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Simple Summary: Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin
cancer, and its incidence is increasing worldwide. The prognosis of the metastatic disease is poor,
and there are no established biomarkers for the assessment of metastasis risk or specific therapeutic
targets for advanced or metastatic cSCCs. The role of long non-coding RNAs (lncRNAs) in the
progression of cSCC has recently been emphasized. Super enhancers (SE) have been shown to play a
role in tumorigenesis and regulate the expression of specific lncRNAs. In this study, we evaluated
the role of SE-regulated BRD3OS (lncRNA LINC00094) in the progression of cSCC. Based on the
results, we named this lncRNA SERLOC. The results identify SERLOC as a biomarker for invasion
and metastasis of cSCC and as a putative therapeutic target in advanced cSCC.

Abstract: Long non-coding RNAs (lncRNAs) have emerged as important regulators of cancer pro-
gression. Super enhancers (SE) play a role in tumorigenesis and regulate the expression of specific
lncRNAs. We examined the role of BRD3OS, also named LINC00094, in cutaneous squamous cell
carcinoma (cSCC). Elevated BRD3OS (LINC00094) expression was detected in cSCC cells, and ex-
pression was downregulated by SE inhibitors THZ1 and JQ1 and via the MEK1/ERK1/2 pathway.
Increased expression of BRD3OS (LINC00094) was noted in tumor cells in cSCCs and their metas-
tases compared to normal skin, actinic keratoses, and cSCCs in situ. Higher BRD3OS (LINC00094)
expression was noted in metastatic cSCCs than in non-metastatic cSCCs. RNA-seq analysis after
BRD3OS (LINC00094) knockdown revealed significantly regulated GO terms Cell-matrix adhesion,
Basement membrane, Metalloendopeptidase activity, and KEGG pathway Extracellular matrix–receptor inter-
action. Among the top-regulated genes were MMP1, MMP10, and MMP13. Knockdown of BRD3OS
(LINC00094) resulted in decreased production of MMP-1 and MMP-13 by cSCC cells, suppressed inva-
sion of cSCC cells through collagen I, and growth of human cSCC xenografts in vivo. Based on these
observations, BRD3OS (LINC00094) was named SERLOC (super enhancer and ERK1/2-Regulated
Long Intergenic non-protein coding transcript Overexpressed in Carcinomas). These results reveal the
role of SERLOC in cSCC invasion and identify it as a potential therapeutic target in advanced cSCC.

Keywords: skin cancer; long non-coding RNA; squamous cell carcinoma; super enhancer; matrix
metalloproteinase; metastasis
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1. Introduction

Non-protein coding RNAs (ncRNAs) have been identified as important cellular reg-
ulators both in physiological processes, such as development and differentiation and in
pathological conditions including cancer [1]. LncRNAs are single-stranded RNA transcripts
longer than 200 nucleotides that may interact with DNA, proteins, or other RNAs [2]. They
are temporally and tissue-specifically expressed, and this makes lncRNAs versatile regu-
lators in all cellular compartments [3]. Several lncRNAs have been shown to play a role
in cancer progression, and they may exert either tumor-suppressive or tumor-promoting
functions [4].

Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most com-
mon metastatic skin cancer, and its incidence is increasing worldwide [5]. The metastasis
rate of cSCC is 1–4%, and it is responsible for at least 20% of all skin cancer-related mor-
tality [6,7]. Important risk factors of cSCC are solar UV radiation, chronic ulcers, and
immunosuppression [8]. During keratinocyte carcinogenesis tumor protein 53 (TP53) gene
is mutated early in cSCC development, resulting in a marked accumulation of additional
UV-induced mutations [9–11]. Other genes commonly mutated in cSCC are NOTCH1,
HRAS, and CDKN2A [10,12]. In addition, alterations in the tumor microenvironment are
crucial for the initiation and development of cSCC [13,14]. The role of lncRNAs in the
progression of cSCC is under intense investigation [15]. We have previously identified and
characterized two lncRNAs overexpressed in cSCC, p38 inhibited cutaneous squamous cell
carcinoma-associated lincRNA (PICSAR) [16,17] and p53 regulated carcinoma-associated
STAT3-activating long intergenic non-protein coding transcript (PRECSIT) [18]. PICSAR
promotes cSCC growth by increasing ERK1/2 activity via downregulation of DUSP6 [16],
decreases adhesion, and promotes migration of cSCC cells by downregulating the expres-
sion of α2β1 and α5β1 integrins [17]. PRECSIT increases cSCC cell invasion by regulating
MMP expression via STAT3 signaling [18]. However, the role of lncRNAs in cSCC progres-
sion is still largely unknown.

In this study, we demonstrate that BRD3OS (BRD3 opposite strand), also named
lncRNA LINC00094, is specifically overexpressed by cSCC cells in culture and in vivo.
The expression level of BRD3OS (LINC00094) is markedly upregulated in tumor cells in
UV-induced primary cSCCs and in their metastases compared to normal skin, and precan-
cerous forms of actinic keratosis (AK) and cSCC in situ (cSCCIS). Furthermore, BRD3OS
(LINC00094) expression level is stronger in metastatic cSCCs than in non-metastatic cSCCs.
The expression of BRD3OS (LINC00094) in cSCC cells is downregulated by super enhancer
(SE) inhibitors THZ1 and JQ1. BRD3OS (LINC00094) regulates the expression of matrix
metalloproteinases (MMPs) MMP-1 and MMP-13 and promotes the invasion of cSCC cells.
Based on these observations, BRD3OS (LINC00094) was named SERLOC (Super enhancer
and ERK1/2 Regulated Long Intergenic non-protein coding transcript Overexpressed in
Carcinomas). Altogether these results identify SERLOC as a super enhancer-regulated
lncRNA, which promotes invasion of cSCC by regulating MMP expression.

