosen: a)

language of the program being obfuscated/diversified and b) execution
environment.

a) Language: The reviewed literature used a diverse set of over 20
different programming languages. Circa 36,8% of the languages
were the topic of only one research and two thirds (63,1%) were
mentioned at most thrice. Most research discussed one (c. 63,4%) or
two (c. 10,6%) specific languages, with two systems programming
(C/C++) or high level languages (Java & JavaScript) representing
the vast majority of such pairs. A quarter (25,0%) of the research did
not specify a single language or generalized the presented work for a
class of languages. Only a minority of research
[135,158,163,167,191,232,340] mentioned multiple languages or
language classes.

A more descriptive view of the kinds of the languages was achieved
by further classifying the research into four language categories re-
presenting hardware oriented, high level, scripting, and domain specific
languages. The distribution of languages into these languages is as
follows:

• Systems programming (N=158): C (52), Assembly (29), C++ (21),
Cobol (1)

• Managed (N=81): Java (54), C# (3), Haskell (2), J# (1), Lisp (1),
OCaml (1), VB (1)

• Scripting (N=19): JavaScript (11), Python (3), Perl (2), PHP (1)

• Domain specific, DSL (N=7): SQL (5), HTML (1)

The systems programming languages are compiled to native hard-
ware without a run-time virtual machine and provide direct access to
memory. Due to this low level direct hardware access, these languages
benefit from obfuscation and diversification to protect this access. Some

Fig. 4. Prolific organizations: ten most associated or-
ganizations for the considered set of studies (total
number of organization level affiliations =N 544).

Fig. 5. Number of papers published yearly on the topic of security and privacy through obfuscation/diversification.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

77



examples of the applications of these languages in the research include
operating systems and drivers, low-level libraries, server software, high
performance computing, and embedded software. The managed lan-
guages typically require a virtual machine to provide a safer pro-
gramming model for application programming. The most common
problem for these languages is that the code is relatively easy to reverse
engineer. The Java virtual machine is the most common platform in the
selected research studies, but others, such as the Microsoft’s Common
Language Runtime (CLR), were also covered. A typical application of
this class is mobile code, that is, code expected to run in an unknown
environment. Finally, the scripting languages introduce new levels of
insecurity since manipulating their code is even simpler. The DSLs have
other issues, for example injection attacks or the need to protect in-
tellectual property.

The following three figures present the language trends in the re-
viewed papers. First, Fig. 8 shows the popularity of various language
categories based on our classification. The majority of the research has
focused on systems programming, managed languages come as the
second most popular category. Script languages are a bit more re-
searched than DSLs.

Fig. 9 shows the overall distribution of language popularity in se-
lected studies. A raw binary code (of native or virtual machine bytecode
instructions) is the most popular ”language” in this field of research.
This is natural as most software is compiled to binary form for dis-
tribution. It represent the lowest level language and often requires
disassembly to reconstruct the program structure for analysis. We dis-
tinguish assembly language as a separate form with its structured form
intact for further analysis. Assembly is commonly used when obfusca-
tion/diversification is used as a language agnostic compiler pass. The C
and Java languages are other popular choices, followed by C++ and
JavaScript.

Fig. 10 shows the trend over time for the five most used languages.
The other languages are presented as the sixth group, as a reference.

Like in the other figures, the research seems to be a bit more active in
the 2000s and even more active in 2010s. Each of the top five languages
appears to be almost equally represented each year.

b) Execution Environment: The environments in the reviewed literature
can be classified in various ways as there are many interesting areas
of focus. We have focused on two approaches in our review. First,
the target environment of deployment (Table 4) plays a significant
role when analyzing the applicability of a security mechanism. The
majority of reviewed approaches are general enough to work in a
multitude of environments. The most significant group of special
environments were distributed and agent based systems with mobile
code. As the code executes in a possibly remote, uncontrolled
system, the need for protection is obvious - especially since the
mobile agents often rely on bytecode that is relatively easy to re-
verse engineer. Virtualization and cloud computing can introduce
similar kinds of problems if the host is owned by a third party, but
virtualization is also used as a protection mechanism. Web services
and servers offer an attack surface via the service layers, and mobile
and desktop users are threatened by unreliable software. We dis-
tinguish between generic servers and cloud by denoting XaaS plat-
forms for hosting third party services as the cloud. Embedded en-
vironment might use obfuscation or diversification for example to
avoid the computational cost of encryption. Furthermore, most
mobile devices are embedded platforms, but not all embedded
platforms are mobile.

The second way to classify the reviewed literature is by the run-time
environment (Table 4). This classification focuses on the abstraction
level on the deployed software stack, with native code on the bottom
and the virtual machine managed code on top, if both run-times are
being used. Over a half of the research targets a native code environ-
ment. The more specific mechanisms are further discussed in the level

Fig. 6. Publication forum types for the considered set of studies as a function of the publication year.

Fig. 7. Associated organizations’ sector for the considered set of studies as a function of the publication year.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

78



(Section 4.1.4b) and stage (Section 4.1.4c) sections. Around fifth of the
research focuses on managed environments such as Java virtual ma-
chines. Few papers target both environments, e.g., in the case of JIT
compilers. Almost a third of the research claims to operate in all kinds
of environments as a general purpose security mechanism.

4.1.4. RQ4: Mechanism
a) Method: In order to make diversified program instances, various

transformation mechanisms are proposed in the literature. Each of these
mechanisms are applied at different stages and levels of software de-
velopment life-cycle (discussed in Section 4.1.4.b and Section 4.1.4.c).
In this section, we classify the transformation techniques, based on the

target of transformation. In other words, ”what” is transformed and
”how” the transformation is applied. Fig. 11 illustrates these techniques
as a tree. On first level of the tree come the targets of transformations
and on the lower levels the transformation techniques to obfuscate
these targets. We base our classification on the taxonomy presented by
Collberg et al. [13], which introduces control obfuscation, data obfus-
cation, layout obfuscation, and preventive obfuscation as different trans-
formation targets. In the following we discuss each category.

• Control flow obfuscation aims at altering/obscuring the flow of a
program to make it difficult for an attacker to successfully analyze
and understand the code [1]. There exists a large body of research
on control flow obfuscation techniques [259,261,266,334]. The
most common technique to disturb the control flow is bogus inser-
tion [11,12,22,31,63,73,104,268,362]. This technique works as in-
serting gray/dead/dummy code [351] that is never executed, fakes
the control transfer [100], and/or introduces confusion for the
analyzing tools [16,24,45,51,98,109,129,145,179,187] to attain the
actual flow. Adding dummy blocks [122,160,169], dead statements
[170], redundant operands [113], dummy instructions to camou-
flage the original instructions [38,242], new segments [247],
dummy classes [84], dummy sequence using dead registers [47],
and junk byte insertion to instruction stream [34,169], all fall into
this class of transformation. Inserting additional NOP instructions
[215,226,283] is another type of bogus insertion. NOPs are in-
structions that perform no operations but make it harder to predict
where the pieces of code are placed in memory.
Another widely used technique for disturbing the program’s control
flow is using opaque predicates [16,34,73,75,115,126,145,169,
179,188,209,291,313,355]. These expressions are known to the
obfuscator in advance, but not to the deobfuscator/attacker. A
simple example of opaque expression is a Boolean expression that is

Table 2
Aims followed by using obfuscation and diversification techniques.

Aim Via diversification (no. of papers) Via obfuscation (no. of papers)

Making reverse engineering difficult 7 78
Generating diverse and unique versions of SW 34 3
Making the program hard to comprehend/read 1 31
Concealing a fragment of code and hiding some data inside the code 2 24
Preventing tampering of program code and illegal modification of software 4 22
Hiding the control flow of the program 1 24
Making static analysis difficult 1 20
Making dynamic analysis difficult 2 12
Mitigating the risk of malware 12 7
Protecting mobile agents against malicious host 0 6
Preventing large-scale attacks 10 2
Detecting anomalies/intrusions 4 0
No suitable aim discussed 50

Table 3
Attacks mitigated by obfuscation and diversification techniques.

Attack mitigated via diversification (no.
of papers)

via obfuscation (no.
of papers)

ROP attacks 24 1
Code injection attacks 15 2
Buffer overflow attack 6 2
JIT spraying attacks 2 2
Side channel attack 3 4
Attacks to web applications, e.g.,

cross-site scripting (XSS),
SQL injection

4 1

Code reuse attacks 12 2
Browser-based attacks 2 3
Insider attacks 1 2
Protecting the software against

piracy
0 6

Slicing attacks (a form of reverse
engineering)

0 2

No attack mentioned 209

Fig. 8. Popularity of languages in the selected publications over time, grouped in language categories.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

79



always evaluated as ”true” or as ”false”, yet needs to be evaluated at
execution time. This hardens the task of analyzing the control flow
and enhances the cost of comprehending the program [16,75].
Transformation can be applied to loops [268] by loop unrolling
[166,201,272], loop intersection [73,182], extending [16,104,113]
and eliminating [109], and changing the loop conditions [330].
Transformation can also be applied at instruction level to camou-
flage the original flow of the application [271] through instruction
reordering [103,114,166,245,268], instruction hiding [226], and
instruction replacement with dummy/fake instructions
[38,76,175,291,346], or instructions that raise a trap
[47,103,186,247]. Self modification mechanisms
[38,62,165,182,202] alter/replace instructions at run-time which
could be used to introduce an additional layer of complexity while
obfuscating the code [161].
Modifying the control of a program not only makes it difficult to
analyze the actual program’s flow, but also results in diverse bin-
aries/executable. This can be achieved through reordering the in-
structions [103,114,166,245,268] and blocks [27,103,135,202,
239,346], while the semantics and dependency relations are pre-
served. Code transformation [52,63,162,202,211,214,230] is an-
other way of producing dissimilar binaries. As an example, by ran-
domizing the software in a sensor network, the nodes receive
diversified versions of the software [149].
Other forms of control flow obfuscation are polymorphism [44,84],
branching functions [34,47,123,157,179,209,240], and trans-
forming/faking/spoofing jump tables [34,242]. Inlining method
[41,103] replaces the function call with the function body, so the
function is eliminated and the primary structures are not disclosed.
Cloning method [229,231] creates different versions of the function
and tries to conceal the information about the function calls.

• Data obfuscation aims at obscuring data and concealing data struc-
ture of a program [207]. In the surveyed studies, various approaches

have been used to this aim [259,279,288]. First is array obfuscation
[29] that targets the structure (and the nature) of an array, trying to
make it confusing to the reader. This can be done through splitting
an array into smaller sub-arrays [97,112,130,171], or merging
multiple arrays and making one larger array [130,171]. Other ways
of array obfuscation are array folding [85,112,130,171], that in-
creases the dimensions of an array, and conversely, array flattening
[48,85,112,130,171], that decreases the dimensions of an array.
Second is variable transformation to obscure/obfuscates variables
[29,41,67,110,116,238,256]. Variables can be encoded [104], sub-
stituted with a piece of code [11], split into multiple variables
[94,104,113], and vice versa, multiple variables can be merged to-
gether. Third is a more complex obfuscation technique, class trans-
formation, which confuses the reader to comprehend the structure
of a class [72]. This transformation includes class splitting into
smaller sub-classes [36,41,128,177], merging/coalescing multiple

Fig. 9. List of languages in selected research, ordered by their popularity over time.

Fig. 10. Popularity of top five most used languages in the selected publications over time, the other languages are merged to the sixth group.

Table 4
Environments for the proposed obfuscation and diversification mechanisms.

Target environment context Diversification Obfuscation Both

Cloud 5 3 2
Desktop 1 3 0
Distributed/agent based 18 9 2
Embedded 6 2 3
Mobile 13 5 1
Server/mainframe 4 12 0
Virtualization 7 7 1
Web 10 8 0
Runtime environment
Any 54 21 6
Managed code 46 8 1
Native code 72 68 2
Both native & managed 4 1 0

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

80



classes together [36,41,148,177,223], class hierarchy flattening
[84,128,223] which removes type hierarchy from programs, and
type hiding [36,72,177]. There exist other classes of techniques to
obfuscate the data structure of the program, such as code substitu-
tion [145], and encryption [53,67,86,110,128,147,213,235].

• Layout obfuscation is a class of obfuscation techniques that targets
the program’s layout structure [13,336] through renaming the
identifiers [45,51,98,101,110,117,125,163,187,212,213,233,320]
and removing the comments, information about debugging, and
source code formatting [113,170,201,223]. By reducing the amount
of information for the human reader, the reverse engineering be-
comes harder. Layout transformations are considered as one-way
approaches, as when the information is gone there is no way to
recover the original formatting. Instruction Set Randomization (ISR)
[55,66,105,140,154,158,167,186,192], Address Randomization
[35,39,46,57,105,106,192,193,215,283], and Layout Randomiza-
tion [41,52,88,113,146,149,160,178,193], Address Space Layout
Randomization (ASLR) [263,265,308,337] can also be seen as
identifier renaming techniques.

b) Level: We identified several phases in the software development,
deployment, and execution as levels of obfuscation. In the reviewed
research (Table 5), most techniques apply to development time (n =
282), runtime (n = 95), or both (n= 58). The development time
techniques mostly apply to human readable source code (high level

language & assembly), but obfuscation and diversification tools ma-
nipulating the generated binary formats (bytecode, native code, inter-
mediate representation) are equally common. The application program
itself provides the main platform for applying various mechanisms. At
runtime, the techniques either target the source code (scripting lan-
guages), intermediate formats (e.g. JIT compilation), or the execution
environments. Modified runtime systems are process level techniques
for both managed (e.g. CLR & Java virtual machine) and native code,

Fig. 11. Transformation mechanisms.

Table 5
Level of obfuscation and diversification at development time / runtime.

Level Development Runtime

Application design 11 –
Assembly source code 12 –
Bytecode 40 –
Executable 76 –
High level language source code 104 7
Intermediate representation format 39 5
Managed code – 3
Native code – 43
Hardware – 3
Operating system – 18
Virtualization – 16
Total no. of papers (impl & runtime effects) 58

Total no. of papers 282 95

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

81



but operating systems, operating system / machine virtualization, and
hardware level modifications are also presented.

In terms of obfuscation and diversification techniques, operating
with source code that is not yet compiled is relatively effortless. Many of
the reviewed techniques work purely on the lexical and syntactic levels
and the parsing technology is mature, ranging from simple pre-pro-
cessors to frameworks with compiler-like abilities. It is also possible to
manipulate many high-level structures (classes, data structures) that are
not available in machine code form [36]. In interpreted languages (e.g.
JavaScript), the source code obfuscation is the only option [110], which
also explains why some of the source code obfuscations are deferred to
run-time. Collberg et al. have extensively described techniques avail-
able for source code obfuscation in [13,16]. Some of the mechanisms
extend the range of obfuscations to semantically richer forms, the in-
termediate formats available during the compilation. Abstract syntax
trees [133,207] are used by syntax oriented techniques while se-
mantically richer intermediate formats provide access to e.g. control
flow analysis. These mechanisms are provided for instance as compiler
plugins.

The motive to obfuscate the source code is usually preventing the
adversary from easily understanding and altering the code even if he or
she has managed to reverse engineer it. Source code obfuscation might
not ultimately prevent a dedicated attacker from understanding soft-
ware, but it will significantly raise the bar of complexity and decrease
the probability of a successful attack [49]. Source code obfuscation is
often used for intellectual property protection [104,113]. Worth noting
is that source code obfuscation is usually also reflected to the bytecode
or binary code after compilation.

In managed environments, bytecode techniques have received lots of
attention. For example, in Java, it is not that hard to reverse the com-
piled bytecode back to source code. This reverse-engineering can be
performed via automatic tools [50,51]. Naturally, this poses problems
for the confidentiality of source code and has elicited lots of research on
bytecode obfuscation. Several approaches such as [30,45,177,182,223]
have been proposed to prevent adversaries from understanding, re-
verse-engineering or cracking the bytecode. One major advantage of
bytecode obfuscation (along with other binary code obfuscation tech-
niques discussed next) is that source code is not needed in the process.
This is quite often the case with closed source, third party software.

Reverse engineering and the manipulation of security measures are
also issues with native code executables, but the native instruction sets
are inherently harder to analyze due to more complex instruction sets
and the lower level of abstraction. A large set of obfuscation and di-
versification techniques are applied to symbolic assembly code (with
relocation information etc. intact) or disassembled final binaries
[259,276]. This is often done in order to make reverse engineering
considerably harder [171,247] or to prevent disassembling the program

from binaries [175,240]. Low level obfuscation usually involves using
control flow obfuscation transformations changing the sequence of in-
structions [123,245]. In general, increasing the entropy of the low level
code also makes it harder for a piece of malware to modify the code or
inject its own malicious payload [11,233]. One technique related with
low level obfuscation is ISR [42,66]. An execution environment unique
to the running process is created so that the attacker does not know the
”language” used and therefore, cannot ”talk” to the machine. A new
instruction set is created for each process executing within a system.

c) Stage: Although modern software development is iterative, we ob-
serve the software life cycle as a linear sequence of stages: (a) de-
velopment, (b) distribution and deployment, and (c) execution. This
model captures the fact that each stage is characterized by a dif-
ferent set of obfuscation and diversification techniques and tools.
The development stage is further split into design, implementation,
compilation and linking phases. When analyzing the types of tools
used to manipulate the application’s code, the compilation can be
further refined into pre- (e.g. source to source transformations and
code generators) and post-compilation (e.g. link-time code trans-
formation) phases. The software deployment includes installation
and updates [248]. Application loading occurs in conjunction with
execution and thus is included in this stage. The surveyed studies
discussed and applied obfuscation and diversification techniques
during all these stages.

