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Attenuation-Corrected
Estimators of Reliability

Jari Metsämuuronen1,2

Abstract
The estimates of reliability are usually attenuated and deflated because the item–score correlation
(ρgX , Rit) embedded in the most widely used estimators is affected by several sources of mechanical
error in the estimation. Empirical examples show that, in some types of datasets, the estimates by
traditional alpha may be deflated by 0.40–0.60 units of reliability and those by maximal reliability by
0.40 units of reliability. This article proposes a new kind of estimator of correlation: attenuation-
corrected correlation (RAC): the proportion of observed correlation with the maximal possible
correlation reachable by the given item and score. By replacing ρgX with RAC in known formulas of
estimators of reliability, we get attenuation-corrected alpha, theta, omega, and maximal reliability
which all belong to a family of so-called deflation-corrected estimators of reliability.

Keywords
reliability, attenuation in reliability, attenuation in correlation, attenuation-corrected estimators
of reliability, deflation-corrected estimators of reliability

Introduction—Attenuation andDeflation in Correlation and Reliability

The reliability of a test score variable has interested scholars for more than a century and for good
reasons. Reliability serves four main purposes: it is used in estimating error in the score of an
individual test taker, that is, in indicating the (overall) measurement error in the test score
(Gulliksen, 1950), in assessing the (overall) quality of the measurement (e.g., Metsämuuronen,
2017), in correcting the attenuation of the estimates of regression or path models (e.g., Cole &
Preacher, 2014), and in correcting the attenuation in correlations in validity studies and meta-
analyses (e.g., Schmidt & Hunter, 2015). In all cases, we want to obtain as accurate estimate of
reliability as possible.

Two terms related to correlation and reliability are worth highlighting here: attenuation and
deflation. Usually, attenuation refers to underestimation as a natural consequence of random errors
in the measurement, and deflation refers to underestimation caused by artificial systematic errors
during the estimation (see the discussion of the terms in, e.g., Chan, 2008; Gadermann et al., 2012;
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Metsämuuronen, 2022a; Revelle & Condon, 2018). These are not always easy to separate from
each other and, hence, both terms are used during the article. Although deflation may be closer the
focus in this article, the term attenuation is mainly used. These concepts are connected to a new
concept called here “mechanical error in estimates of correlation” (MEC), that is, a characteristic
of estimators of correlation to underestimate the true correlation because of technical or me-
chanical reasons.

This article discusses, first, how the attenuation and deflation in correlation and in reliability are
intertwined and exacerbated: attenuation and deflation in correlation are seen to be the reasons for
the attenuation and deflation in reliability. Second, some conceptual and practical options are
discussed about how to reduce the deflation in the estimates of reliability.

Attenuation, Deflation, Restriction in Range, and MEC in Correlation

Attenuation in correlation has been discussed for more than a century starting from Pearson (1903)
and Spearman (1904). The phenomenon has been studied, specifically, by scholars working on
restriction of range (RR; see the literature in Sackett & Yang, 2000; Sackett et al., 2007; Schmidt
et al., 2008). RR is phenomenon that when only a portion of the range of values of the variable is
actualized in the sample, such as when only the best performing students from the population
apply to a very demanding study program causing that the variance in the entrance test is reduced
remarkably, this leads to inaccuracy of the estimates used in prediction the performance (see
illustrations of different patterns of RR in Sackett & Yang, 2000). Another area where the at-
tenuation of correlation is considered in detail are validity studies and meta-analytic studies (see
literature in, e.g., Schmidt & Hunter, 2015; Schmidt et al., 2008). Many options to correct at-
tenuation have been offered, specifically, related to concurrent validity of the scores (see a ty-
pology and history in Sackett & Yang, 2000; Sackett et al., 2007; see also Schmidt et al., 2008).

Deflation or inaccuracy in the estimates of correlation has been noticed in several simulations
(see, e.g., in Martin, 1973, 1978; Metsämuuronen, 2021a, 2022b; Olson, 1980). Even if there is no
traditional manifestation of RR in a test, the product-moment correlation coefficient itself (PMC;
Pearson, 1896) is deflated because PMC is very vulnerable to several sources of MEC (see
Metsämuuronen, 2021a, 2022b). It is known that PMC cannot reach the ultimate perfect cor-
relation unless the variables have equal number of categories (see algebraic reasons in, e.g.,
Metsämuuronen, 2017); this is the technical reason for attenuation. This obvious attenuation or
deflation is simple to observe if we have two identical continuous variables which are truncated
such that one is dichotomized (g) and the other is polytomized (X). The magnitude of the estimates
of the correlation between these different manifestations of the same variable by PMC cannot
reach the obvious (latent) perfect correlation but, instead, the highest value depends on several
factor even without RR. Some of these sources of MEC are well-known such as the number of
categories in g and X and the cut-off where the dichotomization and polytomization has been made
(see simulations, e.g., in Metsämuuronen, 2020a, 2022b).