2. Materials and Methods
2.1. Cell Culture

Normal human epidermal keratinocytes (NHEKs) were isolated from the skin of
healthy individuals undergoing mammoplasty [19], and NHEK-PC was from PromoCell
(Heidelberg, Germany). Primary non-metastatic (UT-SCC12A, UT-SCC91, UT-SCC105, UT-
SCC111, and UT-SCC118) and metastatic (UT-SCC7, UT-SCC59A, and UT-SCC115) cSCC
cell lines were established from surgically removed cSCCs in Turku University Hospital [19].
The authenticity of all cSCC cell lines has been verified by short tandem repeat profiling [20].
The spontaneously immortalized human keratinocyte line (HaCaT) lacking functional p53
and three HaCaT-derived Ha-ras–transformed cell lines (A5, II-4, and RT3), which represent
in vitro models for progressive stages of cSCC tumors [21], was kindly provided by Dr.
Norbert E. Fusenig (The German Cancer Research Center, Heidelberg, Germany). A5 is a
benign tumorigenic HaCaT cell line, II4 forms invasive tumors, and RT3 forms metastatic
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SCC [21]. Cells were cultured as previously described [22]. Super-enhancer inhibitors
THZ1 (inhibitor of CDK7) and JQ1 (inhibitor of BRD4) were used. To determine BRD3OS
(LINC00094) expression after inhibition of CDK7 and BRD4, cSCC were treated with THZ1
(100 nM) and JQ1 (5 µM) for 24 or 48 h (MedChemExpress, Monmouth Junction, NJ,
USA). For inhibition of MEK1/2, cSCC cells were treated with PD98059 (30 µM) for 24 h
(Calbiochem, La Jolla, CA, USA).

2.2. Real-Time Quantitative PCR

Total RNA was extracted from cultured NHEKs and cSCC cells using an RNeasy
mini kit (Qiagen, Germantown, MD, USA), and 1 µg of total RNA was reverse transcribed
into cDNA with random hexamer and M-MLV Reverse Transcriptase H Minus (both from
Promega, Madison, WI, USA) for real-time quantitative reverse transcriptase-PCR (qRT-
PCR) analysis. Specific primers and probes for BRD3OS (LINC00094) were designed with
RealTimeDesign Software (https://www.biosearchtech.com; last accessed 17 April 2012;
LGC Biosearch Technologies, Teddington, UK) and purchased from Oligomer (Helsinki,
Finland) (Supplementary Table S1). Primers and probes for MMP1, MMP10, and MMP13
(Supplementary Table S1) were designed as previously described [23]. qRT-PCR reactions
were performed utilizing the QuantStudio 12K Flex (Thermo Fisher Scientific) at the Finnish
Functional Genomics Centre in Turku, Finland. qRT-PCR amplification was done using
the following protocol: hold stage 2 min at 50 ◦C, 10 min at 95 ◦C, and PCR stage for
40 cycles 0.15 min at 95 ◦C and 1 min at 60 ◦C. ACTB (β-actin) or GAPDH mRNA was
used as reference (Supplementary Table S1). Samples were analyzed using the standard
curve method in three parallel reactions with threshold cycle values <5% of the mean
threshold cycle.

2.3. Tissue Samples

Tissue microarrays (TMAs) consisting of samples from normal sun-protected and
sun-exposed skin (n = 24), AK (n = 67), cSCCIS (n = 60), non-metastatic invasive cSCC
(n = 119), metastatic cSCC (n = 76), and cSCC metastases (n = 8) were generated from the
archival paraffin blocks from the Department of Pathology, Turku University Hospital
and Auria Biobank, Turku University Hospital and University of Turku [24]. TMAs were
generated from formalin-fixed paraffin-embedded tissue samples as described earlier [25].

2.4. RNA In Situ Hybridization

TMAs were subjected to RNA in situ hybridization (RNA-ISH) with a specific probe
for BRD3OS (LINC00094) (Hs-BRD3OS-O1, #823849) (Advanced Cell Diagnostics (ACD),
Newark, CA, USA) and analyzed with RNAscope ISH Assay (ACD, Newark, CA) by
Bioneer A/S (Hørsholm, Denmark). An automated Ventana Discovery Ultra slide-staining
system (Roche) was used to accomplish the ISH assay as previously described [18]. Specific
mRNAs of bacterial DapB (4-hydroxy-tetrahydrodipicolinate reductase) and human PPIB
(Cyclophilin B) were used as negative and positive controls, respectively (both from ACD)
as previously described [18]. The expression of BRD3OS (LINC00094) was illustrated with
Zeiss Axioscan (Carl Zeiss AG, Oberkochen, Germany) at 20×magnification and visualized
with Zen lite (Carl Zeiss Microscopy, München, Germany) or a Pannoramic 1000 Slide
Scanner (3DHistech, Budapest, Hungary). The visible cytoplasmic and nuclear particles for
BRD3OS (LINC00094) transcripts were counted, and the tissue samples were classified on
the basis of the detected particles in one cell and the distribution of particles in TMAs by
three independent observers (P.R., L.N., and M.K.). BRD3OS (LINC00094) was classified
as negative (−) when single particles were noted in single cells, weak positive (+) when
single particles were noted in several cells, moderate positive (++) when two particles
were detected in several cells, and strong positive (+++) when more than 2 particles were
detected widely in cells.