The Venn diagram in Fig. 12a illustrates all the observed stages and
their overlap in five main groups, from design to application execution.
These groups reflect the different stakeholders and roles in the soft-
ware’s life cycle. We identified 16 different types of use of stages, with
201, 60, and 9 studies operating on one to three stages, respectively.
None of the studies suggested taking part in four or more groups of
stages. A majority of research involves compilation and linking. Ex-
ecution time techniques form another large group. A small number of
research is associated with either of these approaches and some other
stage (n = 29) or is applied outside these stages (n = 22).

In Fig. 12a, the first group contains design and implementation
phases. Mechanisms applied at this stage are involved in software de-
velopment effort. Data obfuscation [118,137,162], control flow obfus-
cation [109,169] and, in general, source code obfuscation
[63,99,118,188,225] are the most common approaches that target the
code at implementation level.

The mechanisms in the next group, compilation and linking, can be
applied to the deliverables of iterations for in-house software or to pre-
made software, available either as source code, in intermediate forms,
or as executable binaries that can be analyzed or reverse-engineered.
This group is further dissected in Fig. 12b as the majority of reviewed

Fig. 12. a) Various stages in SW life-cycle that obfuscation/diversification are applied on, b) Dissection of various compile-time stages in conjunction with all post-
distribution phases.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

82



literature forms a cluster in this stage. The third stage, installation and
update, includes the task of local deployment of software and updates.
The next stage, loading, covers the process of loading the executable to
memory (e.g. from a network stream or disk) and dynamic linking.
Finally, execution stage includes all sorts of mechanisms that activate
during application’s execution. Code obfuscation and software diversi-
fication can also be applied at execution time. Dynamic software muta-
tion [79] is a repeated transformation of the program during its ex-
ecution. It makes a region of memory occupied by various code
sequences during execution. Identifier renaming [163], ASLR [57,265],
camouflaging the instructions by overwriting them with fake instruc-
tions [76], and randomizing the location of critical data elements in
memory [140] are other examples of execution-time diversification.

Fig. 12b focuses on the mechanisms applied on various stages of the
compilation (pre-, post-, and during compilation). In the figure, all the
remaining stages after the compilation techniques have been combined
as a single post-distribution stage. The reviewed research is distributed
quite evenly between the different compilation stages. Second large
class of mechanisms is to use compilation or post-compilation in con-
junction with the execution time techniques.

Diversification at the compile-time makes the process fairly auto-
matic by eliminating the need to change the program’s source code
[248]. M. Franz [150] has proposed a practical approach for generating
diverse software at compiler-level. This approach is based on an app-
store that contains a multi-compiler, which works as a diversifying
engine that generates unique binaries with identical functionality. In
[207] they have developed a compiler plugin to generate diverse op-
erating system kernels, through memory layout randomization. As we
mentioned before, in the literature, there are several works that study
the pre-compile time and post-compile diversification. Control flow
transformation in the source code [43] is an example for the former,
and class transformation in Java bytecode [177] an example for the
latter.

d) Cost: Despite of the security obfuscation and diversification bring,
they introduce cost and overhead to the system, like any other se-
curity measure. In fact, the higher level of obfuscation/diversifica-
tion, the more penalty is forced to the system. Therefore, based on
the need of the system, it is decided how much the program needs to
be obfuscated/diversified. In the studied works overhead mainly
was reported as a) increase in the program size [50,84] (e.g.,
number of instructions [34], memory size, code size [240,256,264],
binary patch size [140], byte code size), b) increase in program
performance [261,263,266,285,290] (e.g., compile time [175],
process time, execution time [260,268], CPU overhead [119],
higher memory usage [119,273], and c) latency and throughput
[210] (in load time or run time). It is worth mentioning that among
the diversification mechanisms, some introduce more cost and some
less. For instance, changing variable names, function names, and
system call numbers often introduces no additional costs.

e) Effectiveness: In the studied works, the effectiveness of the proposed
approaches were mainly measured through the following metrics:

• Potency determines to what degree a human reader is confused, as
a result of the applied security measure [13]. Measuring the po-
tency can be done by comparing the obfuscated/diversified ver-
sion of the software with the original version and presenting the
similarity rate [257,290]. In [131] clone detection is used to
analyze the similarity of the obfuscated code with the original
one, and the code dissimilarity is the metric for representing the
potency of the approach. Another way to measure the potency of
an obfuscation mechanism is to evaluate how much harder it has
become for a human reader to comprehend the obfuscated code,
comparing to the original code. For instance, the obfuscation
mechanism in [27] has been tested empirically with a group of

students, programmers and crackers and illustrated that only a
few crackers were able to deobfuscate the obfuscated code. In
[272] the effectiveness of the proposed approach is measured by
static and dynamic analysis of the obfuscated code.

• Resiliency determines how well the obfuscated/diversified pro-
gram resists automatic decompilers/disassemblers/deobfuscators
[13]. Analyzing the reverse engineering effort demonstrates how
the proposed technique is effective against disassembly tools (e.g.,
through presenting confusion factor, and disassembly errors). For
instance, in [211,240] the strength of the obfuscation mechanism
has been evaluated against IDA PRO automated deobfuscators [8],
and demonstrate that obfuscated code increases the effort for an
attacker, by making it harder to reconstruct the original code.
Similarly, Linn et al. [34] have used three state-of-the-art dis-
assembly tools, and demonstrated the effectiveness of their ap-
proach through confusion factors, disassembly errors, and in-
correctly disassembled code, that they gained by disassembling
the obfuscated code.

• Attack Resistance determines how much harder it has become to
break the obfuscated code. It can be done by running the obfus-
cated/diversified software against different attacks and analyzing
the outcome [260,263,268,285]. As an example, the obfuscated
kernel in [207] is tested against four kernel rootkits, and it is
shown that they all were disabled. RandSys prototype [105] im-
plemented for Linux and Windows has been tested against two
zero-day exploits (code-spraying attacks), and 60 existing code
injection attacks. It was shown that the approach is successful in
thwarting them. In [268] they run the program against various
types of attacks (e.g., code injection, memory corruption, code
reuse, tampering and reverse engineering attacks) and measure
the resistance.

4.2. Empirical studies

As mentioned before, in the set of studies collected, 68 of them were
studying the obfuscation/diversification techniques empirically. These
empirical studies come in the form of discussion, experiment, evalua-
tion, comparison, optimization, survey, and presenting a classification.
The following categories illustrate how these studies were related to
obfuscation and diversification:

• survey of related works on obfuscation and diversification as soft-
ware protection techniques [5,6,37,64,180,248,284]; Baudry and
Monperrus [284] survey the related works on design and data di-
versity which consider fault tolerance and cybersecurity. They also
study randomization at various system levels.

• overview/classification of existing obfuscation/diversification
techniques [59,78,132,324];

• studying the obfuscating transformations that are (more) resilient to
slicing attacks [92,96,329];

• comparing different obfuscation mechanisms [87,95,190];

• discussion on a particular obfuscation mechanism [19,78,132]; In
[132], obfuscation is being discussed as a way to make under-
standing the software more difficult. In [19], identifier renaming is
discussed as an obfuscation mechanism to protect Java applications.
By making the classes harder to decode, the act of unauthorized
decompilation becomes difficult. In [78], the authors overview the
existing obfuscators and obfuscation mechanisms, and also illustrate
the possibility of achieving binary code obfuscation through source
code transformation.

• studying/evaluating the effectiveness of an obfuscation/diversifi-
cation approach (e.g., identifier renaming and opaque predicates)
against human attackers [54,64,74,93,176,183,246,266,269,278,
289,295]; In [68] the authors qualitatively measure the capabilities

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

83



and performance of two commercial obfuscators for three different
sorting algorithms. In [93], the effectiveness of decompilers and
obfuscators are quantified through a set of metrics. It is done by
comparing the original Java source code with the decompiled and
obfuscated code respectively. The metrics will then measure whe-
ther the decompiler produces valid source code, and whether the
obfuscator produces garbled code. [176] measures the effects of
different obfuscation techniques on Java code in terms of com-
plexity. In [278] several different metrics are suggested for mea-
suring the incomprehensibility of the obfuscated code.

• optimizing and reducing the overhead of software diversity
[83,202,237,255];

• experimenting and evaluating the potency of an obfuscation tech-
nique; The strength and incomprehensibility of the obfuscated
programs can be evaluated by measuring the performance of human
analyzers in analyzing the obfuscated code (to what degree a human
reader is confused) [111,121,145,228,234,354].

• studying the effectiveness of software diversity
[32,65,136,237,274,287,292,360]; For instance, to evaluate the
effect of diversity, several different computer attacks are tested
against the diversified programs [32]. In [274], automatic software
diversity is discussed as a means for securing the software. The
authors investigate the types of exploitation it can mitigate, the
different levels of software life-cycle the diversification can be ap-
plied at, and the possible targets of diversification.

5. Discussion

The idea of protecting software through generated diversity and
obfuscated code originated in early1990′s and gained more attention in
the past decade. The rationale behind these techniques is to increase the
cost and effort for a successful attack. This study, by surveying the
literature about the use of these two techniques for securing software,
elucidates several points.

First, these methods have been used in various ways with different
aims, such as protecting software from malicious reverse engineering
and tampering, hiding some data and protecting watermark informa-
tion, preventing the wide spread of vulnerabilities and infections, mi-
tigating the risk of massive-scale attacks, and impeding targeted at-
tacks. In a previous study, we have studied the aims and environments
that these two techniques have been applied to [324].

Second, the field has grown in many directions, and new areas have
emerged. Moving Target Defence (MTD) [172] is an example of newly
born defence mechanisms. MTD randomizes the system components,
and presents a continuously changing attack surface, which shortens
the time frame available for attacker.

Third, studying all the related works sheds light on the research
gaps, and the potential research directions. We discuss these research
gaps in Section 5.2.

Fourth, There are also some challenges associated with practical
diversification and obfuscation that require further study. In Section 5.1
we discuss some of these challenges.

5.1. Challenges

One of the challenge of applying diversification is the fact that it has
to be propagated to every parts of the system that makes use of the
diversified interface. For example, diversified system call numbers in
the operating system kernel have to be propagated to libraries that
employ system calls. It is not straightforward to automatically find all
the dependencies.

Software updates are also a challenge for diversified systems, be-
cause each update has to be individually diversified to be compatible

with the uniquely diversified interfaces it uses. Then again, each patch
is also an opportunity to re-diversify some parts of the system.

Using diversification and obfuscation is always a race against time
in the sense that the adversary will ultimately be able to guess the
correct diversification key or deobfuscate the code. Dynamically
changing obfuscation/diversification is a good defence, but raises
complexity and performance costs of the approach.

5.2. Research gaps

As mentioned before, the main goal of conducting a systematic lit-
erature review is to collect and analyze the studies related to a field of
research, in order to pinpoint the research gaps in that field.

One of the gaps we have found in this field of study is the lack of a
standard metric in this field for reporting the overhead and also the
effectiveness of the proposed approaches. The terms, potency and re-
siliency, introduced by Collberg et al. [16] discuss how much more
complex the code has become in the presence of the obfuscation
method; however, we believe that a standard metric to present a nu-
meric degree is missing. Moreover, as also discussed in [276], the
majority of the existing research are constructive papers and there is
need for more empirical research, such as measuring the efficiency of
diversification and presenting results on performance and space re-
quirements of the obfuscation techniques. However, these concerns
have not fully addressed by the research community.

Another research gap that we noted was that there are still many
environments obfuscation and diversification have not been applied to
yet, even though this would potentially be beneficial. In this section, we
discuss these environments and present some ideas on how to utilize the
two techniques as a complementary measure to the security measures
these environments already have.

One of these execution environments is cloud computing and virtual
environments, in general. Lately, virtual technologies have become very
dominant as many enterprises and service providers are shifting to-
wards the cloud and to deliver their services through it. Thus, we be-
lieve that due to the significance of these environments, there are needs
for proactive approaches for securing their software. Obfuscation and
diversification could become helpful in this manner. Our recent survey
on the use of these techniques for securing cloud computing environ-
ment [293] clearly shows that there have been very limited number of
studies on this domain and there is still room for more studies in this
area. Also, the related works do not address the propagation issues,
especially regarding propagation to higher level interfaces/APIs. One
possible solution that we propose here is to diversify the internal in-
terfaces of cloud and virtualization systems, for instance, diversifying
the machine language of the virtual machines.

Therewith, container-based virtualization is drawing more attention
recently, because of the advantages that it has compared to traditional
hypervisor-based virtualization (such as higher efficiency in CPU,
memory, and storage). We believe that this environment can also
benefit from diversification techniques. However, most notably there is
hardly any research related to diversification of hypervisors or con-
tainers. One potential idea is to diversify interfaces and APIs of con-
tainers, so each container would have a diverse execution environment.

IoT network is another type of environment that is becoming pre-
valent more and more these days. Protecting these networks is also
crucial not only at network level but also at (device) application level.
In the reviewed literature, obfuscation and diversification have been
used very little as a security measure for this purpose. Therefore, this is
another research direction to consider. We have proposed applying
these two techniques on the operating systems of the IoT devices and
also on the communication protocols used among them [275,322].
Then, in another study we applied diversification on Thingsee and

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

84



Raspbian operating systems [305] (the limitations of this study is dis-
cussed in Section 5.3).

These ideas could be also extended to fog computing as well.
Looking at the architecture of fog computing, nodes (i.e., sensors, de-
vices and data collectors) come at the edge of the network. Applying
diversification at the nodes stops the malicious activity right at the edge
before it goes up to the fog.

As mentioned earlier, diversification techniques could be applied as
a complementary security approach, to the measures environments al-
ready have. We are studying applying diversification in trusted en-
vironments. More specifically, we consider diversifying the containers
and storing the diversification secret inside TPM. Another idea is di-
versifying enclaves in a trusted execution environment such as Intel
SGX.

Applying obfuscation to mobile platforms is also a topic that has
received some attention recently but still requires more research. For
example, Android applications, distributed in Dalvik bytecode form, are
vulnerable to reverse engineering. There has been some positive de-
velopment in this front, such as the ProGuard obfuscation tool being
packed along with Google’s Android Studio development environment
and some recent publication on obfuscation in the context of mobile
applications [35]. Most current studies on obfuscation in mobile en-
vironments, however, only highlight obfuscation techniques Android
malware uses to evade detection. Therefore, with applications run on
mobile platforms getting more prevalent, new obfuscation and di-
versification techniques to increase software security and research on
their resilience are still needed.

To sum up, by systematically studying the two software security
techniques, obfuscation and diversification, and finding the research
gaps and research opportunities, we believe that both research com-
munity and industry should study and apply these techniques. There
has already been some development in this direction. As we saw in
Section 4.1.1, research on these techniques has drawn fair attention in
software security community. This trend is also shown by several patent
applications filed during the last ten years. For example, there are pa-
tents on ISR [9] and interface diversification [10]. There have also been
some initiatives by Microsoft research center [119]. Still, we would like
to encourage the practical application of these techniques even more –
especially by industry.

5.3. Limitations of the study

As discussed earlier, a systematic literature review has a number of
advantages compared to the traditional literature reviews, such as
transparency, larger breadth of included studies, and reduction of re-
search bias [4]. Nevertheless, this method has several different practical
challenges and limitations as well, that we experienced in this work that
made it difficult to put it into practice. First, it was very time-con-
suming and arduous work, due to the high number of included studies,
in all the process of search, selection, data extraction, and also synthesis
of the data and classification of them. Second, we selected the set of
search strings manually. Thus, there is a concern that not all the ma-
terials in the field are captured. Third, the inclusion or exclusion of the
studies might be biased based on the researcher’s knowledge. Moreover,
because of high number of authors, sometimes, each author had slightly
different interpretations of the research questions. To solve the incon-
sistency in the screening process, we solved the disagreement cases in
the meetings with the presence of all authors. Fourth, in some cases the
search flow was dictated by limitations of some of the databases. As an
example, in SpringerLink digital library we had to make the search in
the full-text of the studies, which resulted in a huge number false po-
sitives. For other databases, we had limited the search to the title,

abstract, and keywords of the studies.
In addition, like any other security measure, despite of the security

benefits that the two studied techniques have, they also have some
limitations such as increase in the size of the obfuscated code, and
consequently increase in the execution time. In diversification method
propagation of the diversification throughout the whole system from
the lower levels to the upper most layers, is still a challenge and needs
improvement.