Attenuation and deflation in correlation has a strict relevance in measurement modeling
settings where the dimensions of items (g) and score (X) differ from each other in an obvious
manner. Specifically, Schmidt and Hunter (1999) have pointed out that we should try to embed
corrections of attenuation as part of our estimations of measurement error. This is an under-
standable and relevant point because the obvious attenuation in PMC has a strict and remarkable
effect on the estimates of reliability. This is illustrated later by empirical examples. Although the
issue has been known for tens of years, and some solutions have been offered for the practical use,
the conceptualization of MEC in the measurement models is somewhat undeveloped (see an
attempt in Supplement Appendix 1). This article aims to illustrate the effect of attenuation and
deflation in the estimators of reliability and to offer some practical solutions for the problem.
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Attenuation and Deflation in Reliability

Brown (1910) and Spearman (1910) may be the first scholars to connect attenuation of the
estimates of correlation with the estimates of reliability—although in an opposite way to the
interest in this article. Originally, the first estimator of reliability, Brown–Spearman parallel
reliability coefficient (BS; of the reasoning for the unconventional order of the inventors, see Cho
& Chun, 2018), was invented to get a better approximation of correlation in the case of “faulty
data” (see also Guttman, 1945). In this article, the viewpoint is flipped: the flaws in correlation
coefficient are, factually, the elementary reason for the mechanical underestimation in reliability.
Although flipping the viewpoint, we note Brown’s and Spearman’s remarkable role in initiating
the discussion of measurement error and reliability as we have today.

Another important scholar in the history pointing to the mechanical error in the estimates of
reliability was Louis Guttman whose seminal study of different lower bounds of reliability
(Guttman, 1945) is still valid: the true population reliability is always higher than the observed
reliability by the coefficient we know today as coefficient alpha (α; chronology, Guttman, 1945;
Jackson & Ferguson, 1941; Kuder & Richardson, 1937) or Cronbach’s alpha (Cronbach, 1951).
Novick and Lewis (1967) continued Guttman’s work and showed that underestimation is caused
by deviation of the (essential) tau-equivalency: if all items have (essentially) identical true value
(tau), alpha will not underestimate reliability (see the discussion also in Raykov & Marcoulides,
2017).

Since Guttman (1945) and Novick and Lewis (1967), numerous studies have handled the
underestimation in reliability and, specifically, in α. Attenuation in α has been connected to a
simplified assumption of the classical test theory including violations in tau–equivalence, uni-
dimensionality, and uncorrelated errors (e.g., Green & Yang, 2009; Trizano-Hermosilla & Al-
varado, 2016). Among others, Gadermann et al. (2012), Metsämuuronen (2017, 2020a, 2021a,
2022b), Zumbo et al. (2007) have discussed a different type of reason for the underestimation in
reliability: technical underestimation of correlation by PMC discussed above.

Notably, PMC is embedded in most of the widely used estimators of reliability. PMC in the
form of item–score correlation ðρgX Þ is visible in such classic estimators of reliability as BS,
Flanagan–Rulon formula (Rulon, 1939), Kuder–Richardson formulas 20 and 21 (KR20,
KR21; Kuder & Richardson, 1937), coefficient alpha, lambda family (λ1 � λ6, Guttman,
1945), and the greatest lower bound of reliability based on Guttman’s λ4 (GLB; Jackson &
Agunwamba, 1977; Woodhouse & Jackson, 1977). Common to these estimators is that the
variance of the test score ðσ2X Þ inherited from the basic definition of reliability ðREL ¼
σ2T=σ

2
X ¼ 1� σ2E=σ

2
X εÞ is strictly expressed in the formula, and σ2X can be expressed using item

variances ðσ2gÞ and ρgX : σ
2
X ¼

� Pk
g¼1

σg × ρgX

�2

(Lord et al., 1968) where k refers to number of

partitions or items in the compilation. Then, coefficient alpha, as an example, can be expressed
as