https://www.biosearchtech.com
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2.5. Adenoviral Infection

HaCaT cells were infected with Escherichia coli β-galactosidase containing control
(RAdLacZ) and constitutively active MEK1-containing (RAdMEK1ca) adenoviral vectors
and incubated in a conditioned medium containing 0.5% fetal calf serum at MOI 600 for
6 h. After 48 h, cell lysates were collected and subjected to qPCR analysis. RAdMEK1ca
and RAdLacZ adenoviral vectors were kindly provided by Dr. Marco Foschi (University
of Florence, Italy) [26] and Dr. Gavin W.G. Wilkinson (University of Cardiff, UK) [27]. To
inhibit activation of MEK1, cells were serum starved for 24 h and then treated with small
molecule inhibitor PD98059 (30 µM, Calbiochem, La Jolla, CA, USA).

2.6. RNA-Sequencing

cSCC cells were cultured to 50% confluence and transfected with negative control
or BRD3OS siRNA4 (75 nM). RNA was isolated from transfected cells (n = 3; UT-SCC7,
UT-SCC12A, and UT-SCC59A) 72 h later using miRNeasy Mini Kit (Qiagen). For RNA-
sequencing (RNA-seq) the Illumina HiSeq3000 was used (Illumina, San Diego, CA, USA)
at the Finnish Functional Genomics Centre, Turku. For library preparation, Illumina
TruSeq Stranded total RNA Sample Preparation Kit was used. The reads obtained from
the instrument were base called using the instrument manufacturer’s Bcl2fastq2 version
2.17 base-calling software. The reads were aligned against the human reference genome
(hg38), and for data normalization the TMM (trimmed mean of M values) method was
used (R version 3.3/Bioconductor package edgeR version 3.331, R Foundation for Statistical
Computing, Vienna, Austria) [28]. R package Limma version 3.1032 and t-test were used
for statistical analysis of the mean expression values between control siRNA and BRD3OS
siRNA treated cSCC cells. For filtering the results, fold change (FC) log 1.0 and p < 0.01 were
used. Morpheus (https://software.broadinstitute.org/morpheus (last accessed 30 June
2022)) online tool was used to generate heatmaps. RNA-seq data were further analyzed
using the Gene Ontology Enrichment Analysis (Gene Ontology, http://www.geneontology.
org (last accessed 31 October 2018)) and the Kyoto Encyclopedia of Genes and Genomes
Pathway Analysis (KEGG, http://www.genome.jp/kegg (last accessed 31 October 2018)).
RNA-seq data of BRD3OS (LINC00094) knockdown cSCC cells are available online at the
Gene Expression Omnibus (accession number GSE205981).

2.7. Western Blot Analysis

cSCC cells were cultured to 50% confluence and transfected with commercially avail-
able siRNAs (75 nM) targeting BRD3OS (LINC00094), MMP-1, or MMP-13 (Qiagen, Hilden,
Germany) by using siLentFect lipid reagent (Biorad, Hercules, CA, USA) (Supplementary
Table S2). MMP levels in a serum-free medium of cSCC cell cultures were determined by
Western blot analysis 72 h after siRNA transfection using antibodies specific for MMP-1
(1:1000, MAB3307, 41-1E5; Merck Millipore, Temecula, CA, USA) and MMP-13 (1:500,
MAB3321; Merck Millipore). Expression of tissue inhibitor of matrix metalloproteinase 1,
TIMP-1 (1:1000, MAB3300; Merck Millipore), was used as a control. Protein expression
was quantitated using IRDye labeled secondary antibodies and the LI-COR Odyssey CLx
fluorescent imaging system (LI-COR Biosciences, Lincoln, NE, USA). Quantitation was
prepared by using Image Studio software (LI-COR Biosciences).

2.8. Human cSCC Xenografts

cSCC cells (UT-SCC7) were transfected with BRD3OS siRNA or control siRNA and
incubated for 72 h. Cells (5 × 106) were injected subcutaneously in 100 µL volume in
phosphate-buffered saline into the backs of 6-week-old female severe combined immunode-
ficient (SCID) mice (CB17/Icr-Prkdcscid/IcrIcoCrl) (Charles River Laboratories, Wilmington,
MA) (control siRNA, n = 7; BRD3OS siRNA, n = 8). Tumor size was measured twice a week,
and the tumor volume was calculated as follows: V = (length × width2)/2 [18]. Mice were
sacrificed 16 days after tumor implantation.

https://software.broadinstitute.org/morpheus
http://www.geneontology.org
http://www.geneontology.org
http://www.genome.jp/kegg
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2.9. Invasion Assays