Moreover, not all the diversification techniques are well suited for
the tiny resource constrained devices. In other words, the diversifica-
tion method should be chosen with consideration. For example, em-
bedded systems may not always have Memory Management Units
(MMU), which makes applying ASLR less worthwhile. We can perform
device-specific diversification with the layout, but the embedded
system requires certain offsets to be static, which means since there is
no MMU we cannot hide these offsets with ASLR, which could mean all
the diversification was for nothing since the exploiting code can pos-
sibly crawl through the known offsets to the offsets it needs to function.
Diversification can expand the size of the system, which means the
space constraints of such tiny systems come at us faster. In our previous
experiments, for example, applying layout shuffling and symbol di-
versification required some extra space [239]. In Thingsee OS the size
of binaries expanded, but not exceedingly.

6. Conclusion and future work

Obfuscation and diversification are promising software security
techniques that protect computers from harmful malware. The idea of
these two techniques is not to remove the security vulnerabilities, but to
make it challenging for the attacker to exploit them and perform a
successful attack.

In this study we reviewed the studies that were applying/studying
obfuscation and diversification for improving software security. For this
purpose, we systematically collected and reviewed the related studies in
this field, i.e., 357 articles (See Appendix A), published between 1993
and 2017. We reported the result of study in form of analysis and
classification of the captured data, and also we managed to answer the
formulated research questions. We found out that these two techniques
have been utilized for various aims and mitigation of various types of
attacks, they can be applied at different parts of the system and at
different phases of software development life-cycle. Moreover, in the
literature, there exists many different techniques to obfuscate/diversify
the program that each present different levels of protection, but also
overhead, which depending on the need of the program could be
chosen.

Moreover, by studying the existing works we pinpointed the re-
search gaps. We concluded that the major part of the existing research
works were focusing on obfuscation, and there is still room for studies
on software diversification. We discussed that there exist many dif-
ferent environments that could still benefit from these techniques and
need more focus of research, such as virtual environments, IoT, fog
computing, and trusted computing. For the discussed environments, we
also presented some potential ideas.

As future works, we will apply diversification on the interfaces of
containers, also diversify the codes inside enclaves in trusted execution
environments.

Acknowledgment

The authors gratefully acknowledge Tekes – the Finnish Funding
Agency for Innovation [grant number 3772/31/2014], DIMECC Oy,
and the Cyber Trust research program for their support.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

85



Appendix A. Selected studies

The following is the list of 357 studies reviewed in this SLR, sorted based on the publication year:

1993 [11]
1996 [12]
1997 [13] [14]
1998 [15] [16] [17]
1999 [18] [19]
2000 [20] [21] [22] [23]
2001 [24] [25]
2002 [26] [27] [28] [29] [30]

[31] [32] [33]
2003 [34] [35] [36] [37] [38]

[39] [40] [41] [42] [43]
[44] [45] [46] [47] [48]

2004 [49] [50] [51] [52] [53]
[54] [55] [56] [57] [58]
[59] [60] [61]

2005 [62] [63] [64] [65] [66]
[67] [68] [69] [70]

2006 [71] [72] [73] [74] [75]
[76] [77] [78] [79] [80]
[81] [82] [83] [84] [85]
[86] [87] [88] [89] [90]

2007 [91] [92] [93] [94] [95]
[96] [97] [98] [99] [100]
[101] [102] [103] [104] [105]
[106] [107] [108]

2008 [109] [110] [111] [112] [113]
[114] [115] [116] [117] [118]
[119] [120]

2009 [121] [122] [123] [124] [125]
[126] [127] [128] [129] [130]
[131] [132] [133] [134] [135]
[136] [137] [138] [139] [140]
[141] [142] [143] [144]

2010 [145] [146] [147] [148] [149]
[150] [151] [152] [153] [154]
[155] [156] [157] [158]

2011 [159] [160] [161] [162] [163]
[164] [165] [166] [167] [168]
[169] [170] [171] [172] [173]
[174]

2012 [175] [176] [177] [178] [179]
[180] [181] [182] [183] [184]
[185] [186] [187] [188] [189]
[190] [191] [192] [193] [194]
[195] [196] [197] [198] [199]
[200]

2013 [201] [202] [203] [204] [205]
[206] [207] [208] [209] [210]
[211] [212] [213] [214] [215]
[216] [217] [218] [219] [220]
[221] [222]

2014 [223] [224] [225] [226] [227]
[228] [229] [230] [231] [232]
[233] [234] [235] [236] [237]
[238] [239] [240] [241] [242]
[243] [244] [245] [246] [247]
[248] [249] [250] [251] [252]
[253] [254]

2015 [255] [256] [257] [258] [259]
[260] [261] [262] [263] [264]
[265] [266] [267] [268] [269]
[270] [271] [272] [273] [274]

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

86



[275] [276] [277] [278] [279]
[280] [281] [282] [283] [284]
[285] [286] [287] [288] [289]
[290] [291] [292] [293]

2016 [294] [295] [296] [297] [298]
[299] [300] [301] [302] [303]
[304] [305] [306] [307] [308]
[309] [310] [311] [312] [313]
[314] [315] [316] [317] [318]
[319] [320] [321] [322] [323]
[324] [325] [326] [327] [328]
[329] [330] [331] [332] [333]
[334] [335] [336] [337] [338]
[339] [340] [341] [342] [343]

2017 [344] [345] [346] [347] [348]
[349] [350] [351] [352] [353]
[354] [355] [356] [357] [358]
[359] [360] [361] [362] [363]
[364] [365] [366] [367]

References

[1] C. Collberg, J. Nagra, Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection, Addison-Wesley Professional, 2009.

[2] E. Skoudis, L. Zeltser, Malware: Fighting Malicious Code, Prentice Hall
Professional, Upper Saddle River, NJ 07458, 2004.

[3] B. Kitchenham, Procedures for performing systematic reviews, Technical Report
TR/SE-0401, Department of Computer Science, Keele University, UK, 2004.

[4] R. Mallett, J. Hagen-Zanker, R. Slater, M. Duvendack, The benefits and challenges
of using systematic reviews in international development research, J. Dev.
Effectiveness 4 (3) (2012) 445–455.

[5] A. Balakrishnan, C. Schulze, Code obfuscation literature survey, Technical Report,
University of Wisconsin, Madison, 2005.

[6] A. Majumdar, C. Thomborson, S. Drape, A survey of control-flow obfuscations, in:
A. Bagchi, V. Atluri (Eds.), Information Systems Security, Lecture Notes in
Computer Science, 4332 Springer Berlin Heidelberg, 2006, pp. 353–356.

[7] B. Kitchenham, P. Brereton, A systematic review of systematic review process
research in software engineering, Inf. Softw. Technol. 55 (12) (2013) 2049–2075.

[8] IDA-PRO, (https://www.hex-rays.com/products/ida/). Accessed: 2018-07-01.
[9] J. Spradlin, Security through opcode randomization, 2012, US Patent App. 12/

972,433.
[10] A. Main, M. Achim, S. Chow, H. Johnson, Y. Gu, Computer system protection by

communication diversity, 2003, CA Patent App. CA 2,363,795.
[11] F.B. Cohen, Operating system protection through program evolution, Comput.

Secur. 12 (6) (1993) 565–584.
[12] C. Pu, A. Black, C. Cowan, J. Walpole, C. Consel, A specialization toolkit to in-

crease the diversity of operating systems, ICMAS Workshop Immunity-Based
Systems, (1996).

[13] C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating transformations,
Technical Report 148, Department of Computer Science, The University of
Auckland, New Zealand, 1997.

[14] S. Forrest, A. Somayaji, D. Ackley, Building diverse computer systems, Operating
Systems, The Sixth Workshop on Hot Topics, (1997), pp. 67–72.

[15] C. Collberg, C. Thomborson, D. Low, Breaking abstractions and unstructuring data
structures, Computer Languages Proceedings. International Conference on,
(1998), pp. 28–38.

[16] C. Collberg, C. Thomborson, D. Low, Manufacturing cheap, resilient, and stealthy
opaque constructs, in: Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, ACM, NY, USA, 1998, pp.
184–196.

[17] F. Hohl, Time limited blackbox security: protecting mobile agents from malicious
hosts, in: G. Vigna (Ed.), Mobile Agents and Security, Lecture Notes in Computer
Science, 1419 Springer Berlin Heidelberg, 1998, pp. 92–113.

[18] R.C. Linger, Systematic generation of stochastic diversity as an intrusion barrier in
survivable systems software, Systems Sciences, HICSS-32. Proceedings of the 32nd
Annual Hawaii International Conference on, IEEE, 1999, pp. 1–7.

[19] J. Hunt, Byte Code Protection, Java for Practitioners Practitioner Series, Springer
London, 1999, pp. 427–429.

[20] V. Tam, R.K. Gupta, Using class decompilers to facilitate the security of Java ap-
plications!, Proceedings of the First International Conference on Web Information
Systems Engineering. 1 (2000), pp. 153–158.

[21] C.C. Michael, A. Bartle, J. Viega, A. Hulot, N. Jarymowycz, J.R. Mills, B. Sohr,
B. Arkin, Two systems for automatic software diversification, Proceedings of the
DARPA Information Survivability Conference and Exposition, 2 IEEE Computer
Society, 2000, p. 1220.

[22] C. Wang, J. Hill, J. Knight, J. Davidson, Software tamper resistance: obstructing
static analysis of programs, Technical Report, University of Virginia, VA, USA,

2000.
[23] H. Goto, M. Mambo, K. Matsumura, H. Shizuya, Proceedings of the Information

Security: Third International Workshop, ISW 2000 Wollongong, Australia,
Proceedings, Springer Berlin Heidelberg, pp. 82–96.

[24] S. Chow, Y. Gu, H. Johnson, V. Zakharov, An approach to the obfuscation of
control-flow of sequential computer programs, in: G. Davida, Y. Frankel (Eds.),
Information Security, Lecture Notes in Computer Science, 2200 Springer Berlin
Heidelberg, 2001, pp. 144–155.

[25] H. Goto, M. Mambo, H. Shizuya, Y. Watanabe, Evaluation of tamper-resistant
software deviating from structured programming rules, in: V. Varadharajan, Y. Mu
(Eds.), Information Security and Privacy, Lecture Notes in Computer Science, 2119
Springer Berlin Heidelberg, 2001, pp. 145–158.

[26] P. Shah, Code obfuscation for prevention of malicious reverse engineering attacks,
2002, A term paper for course ECE 578, Computer and Network Security, 12
pages.

[27] G. Wroblewski, General method of program code obfuscation, Ph.D. thesis,
Wroclaw University, Poland, 2002.

[28] M. Chew, D. Song, Mitigating buffer overflows by operating system randomiza-
tion, Technical Report CMU-CS-02-197, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA, 2002.

[29] S. Drape, O. de Moor, G. Sittampalam, Transforming the .net intermediate lan-
guage using path logic programming, in: Proceedings of the 4th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming,
PPDP ’02, ACM, NY, USA, 2002, pp. 133–144.

[30] L. Badger, D. Kilpatrick, B. Matt, A. Reisse, T. Van Vleck, Self-protecting mobile
agents obfuscation techniques evaluation report, Technical Report 01–036, NAI
Labs, 2002.

[31] T. Ogiso, Y. Sakabe, M. Soshi, A. Miyaji, Software tamper resistance based on the
difficulty of interprocedural analysis, Proceedings of the Interprocedural Analysis,
3rd International Workshop on Information Security Applications (WISA), (2002),
pp. 437–452.

[32] C. Bain, D. Faatz, A. Fayad, D. Williams, Diversity as a defense strategy in in-
formation systems, in: M. Gertz, E. Guldentops, L. Strous (Eds.), Integrity, Internal
Control and Security in Information Systems, IFIP – The International Federation
for Information Processing, 83 Springer US, 2002, pp. 77–93.

[33] C.S. Collberg, C. Thomborson, Watermarking, tamper-proofing, and obfuscation -
tools for software protection, IEEE Trans. Softw. Eng. 28 (8) (2002) 735–746.

[34] C. Linn, S. Debray, Obfuscation of executable code to improve resistance to static
disassembly, Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS ’03, NY, USA, 2003, pp. 290–299.

[35] D.C. DuVarney, V.N. Venkatakrishnan, S. Bhatkar, Self: a transparent security
extension for elf binaries, Proceedings of the Workshop on New Security
Paradigms, NSPW ’03, ACM, USA, 2003, pp. 29–38.

[36] M. Sosonkin, G. Naumovich, N. Memon, Obfuscation of design intent in object-
oriented applications, in: Proceedings of the 3rd ACM Workshop on Digital Rights
Management, DRM ’03, ACM, NY, USA, 2003, pp. 142–153.

[37] P. van Oorschot, Revisiting software protection, in: C. Boyd, W. Mao (Eds.),
Information Security, Lecture Notes in Computer Science, 2851 Springer Berlin
Heidelberg, 2003, pp. 1–13.

[38] Y. Kanzaki, A. Monden, M. Nakamura, K.-i. Matsumoto, Exploiting self-modifica-
tion mechanism for program protection, Proceedings of the 27th Annual
International Computer Software and Applications Conference, COMPSAC.
Proceedings. (2003), pp. 170–179.

[39] E. Bhatkar, D.C. Duvarney, R. Sekar, Address obfuscation: an efficient approach to
combat a broad range of memory error exploits, Proceedings of the 12th USENIX
Security Symposium, (2003), pp. 105–120.

[40] L. D’Anna, B. Matt, A. Reisse, T.V. Vleck, S. Schwab, P. Leblanc, Self-protecting
mobile agents obfuscation report, Technical Report 03–015, Network Associates

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

87

http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0001
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0002
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0003
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0004
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0005
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0006
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0007
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0007
https://www.hex-rays.com/products/ida/
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0008
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0009
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0010
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0011
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0012
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0013
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0014
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0015
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0016
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0017
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0018
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0019
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0020
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0021
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0022
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0023
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0024
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0025
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0026
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0027
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0028
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0029
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0030
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0031
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0032
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0033
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0034
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0035


Laboratories, 2003.
[41] C. Collberg, G. Myles, A. Huntwork, Sandmark–a tool for software protection re-

search, IEEE Secur. Priv. 1 (4) (2003) 40–49.
[42] G.S. Kc, A.D. Keromytis, V. Prevelakis, Countering code-injection attacks with

instruction-set randomization, Proceedings of the 10th ACM Conference on
Computer and Communications Security, CCS ’03, NY, USA, 2003, pp. 272–280.

[43] T. Ogiso, Y. Sakabe, M. Soshi, A. Miyaji, Software obfuscation on a theoretical
basis and its implementation, IEICE Trans. Fundam. Electr., Commun. Comput.
Sci. 86 (1) (2003) 176–186.

[44] Y. Sakabe, M. Soshi, A. Miyaji, Java obfuscation with a theoretical basis for
building secure mobile agents, in: A. Lioy, D. Mazzocchi (Eds.), Communications
and Multimedia Security. Advanced Techniques for Network and Data Protection,
Lecture Notes in Computer Science, 2828 Springer Berlin Heidelberg, 2003, pp.
89–103.

[45] D. Rusu, Protection methods of Java bytecode, Proceedings of the Networking in
Education and Research International Conference, (2003), pp. 214–220.

[46] J. Xu, Z. Kalbarczyk, R. Iyer, Transparent runtime randomization for security,
Proceedings of the 22nd International Symposium on Reliable Distributed
Systems. Proceedings. (2003), pp. 260–269.

[47] A. Monden, A. Monsifrot, C. Thomborson, Obfuscated instructions for software
protection, Technical Report NAIST-IS-TR2003013, Graduate School of
Information Science, Nara Institute of Science and Technology, Japan, 2003.

[48] C. Dahn, S. Mancoridis, Using program transformation to secure C programs
against buffer overflows, Proceedings of the 10th Working Conference on Reverse
Engineering, WCRE. IEEE, 2003, pp. 323–332.

[49] S. Ring, E. Cole, Taking a lesson from stealthy rootkits, IEEE Secur. Priv. 2 (4)
(2004) 38–45.

[50] H. Saputra, G. Chen, R. Brooks, N. Vijaykrishnan, M. Kandemir, M.J. Irwin, Code
protection for resource-constrained embedded devices, SIGPLAN Notices 39 (7)
(2004) 240–248.

[51] J.T. Chan, W. Yang, Advanced obfuscation techniques for java bytecode, J. Syst.
Softw. 71 (1–2) (2004) 1–10.

[52] L. Ertaul, S. Venkatesh, JHide–a tool kit for code obfuscation, Proceedings of the
8th IASTED International Conference on Software Engineering and Applications,
(2004), pp. 133–138.

[53] W. Thompson, A. Yasinsac, J.T. McDonald, Semantic encryption transformation
scheme, Proceedings of the International Workshop on Security in Parallel and
Distributed Systems, PDCS, (2004), pp. 516–521.