α ¼ k

k � 1

0BBBB@1�
Pk
i¼1

σ2g Pk
g¼1

σg × ρgX

!2

1CCCCA (1)

(Lord et al., 1968) where PMC is visible.
PMC is embedded in such estimators as Armor’s theta (ρTH ; Armor, 1973; see also Kaiser &

Caffrey, 1965; Lord, 1958)
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ρTH ¼ k

k � 1

0BBB@1� 1Pk
i¼1

λ2i

1CCCA (2)

where λi are principal component loadings of the (first) principal component and which maximizes
the estimates by coefficient alpha (Greene & Carmines, 1980), McDonald’s omega total, later just
omega (ρωTotal

¼ ρω; Heise & Bohrnstedt, 1970; McDonald, 1970)

ρω ¼

�Pk
i¼1

λi

�2

�Pk
i¼1

λi

�2

þPk
g¼1

�
1� λ2i

� (3)

and maximal reliability (ρMAX ; see the conceptualization in Li, 1997; Li et al., 1996; and different
estimators in, e.g., Aquirre-Urrita et al., 2019; Cheng et al., 2012; Raykov, 2004)

ρMAX ¼ 1

1þ 1Pk
i¼1

ðλ2i =ð1�λ2i ÞÞ
(4)

(e.g., Cheng et al., 2012). Relation of ρgX and the principal component loadings (in ρTH ) and
factor loadings (in ρω and ρMAX ) is understandable because the loadings are, essentially, cor-
relations between an item and a score variable (e.g., Cramer & Howitt, 2004; Kim & Mueller,
1978; Yang, 2010); λi is essentially ρgX .

Attenuation and Deflation in Reliability in Practical Testing Settings

The consequence of the attenuation in ρgX is that, using the traditional estimators of reliability, the
estimates are always negatively biased. While ρgX is severely attenuated and deflated, specifically,
with items of extreme difficulty levels, we can predict that if the test is very difficult or very easy
for the target group, or if the items are incrementally difficult including both easy and difficult
items, the estimate of reliability would be attenuated remarkably because of MEC. If we use
attenuation-corrected ρgX or if replacing ρgX in the estimators of reliability with another coefficient
of correlation shown to be less MEC-affected, we get attenuation- or MEC-corrected estimators of
reliability with a possibly remarkable reduction of attenuation in reliability. The phenomenon is
illustrated here by two empirical examples, and the factual estimators are discussed in section
Attenuation and other deflation-corrected estimators of reliability.

The first example comes fromMetsämuuronen and Ukkola (2019). They used a very easy sub-
test of preconditions in mother language at the beginning of the first year in school as a part of a
National level assessment of learning outcomes (n = 7770); 72% of the test takers got the highest
possible score in 8-item, 11-point screening test for basic skills of understanding auditive in-
structions. The magnitude of the estimate by coefficient alpha was α = 0.25 and by maximal
reliability ρMAX ¼ 0:48. The outcome was checked by a MEC-corrected estimator (αD; see later
equation (12)) by replacing ρgX in the formula of alpha by SomersD (Somers, 1962), known to be
more resistant to MEC than PMC, especially, with binary items (see Metsämuuronen, 2020a,
2020b, 2021a). The magnitude of the estimate appeared to be αD ¼ 0:86. Hence, in comparison
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with αD, the estimate by α was deflated from 0.86 to 0.25, that is, 0.61 units of reliability (or 71%;
see this interpretation in Gadermann et al., 2012) and maximal reliability was deflated 0.38 units of
reliability (46%). Deflation of a same magnitude was found also in Gadermann et al.’s (2012)
dataset where, by using ordinal alpha ðαORDÞ, another kind of MEC-corrected estimator based on
polychoric correlation (RPC; Pearson, 1900, 1913), the estimate by α was deflated from 0.85
ðαORDÞ to 0.46 ðαÞ, that is, 0.39 units of reliability (46%). In both examples the attenuation in α (as
well as in ρMAX ) is remarkable and worth noting.