To study cell invasion in culture, cSCC cells were transfected with negative control
and BRD3OS (LINC00094), MMP-1, or MMP-13 targeting siRNAs (75 nM) and cultured
for 24 h. Transfected cells were plated on a collagen type I–coated (5 µg/cm2, PureCol;
Advanced BioMatrix, San Diego, CA, USA) ImageLock 96-well plate (Essen Bioscience,
Ann Arbor, MI, USA), and cells were allowed to adhere overnight. The cell monolayer
was scratched using an Incucyte wound maker (Essen Bioscience), and collagen type I
solution was added by mixing type I collagen (PureCol) with 5× Dulbecco’s Modified
Eagle Medium and 0.2 mol/L HEPES buffer (pH 7.4) at a ratio of 7:2:1, respectively. Finally,
1 mol/L NaOH was added to obtain a final pH of 7.4. Collagen was allowed to polymerize
for 2 h at 37 ◦C, and a cell culture medium with 0.5% fetal calf serum was added on top.
The gap closure was imaged using the IncuCyte S3 real-time cell imaging system (Essen
Bioscience), and the relative cell invasion was quantitated using the IncuCyte S3 software
version 2020A (Essen Bioscience).

2.10. Statistical Analysis

Statistical analyses were performed using GraphPad Prism, version 9.1.0 (GraphPad
Software, San Diego, CA, USA). The sample size was determined to be adequate for the
statistical analysis of the data. To determine the significance of differences between two
or more sample groups, a two-tailed Student’s t-test and two-way ANOVA were used.
Two-tailed X2 test or Fisher’s exact test was used for statistical comparisons of the RNA-
ISH analysis of tissue samples. Results were considered statistically significant when
bidirectional p-values were <0.05 (* <0.05, ** <0.01, and *** <0.001).

3. Results
3.1. BRD3OS (LINC00094) Is Overexpressed in cSCC Cells

We have previously shown differential expression of several lncRNAs in cSCC cells
compared with NHEKs [16]. BRD3OS (LINC00094) was identified as one of the upreg-
ulated lncRNAs in cSCC cells compared to NHEKs based on RNA-seq [16]. BRD3OS
(LINC00094) is transcribed from the opposite strand of bromodomain containing 3 gene
(BRD3) (Figure 1A). Upregulation of BRD3OS (LINC00094) was detected in cSCC cell
lines (n = 8) compared with NHEKs (n = 4) by qRT-PCR (Figure 1B). In accordance with
this, we also noticed increased BRD3 expression in cSCC cells compared to NHEKs by
qRT-PCR (Supplementary Figure S1A). According to our RNA-seq data, the expression of
BRD3OS (LINC00094) and BRD3 showed a positive correlation (Supplementary Figure S1B).
Based on mRNA expression data from the GEPIA database [29], BRD3OS (LINC00094) and
BRD3 were also upregulated in head and neck SCCs (HNSCCs), and a positive correlation
was noted in their expression (Supplementary Figure S1C,D). The analysis of BRD3OS
(LINC00094) expression with RNA-ISH revealed a specific, mainly cytoplasmic signal for
this lncRNA in cSCC cells (Figure 1C). Furthermore, analysis of tissue sections of xenografts
established with human cSCC cells (UT-SCC7) with RNA in situ hybridization (RNA-ISH)
revealed specific expression of BRD3OS (LINC00094) in tumor cells (Figure 1D).

3.2. BRD3OS (LINC00094) Is Regulated by Super Enhancer in cSCC Cells

BRD3OS (LINC00094) expression has been previously shown to be regulated by a
super enhancer (SE) in esophageal SCC [30]. Based on the SE-archive version 3.0 online
(SEA v. 3.0, http://sea.edbc.org, (last accessed 31 May 2022) Computational Biology Re-
search Center, Harbin, China) [31], we found a SE near the BRD3OS gene (Figure 1A). We
treated cSCC cells with THZ1, a covalent inhibitor of CDK7, and JQ1, a specific inhibitor of
BRD4, which both have been shown to selectively target SE-driven transcriptional programs
in cancer [32,33]. Following treatment with THZ1 or JQ1, BRD3OS (LINC00094) expression
was significantly decreased in cSCC cells (Figure 1E), indicating that the expression of this
lncRNA is driven by a super enhancer.