[54] D.E. Bakken, R. Parameswaran, D.M. Blough, A.A. Franz, T.J. Palmer, Data ob-
fuscation: anonymity and desensitization of usable data sets, IEEE Secur. Priv. 2
(6) (2004) 34–41.

[55] S. Boyd, A. Keromytis, Sqlrand: preventing Sql injection attacks, in: M. Jakobsson,
M. Yung, J. Zhou (Eds.), Applied Cryptography and Network Security, Lecture
Notes in Computer Science, 3089 Springer Berlin Heidelberg, 2004, pp. 292–302.

[56] S. Drape, Obfuscation of abstract data types, Ph.D. thesis, University of Oxford,
UK, 2004.

[57] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, D. Boneh, On the effec-
tiveness of address-space randomization, Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS ’04, NY, USA, 2004, pp.
298–307.

[58] K. Heffner, C. Collberg, The obfuscation executive, in: K. Zhang, Y. Zheng (Eds.),
Information Security, Lecture Notes in Computer Science, 3225 Springer Berlin
Heidelberg, 2004, pp. 428–440.

[59] D.E. Bakken, R. Parameswaran, D.M. Blough, A.A. Franz, T.J. Palmer, Data ob-
fuscation: anonymity and desensitization of usable data sets, IEEE Secur. Priv. 2
(6) (2004) 34–41.

[60] A. Monden, A. Monsifrot, C. Thomborson, A framework for obfuscated inter-
pretation, in: Proceedings of the 2nd Workshop on Australasian Information
Security, Data Mining and Web Intelligence, and Software Internationalisation -
Volume 32, ACSW Frontiers ’04, Australian Computer Society, Inc., Darlinghurst,
Australia, 2004, pp. 7–16.

[61] B. Anckaert, B. De Sutter, K. De Bosschere, Software piracy prevention through
diversity, in: Proceedings of the 4th ACM Workshop on Digital Rights
Management, DRM ’04, ACM, NY, USA, 2004, pp. 63–71.

[62] J. Ge, S. Chaudhuri, A. Tyagi, Control flow based obfuscation, in: Proceedings of
the 5th ACM Workshop on Digital Rights Management, DRM ’05, ACM, NY, USA,
2005, pp. 83–92.

[63] L. Ertaul, S. Venkatesh, Novel obfuscation algorithms for software security,
Proceedings of the International Conference on Software Engineering Research
and Practice, SERP’05, (2005), pp. 209–215.

[64] C. Zhu, Z. Yin, A. Zhang, Mobile Code Security on Destination Platform, in: X. Lu,
W. Zhao (Eds.), Networking and Mobile Computing, Lecture Notes in Computer
Science, 3619 Springer Berlin Heidelberg, 2005, pp. 1263–1270.

[65] P.-Y. Chen, G. Kataria, R. Krishnan, Software diversity for information security.
Proceedings of the Workshop on the Economics of Information Security (WEIS),
Harvard University, Cambridge, MA, 2005, p. 20 pages.

[66] E.G. Barrantes, D.H. Ackley, S. Forrest, D. Stefanović, Randomized instruction set
emulation, ACM Trans. Inf. Syst. Secur. 8 (1) (2005) 3–40.

[67] A. Majumdar, C. Thomborson, Securing mobile agents control flow using opaque
predicates, in: R. Khosla, R. Howlett, L. Jain (Eds.), Knowledge-based intelligent
information and engineering systems, Lecture Notes in Computer Science, 3683
Springer Berlin Heidelberg, 2005, pp. 1065–1071.

[68] J. Macbride, C. Mascioli, S. Marks, Y. Tang, L.M. Head, P. Ramach, A comparative
study of Java obfuscators, Proceedings of the IASTED International Conference on
Software Engineering and Applications (SEA), (2005), pp. 14–16.

[69] S. Bhatkar, R. Sekar, D.C. DuVarney, Efficient techniques for comprehensive

protection from memory error exploits, Proceedings of the 14th Conference on
USENIX Security Symposium - Vol. 14, SSYM’05, USENIX Association, Berkeley,
CA, USA, 2005, p. 17.

[70] A.D. Keromytis, V. Prevelakis, A survey of randomization techniques against
common mode attacks, Technical Report, Department of Computer Science, Drexel
University, Philadelphia, Pennsylvania, USA, 2005.

[71] J.M. Memon, S. ul Arfeen, A. Mughal, F. Memon, Preventing reverse engineering
threat in Java using byte code obfuscation techniques, Proceedings of the
International Conference on Emerging Technologies. ICET ’06. (2006), pp.
689–694.

[72] S. Drape, An obfuscation for binary trees, Proceedings of the TENCON. IEEE
Region 10 Conference, IEEE, 2006, pp. 1–4.

[73] T. Hou, H. Chen, M. Tsai, Three control flow obfuscation methods for java soft-
ware, IEEE Proc. Softw. 153 (6) (2006) 80–86.

[74] A. Majumdar, A. Monsifrot, C. Thomborson, On evaluating obfuscatory strength of
alias-based transforms using static analysis, Proceedings of the International
Conference on Advanced Computing and Communications, ADCOM. (2006), pp.
605–610.

[75] A. Majumdar, C. Thomborson, Manufacturing opaque predicates in distributed
systems for code obfuscation, in: Proceedings of the 29th Australasian Computer
Science Conference - Volume 48, ACSC ’06, Australian Computer Society, Inc.,
Darlinghurst, Australia, 2006, pp. 187–196.

[76] Y. Kanzaki, A. Monden, M. Nakamura, K. Matsumoto, A software protection
method based on instruction camouflage, Electr. Commun. Japan (Part III:
Fundam. Electr. Sci.) 89 (1) (2006) 47–59.

[77] H. Yamauchi, Y. Kanzaki, A. Monden, M. Nakamura, K. Matsumoto, Software
obfuscation from crackers’ viewpoint. Proceedings of the ACST, (2006), pp.
286–291.

[78] M. Madou, B. Anckaert, B. De Bus, K. De Bosschere, J. Cappaert, B. Preneel, On the
effectiveness of source code transformations for binary obfuscation, Proceedings of
the International Conference on Software Engineering Research and Practice,
SERP’06, CSREA Press, 2006, pp. 527–533.

[79] M. Madou, B. Anckaert, P. Moseley, S. Debray, B. De Sutter, K. De Bosschere,
Software protection through dynamic code mutation, in: J. Song, T. Kwon,
M. Yung (Eds.), Information Security Applications, Lecture Notes in Computer
Science, 3786 Springer Berlin Heidelberg, 2006, pp. 194–206.

[80] B. Anckaert, M. Jakubowski, R. Venkatesan, Proteus: Virtualization for diversified
tamper-resistance, Proceedings of the ACM Workshop on Digital Rights
Management, DRM ’06, NY, USA, 2006, pp. 47–58.

[81] B. Cox, D. E., A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, J. Hiser, N-variant systems: a secretless framework for security through
diversity. Usenix Security, 6 (2006), pp. 105–120.

[82] E. Totel, F. Majorczyk, L. Mé, Cots diversity based intrusion detection and appli-
cation to web servers, in: A. Valdes, D. Zamboni (Eds.), Recent Advances in
Intrusion Detection, Lecture Notes in Computer Science, 3858 Springer Berlin
Heidelberg, 2006, pp. 43–62.

[83] R. Pucella, F.B. Schneider, Independence from obfuscation: a semantic framework
for diversity, Proceedings of the 19th IEEE Computer Security Foundations
Workshop, (2006), pp. 12 pages,–241.

[84] Y. Sakabe, M. Soshi, A. Miyaji, Java obfuscation approaches to construct tamper-
resistant object-oriented programs, Inf. Media Technol. 1 (1) (2006) 134–146.

[85] W. Zhu, C. Thomborson, F.-Y. Wang, Obfuscate arrays by homomorphic functions,
Proceedings of the IEEE International Conference on Granular Computing, (2006),
pp. 770–773.

[86] K. Fukushima, S. Kiyomoto, T. Tanaka, An obfuscation scheme using affine
transformation and its implementation, Inf. Media Technol. 1 (2) (2006)
1094–1108.

[87] M. Karnick, J. MacBride, S. McGinnis, Y. Tang, R. Ramachandran, A qualitative
analysis of Java obfuscation, Proceedings of 10th IASTED International
Conference on Software Engineering and Applications, TX, USA, 2006, pp.
166–171.

[88] C. Kil, J. Jim, C. Bookholt, J. Xu, P. Ning, Address space layout permutation
(ASLP): Towards fine-grained randomization of commodity software, Proceedings
of the 22nd Annual Computer Security Applications Conference. ACSAC ’06.
(2006), pp. 339–348.

[89] J. Witkowska, Biometrics, Computer Security Systems and Artificial Intelligence
Applications, Springer US, Boston, MA, pp. 175–182.

[90] M. Madou, Application security through program obfuscation, Ph.D. thesis, Ghent
University, Belgium, 2006.

[91] B.D. Birrer, R.A. Raines, R.O. Baldwin, B.E. Mullins, R.W. Bennington, Program
fragmentation as a metamorphic software protection, Proceedings of the Third
International Symposium on Information Assurance and Security, IAS. (2007), pp.
369–374.

[92] S. Drape, A. Majumdar, C. Thomborson, Slicing aided design of obfuscating
transforms, Proceedings of the 6th IEEE/ACIS International Conference on
Computer and Information Science, ICIS. (2007), pp. 1019–1024.

[93] N. Naeem, M. Batchelder, L. Hendren, Metrics for measuring the effectiveness of
decompilers and obfuscators, Proceedings of the 15th IEEE International
Conference on Program Comprehension. ICPC ’07. (2007), pp. 253–258.

[94] J. Wu, X. Guo, C. Tian, H. Yin, G. Chang, The study for protecting mobile agents
based on time checking technology, Proceedings of the IEEE International
Conference Robotics and Biomimetics. (2007), pp. 2013–2017.

[95] B. Anckaert, M. Madou, B. De Sutter, B. De Bus, K. De Bosschere, B. Preneel,
Program obfuscation: a quantitative approach, Proceedings of the 2007 ACM
Workshop on Quality of Protection, QoP ’07, ACM, NY, USA, 2007, pp. 15–20.

[96] A. Majumdar, S.J. Drape, C.D. Thomborson, Slicing obfuscations: design,

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

88

http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0035
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0036
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0037
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0038
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0039
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0040
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0041
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0042
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0043
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0044
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0045
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0046
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0047
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0048
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0049
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0050
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0051
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0052
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0053
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0054
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0055
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0056
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0057
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0058
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0059
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0059
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0059
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0060
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0061
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0061
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0062
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0063
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0064
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0065
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0066
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0067
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0067
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0068
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0068
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0069
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0069
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0069
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0069
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0070
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0070
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0070
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0070
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0071
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0071
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0071
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0072
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0072
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0072
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0073
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0073
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0073
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0073
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0074
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0074
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0074
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0074
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0075
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0075
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0075
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0076
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0076
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0076
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0077
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0077
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0077
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0077
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0078
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0078
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0078
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0079
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0079
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0080
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0080
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0080
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0081
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0081
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0081
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0082
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0082
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0082
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0082
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0083
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0083
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0083
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0083
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0084
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0084
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0085
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0085
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0085
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0085
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0086
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0086
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0086
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0087
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0087
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0087
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0088
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0088
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0088
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0089
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0089
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0089
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0090


correctness, and evaluation, Proceedings of ACM Workshop on Digital Rights
Management, DRM ’07, ACM, NY, USA, 2007, pp. 70–81.

[97] S. Drape, Generalising the array split obfuscation, Inf. Sci. (Ny) 177 (1) (2007)
202–219.

[98] Y. Kinoshita, K. Kashiwagi, Y. Higami, S.-Y. Kobayashi, Development of concealing
the purpose of processing for programs in a distributed computing environment,
in: J. Pejaś, K. Saeed (Eds.), Advances in Information Processing and Protection,
Springer US, 2007, pp. 263–269.

[99] W.F. Zhu, Concepts and techniques in software watermarking and obfuscation,
Ph.D. thesis, The University of Auckland, New Zealand, 2007.

[100] I.V. Popov, S.K. Debray, G.R. Andrews, Binary obfuscation using signals,
Proceedings of the 16th USENIX Security Symposium on USENIX Security
Symposium, SS’07, Berkeley, CA, USA, 2007, pp. 19:1–19:16.

[101] M. Batchelder, L. Hendren, Obfuscating Java: the most pain for the least gain, in:
S. Krishnamurthi, M. Odersky (Eds.), Compiler Construction, Lecture Notes in
Computer Science, 4420 Springer Berlin Heidelberg, 2007, pp. 96–110.

[102] S. Praveen, P.S. Lal, Array data transformation for source code obfuscation,
Proceedings of the World Academy of Science, Engineering and Technology
(PWASET) Volume, 21 (2007).

[103] B. Anckaert, M. Jakubowski, R. Venkatesan, K. De Bosschere, Run-time rando-
mization to mitigate tampering, in: A. Miyaji, H. Kikuchi, K. Rannenberg (Eds.),
Advances in Information and Computer Security, Lecture Notes in Computer
Science, 4752 Springer Berlin Heidelberg, 2007, pp. 153–168.

[104] S. Drape, A. Majumdar, Design and evaluation of slicing obfuscation, Technical
Report, Department of Computer Science, The University of Auckland, New
Zealand, 2007.

[105] X. Jiang, H.J. Wang, D. Xu, Y. Wang, RandSys: thwarting code injection attacks
with system service interface randomization, Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems, SRDS. (2007), pp.
209–218.

[106] D. Bruschi, L. Cavallaro, A. Lanzi, Diversified process replicæ for defeating
memory error exploits, Proceedings of the IEEE International Performance,
Computing, and Communications Conference. IPCCC 2007. (2007), pp. 434–441.

[107] N. Kisserli, J. Cappaert, B. Preneel, Software security through targeted diversifi-
cation, Software Security Assessments–CoBaSSA, (2007). p. 10 pages.

[108] J.C. Knight, J.W. Davidson, D. Evans, A. Nguyen-Tuong, C. Wang, Genesis: a
framework for achieving software component diversity, Technical Report,
University of Virginia, Charlottesville VA, USA, 2007.

[109] X. Zhang, F. He, W. Zuo, An inter-classes obfuscation method for Java program,
Proceedings of the International Conference on Information Security and
Assurance, 2008. ISA 2008. IEEE, 2008, pp. 360–365.

[110] J. Qin, Z. Bai, Y. Bai, Polymorphic algorithm of JavaScript code protection,
Proceedings of the International Symposium on Computer Science and
Computational Technology, ISCSCT ’08. 1 (2008), pp. 451–454.

[111] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella,
Towards experimental evaluation of code obfuscation techniques, in: Proceedings
of the 4th ACMWorkshop on Quality of Protection, QoP ’08, ACM, NY, USA, 2008,
pp. 39–46.

[112] P. Sivadasan, P.S. Lal, Array based Java source code obfuscation using classes with
restructured arrays, arXiv:0807.4309 (2008).

[113] S. Cho, H. Chang, Y. Cho, Implementation of an obfuscation tool for C/C++
source code protection on the XScale architecture, in: U. Brinkschulte, T. Givargis,
S. Russo (Eds.), Software Technologies for Embedded and Ubiquitous Systems,
Springer Berlin Heidelberg, 2008, pp. 406–416.

[114] M. Jacob, M. Jakubowski, P. Naldurg, C. Saw, R. Venkatesan, The Superdiversifier:
peephole individualization for software protection, in: K. Matsuura, E. Fujisaki
(Eds.), Advances in Information and Computer Security, Lecture Notes in
Computer Science, 5312 Springer Berlin Heidelberg, 2008, pp. 100–120.

[115] D. Dolz, G. Parra, Using exception handling to build opaque predicates in inter-
mediate code obfuscation techniques, J. Comput. Sci. Technol. 8 (2008).

[116] S. Bhatkar, R. Sekar, Data space randomization, in: D. Zamboni (Ed.), Detection of
Intrusions and Malware, and Vulnerability Assessment, Lecture Notes in Computer
Science, 5137 Springer Berlin Heidelberg, 2008, pp. 1–22.

[117] H. Tamada, M. Nakamura, A. Monden, K. Matsumoto, Introducing dynamic name
resolution mechanism for obfuscating system-defined names in programs,
Proceedings of the International Conference on Software Engineering (IASTED
SE), Innsbruck, Austria, 2008, pp. 125–130.

[118] A. Nguyen-Tuong, D. Evans, J. Knight, B. Cox, J. Davidson, Security through re-
dundant data diversity, Proceedings of the IEEE International Conference
Dependable Systems and Networks With FTCS and DCC. (2008), pp. 187–196.

[119] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, M. Castro, Data randomization,
Technical Report, Microsoft Research, 2008.

[120] C. Liem, Y.X. Gu, H. Johnson, A compiler-based infrastructure for software-pro-
tection, Proceedings of the Third ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, PLAS ’08, ACM, NY, USA, 2008, pp. 33–44.