The obvious reason for the remarkably higher estimate by αD and αORD than by the traditional α
and ρMAX is that PMC and factor loadings are severely affected by MEC in items with extreme
difficulty level while D and RPC are less affected by MEC in the binary case (see Metsämuuronen,
2021a, 2022b). In the case of Metsämuuronen and Ukkola (2019), the magnitude of estimate
would have been even higher if RPC or Goodman–Kruskal gamma (G; Goodman & Kruskal,
1954) was used instead of D in the formula because the estimates by D are usually more
conservative than those by G (see a re-analysis of the dataset in Metsämuuronen, 2022a). Some
exceptions of the conservativeness of D are discussed by, for example, Metsämuuronen (2021b),
and, in the case of binary items, the difference between the estimates by RPC and G is nominal
(Metsämuuronen, 2021a).

Research Question

Seeking the most accurate estimate of reliability is important for all four main uses of reliability
discussed above. Attenuation and deflation in reliability is technical and caused, mainly, by the
mechanical error in ρgX . A relevant question is, how to solve the issue of attenuation in ρgX and
how this could be utilized in estimating reliability.

While there are some MEC-corrected estimators available based on changing the whole es-
timator of correlation (see Gadermann et al., 2012; Metsämuuronen, 2020b, 2021a, 2021b, 2022a;
Zumbo et al., 2007; some are discussed below), this article studies the option of a relevant at-
tenuation correction for ρgX as a solution. A simple correction of attenuation for ρgX is proposed
first after which a family of attenuation-corrected estimators of reliability is proposed and nu-
merical examples are given of their behavior in three forms of datasets: (1) a dataset of extreme
difficulty level, (2) a dataset of incremental difficulty level, and (3) a larger simulation based on a
dataset of 1440 real-world tests. The conceptual discussion related to the attenuation-corrected
estimators of reliability is incorporated in Supplement Appendix 1 (see also Metsämuuronen,
2022a, 2022b).

Attenuation- and Other Deflation-Corrected Estimators of Reliability

In what follows, estimators of reliability based on MEC-corrected measurement model (see
Supplement Appendix 1) are divided into two categories as discussed above. Estimators based on
replacing ρgX by a totally different coefficient are called MEC-corrected estimators of reliability
(MCER) and estimators based on correcting ρgX by a relevant attenuation correction, are called
attenuation-corrected estimators of reliability (ACER). These together form an extended family of
deflation-corrected estimators of reliability (DCER). Although the focus is on ACERs, some
MCERs are introduced first as benchmarks.

Selected MEC-Corrected Estimators of Reliability as Benchmarks

Metsämuuronen (2021a, 2022a, 2022b), specifically, discuss using the formula (1) as a basis of
estimating MEC-corrected alpha where the error-causing ρgX is replaced by a totally different
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estimator that would be less affected by MEC. Some options of this kind of coefficients have been
suggested in earlier works: RPC (see Gadermann et al., 2012; Metsämuuronen, 2022a; Zumbo
et al., 2007), G and dimension-corrected G (G2; Metsämuuronen, 2021a, 2022a) as well as D and
dimension-corrected D (D2; Metsämuuronen, 2020b, 2021a, 2022a; Metsämuuronen & Ukkola,
2019). Of these, in simulations, RPC, G, and G2 appear to be MEC-free in many conditions of
MEC affecting obviously in PMC (Metsämuuronen, 2021a, 2022b). Several other coefficients
may be found potential as substitutes for ρgX (see some options in Metsämuuronen, 2020a, 2022b,
Moses, 2017).

Let us denote a general weight factor between an item gi and the latent variable θ by wi. If we
apply the estimator based on alpha (equation (1)), select the raw score (X) as the manifestation of θ,
and vary wi, a theoretical form of MCERs based on the formula of alpha is

ρα wiX ¼ αwiX ¼ k
k�1

0BBB@1�
Pk
i¼1

σ2i

ðPk
i¼1

σi ×wiXÞ2

1CCCA. Selecting wiX ¼ ρgX leads us to the traditional alpha

while some MCERs based on different estimators of correlation can be based on RPC, G, G2, D,
and D2

ρα RPCiX ¼ αRPCiX ¼ k

k � 1

0BBB@1�
Pk
i¼1

σ2i�Pk
i¼1

σi ×RPCiX

�2

1CCCA (5)

ρα GiX ¼ αGiX ¼ k

k � 1

0BBB@1�
Pk
i¼1

σ2
i�Pk

i¼1
σi ×GiX

�2

1CCCA (6)

ρα G2iX ¼ αG2iX ¼ k

k � 1

0BBB@1�
Pk
i¼1

σ2
i�Pk

i¼1
σi ×G2iX

�2

1CCCA (7)