http://sea.edbc.org
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human epidermal keratinocytes (NHEKs) (n = 4) and cSCC cells (n = 5, primary, round dots; n = 3 
metastatic, crosses). (C) Expression and cellular localization of BRD3OS (LINC00094) (white arrows) 
were examined by RNA in situ hybridization (RNA-ISH). Scale bar = 20 µm. (D) BRD3OS 
(LINC00094) expression (black arrows) was determined in cSCC xenograft tumors (UT-SCC7) by 
RNA-ISH. Scale bar = 50 µm. (E): BRD3OS (LINC00094) expression in cSCC cell lines was 
determined by qRT-PCR 24 h (UT-SCC7 and −105) or 48 h (UT-SCC91 and −111) after treatment with 
THZ1 (100 nM) or JQ1 (5 µM). β-Actin mRNA levels were determined as a reference gene. Mean + 
SD is shown, * p < 0.05; *** p < 0.001, Student’s t-test. 
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Figure 1. Overexpression of BRD3OS (LINC00094) in cSCC cells is regulated by super enhancer.
(A) BRD3OS (LINC00094) gene is located near a super enhancer (SE, red bar). (B) BRD3OS (LINC00094)
expression was measured by quantitative real-time reverse transcriptase PCR (qRT-RCR) in nor-
mal human epidermal keratinocytes (NHEKs) (n = 4) and cSCC cells (n = 5, primary, round dots;
n = 3 metastatic, crosses). (C) Expression and cellular localization of BRD3OS (LINC00094) (white
arrows) were examined by RNA in situ hybridization (RNA-ISH). Scale bar = 20 µm. (D) BRD3OS
(LINC00094) expression (black arrows) was determined in cSCC xenograft tumors (UT-SCC7) by
RNA-ISH. Scale bar = 50 µm. (E): BRD3OS (LINC00094) expression in cSCC cell lines was determined
by qRT-PCR 24 h (UT-SCC7 and −105) or 48 h (UT-SCC91 and −111) after treatment with THZ1
(100 nM) or JQ1 (5 µM). β-Actin mRNA levels were determined as a reference gene. Mean + SD is
shown, * p < 0.05; *** p < 0.001, Student’s t-test.

3.3. BRD3OS (LINC00094) Is Expressed by cSCC Tumor Cells In Vivo

Paraffin-embedded formalin-fixed TMA samples containing normal skin (n = 24), pre-
malignant AK (n = 67), precancerous cSCCIS (n = 60), UV-induced primary non-metastatic
invasive cSCC (n = 119), primary metastatic cSCC (n = 76) and cSCC metastases (n = 8) were
analyzed with RNA-ISH for the expression of BRD3OS (LINC00094) in cSCC carcinogenesis
in vivo. Particles of BRD3OS (LINC00094) were noted mainly in the cell cytoplasm and less
abundantly in nuclei. The expression of BRD3OS (LINC00094) was strong in cSCCs and
cSCC metastases (Figure 2A–C), whereas in AKs (Figure 2E) and cSCCISs (Figure 2F), the
expression was weaker. In normal skin, the expression was weaker than in AK and cSCCIS
(Figure 2D), The BRD3OS (LINC00094) positive particles in the cytoplasm and nucleus
of epidermal and tumor cells were counted, and the tissue samples were classified based
on the number of particles in one cell. In addition, the distribution of particles in tissue
samples was estimated and taken into account in the classification (Figure 2A–G).

BRD3OS (LINC00094) expression was scored as negative (−) when single particles
were detected in single cells, weak positive (+) when single particles were noted in several
cells, moderate positive (++) when two particles were detected in several cells and strong
positive (+++) when more than two particles were detected in cell cytoplasm or nuclei
scattered widely in samples. The analysis showed that there was no strong (more than
two particles in cell) (+++) expression of BRD3OS (LINC00094) in normal skin samples
(0% of cases), and the strong (+++) positive expression was noted significantly more in
premalignant lesions (AK and cSCCIS) (42% of cases), invasive primary non-metastatic
cSCCs (55%), primary metastatic cSCCs (70%), and cSCC metastases (75%) than in normal
skin (0%) (Figure 2G). In addition, there were significantly less BRD3OS (LINC00094)
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positivity in AKs and cSCCISs compared to non-metastatic cSCCs and metastatic cSCCs but
more than in normal skin (Figure 2G). Furthermore, significantly stronger expression was
detected in metastatic cSCCs compared to non-metastatic cSCCs (Figure 2G). In addition,
the expression of BRD3OS (LINC00094) in cSCC metastases was as strong as in primary
metastatic cSCCs (Figure 2G). For positive and negative controls, human PPIB (Cyclophilin
B) and bacterial DapB (4-hydroxy-tetrahydrodipicolinate reductase) mRNAs were used,
respectively (Supplementary Figure S2). The results indicate that BRD3OS (LINC00094)
expression is upregulated during the progression of cSCC to invasive and metastatic stage.
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Figure 2. Expression of BRD3OS (LINC00094) in cSCC tumor cells in vivo. (A–F) RNA in situ
hybridization (RNA-ISH) expression of BRD3OS (LINC00094) in tissue sections. (A) UV-induced
primary non-metastatic invasive cSCC (n = 119), (B) primary metastatic cSCC (n = 76), (C) cSCC
metastasis (n = 8), (D) normal skin (n = 24), (E) actinic keratosis (AK; n = 67) and (F) cSCC in situ
(cSCCIS; n = 60). In invasive non-metastatic cSCCs (A), primary metastatic cSCCs (B), and cSCC
metastases (C), the expression of mainly cytoplasmic BRD3OS (LINC00094) was stronger than in
normal skin (D), AKs (E) or cSCCISs (F). Arrows illustrate the BRD3OS (LINC00094) positive spots in
cells. Scale bar = 20 µm. (G) The expression of BRD3OS (LINC00094) was classified as negative (−),
weak (+), moderate (++), and strong (+++) according to the extensity and number of positive spots in
cells. * p < 0.05, *** p < 0.001 by two-tailed X2 or Fisher’s exact test.