[121] H. Tamada, K. Fukuda, T. Yoshioka, Program incomprehensibility evaluation for
obfuscation methods with queue-based mental simulation model, Proceedings of
the 13th ACIS International Conference on Software Engineering, Artificial
Intelligence, Networking and Parallel Distributed Computing (SNPD), (2012), pp.
498–503.

[122] K. Fukushima, S. Kiyomoto, T. Tanaka, Obfuscation mechanism in conjunction
with tamper-proof module, Proceedings of the International Conference on
Computational Science and Engineering. CSE ’09. 2 (2009), pp. 665–670.

[123] S. Xiao, J. Park, Y. Ye, Tamper resistance for software defined radio software,
Proceedings of the 33rd Annual IEEE International Computer Software and
Applications Conference. COMPSAC ’09. 1 (2009), pp. 383–391.

[124] H.-Y. Tsai, Y.-L. Huang, D. Wagner, A graph approach to quantitative analysis of
control-flow obfuscating transformations, IEEE Trans. Inf. Forensics Secur. 4 (2)
(2009) 257–267.

[125] Z. Tang, X. Chen, D. Fang, F. Chen, Research on Java software protection with the
obfuscation in identifier renaming, Proceedings of the Fourth International
Conference on Innovative Computing, Information and Control (ICICIC), (2009),
pp. 1067–1071.

[126] D. Yi, A new obfuscation scheme in constructing fuzzy predicates, Proceedings of
the WRI World Congress on Software Engineering. WCSE ’09. 4 (2009), pp.
379–382.

[127] H. JingDe, S. Gang, Substitution encryption algorithm study for embedded mobile
code protection, Proceedings of the International Conference on Communication
Software and Networks, ICCSN ’09. (2009), pp. 645–649.

[128] W. Jiehong, G. Fuxiang, Study of MA protection based extending inheritance
hierarchy trees and time check, Proceedings of the 4th International Conference
on Computer Science Education, ICCSE ’09. (2009), pp. 380–384.

[129] O. Shevtsova, D. Buintsev, Methods and software for the program obfuscation,
Proceedings of the International Siberian Conference on Control and
Communications, SIBCON 2009. (2009), pp. 113–115.

[130] P. Sivadasan, P. SojanLal, N. Sivadasan, JDATATRANS for array obfuscation in
Java source codes to defeat reverse engineering from decompiled codes,
Proceedings of the 2Nd Bangalore Annual Compute Conference, COMPUTE ’09,
ACM, NY, USA, 2009, pp. 13:1–13:4.

[131] M. Ceccato, P. Tonella, M.D. Preda, A. Majumdar, Remote software protection by
orthogonal client replacement, Proceedings of the ACM Symposium on Applied
Computing, SAC ’09, NY, USA, 2009, pp. 448–455.

[132] P. Wayner, Disappearing Cryptography: Information Hiding: Steganography &
Watermarking, 3, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2009.

[133] Z. Lin, R. Riley, D. Xu, Polymorphing software by randomizing data structure
layout, in: U. Flegel, D. Bruschi (Eds.), Detection of Intrusions and Malware, and
Vulnerability Assessment, Lecture Notes in Computer Science, 5587 Springer
Berlin Heidelberg, 2009, pp. 107–126.

[134] B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet, K. De Bosschere, Instruction set
limitation in support of software diversity, in: P. Lee, J. Cheon (Eds.), Information
Security and Cryptology ICISC 2008, Lecture Notes in Computer Science, 5461
Springer Berlin Heidelberg, 2009, pp. 152–165.

[135] M. Jakubowski, C. Saw, R. Venkatesan, Tamper-tolerant software: modeling and
implementation, in: T. Takagi, M. Mambo (Eds.), Advances in Information and
Computer Security, Lecture Notes in Computer Science, 5824 Springer Berlin
Heidelberg, 2009, pp. 125–139.

[136] J. Han, D. Gao, R.H. Deng, On the effectiveness of software diversity: a systematic
study on real-world vulnerabilities, in: U. Flegel, D. Bruschi (Eds.), Detection of
Intrusions and Malware, and Vulnerability Assessment, Lecture Notes in Computer
Science, 5587 Springer Berlin Heidelberg, 2009, pp. 127–146.

[137] S. Drape, I. Voiculescu, The use of matrices in obfuscation, Technical Report,
Oxford University Computing Laboratory, Oxford, UK, 2009.

[138] P. Sivadasan, P.S. Lal, JConstHide: A Framework for Java Source Code Constant
Hiding, CoRR (2009). arXiv:0904.3458

[139] B. Anckaert, M. Jakubowski, R. Venkatesan, C.W. Saw, Runtime protection via
dataflow flattening, Proceedings of the 3rd International Conference on Emerging
Security Information, Systems and Technologies. SECURWARE ’09. (2009), pp.
242–248.

[140] D. Williams, W. Hu, J. Davidson, J. Hiser, J. Knight, A. Nguyen-Tuong, Security
through diversity: leveraging virtual machine technology, IEEE Secur. Priv. 7 (1)
(2009) 26–33.

[141] H. Xu, S.J. Chapin, Address-space layout randomization using code islands, J.
Comput. Secur. 17 (3) (2009) 331–362.

[142] M.H. Jakubowski, C.W. Saw, R. Venkatesan, Iterated transformations and quan-
titative metrics for software protection, Proceedings of the International
Conference on Security and Cryptography (SECRYPT), (2009), pp. 359–368.

[143] T. László, Á. Kiss, Obfuscating C++ programs via control flow flattening, Annales
Universitatis Scientarum Budapestinensis de Rolando Eötvös Nominatae, Sectio
Computatorica 30 (2009) 3–19.

[144] B. Coppens, I. Verbauwhede, K.D. Bosschere, B.D. Sutter, Practical mitigations for
timing-based side-channel attacks on modern x86 processors, Proceedings of the
30th IEEE Symposium on Security and Privacy, (2009), pp. 45–60.

[145] S.M. Darwish, S.K. Guirguis, M.S. Zalat, Stealthy code obfuscation technique for
software security, Proceedings of the International Conference on Computer
Engineering and Systems (ICCES), IEEE, 2010, pp. 93–99.

[146] T. Long, L. Liu, Y. Yu, Z. Wan, Assure high quality code using refactoring and
obfuscation techniques, Proceedings of the Fifth International Conference on
Frontier of Computer Science and Technology (FCST), (2010), pp. 246–252.

[147] Z. Vrba, P. Halvorsen, C. Griwodz, Program obfuscation by strong cryptography,
Proceedings of the International Conference on Availability, Reliability, and
Security, ARES ’10, (2010), pp. 242–247.

[148] X. Guangli, C. Zheng, The code obfuscation technology based on class combina-
tion, Proceedings of the Ninth International Symposium on Distributed Computing
and Applications to Business Engineering and Science (DCABES), IEEE, 2010, pp.
479–483.

[149] Q. Gu, Efficient code diversification for network reprogramming in sensor net-
works, in: Proceedings of the Third ACM Conference on Wireless Network
Security, WiSec ’10, ACM, NY, USA, 2010, pp. 145–150.

[150] M. Franz, E Unibus Pluram: massive-scale software diversity as a defense me-
chanism, in: Proceedings of the Workshop on New Security Paradigms, NSPW ’10,
ACM, NY, USA, 2010, pp. 7–16.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

89

http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0090
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0090
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0091
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0091
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0092
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0092
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0092
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0092
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0093
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0093
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0094
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0094
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0094
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0095
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0095
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0095
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0096
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0096
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0096
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0097
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0097
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0097
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0097
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0098
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0098
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0098
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0099
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0099
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0099
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0099
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0100
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0100
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0100
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0101
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0101
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0102
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0102
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0102
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0103
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0103
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0103
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0104
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0104
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0104
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0105
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0105
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0105
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0105
http://arxiv.org/abs/0807.4309
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0106
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0106
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0106
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0106
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0107
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0107
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0107
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0107
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0108
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0108
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0109
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0109
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0109
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0110
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0110
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0110
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0110
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0111
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0111
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0111
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0112
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0112
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0113
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0113
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0113
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0114
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0114
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0114
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0114
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0114
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0115
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0115
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0115
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0116
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0116
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0116
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0117
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0117
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0117
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0118
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0118
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0118
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0118
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0119
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0119
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0119
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0120
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0120
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0120
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0121
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0121
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0121
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0122
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0122
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0122
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0123
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0123
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0123
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0123
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0124
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0124
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0124
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0125
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0125
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0125
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0126
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0126
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0126
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0126
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0127
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0127
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0127
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0127
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0128
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0128
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0128
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0128
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0129
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0129
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0129
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0129
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0130
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0130
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0040ww
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0040ww
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0131
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0131
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0131
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0131
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0132
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0132
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0132
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0133
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0133
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0134
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0134
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0134
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0085aa
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0085aa
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0085aa
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0135
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0135
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0135
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0136
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0136
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0136
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0137
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0137
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0137
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0138
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0138
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0138
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0139
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0139
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0139
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0139
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0140
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0140
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0140
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0141
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0141
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0141


[151] S.S. Yau, H.G. An, Protection of users’ data confidentiality in cloud computing, in:
Proceedings of the Second Asia-Pacific Symposium on Internetware, Internetware
’10, ACM, NY, USA, 2010, pp. 11:1–11:6.

[152] B. Lee, Y. Kim, J. Kim, binob+: a framework for potent and stealthy binary ob-
fuscation, in: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’10, NY, USA, (2010), pp. 271–281.

[153] T. Roeder, F.B. Schneider, Proactive obfuscation, ACM Trans. Comput. Syst. 28 (2)
(2010) 4:1–4:54.

[154] G. Portokalidis, A.D. Keromytis, Fast and practical instruction-set randomization
for commodity systems, in: Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, ACM, NY, USA, 2010, pp. 41–48.

[155] X. Zhang, F. He, W. Zuo, Theory and practice of program obfuscation, in: M. Crisan
(Ed.), Convergence and Hybrid Information Technologies, INTECH: Croatia, 2010,
pp. 277–302.

[156] Y.Y. Wei, K. Ohzeki, Obfuscation methods with controlled calculation amounts
and table function, Proceedings of the International Multiconference on Computer
Science and Information Technology (IMCSIT), (2010), pp. 775–780.

[157] J. Cappaert, B. Preneel, A general model for hiding control flow, in: Proceedings of
the Tenth Annual ACM Workshop on Digital Rights Management, DRM ’10, ACM,
NY, USA, 2010, pp. 35–42.

[158] S.W. Boyd, G.S. Kc, M.E. Locasto, A.D. Keromytis, V. Prevelakis, On the general
applicability of instruction-set randomization, IEEE Trans. Dependable Secure
Comput. 7 (3) (2010) 255–270.

[159] F. Baiardi, D. Sgandurra, An obfuscation-based approach against injection attacks,
Proceedings of the Sixth International Conference on Availability, Reliability and
Security (ARES), (2011), pp. 51–58.

[160] P. Falcarin, S. Carlo, A. Cabutto, N. Garazzino, D. Barberis, Exploiting code mo-
bility for dynamic binary obfuscation, Proceedings of the World Congress on
Internet Security (WorldCIS), (2011), pp. 114–120.

[161] N. Mavrogiannopoulos, N. Kisserli, B. Preneel, A taxonomy of self-modifying code
for obfuscation, Comput. Secur. 30 (8) (2011) 679–691.

[162] M. Heiderich, N. Eduardo Alberto Vela, G. Heyes, D. Lindsay, Web Application
Obfuscation, Elsevier, Boston, USA, 2011.

[163] M. Christodorescu, M. Fredrikson, S. Jha, J. Giffin, End-to-end software diversi-
fication of internet services, in: S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang,
X.S. Wang (Eds.), Moving Target Defense, Advances in Information Security, 54
Springer NY, 2011, pp. 117–130.

[164] R. Chakraborty, S. Narasimhan, S. Bhunia, Embedded software security through
key-based control flow obfuscation, in: M. Joye, D. Mukhopadhyay, M. Tunstall
(Eds.), Security Aspects in Information Technology, Lecture Notes in Computer
Science, 7011 Springer Berlin Heidelberg, 2011, pp. 30–44.

[165] L. Shan, S. Emmanuel, Mobile agent protection with self-modifying code, J. Signal
Process. Syst. 65 (1) (2011) 105–116.

[166] A. Amarilli, S. Müller, D. Naccache, D. Page, P. Rauzy, M. Tunstall, Can code
polymorphism limit information leakage? in: C. Ardagna, J. Zhou (Eds.),
Information Security Theory and Practice. Security and Privacy of Mobile Devices
in Wireless Communication, Lecture Notes in Computer Science, 6633 Springer
Berlin Heidelberg, 2011, pp. 1–21.

[167] G. Portokalidis, A. Keromytis, Global ISR: toward a comprehensive defense against
unauthorized code execution, in: S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang,
X.S. Wang (Eds.), Moving Target Defense, Advances in Information Security, 54
Springer NY, 2011, pp. 49–76.

[168] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal,
S. Brunthaler, C. Wimmer, M. Franz, Compiler-generated software diversity, in:
S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, X.S. Wang (Eds.), Moving Target
Defense, Advances in Information Security, 54 Springer NY, 2011, pp. 77–98.

[169] M. Ceccato, P. Tonella, Codebender: remote software protection using orthogonal
replacement, IEEE Softw. 28 (2) (2011) 28–34.

[170] S. Armoogum, A. Caully, Obfuscation techniques for mobile agent code con-
fidentiality, J. Inf. Syst. Manag. 1 (1) (2011) 83–94.

[171] P. Sivadasan, P.S. Lal, Suggesting potency measures for obfuscated arrays and
usage of source code obfuscators for intellectual property protection of Java
products, Proceedings of the International Conference on Information and
Network Technology (ICINT), (2011).

[172] Y. Huang, A.K. Ghosh, Introducing diversity and uncertainty to create moving
attack surfaces for web services, in: S. Jajodia, K.A. Ghosh, V. Swarup, C. Wang,
S.X. Wang (Eds.), Moving Target Defense: Creating Asymmetric Uncertainty for
Cyber Threats, Springer NY, NY, 2011, pp. 131–151.

[173] D. Evans, A. Nguyen-Tuong, J. Knight, Moving Target Defense: Creating
Asymmetric Uncertainty for Cyber Threats, Springer NY, NY, pp. 29–48.

[174] J.C. Knight, Dependable and Historic Computing: Essays dedicated To Brian
Randell on the Occasion of his 75th Birthday, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 298–312.

[175] X. Yao, J. Pang, Y. Zhang, Y. Yu, J. Lu, A method and implementation of control
flow obfuscation using SEH, Proceedings of the 4th International Conference on
Multimedia Information Networking and Security (MINES), (2012), pp. 336–339.

[176] A. Capiluppi, P. Falcarin, C. Boldyreff, Code defactoring: evaluating the effec-
tiveness of Java obfuscations, Proceedings of the 19th Working Conference on
Reverse Engineering (WCRE), (2012), pp. 71–80.

[177] Y. Le, H. Huo-Jiao, Research on Java bytecode parse and obfuscate tool,
Proceedings of the International Conference on Computer Science Service System
(CSSS), (2012), pp. 50–53.

[178] B. Rodes, Stack layout transformation: towards diversity for securing binary pro-
grams, Proceedings of the 34th International Conference on Software Engineering
(ICSE), (2012), pp. 1543–1546.

[179] Z. Wang, C. Jia, M. Liu, X. Yu, Branch obfuscation using code mobility and signal,

Proceedings of the IEEE 36th Annual Computer Software and Applications
Conference Workshops (COMPSACW), (2012), pp. 553–558.

[180] M. Hataba, A. El-Mahdy, Cloud protection by obfuscation: techniques and metrics,
Proceedings of the 2012 Seventh International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), (2012), pp. 369–372.

[181] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella,
The effectiveness of source code obfuscation: an experimental assessment,
Proceedings of the IEEE 17th International Conference on Program
Comprehension, ICPC ’09. (2009), pp. 178–187.

[182] A. Zambon, Aucsmith-like obfuscation of Java bytecode, Proceedings of the IEEE
12th International Working Conference on Source Code Analysis and
Manipulation (SCAM), (2012), pp. 114–119.

[183] S. Qing, W. Zhi-yue, W. Wei-min, L. Jing-liang, H. Zhi-wei, Technique of source
code obfuscation based on data flow and control flow transformations,
Proceedings of the 7th International Conference on Computer Science Education
(ICCSE), (2012), pp. 1093–1097.

[184] D. Clarke, P. Ezhilchelvan, Fortress: adding intrusion-resilience to primary-backup
server systems, Proceedings of the IEEE 31st Symposium on Reliable Distributed
Systems (SRDS), (2012), pp. 121–130.

[185] M. Palanques, R. Dipietro, C.d. Ojo, M. Malet, M. Marino, T. Felguera, Secure
cloud browser: model and architecture to support secure web navigation, in:
Proceedings of the IEEE 31st Symposium on Reliable Distributed Systems, SRDS
’12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 402–403.

[186] R. Wu, P. Chen, B. Mao, L. Xie, RIM: a method to defend from JIT spraying attack,
Proceedings of the Seventh International Conference on Availability, Reliability
and Security (ARES), (2012), pp. 143–148.