Cancers 2022, 14, 3980 8 of 16

3.4. BRD3OS (LINC00094) Expression Is Regulated by ERK1/2 Pathway

Basal activation of ERK1/2 and p38 MAPKs is detected in cSCC cells in culture
and in vivo [34–36]. To investigate the significance of BRD3OS (LINC00094) in epidermal
carcinogenesis, expression was studied in the HaCaT cell line, which is derived from human
epidermal keratinocytes and lacks functional p53, as well as in three HaCaT-derived Ha-
ras–transformed cell lines (A5, II-4, and RT3), which are representative in vitro models for
progressive stages of cSCC tumors. Malignant II-4 and RT3 cells also show more potent
ERK1/2 activation compared to benign A5 and HaCaT cells [36,37].

BRD3OS (LINC00094) levels were highest in the nontumorigenic HaCaT cells and grad-
ually lower compared with benign Ha-ras–transformed A5, II-4, and RT-3 cells, respectively
(Figure 3A). Treatment with PD98059, a specific inhibitor of MEK1 activation and the MAP
kinase cascade, led to a significant increase in BRD3OS (LINC00094) expression in HaCaT
cells (Figure 3B). In addition, HaCaT cells were transduced with recombinant adenoviruses
containing constitutively active MEK1 (RAdMEK1ca) or β-galactosidase (RAdLacZ, control
vector). In accordance with the observed decrease in BRD3OS (LINC00094) expression in
the Ha-ras–transformed HaCaT cell lines (Figure 3A), BRD3OS (LINC00094) expression
was significantly decreased in HaCaT cells transduced with RAdMEK1ca (Figure 3C).
Furthermore, treatment with PD98059 in RAdLacZ and RAdMEK1ca transduced HaCaT
cells led to significantly increased expression of BRD3OS (LINC00094) (Figure 3C). To-
gether, these results suggest that BRD3OS (LINC00094) expression is downregulated by the
ERK1/2 pathway.
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Figure 3. BRD3OS (LINC00094) expression by cSCC cells is regulated by ERK1/2 pathway. BRD3OS
(LINC00094) expression was determined by qRT-PCR in (A) HaCaT cell lines, (B) PD98059-treated
(30 µM) HaCaT cells, and (C) in HaCaT cells expressing constitutively active MEK1 (RAdMEK1ca) or
β-galactosidase (RAdLacZ, control vector). GAPDH mRNA levels were determined as a reference
gene. Mean + SD is shown, * p < 0.05; ** p < 0.01; *** p < 0.001. Student’s t-test.

3.5. Knockdown of BRD3OS (LINC00094) Inhibits the Expression of MMP-1 and MMP-13

To study the functional role of BRD3OS (LINC00094) in cSCC in more detail, we per-
formed an RNA-seq analysis of cSCC cells after BRD3OS siRNA knockdown (Figure 4A).
Gene enrichment analysis revealed several gene ontology (GO) terms related to cell adhesion
and extracellular space, such as Cell-matrix adhesion, Collagen fibril organization, Integrin bind-
ing, and Metalloendopeptidase activity (Figure 4B). Several matrix metalloproteinases (MMPs),
including MMP10, MMP13, and MMP7, were among the top downregulated genes in BRD3OS
(LINC00094) knockdown cSCC cells (Figure 4C), and several other MMP-gene family members
clearly stand out downregulated within the GO Metalloendopeptidase activity term (Figure 4D).
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MMP1, MMP10, and MMP13 were among the significantly regulated MMP genes after BRD3OS
(LINC00094) knockdown (Supplementary Figure S3). Decreased expression of MMP1, MMP10,
and MMP13 was further validated in cSCC cells after BRD3OS (LINC00094) knockdown by
qRT-PCR and Western blotting (Figures 5 and S4).
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Figure 4. RNA-seq analysis of BRD3OS (LINC00094) knockdown cSCC cells. cSCC cells were
transfected with negative control siRNA or BRD3OS siRNA4, and after 3 days, total RNA was
isolated, and RNA-seq was prepared. (A) BRD3OS (LINC00094) knockdown efficiency in three cSCC
cell lines (UT-SCC12, UT-SCC59A, and UT-SCC7) in the RNA-seq analysis. (B) Gene enrichment
analysis showing the top Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms of differentially expressed genes (full ranked list) in BRD3OS (LINC00094) knockdown
cSCC cells. (C) Heatmap showing the top 25 up- and downregulated genes (log2FC ≥ 1 or ≤−1,
p < 0.05) in BRD3OS (LINC00094) knockdown cSCC cells. (D) Gene plots showing the top 25 ranked
genes included in the respective GO terms.
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Figure 5. The expression of MMP-1 and MMP-13 is downregulated in cSCC cells after BRD3OS
(LINC00094) knockdown. (A) BRD3OS (LINC00094), MMP1, MMP10, and MMP13 levels were deter-
mined by qRT-PCR 72 h after BRD3OS (LINC00094) knockdown. Average of BRD3OS (LINC00094)
knockdown using four different siRNAs targeting BRD3OS (LINC00094) is shown. (B) Levels of
MMP-1 and MMP-13 in conditioned media were determined by Western blotting 72 h after BRD3OS
(LINC00094) knockdown. TIMP-1 was used as the loading control. Mean + SD is shown, ** p < 0.01;
*** p < 0.001. Student’s t-test.