[187] Y. Park, S.J. Stolfo, Software decoys for insider threat, in: Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’12, ACM, NY, USA, 2012, pp. 93–94.

[188] R. Giacobazzi, N.D. Jones, I. Mastroeni, Obfuscation by partial evaluation of dis-
torted interpreters, Proceedings of the ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM ’12, NY, USA, 2012, pp. 63–72.

[189] C. LeDoux, M. Sharkey, B. Primeaux, C. Miles, Instruction embedding for improved
obfuscation, Proceedings of the 50th Annual Southeast Regional Conference,
ACM-SE ’12, ACM, NY, USA, 2012, pp. 130–135.

[190] Y.-L. Huang, H.-Y. Tsai, A framework for quantitative evaluation of parallel con-
trol-flow obfuscation, Comput. Secur. 31 (8) (2012) 886–896.

[191] P. Sivadasan, P.S. Lal, Securing SQLJ source codes from business logic disclosure
by data hiding obfuscation, CoRR (2012). arXiv:1205.4813

[192] R. Wartell, V. Mohan, K.W. Hamlen, Z. Lin, Binary stirring: Self-randomizing in-
struction addresses of legacy x86 binary code, Proceedings of the ACM Conference
on Computer and Communications Security, CCS ’12, NY, USA, 2012, pp.
157–168.

[193] M. Abadi, G.D. Plotkin, On protection by layout randomization, ACM Trans. Inf.
Syst. Secur. 15 (2) (2012).

[194] C. Giuffrida, A. Kuijsten, A.S. Tanenbaum, Enhanced operating system security
through efficient and fine-grained address space randomization, Presented as part
of the 21st USENIX Security Symposium (USENIX Security 12), USENIX, Bellevue,
WA, 2012, pp. 475–490.

[195] V. Pappas, M. Polychronakis, A. Keromytis, Smashing the gadgets: Hindering re-
turn-oriented programming using in-place code randomization, Proceedings of the
IEEE Symposium on Security and Privacy (SP), (2012), pp. 601–615.

[196] L. Ďurfina, D. Kolář, C source code obfuscator, Kybernetika 48 (3) (2012)
494–501.

[197] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, J.W. Davidson, Ilr: where’d my gadgets
go?, Proceedings of the IEEE Symposium on Security and Privacy (SP), (2012), pp.
571–585.

[198] R. Costa, L. Pirmez, D. Boccardo, L.F. Rust, R. Machado, TinyObf: code obfuscation
framework for wireless sensor networks, Proceedings of the International
Conference on Wireless Networks (ICWN), The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2012, pp. 68–74.

[199] S. Rauti, V. Leppänen, Browser extension-based man-in-the-browser attacks
against Ajax applications with countermeasures, Proceedings of the 13th
International Conference on Computer Systems and Technologies, CompSysTech
’12, ACM, NY, USA, 2012, pp. 251–258.

[200] C. Collberg, S. Martin, J. Myers, J. Nagra, Distributed application tamper detection
via continuous software updates, Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, ACM, NY, USA, 2012, pp. 319–328.

[201] B. Bertholon, S. Varrette, S. Martinez, ShadObf: a C-source obfuscator based on
multi-objective optimisation algorithms, Proceedings of the IEEE 27th
International Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), (2013), pp. 435–444.

[202] V. Balachandran, S. Emmanuel, Potent and stealthy control flow obfuscation by
stack based self-modifying code, IEEE Trans. Inf. Forensics Secur. 8 (4) (2013)
669–681.

[203] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, M. Franz, Profile-guided auto-
mated software diversity, Proceedings of the IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), (2013), pp. 1–11.

[204] B. Coppens, B. De Sutter, K. De Bosschere, Protecting your software updates, IEEE
Secur. Priv. 11 (2) (2013) 47–54.

[205] D. Dunaev, L. Lengyel, Aspects of intermediate level obfuscation, Proceedings of
the 3rd Eastern European Regional Conference on the Engineering of Computer
Based Systems (ECBS-EERC), (2013), pp. 138–142.

[206] A. Gupta, M. Kirkpatrick, E. Bertino, A secure architecture design based on ap-
plication isolation, code minimization and randomization, Proceedings of the IEEE

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

90

http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0142
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0142
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0142
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0143
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0143
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0143
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0144
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0144
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0145
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0145
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0145
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0146
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0146
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0146
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0147
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0147
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0147
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0148
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0148
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0148
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0149
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0149
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0149
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0150
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0150
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0150
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0151
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0151
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0151
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0152
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0152
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0153
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0153
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0154
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0154
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0154
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0154
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0155
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0155
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0155
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0155
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0156
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0156
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0157
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0157
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0157
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0157
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0157
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0158
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0158
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0158
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0158
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0159
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0159
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0159
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0159
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0160
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0160
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0161
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0161
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0162
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0162
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0162
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0162
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0163
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0163
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0163
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0163
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0164
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0164
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0164
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0165
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0165
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0165
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0166
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0166
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0166
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0167
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0167
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0167
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0168
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0168
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0168
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0169
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0169
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0169
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0170
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0170
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0170
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0170
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0171
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0171
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0171
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0172
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0172
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0172
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0172
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0173
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0173
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0173
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0174
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0174
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0174
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0174
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0175
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0175
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0175
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0176
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0176
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0176
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0177
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0177
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0177
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0178
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0178
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0178
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0179
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0179
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0040zz
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0040zz
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0180
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0180
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0180
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0180
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0181
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0181
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0182
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0182
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0182
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0182
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0183
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0183
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0183
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0184
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0184
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0185
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0185
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0185
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0186
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0186
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0186
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0186
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0186
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0187
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0187
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0187
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0187
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0188
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0188
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0188
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0189
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0189
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0189
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0189
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0190
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0190
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0190
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0191
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0191
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0191
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0192
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0192
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0193
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0193
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0193
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0194
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0194


Conference on Communications and Network Security (CNS), (2013), pp.
423–429.

[207] D. Stanley, D. Xu, E. Spafford, Improved kernel security through memory layout
randomization, Proceedings of the IEEE 32nd International Performance
Computing and Communications Conference (IPCCC), (2013), pp. 1–10.

[208] P. Chen, R. Wu, B. Mao, JITSafe: a framework against just-in-time spraying at-
tacks, IET Inf. Secur. 7 (9) (2013) 283–292.

[209] B. Coppens, B. De Sutter, J. Maebe, Feedback-driven binary code diversification,
ACM Trans. Archit. Code Optim. 9 (4) (2013) 24:1–24:26.

[210] D.d.A.H. Marco, I. Ripoll, J.C. Ruiz, Security through emulation-based processor
diversification, in: B. Akhgar, H.R. Arabnia (Eds.), Proceedings of the Emerging
Trends in ICT Security, 1st edition, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2013.

[211] V. Balachandran, S. Emmanuel, Software protection with obfuscation and en-
cryption, in: R. Deng, T. Feng (Eds.), Proceedings of the Information Security
Practice and Experience, Lecture Notes in Computer Science, 7863 Springer Berlin
Heidelberg, 2013, pp. 309–320.

[212] V. Samawi, A. Sulaiman, Software protection via hiding function using software
obfuscation. Int. Arab J. Inf. Technol. 10 (6) (2013) 587–594.

[213] A. Kovacheva, Efficient code obfuscation for android, in: B. Papasratorn,
N. Charoenkitkarn, V. Vanijja, V. Chongsuphajaisiddhi (Eds.), Advances in
Information Technology, Communications in Computer and Information Science,
409 Springer International Publishing, 2013, pp. 104–119.

[214] V. Pappas, M. Polychronakis, A. Keromytis, Practical software diversification using
in-place code randomization, in: S. Jajodia, A.K. Ghosh, V. Subrahmanian,
V. Swarup, C. Wang, X.S. Wang (Eds.), Moving Target Defense II, Advances in
Information Security, 100 Springer NY, 2013, pp. 175–202.

[215] T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brunthaler, M. Franz, Diversifying
the software stack using randomized NOP insertion, in: S. Jajodia, A.K. Ghosh,
V. Subrahmanian, V. Swarup, C. Wang, X.S. Wang (Eds.), Moving Target Defense
II, Advances in Information Security, 100 Springer NY, 2013, pp. 151–173.

[216] A. Gupta, S. Kerr, M. Kirkpatrick, E. Bertino, Marlin: a fine grained randomization
approach to defend against rop attacks, in: J. Lopez, X. Huang, R. Sandhu (Eds.),
Network and System Security, Lecture Notes in Computer Science, 7873 Springer
Berlin Heidelberg, 2013, pp. 293–306.

[217] M. Stewart, Algorithmic diversity for software security, CoRR (2013). arXiv:1312.
3891

[218] S. Crane, P. Larsen, S. Brunthaler, M. Franz, Booby trapping software, in:
Proceedings of the 2013 Workshop on New Security Paradigms Workshop, NSPW
’13, ACM, NY, USA, 2013, pp. 95–106.

[219] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, W. Zou,
Practical control flow integrity and randomization for binary executables,
Proceedings of the IEEE Symposium on Security and Privacy (SP), (2013), pp.
559–573.

[220] M. Kanter, S. Taylor, Diversity in cloud systems through runtime and compile-time
relocation, Proceedings of the IEEE International Conference on Technologies for
Homeland Security (HST), (2013), pp. 396–402.

[221] L.V. Davi, A. Dmitrienko, S. Nürnberger, A.-R. Sadeghi, Gadge me if you can:
Secure and efficient ad-hoc instruction-level randomization for x86 and arm,
Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, ACM, NY, USA, 2013, pp. 299–310.

[222] A. Homescu, S. Brunthaler, P. Larsen, M. Franz, Librando: transparent code ran-
domization for just-in-time compilers, Proceedings of the ACM SIGSAC Conference
on Computer & Communications Security, CCS ’13, ACM, NY, USA, 2013, pp.
993–1004.

[223] C. Foket, B.D. Sutter, K.D. Bosschere, Pushing java type obfuscation to the limit,
IEEE Trans. Dependable Secure Comput. 11 (6) (2014) 553–567.

[224] P. Larsen, S. Brunthaler, M. Franz, Security through diversity: are we there yet?,
IEEE Secur. Priv. 12 (2) (2014) 28–35.

[225] S. Blazy, S. Riaud, Measuring the robustness of source program obfuscation:
Studying the impact of compiler optimizations on the obfuscation of C programs,
Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, CODASPY ’14, ACM, NY, USA, 2014, pp. 123–126.

[226] K. Lu, S. Xiong, D. Gao, Ropsteg: program steganography with return oriented
programming, Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy, CODASPY ’14, ACM, NY, USA, 2014, pp. 265–272.

[227] H.-T. Liaw, S.-C. Wei, Obfuscation for object-oriented programs: dismantling in-
stance methods, Softw.: Pract. Exp. 44 (9) (2014) 1077–1104.

[228] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca, M. Torchiano, P. Tonella, A family
of experiments to assess the effectiveness and efficiency of source code obfuscation
techniques, Empir. Softw. Eng. 19 (4) (2014) 1040–1074.

[229] A. Kulkarni, R. Metta, A code obfuscation framework using code clones, in:
Proceedings of the 22nd International Conference on Program Comprehension,
ICPC, ACM, NY, USA, 2014, pp. 295–299.

[230] T. Tamboli, T.H. Austin, M. Stamp, Metamorphic code generation from llvm by-
tecode, J. Comput. Virology Hacking Tech. 10 (3) (2014) 177–187.

[231] A. Kulkarni, R. Metta, A new code obfuscation scheme for software protection,
Proceedings of the IEEE 8th International Symposium on Service Oriented System
Engineering (SOSE), (2014), pp. 409–414.

[232] S. Han, M. Ryu, J. Cha, B.U. Choi, Hotdol: Html obfuscation with text distribution
to overlapping layers, Proceedings of the IEEE International Conference on
Computer and Information Technology (CIT), (2014), pp. 399–404.

[233] S. Laurén, P. Mäki, S. Rauti, S. Hosseinzadeh, S. Hyrynsalmi, V. Leppänen, Symbol
diversification of linux binaries, Proceedings of the World Congress on Internet
Security (WorldCIS), IEEE, 2014, pp. 74–79.

[234] Y. Zhuang, M. Protsenko, T. Muller, F. Freiling, An(other) exercise in measuring

the strength of source code obfuscation, Proceedings of the 25th International
Workshop on Database and Expert Systems Applications (DEXA), (2014), pp.
313–317.

[235] L. Arockiam, S. Monikandan, Efficient cloud storage confidentiality to ensure data
security, Proceedings of the International Conference on Computer
Communication and Informatics (ICCCI), (2014), pp. 1–5.

[236] C. Tunc, F. Fargo, Y. Al-Nashif, S. Hariri, J. Hughes, Autonomic resilient cloud
management (ARCM) design and evaluation, Proceedings of the International
Conference Cloud and Autonomic Computing (ICCAC), (2014), pp. 44–49.

[237] M. Murphy, P. Larsen, S. Brunthaler, M. Franz, Software profiling options and their
effects on security based diversification, in: Proceedings of the First ACM
Workshop on Moving Target Defense, MTD ’14, ACM, NY, USA, 2014, pp. 87–96.

[238] J. Seibert, H. Okhravi, E. Söderström, Information leaks without memory dis-
closures: Remote side channel attacks on diversified code, Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, CCS ’14, ACM,
NY, USA, 2014, pp. 54–65.

[239] R. Omar, A. El-Mahdy, E. Rohou, Arbitrary control-flow embedding into multiple
threads for obfuscation: a preliminary complexity and performance analysis, in:
Proceedings of the 2Nd International Workshop on Security in Cloud Computing,
SCC ’14, ACM, NY, USA, 2014, pp. 51–58.

[240] S. Schrittwieser, S. Katzenbeisser, Code Obfuscation Against Static and Dynamic
Reverse Engineering, Springer, Berlin, Heidelberg, pp. 270–284.

[241] X. Xie, F. Liu, B. Lu, A data obfuscation based on state transition graph of mealy
automata, in: D.-S. Huang, V. Bevilacqua, P. Premaratne (Eds.), Intelligent
Computing Theory, Lecture Notes in Computer Science, 8588 Springer
International Publishing, 2014, pp. 520–531.

[242] H. Fang, Y. Wu, S. Wang, Y. Huang, Multi-stage binary code obfuscation using
improved virtual machine, in: X. Lai, J. Zhou, H. Li (Eds.), Information Security,
Lecture Notes in Computer Science, 7001 Springer Berlin Heidelberg, 2011, pp.
168–181.

[243] H. Okhravi, J. Riordan, K. Carter, Quantitative evaluation of dynamic platform
techniques as a defensive mechanism, in: A. Stavrou, H. Bos, G. Portokalidis (Eds.),
Research in Attacks, Intrusions and Defenses, Lecture Notes in Computer Science,
8688 Springer International Publishing, 2014, pp. 405–425.

[244] C. Huang, S. Zhu, R. Erbacher, Toward software diversity in heterogeneous net-
worked systems, in: V. Atluri, G. Pernul (Eds.), Data and Applications Security and
Privacy XXVIII, Lecture Notes in Computer Science, 8566 Springer Berlin
Heidelberg, 2014, pp. 114–129.

[245] V. Balachandran, N.W. Keong, S. Emmanuel, Function level control flow obfus-
cation for software security, Proceedings of the 8th International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), (2014), pp. 133–140.

[246] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, J. Clause, How does code obfus-
cation impact energy usage? Proceedings of the IEEE International Conference
Software Maintenance and Evolution (ICSME), (2014), pp. 131–140.

[247] V. Balachandran, S. Emmanuel, N.W. Keong, Obfuscation by code fragmentation
to evade reverse engineering, Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics (SMC), (2014), pp. 463–469.

[248] P. Larsen, A. Homescu, S. Brunthaler, M. Franz, SoK: automated software diversity,
Proceedings of the IEEE Symposium on Security and Privacy (SP), (2014), pp.
276–291.

[249] M. Backes, S. Nürnberger, Oxymoron: making fine-grained memory randomization
practical by allowing code sharing, Proceedings of the 23rd USENIX Security
Symposium (USENIX Security 14), San Diego, CA, 2014, pp. 433–447.

[250] B. Baudry, S. Allier, M. Monperrus, Tailored source code transformations to syn-
thesize computationally diverse program variants, in: Proceedings of the
International Symposium on Software Testing and Analysis, (ISSTA), ACM, NY,
USA, 2014, pp. 149–159.

[251] H. Okhravi, T. Hobson, D. Bigelow, W. Streilein, Finding focus in the blur of
moving-target techniques, IEEE Secur. Priv. 12 (2) (2014) 16–26.

[252] S. Rauti, J. Holvitie, V. Leppänen, Towards a diversification framework for op-
erating system protection, in: Proceedings of the 15th International Conference on
Computer Systems and Technologies, CompSysTech ’14, ACM, NY, USA, 2014, pp.
286–293.

[253] S. Rauti, V. Leppänen, A proxy-like obfuscator for web application protection, Int.
J. Inf. Technol. Secur. 6 (1) (2014) 39–52.

[254] S. Rauti, S. Laurén, S. Hosseinzadeh, J.-M. Mäkelä, S. Hyrynsalmi, V. Leppänen,
Proceedings of the Trusted Systems: 6th International Conference, INTRUST,
Beijing, China, Springer International Publishing, Cham, pp. 15–35.

[255] M. Ceccato, A. Capiluppi, P. Falcarin, C. Boldyreff, A large study on the effect of
code obfuscation on the quality of java code, Empir. Softw. Eng. 20 (6) (2015)
1486–1524.

[256] A.R. Nurmukhametov, S.F. Kurmangaleev, V.V. Kaushan, S.S. Gaissaryan,
Application of compiler transformations against software vulnerabilities ex-
ploitation, Progr. Comput. Softw. 41 (4) (2015) 231–236.

[257] P. Laperdrix, W. Rudametkin, B. Baudry, Mitigating browser fingerprint tracking:
multi-level reconfiguration and diversification, Proceedings of the IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), (2015), pp. 98–108.

[258] K.J. Hole, Toward anti-fragility: a malware-halting technique, IEEE Secur. Priv. 13
(4) (2015) 40–46.

[259] S. Ghosh, J. Hiser, J. Davidson, Matryoshka: Strengthening software protection via
nested virtual machines, Proceedings of the IEEE/ACM 1st International Workshop
on Software Protection (SPRO), (2015), pp. 10–16.

[260] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler,
M. Franz, Readactor: practical code randomization resilient to memory disclosure,
Proceedings of the IEEE Symposium on Security and Privacy (SP), (2015), pp.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

91

http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0194
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0194
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0195
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0195
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0195
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0196
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0196
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0197
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0197
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0198
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0198
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0198
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0198
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0199
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0199
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0199
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0199
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0200
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0200
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0201
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0201
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0201
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0201
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0202
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0202
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0202
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0202
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0203
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0203
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0203
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0203
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0204
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0204
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0204
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0204
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0205
http://arxiv.org/abs/1312.3891
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0206
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0206
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0206
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0207
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0207
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0207
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0207
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0208
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0208
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0208
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0209
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0209
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0209
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0209
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0210
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0210
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0210
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0210
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0211
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0211
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0212
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0212
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0213
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0213
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0213
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0213
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0214
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0214
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0214
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0215
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0215
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0216
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0216
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0216
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0217
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0217
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0217
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0218
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0218
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0219
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0219
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0219
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0220
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0220
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0220
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0221
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0221
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0221
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0222
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0222
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0222
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0222
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0223
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0223
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0223
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0224
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0224
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0224
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0225
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0225
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0225
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0226
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0226
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0226
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0226
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0227
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0227
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0227
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0227
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0228
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0228
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0228
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0228
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0229
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0229
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0229
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0229
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0230
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0230
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0230
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0230
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0231
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0231
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0231
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0231
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0232
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0232
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0232
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0233
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0233
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0233
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0234
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0234
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0234
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0235
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0235
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0235
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0236
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0236
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0236
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0237
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0237
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0237
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0237
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0238
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0238
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0239
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0239
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0239
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0239
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0240
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0240
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0241
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0241
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0241
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0242
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0242
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0242
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0243
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0243
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0243
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0243
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0244
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0244
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0245
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0245
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0245
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0246
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0246
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0246


763–780.
[261] Y. Wang, J. Wei, Toward protecting control flow confidentiality in cloud-based

computation, Comput. Secur. 52 (2015) 106–127.
[262] K. Hole, Diversity reduces the impact of malware, IEEE Secur. Priv. 13 (3) (2015)

48–54.
[263] L. Davi, C. Liebchen, A.-R. Sadeghi, K.Z. Snow, F. Monrose, Isomeron: code ran-

domization resilient to (just-in-time) return-oriented programming., 2015.
[264] V. Mohan, P. Larsen, S. Brunthaler, K.W. Hamlen, M. Franz, Opaque control-flow

integrity, Proceedings of the NDSS, 26 (2015), pp. 27–30.
[265] A. Höller, T. Rauter, J. Iber, C. Kreiner, Proceedings of the 7th International

Workshop Software Engineering for Resilient Systems: SERENE, Proceedings,
Paris, FranceSpringer International Publishing, Cham, pp. 16–30.

[266] M. Protsenko, T. Müller, Trust, Privacy and Security in Digital Business: Trustbus,
Valencia, Spain, Springer International Publishing, Cham, pp. 99–110.

[267] F. Nasim, B. Aslam, W. Ahmed, T. Naeem, Proceedings of the First International
Conference Codes, Cryptology, and Information Security: C2SI Morocco,
Proceedings - In honor of T. Berger, Springer International Publishing, Cham, pp.
297–313.

[268] R. Fedler, S. Banescu, A. Pretschner, Proceedings of the 34th International
Conference Computer Safety, Reliability, and Security: SAFECOMP, delft, The
Netherlands, Proceedings, Springer International Publishing, Cham, pp. 362–371.

[269] H.P. Joshi, A. Dhanasekaran, R. Dutta, Impact of software obfuscation on sus-
ceptibility to return-oriented programming attacks, Proceedings of the 36th IEEE
Sarnoff Symposium, (2015), pp. 161–166.

[270] S. Allier, O. Barais, B. Baudry, J. Bourcier, E. Daubert, F. Fleurey, M. Monperrus,
H. Song, M. Tricoire, Multitier diversification in web-based software applications,
IEEE Softw. 32 (1) (2015) 83–90.

[271] P. Junod, J. Rinaldini, J. Wehrli, J. Michielin, Obfuscator-LLVM: software pro-
tection for the masses, Proceedings of the 1st International Workshop on Software
Protection, SPRO ’15, IEEE Press, Piscataway, NJ, USA, 2015, pp. 3–9.

[272] M. Hataba, R. Elkhouly, A. El-Mahdy, Diversified remote code execution using
dynamic obfuscation of conditional branches, Proceedings of the International
Conference on Distributed Computing Systems Workshops (ICDCSW), (2015), pp.
120–127.

[273] B.F. Demissie, M. Ceccato, R. Tiella, Assessment of data obfuscation with residue
number coding, in: Proceedings of the 1st International Workshop on Software
Protection, SPRO ’15, IEEE, NJ, USA, 2015, pp. 38–44.

[274] P. Larsen, S. Brunthaler, M. Franz, Automatic software diversity, IEEE Secur. Priv.
13 (2) (2015) 30–37.

[275] S. Hosseinzadeh, S. Rauti, S. Hyrynsalmi, V. Leppänen, Security in the Internet of
Things through obfuscation and diversification, Proceedings of the International
Conference on Computing, Communication and Security (ICCCS), (2015), pp. 1–5.

[276] A. Homescu, T. Jackson, S. Crane, S. Brunthaler, P. Larsen, M. Franz, Large-scale
automated software diversity–program evolution redux, IEEE Trans. Dependable
Secure Comput. 14 (2) (2015) 158–171.

[277] S. Blazy, S. Riaud, T. Sirvent, Data tainting and obfuscation: improving plausibility
of incorrect taint, Proceedings of the IEEE 15th International Working Conference
Source Code Analysis and Manipulation (SCAM), (2015), pp. 111–120.

[278] E. Avidan, D.G. Feitelson, From obfuscation to comprehension, in: Proceedings of
the 2015 IEEE 23rd International Conference on Program Comprehension, ICPC
’15, IEEE Press, Piscataway, NJ, USA, 2015, pp. 178–181.

[279] B. Abrath, B. Coppens, S. Volckaert, B.D. Sutter, Obfuscating windows DLLs,
Proceedings of the IEEE/ACM 1st International Workshop on Software Protection
(SPRO), (2015), pp. 24–30.

[280] M. Protsenko, S. Kreuter, T. Müller, Dynamic self-protection and tamperproofing
for android apps using native code, Proceedings of the 10th International
Conference Availability, Reliability and Security (ARES), (2015), pp. 129–138.

[281] Y. Kanzaki, C. Thomborson, A. Monden, C. Collberg, Pinpointing and hiding sur-
prising fragments in an obfuscated program, in: Proceedings of the 5th Program
Protection and Reverse Engineering Workshop, PPREW-5, ACM, NY, USA, 2015,
pp. 8:1–8:9.

[282] S. Laurén, S. Rauti, V. Leppänen, Diversification of system calls in linux kernel, in:
Proceedings of the 16th International Conference on Computer Systems and
Technologies, CompSysTech ’15, ACM, NY, USA, 2015, pp. 284–291.

[283] A. Jangda, M. Mishra, B. De Sutter, Adaptive just-in-time code diversification, in:
Proceedings of the Second ACM Workshop on Moving Target Defense, MTD ’15,
ACM, NY, USA, 2015, pp. 49–53.

[284] B. Baudry, M. Monperrus, The multiple facets of software diversity: recent de-
velopments in year 2000 and beyond, ACM Comput. Surv. 48 (1) (2015)
16:1–16:26.

[285] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, M. Franz, Thwarting cache side-
channel attacks through dynamic software diversity, Proceedings of the NDSS,
(2015), pp. 8–11.

[286] B. Baudry, S. Allier, M. Rodriguez-Cancio, M. Monperrus, Automatic software
diversity in the light of test suites, CoRR (2015). arXiv:1509.00144

[287] B. Tello, M. Winterrose, G. Baah, M. Zhivich, Simulation based evaluation of a
code diversification strategy, Proceedings of the 5th International Conference on
Simulation and Modeling Methodologies, Technologies and Applications
(SIMULTECH), (2015), pp. 36–43.

[288] C.K. Behera, D.L. Bhaskari, Different obfuscation techniques for code protection,
Procedia Comput. Sci. 70 (2015) 757–763.

[289] S. Banescu, M. Ochoa, A. Pretschner, A framework for measuring software ob-
fuscation resilience against automated attacks, Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection (SPRO), (2015), pp. 45–51.

[290] M. Hataba, A. El-Mahdy, E. Rohou, OJIT: a novel obfuscation approach using
standard just-in-time compiler transformations, Proceedings of the International

Workshop on Dynamic Compilation Everywhere, Netherlands, 2015.
[291] S. Banescu, A. Pretschner, D. Battré, S. Cazzulani, R. Shield, G. Thompson,

Software-based protection against changeware, in: Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, CODASPY ’15, ACM,
NY, USA, 2015, pp. 231–242.

[292] B. Baudry, S. Allier, M. Rodriguez-Cancio, M. Monperrus, DSpot: test amplification
for automatic assessment of computational diversity, CoRR (2015). arXiv:1503.
05807

[293] S. Hosseinzadeh, S. Hyrynsalmi, M. Conti, V. Leppänen, Security and privacy in
cloud computing via obfuscation and diversification: a survey, Proceedings of the
IEEE 7th International Conference on Cloud Computing Technology and Science
(CloudCom), IEEE, 2015, pp. 529–535.

[294] Y. Wu, V. Suhendra, H. Saputra, Z. Zhao, Obfuscating software puzzle for denial-
of-service attack mitigation, Proceedings of the IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), IEEE, 2016, pp. 115–122.

[295] A. Viticchié, L. Regano, M. Torchiano, C. Basile, M. Ceccato, P. Tonella, R. Tiella,
Assessment of source code obfuscation techniques, Proceedings of the IEEE 16th
International Working Conference on Source Code Analysis and Manipulation
(SCAM), IEEE, 2016, pp. 11–20.

[296] Z. Yujia, P. Jianmin, A new compile-time obfuscation scheme for software pro-
tection, Proceedings of the International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), IEEE, 2016, pp. 1–5.

[297] K. Mahmood, D.M. Shila, Moving target defense for internet of things using con-
text aware code partitioning and code diversification, Proceedings of the IEEE 3rd
World Forum on Internet of Things (WF-IoT), IEEE, 2016, pp. 329–330.

[298] M. Styugin, V. Zolotarev, A. Prokhorov, R. Gorbil, New approach to software code
diversification in interpreted languages based on the moving target technology,
Proceedings of the IEEE 10th International Conference on Application of
Information and Communication Technologies (AICT), IEEE, 2016, pp. 1–5.

[299] J. Gionta, W. Enck, P. Larsen, Preventing kernel code-reuse attacks through dis-
closure resistant code diversification, Proceedings of the IEEE Conference on
Communications and Network Security (CNS), IEEE, 2016, pp. 189–197.

[300] H. Liu, Towards better program obfuscation: optimization via language models,
Proceedings of the 38th International Conference on Software Engineering
Companion, ICSE ’16, ACM, New York, NY, USA, 2016, pp. 680–682.

[301] X. Xie, B. Lu, D. Gong, X. Luo, F. Liu, Random table and hash coding-based binary
code obfuscation against stack trace analysis, IET Inf. Secur. 10 (1) (2016) 18–27.

[302] S.A. Sebastian, S. Malgaonkar, P. Shah, M. Kapoor, T. Parekhji, A study review on
code obfuscation, Proceedings of the World Conference on Futuristic Trends in
Research and Innovation for Social Welfare (Startup Conclave), IEEE, 2016,
pp. 1–6.

[303] K. Kuang, Z. Tang, X. Gong, D. Fang, X. Chen, T. Xing, G. Ye, J. Zhang, Z. Wang,
Exploiting dynamic scheduling for VM-based code obfuscation, Proceedings of the
IEEE Trustcom/BigDataSE/ISPA, IEEE, 2016, pp. 489–496.

[304] H. Borck, M. Boddy, I.J.D. Silva, S. Harp, K. Hoyme, S. Johnston, A. Schwerdfeger,
M. Southern, Frankencode: creating diverse programs using code clones,
Proceedings of the IEEE 23rd International Conference on Software Analysis,
Evolution, Reengineering (SANER), 1 IEEE, 2016, pp. 604–608.

[305] P. Mäki, S. Rauti, S. Hosseinzadeh, L. Koivunen, V. Leppänen, Interface diversi-
fication in IoT operating systems, Proceedings of the IEEE/ACM 9th International
Conference on Utility and Cloud Computing (UCC), ACM, 2016, pp. 304–309.

[306] P. Wang, S. Wang, J. Ming, Y. Jiang, D. Wu, Translingual obfuscation, Proceedings
of the IEEE European Symposium on Security and Privacy (EuroS P), IEEE, 2016,
pp. 128–144.

[307] Y. Peng, J. Liang, Q. Li, A control flow obfuscation method for android applica-
tions, Proceedings of the 4th International Conference on Cloud Computing and
Intelligence Systems (CCIS), IEEE, 2016, pp. 94–98.

[308] L. Koivunen, S. Rauti, V. Leppänen, Applying internal interface diversification to
IoT operating systems, Proceedings of the International Conference on Software
Security and Assurance (ICSSA), IEEE, 2016, pp. 1–5.

[309] T.Y. Chen, F.C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, Z.Q. Zhou, Metamorphic
testing for cybersecurity, Comput. (Long Beach Calif) 49 (6) (2016) 48–55.

[310] W. Liu, W. Li, Unifying the method descriptor in Java obfuscation, Proceedings of
the 2nd IEEE International Conference on Computer and Communications (ICCC),
IEEE, 2016, pp. 1397–1401.

[311] R. Mohsen, A.M. Pinto, Evaluating obfuscation security: a quantitative approach,
in: J. Garcia-Alfaro, E. Kranakis, G. Bonfante (Eds.), Foundations and Practice of
Security, Springer International Publishing, Cham, 2016, pp. 174–192.

[312] M. Ceccato, P. Falcarin, A. Cabutto, Y.W. Frezghi, C.-A. Staicu, Search based
clustering for protecting software with diversified updates, in: F. Sarro, K. Deb
(Eds.), Search Based Software Engineering, Springer International Publishing,
Cham, 2016, pp. 159–175.

[313] D. Xu, J. Ming, D. Wu, Generalized dynamic opaque predicates: A new control
flow obfuscation method, in: M. Bishop, A.C.A. Nascimento (Eds.), Information
Security, Springer International Publishing, Cham, 2016, pp. 323–342.

[314] J. Aycock, Obfuscation and Optimization, Springer International Publishing,
Cham, pp. 173–203.

[315] G.-l. Cai, B.-s. Wang, W. Hu, T.-z. Wang, Moving target defense: state of the art and
characteristics, Front. Inf. Technol. Electr. Eng. 17 (11) (2016) 1122–1153.

[316] A. Pawlowski, M. Contag, T. Holz, Probfuscation: an obfuscation approach using
probabilistic control flows, in: J. Caballero, U. Zurutuza, R.J. Rodríguez (Eds.),
Detection of Intrusions and Malware, and Vulnerability Assessment, Springer
International Publishing, Cham, 2016, pp. 165–185.