3.6. Knockdown of BRD3OS (LINC00094) Inhibits Invasion of cSCC Cells by Downregulating
MMP-1 and MMP-13 Production

The RNA-seq analysis showed, that BRD3OS (LINC00094) siRNA knockdown resulted
in decreased expression of several MMP genes shown to degrade various ECM compo-
nents, which lead us to investigate the role of BRD3OS (LINC00094) in cSCC cell invasion.
Invasion of BRD3OS (LINC00094) knockdown cells through type I collagen matrix was sig-
nificantly decreased compared to negative control siRNA treated cSCC cells (Figure 6A–C).
Knockdown of MMP-1 or MMP-13 (Supplementary Figure S5) inhibited the invasion of
control siRNA—transfected cells through collagen I but had no effect on cell invasion after
BRD3OS (LINC00094) knockdown (Figure 6C). Lastly, cSCC cells were transfected with
BRD3OS siRNA and negative control siRNA and injected subcutaneously into the back
of the SCID mice for studying the role of BRD3OS (LINC00094) in tumor growth in vivo.
Xenograft growth was measured twice a week, and tumors were harvested 16 days after
implantation. BRD3OS (LINC00094) knockdown decreased tumor growth compared with
control tumors (Figure 6D). BRD3OS (LINC00094) expression was specifically detected at
the invasive edge of the xenograft tumors (Figure 1B), supporting our findings above of
BRD3OS (LINC00094) in regulation of MMP expression and invasion of cSCC cells.
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Figure 6. BRD3OS (LINC00094) knockdown inhibits cSCC cell invasion through collagen I.
(A) Representative images of invasion assay (64 h) of negative control siRNA and BRD3OS siRNA4-
treated cSCC cells. (B) cSCC cells were transfected with negative control siRNA or four different
BRD3OS (LINC00094) siRNAs, or (C) with MMP1 and MMP13 siRNAs in combination with or with-
out BRD3OS siRNA siRNA2 and 4 and plated on collagen I 24 h after transfection. Cell monolayer
was scratched, and collagen I solution was added in wells and allowed to polymerize, followed by
real-time imaging using the IncuCyte S3. Mean ± SD is shown, * p < 0.05, ** p < 0.01, *** p < 0.001,
two-way ANOVA, n = 4–7. (D) cSCC cells (UT-SCC7) were transfected with negative control siRNA
(n = 8) or BRD3OS siRNA4 (n = 7) and injected subcutaneously into the back of SCID mice. Tu-
mor growth was measured twice a week. Scale bar = 300 µm. Mean ± SEM is shown. * p < 0.05.
Student’s t-test.

4. Discussion

LncRNAs are still a largely uncharacterized group of non-coding RNAs with diverse
regulatory roles in various biological processes. LncRNAs are strictly regulated, and they
show cell and tissue-specific expression and subcellular localization [3]. These issues
make lncRNAs interesting potential biomarkers and therapeutic targets in cancer. The role
of lncRNAs in the pathogenesis of keratinocyte-derived skin cancers is not well known,
but there is growing evidence for the role of these RNA molecules in the progression of
cSCC [15]. Previously, we have shown the function of lncRNAs PICSAR and PRECSIT
in the progression of cSCC [16–18]. PICSAR regulates the proliferation of cSCC cells by
increasing ERK1/2 activity [16]. PICSAR also regulates the migration of these cells by
downregulating α2β1 and α5β1 integrins [17]. On the other hand, PRECSIT has been
shown to increase the invasion of cSCC cells by regulating the expression of MMPs via
STAT3 signaling [18]. Additionally, recent studies have implicated lncRNAs HOTAIR [38],
NEAT1 [39], and MALAT1 [40] in the progression of cSCC. Furthermore, LINC00319 has
been noted to regulate the invasion of cSCC cells [41].
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The whole transcriptome expression analysis identified BRD3OS (LINC00094) as one
of the significantly upregulated lncRNAs in cSCC cells compared with NHEKs [16]. In
this study, overexpression of BRD3OS (LINC00094) in primary and metastatic cSCC cell
lines compared with NHEKs was confirmed by qRT-PCR. Additionally, the expression of
BRD3OS (LINC00094) was detected in cSCC cells in culture and in cSCC-derived xenograft
tumors using RNA-ISH. Based on the ISH of cultured cSCC cells, BRD3OS (LINC00094)
is localized mainly in the cytoplasm and perinuclear space. In previous studies, BRD3OS
(LINC00094) has been shown to be upregulated during cancer progression. BRD3OS
(LINC00094) has been shown to be expressed by esophageal cancer (ESCC) cells and to
induce the growth and survival of these cancer cells [30]. On the other hand, BRD3OS
(LINC00094) has been shown to be downregulated in lung cancer compared to normal
tissue [42]. LINC00094 is encoded by the BRD3OS gene that is predicted to encode an
84 amino acid protein, and this open reading frame is conserved in many mammals
and some amphibians and fish [43]. Approximately 40% of lncRNAs are translated, and
cytoplasmic lncRNAs such as BRD3OS (LINC00094) are more often translated than nuclear
lncRNAs [44]. On the other hand, the translatability of lncRNAs does not necessarily
indicate whether the translated peptide is biologically functional or stable enough to be
detected, and these RNA molecules may have both RNA- and protein-related functions [44].

To study the basal regulation of BRD3OS (LINC00094) expression, an immortalized
nontumorigenic cell line HaCaT, derived from human epidermal keratinocytes and Ha-ras-
transformed HaCaT cell lines (A5, II-4, and RT3) were used. The results demonstrate that
the expression of BRD3OS (LINC00094) was decreased in Ha-ras transformed HaCaT cell
lines. The increased phosphorylation of ERK1/2 has been demonstrated in HaCaT cell lines
RT3 and II4 showing the highest phosphorylation of ERK1/2 [36]. Treatment of HaCaT cells
with an ERK1/2 inhibitor increased, and infection of HaCaT cells with constitutively active
MEK1 adenovirus decreased the expression of BRD3OS (LINC00094). These results show
that the basal expression of BRD3OS (LINC00094) is decreased by MEK1/ERK1/2 pathway
in HaCaT cells. The phosphorylation level of ERK1/2 varies both in cSCC lines in culture
and in cSCC tumors in vivo [35,36]. Our results also show that BRD3OS (LINC00094) is
not expressed by all cSCC tumor cells in vivo. Based on these findings, the heterogenicity
of cSCC tumors may indicate that in some cSCC cells in which ERK1/2 activity is low,
the expression of BRD3OS (LINC00094) might increase and thus promote the invasion of
these cells.

Super enhancers have been shown to present a role in tumorigenesis, indicating that
they could be promising therapeutic targets for cancer treatment [42,45]. Targeted small
molecule inhibitors (SMI) have been developed to specifically block the interaction between
SE regions and their corresponding complexes. The SMIs designed for the treatment of
cancer include, for example, BRD4 inhibitor (JQ1) [46] and CDK7 inhibitor (THZ1) [47].
SMIs against CDK7 and BRD4 are interesting drug candidates and have entered clinical
trials [42]. In this study, BRD3OS (LINC00094) was noted to be downregulated by THZ1
and JQ1, demonstrating that it is a super enhancer-regulated lncRNA in cSCC cells.

To investigate the molecular mechanism of BRD3OS (LINC00094) in more detail, total
RNA-seq was performed for cSCC cells after BRD3OS (LINC00094) knockdown. Knock-
down of BRD3OS (LINC00094) significantly regulated the genes belonging to GO terms
and KEGG pathways related to the invasion of cSCC cells. Interestingly, the regulation
of several cSCC invasion-associated MMPs was noted after BRD3OS (LINC00094) knock-
down. Notably, the genes encoding for these MMPs are all located in the MMP gene
cluster in locus 11q22.3 [48], suggesting that this MMP gene cluster is regulated by super
enhancer-regulated BRD3OS (LINC00094).

MMP-1 and MMP-13 were also shown to be downregulated after BRD3OS (LINC00094)
knockdown at the protein level. Previously, MMP-1 and MMP-13 have been shown to be
specifically expressed by tumor cells in cSCC [49,50]. In addition. MMP-1 and MMP-13
have been demonstrated to be important regulators of cSCC cell invasion [51–53]. Based
on these findings, the role of BRD3OS (LINC00094) in cSCC cell invasion was investigated.
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It was noted that knockdown of BRD3OS (LINC00094) inhibited the invasion of cSCC cells
through collagen I by regulating the expression of MMP-1 and MMP-13. It is tempting to
suggest that in cSCC cells where ERK1/2 activity is low, BRD3OS (LINC00094) expression
is elevated, and the increased expression of this lncRNA then promotes the invasion of
these cancer cells.

5. Conclusions

In this study, BRD3OS (LINC00094) was shown to be upregulated in cSCC cells com-
pared to NHEKs. Additionally, increased expression of BRD3OS (LINC00094) was noted in
tumor cells in cSCC in vivo compared with normal skin, AK, and cSCCIS. The expression
of BRD3OS (LINC00094) in cSCC cells was downregulated by SE inhibitors THZ1 and JQ1
in cSCC cells. Knockdown of BRD3OS (LINC00094) resulted in significantly decreased
invasion of cSCC cells through collagen type I and suppressed the growth of human cSCC
xenografts in vivo. Additionally, BRD3OS (LINC00094) knockdown decreased the expres-
sion of invasion-related proteinases MMP-1 and MMP-13. Based on these observations,
BRD3OS (LINC00094) was named SERLOC (Super Enhancer and ERK1/2 Regulated Long
Intergenic non-protein coding transcript Overexpressed in Carcinomas). These results
provide evidence for the role of SERLOC in promoting the invasion of cSCC cells by regu-
lating the production of invasion-associated MMPs and suggest SE-regulated SERLOC as
a biomarker for cSCC metastasis and as a potential therapeutic target in the treatment of
locally advanced and metastatic cSCC.
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tissue slide. Figure S3: Regulation of MMPs after BRD3OS (LINC00094) knockdown in cSCC cells.
Figure S4: MMP-1 and MMP-13 are downregulated in UT-SCC59A cells after BRD3OS (LINC00094)
knockdown. Figure S5: Western blot analysis of MMP-1 and MMP-13 expression in cSCC cell culture
medium 72 h after transfection of negative control and MMP1 or MMP13 siRNAs. Table S1: List of
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