[317] S. Rauti, S. Laurén, J. Uitto, S. Hosseinzadeh, J. Ruohonen, S. Hyrynsalmi,

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

92

http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0246
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0247
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0247
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0248
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0248
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0249
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0249
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0250
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0250
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0250
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0251
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0251
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0251
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0252
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0252
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0252
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0253
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0253
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0253
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0253
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0254
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0254
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0254
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0255
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0255
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0256
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0256
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0256
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0257
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0257
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0257
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0258
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0258
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0258
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0259
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0259
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0259
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0260
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0260
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0260
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0261
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0261
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0261
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0262
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0262
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0262
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0262
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0263
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0263
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0263
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0264
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0264
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0264
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0265
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0265
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0265
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0266
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0266
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0266
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0267
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0267
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0268
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0268
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0268
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0268
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0269
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0269
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0270
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0270
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0270
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0271
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0271
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0271
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0272
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0272
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0272
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0272
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0273
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0273
http://arxiv.org/abs/1503.05807
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0274
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0274
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0274
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0274
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0275
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0275
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0275
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0275
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0275
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0276
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0276
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0276
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0276
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0277
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0277
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0277
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0278
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0278
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0278
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0279
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0279
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0279
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0279
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0280
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0280
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0280
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0281
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0281
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0281
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0282
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0282
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0283
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0283
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0283
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0283
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0284
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0284
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0284
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0285
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0285
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0285
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0285
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0286
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0286
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0286
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0287
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0287
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0287
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0288
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0288
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0288
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0289
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0289
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0289
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0290
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0290
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0291
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0291
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0291
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0292
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0292
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0292
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0293
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0293
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0293
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0293
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0294
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0294
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0294
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0295
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0295
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0296
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0296
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0296
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0296
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0297


V. Leppänen, A survey on internal interfaces used by exploits and implications on
interface diversification, in: B.B. Brumley, J. Röning (Eds.), Secure IT Systems,
Springer International Publishing, Cham, 2016, pp. 152–168.

[318] S. Pastrana, J. Tapiador, G. Suarez-Tangil, P. Peris-López, Avrand: a software-
based defense against code reuse attacks for AVR embedded devices, in:
J. Caballero, U. Zurutuza, R.J. Rodríguez (Eds.), Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer International Publishing, Cham,
2016, pp. 58–77.

[319] R. De Keulenaer, J. Maebe, K. De Bosschere, B. De Sutter, Link-time smart card
code hardening, Int. J. Inf. Secur. 15 (2) (2016) 111–130.

[320] Y. Piao, J. Jung, J.H. Yi, Server-based code obfuscation scheme for apk tamper
detection, Secur. Commun. Netw. 9 (6) (2016) 457–467.

[321] V. Balachandran, Sufatrio, D.J. Tan, V.L. Thing, Control flow obfuscation for an-
droid applications, Comput. Secur. 61 (2016) 72–93.

[322] S. Hosseinzadeh, S. Hyrynsalmi, V. Leppänen, Chapter 14 - obfuscation and di-
versification for securing the internet of things (IoT), in: R. Buyya, A.V. Dastjerdi
(Eds.), Internet of Things, Morgan Kaufmann, 2016, pp. 259–274.

[323] S. Banescu, C. Lucaci, B. Krämer, A. Pretschner, VOT4CS: A virtualization obfus-
cation tool for C♯, Proceedings of the ACM Workshop on Software PROtection,
SPRO ’16, ACM, NY, USA, 2016, pp. 39–49.

[324] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie, S. Hyrynsalmi,
V. Leppänen, A survey on aims and environments of diversification and obfusca-
tion in software security, in: B. Rachev, A. Smrikarov (Eds.), Proceedings of the
17th International Conference on Computer Systems and Technologies
CompSysTech’16, ACM, 2016, pp. 113–120.

[325] R. Manikyam, J.T. McDonald, W.R. Mahoney, T.R. Andel, S.H. Russ, Comparing
the effectiveness of commercial obfuscators against mate attacks, in: Proceedings
of the 6th Workshop on Software Security, Protection, and Reverse Engineering,
SSPREW ’16, ACM, NY, USA, 2016, pp. 8:1–8:11.

[326] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, E. Weippl, Protecting
software through obfuscation: can it keep pace with progress in code analysis?,
ACM Comput. Surv. 49 (1) (2016) 4:1–4:37.

[327] J. Coffman, D.M. Kelly, C.C. Wellons, A.S. Gearhart, Rop gadget prevalence and sur-
vival under compiler-based binary diversification schemes, in: Proceedings of the ACM
Workshop on Software PROtection, SPRO ’16, ACM, NY, USA, 2016, pp. 15–26.

[328] B. Abrath, B. Coppens, S. Volckaert, J. Wijnant, B. De Sutter, Tightly-coupled self-
debugging software protection, in: Proceedings of the 6th Workshop on Software
Security, Protection, and Reverse Engineering, SSPREW ’16, ACM, NY, USA, 2016, pp.
7:1–7:10.

[329] S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, A. Pretschner, Code obfuscation
against symbolic execution attacks, in: Proceedings of the 32Nd Annual
Conference on Computer Security Applications, ACSAC ’16, ACM, NY, USA, 2016,
pp. 189–200.

[330] J. Petke, Genetic improvement for code obfuscation, Proceedings of the Genetic
and Evolutionary Computation Conference Companion, GECCO ’16 Companion,
ACM, NY, USA, 2016, pp. 1135–1136.

[331] M. Wu, Y. Zhang, X. Mi, Binary protection using dynamic fine-grained code hiding
and obfuscation, in: Proceedings of the 4th International Conference on
Information and Network Security, ICINS ’16, ACM, NY, USA, 2016, pp. 1–8.

[332] H. Xu, Y. Zhou, M. Lyu, N-version obfuscation, in: Proceedings of the 2Nd ACM
International Workshop on Cyber-Physical System Security, CPSS ’16, ACM, NY,
USA, 2016, pp. 22–33.

[333] S. Laurén, S. Rauti, V. Leppänen, An interface diversified honeypot for malware
analysis, in: Proceedings of the 10th European Conference on Software
Architecture Workshops, ECSAW ’16, ACM, NY, USA, 2016, pp. 29:1–29:6.

[334] S. Blazy, A. Trieu, Formal verification of control-flow graph flattening, in:
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP, ACM, NY, USA, 2016, pp. 176–187.

[335] H. Koo, M. Polychronakis, Juggling the gadgets: Binary-level code randomization
using instruction displacement, in: Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’16, ACM, NY,
USA, 2016, pp. 23–34.

[336] K. Braden, L. Davi, C. Liebchen, A.R. Sadeghi, S. Crane, M. Franz, P. Larsen,
Leakage-resilient layout randomization for mobile devices. Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2016 Internet
Society, San Diego, CA, USA, 2016.

[337] K. Lu, W. Lee, S. Nürnberger, M. Backes, How to make ASLR win the clone wars:
Runtime re-randomization. Proceedings of the NDSS, 2016 Internet Society, San
Diego, CA, USA, 2016.

[338] G. Maisuradze, M. Backes, C. Rossow, What cannot be read, cannot be leveraged?
revisiting assumptions of JIT-ROP defenses, Proceedings of the 25th USENIX
Security Symposium, USENIX, Austin, TX, 2016, pp. 139–156.

[339] Y. Chen, Z. Wang, D. Whalley, L. Lu, Remix: on-demand live randomization, in:
Proceedings of 6th ACM Conference on Data and Application Security and Privacy,
CODASPY ’16, ACM, NY, USA, 2016, pp. 50–61.

[340] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen, C. Liebchen,
M. Perry, A.-R. Sadeghi, Selfrando: securing the tor browser against de-anon-
ymization exploits, Proc. Priv. Enhancing Technol. 2016 (4) (2016) 454–469.

[341] S. Crane, A. Homescu, P. Larsen, Code randomization: haven’t we solved this
problem yet?, Proceedings of the IEEE Cybersecurity Development (SecDev), IEEE,
2016, pp. 124–129.

[342] D. Williams-King, G. Gobieski, K. Williams-King, J.P. Blake, X. Yuan, P. Colp, M.
Zheng, V.P. Kemerlis, J. Yang, W. Aiello, Shuffler: fast and deployable continuous
code re-randomization. Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16), (2016), pp. 367–382.

[343] J. Uitto, S. Rauti, V. Leppänen, Practical implications and requirements of

diversifying interpreted languages, in: Proceedings of the 11th Annual Cyber and
Information Security Research Conference, CISRC ’16, ACM, NY, USA, 2016, pp.
14:1–14:4.

[344] N. Veeranna, B.C. Schafer, Efficient behavioral intellectual properties source code
obfuscation for high-level synthesis, Proceedings of the 18th IEEE Latin American
Test Symposium (LATS), IEEE, 2017, pp. 1–6.

[345] P. Kanani, K. Srivastava, J. Gandhi, D. Parekh, M. Gala, Obfuscation: maze of code,
Proceedings of the 2nd International Conference on Communication Systems,
Computing and IT Applications (CSCITA), IEEE, 2017, pp. 11–16.

[346] S. Wang, P. Wang, D. Wu, Composite software diversification, Proceedings of the
IEEE International Conference on Software Maintenance and Evolution (ICSME),
IEEE, 2017, pp. 284–294.

[347] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, J. Sun, Stochastic optimization of program
obfuscation, Proceedings of the IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE Press, Piscataway, NJ, USA, 2017, pp. 221–231.

[348] T. Cho, H. Kim, J.H. Yi, Security assessment of code obfuscation based on dynamic
monitoring in android things, IEEE Access 5 (2017) 6361–6371.

[349] M. Togan, A. Feraru, A. Popescu, Virtual machine for encrypted code execution,
Proceedings of the 9th International Conference on Electronics, Computers and
Artificial Intelligence (ECAI), IEEE, 2017, pp. 1–6.

[350] R. Tiella, M. Ceccato, Automatic generation of opaque constants based on the k-
clique problem for resilient data obfuscation, Proceedings of the IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2017, pp. 182–192.

[351] Y. Peng, G. Su, B. Tian, M. Sun, Q. Li, Control flow obfuscation based protection
method for android applications, China Commun. 14 (11) (2017) 247–259.

[352] Z. Li, X.Y. Jing, X. Zhu, H. Zhang, B. Xu, S. Ying, On the multiple sources and
privacy preservation issues for heterogeneous defect prediction, IEEE Trans.
Softw. Eng. PP (99) (2017) 1–21.

[353] X. Chen, H. Bos, C. Giuffrida, Codearmor: virtualizing the code space to counter
disclosure attacks, Proceedings of the 2017 IEEE European Symposium on Security
and Privacy (EuroS P), IEEE, 2017, pp. 514–529.

[354] D. Canavese, L. Regano, C. Basile, A. Viticchié, Estimating software obfuscation po-
tency with artificial neural networks, in: G. Livraga, C. Mitchell (Eds.), Security and
Trust Management, Springer International Publishing, Cham, 2017, pp. 193–202.

[355] B. Zhao, Z. Tang, Z. Li, L. Song, X. Gong, D. Fang, F. Liu, Z. Wang, Dexpro: a
bytecode level code protection system for android applications, in: S. Wen, W. Wu,
A. Castiglione (Eds.), Cyberspace Safety and Security, Springer International
Publishing, Cham, 2017, pp. 367–382.

[356] S. Hosseinzadeh, S. Laurén, S. Rauti, S. Hyrynsalmi, M. Conti, V. Leppänen,
Obfuscation and diversification for securing cloud computing, in: V. Chang,
M. Ramachandran, R.J. Walters, G. Wills (Eds.), Enterprise Security, Springer
International Publishing, Cham, 2017, pp. 179–202.

[357] X. Tang, Y. Liang, X. Ma, Y. Lin, D. Gao, On the effectiveness of code-reuse-based
android application obfuscation, in: S. Hong, J.H. Park (Eds.), Information
Security and Cryptology – ICISC 2016, Springer International Publishing, Cham,
2017, pp. 333–349.

[358] R. Géraud, M. Koscina, P. Lenczner, D. Naccache, D. Saulpic, Generating func-
tionally equivalent programs having non-isomorphic control-flow graphs, in:
H. Lipmaa, A. Mitrokotsa, R. Matulevičius (Eds.), Secure IT Systems, Springer
International Publishing, Cham, 2017, pp. 265–279.

[359] M. Morton, H. Koo, F. Li, K.Z. Snow, M. Polychronakis, F. Monrose, Defeating
zombie gadgets by re-randomizing code upon disclosure, in: E. Bodden, M. Payer,
E. Athanasopoulos (Eds.), Engineering Secure Software and Systems, Springer
International Publishing, Cham, 2017, pp. 143–160.

[360] W. Holder, J.T. McDonald, T.R. Andel, Evaluating optimal phase ordering in ob-
fuscation executives, in: Proceedings of the 7th Software Security, Protection, and
Reverse Engineering / Software Security and Protection Workshop, SSPREW-7,
ACM, NY, USA, 2017, pp. 6:1–6:12.

[361] B. Johansson, P. Lantz, M. Liljenstam, Lightweight dispatcher constructions for
control flow flattening, in: Proceedings of the 7th Software Security, Protection,
and Reverse Engineering / Software Security and Protection Workshop, SSPREW-
7, ACM, NY, USA, 2017, pp. 2:1–2:12.

[362] K. Lim, J. Jeong, S.-j. Cho, J. Choi, M. Park, S. Han, S. Jhang, An anti-reverse
engineering technique using native code and obfuscator-llvm for android appli-
cations, in: Proceedings of the International Conference on Research in Adaptive
and Convergent Systems, RACS ’17, ACM, NY, USA, 2017, pp. 217–221.

[363] R.N. Ismanto, M. Salman, Improving security level through obfuscation technique
for source code protection using AES algorithm, in: Proceedings of 7th
International Conference on Communication and Network Security, ICCNS 2017,
ACM, NY, USA, 2017, pp. 18–22.

[364] M. Zhang, M. Polychronakis, R. Sekar, Protecting COTS binaries from disclosure-
guided code reuse attacks, in: Proceedings of the 33rd Annual Computer Security
Applications Conference, ACSAC, ACM, NY, USA, 2017, pp. 128–140.

[365] M. Pomonis, T. Petsios, A.D. Keromytis, M. Polychronakis, V.P. Kemerlis, kR⌃X:
Comprehensive kernel protection against just-in-time code reuse, in: Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys ’17, ACM, NY,
USA, 2017, pp. 420–436.

[366] S. Halevi, T. Halevi, V. Shoup, N. Stephens-Davidowitz, Implementing BP-obfus-
cation using graph-induced encoding, in: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, ACM, NY, USA,
2017, pp. 783–798.

[367] T. Groß, T. Müller, Protecting JavaScript apps from code analysis, in: Proceedings
of the 4th Workshop on Security in Highly Connected IT Systems, SHCIS ’17, ACM,
NY, USA, 2017, pp. 1–6.

S. Hosseinzadeh et al. Information and Software Technology 104 (2018) 72–93

93

http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0297
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0297
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0297
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0298
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0298
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0298
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0298
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0298
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0299
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0299
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0300
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0300
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0301
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0301
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0302
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0302
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0302
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0303
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0303
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0303
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0304
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0304
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0304
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0304
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0304
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0305
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0305
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0305
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0305
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0306
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0306
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0306
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0307
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0307
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0307
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0308
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0308
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0308
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0308
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0309
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0309
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0309
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0309
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0310
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0310
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0310
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0311
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0311
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0311
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0312
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0312
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0312
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0313
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0313
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0313
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0314
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0314
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0314
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0315
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0315
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0315
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0315
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0316
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0316
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0316
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0316
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0317
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0317
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0317
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0318
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0318
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0318
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0319
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0319
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0319
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0320
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0320
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0320
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0321
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0321
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0321
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0322
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0322
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0322
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0322
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0323
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0323
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0323
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0323
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0324
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0324
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0324
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0325
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0325
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0325
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0326
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0326
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0326
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0327
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0327
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0327
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0328
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0328
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0329
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0329
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0329
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0330
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0330
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0330
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0330
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0331
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0331
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0332
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0332
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0332
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0333
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0333
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0333
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0334
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0334
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0334
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0335
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0335
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0335
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0335
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0336
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0336
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0336
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0336
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0337
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0337
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0337
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0337
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0338
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0338
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0338
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0338
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0339
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0339
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0339
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0339
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0340
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0340
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0340
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0340
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0341
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0341
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0341
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0341
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0342
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0342
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0342
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0342
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0343
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0343
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0343
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0343
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0344
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0344
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0344
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0345
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0345
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0345
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0345
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0346
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0346
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0346
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0346
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0347
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0347
http://refhub.elsevier.com/S0950-5849(18)30148-4/sbref0347

	Diversification and obfuscation techniques for software security: A systematic literature review
	Introduction
	Method of the study
	Structure of the study

	Aims and research questions
	Search and selection process
	Search
	Initial search
	Manual search
	Automatic (citation-based) search

	Selection of the studies
	Data extraction

	Results
	Constructive studies
	RQ1: Status of the field of study
	RQ2: Aim
	RQ3: Environment
	RQ4: Mechanism

	Empirical studies

	Discussion
	Challenges
	Research gaps
	Limitations of the study

	Conclusion and future work
	Acknowledgment
	Selected studies
	References