ρα DiX ¼ αDiX ¼ k

k � 1

0BBB@1�
Pk
i¼1

σ2
i�Pk

i¼1
σi ×DðgjX ÞiX

�2

1CCCA (8)

ρα D2iX
¼ αD2iX ¼ k

k � 1

0BBB@1�
Pk
i¼1

σ2
i�Pk

i¼1
σi ×D2iX

�2

1CCCA (9)

where RPCiX, GiX, G2iX , D (g|X)iX, and D2iX represent different types of coefficients of correlation
between an item and the score variable where the magnitude of MEC is lower than in PMC. Of
these, the estimator based on RPC (equation (5)) refers to an unreachable and theoretical score
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(see the discussion in Chalmers, 2017). The estimators based on G and D (equations (6) and (8))
have concrete interpretations in reflecting the proportion of logically ordered test takers in the
dataset (see Metsämuuronen, 2021a, 2021b). The estimators based on G2 and D2 (equations (7)
and (9)) correct the obvious underestimation of association by G and D in the case of polytomous
items (Metsämuuronen, 2020b, 2021a) and, hence, the estimates are more liberal than those based
onG andD. In simulations (e.g., Metsämuuronen, 2021a, 2022b), all these have shown to be less-
MEC-defected options than PMC. Later, in the numerical section, these estimators are used as
benchmarks to ACERs. Similar types of estimators could also be proposed based on equations
(2)–(4) although these are not discussed here (see, however, Metsämuuronen, 2022a). Notably,
Zumbo et al.’s (2007) ordinal alpha and ordinal theta (Gadermann et al., 2012) are based on this
idea although leading to different practicalities: for the calculations, the matrix of PMCs is re-
placed by a matrix of RPCs.

Attenuation-Corrected Correlation as a Substitute of ρgX in the Estimators of Reliability

Specific types of DCERs are obtained if, in the estimators, PMC is replaced by an attenuation-
corrected PMC. Attenuation in correlation have been studied since the dawn of estimators as
discussed above. The well-known corrections based on works of Pearson (1903 with notes by
Aitken, 1934 and Lawley, 1943) and Thorndike (1949) are based on correcting attenuation when
restriction occurs in one variable, that is, in the score variable. This kind of attenuation correction
is used, specifically, when selecting personnel or students based either directly or indirectly (that
is, as a part of some other criteria) on their performance in a test. The idea is to enhance the
concurrent validity of the test score of this restricted sample by altering it either by knowing or
modeling the behavior of unrestricted population variance (see the mechanics in, e.g., Sackett &
Yang, 2000; Schmidt et al., 2008). These approaches to attenuation correction do not seem usable
in item analysis settings. Hence, another logic is proposed as an option for measurement modeling
settings.

To propose another type of attenuation correction, we recall that the correlation between an
item and a score given the dataset cannot exceed the limit specified by the observed responses in
the item and the score. Namely, given the score and the observed response pattern in the item, the
score variance ðσ2X Þ and item variance ðσ2gÞ are fixed. Recalling the basic formula of PMC
ðρgX ¼ σgX =σgσX Þ, the only element affecting the magnitude of correlation is the item–score
covariance ðσgX Þ. The maximum value of σgX is obtained when g and X are in the same order.
Then, a simple attenuation correction related to ρgX (ρAC , RAC) is to proportion the observed
correlation ðρgX ObsÞ with the maximal possible correlation ðρgX MaxÞ given the observed score
and item

ρAC ¼ RAC ¼ ρgX Obs

ρgX Max

(10)

RAC proposed here is not restricted to measurement modeling settings; g and X refer to general
variables with a narrower and wider scale, respectively. Calculation of RAC is illustrated later with
numerical examples.

Attenuation-Corrected Estimators of Reliability

If we apply the estimators (1), (2), (3), and (4), and we use RAC as the manifestation of the linking
element wi, but we do not fix the manifestation of θ, we get (a theoretical) attenuation-corrected
alpha.
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ρα wiθ ¼ ρα RACiθ ¼ αRAC ¼ k

k � 1

0BBB@1�
Pk
i¼1

σ2
i�Pk

i¼1
σi ×RACiθ

�2

1CCCA (11)

attenuation-corrected theta

ρTH wiθ ¼ ρTH RACiθ ¼
k

k � 1

0BBB@1� 1Pk
i¼1

R2
ACiθ

1CCCA (12)

attenuation-corrected omega

ρω wiθ ¼ ρω RACiθ ¼

�Pk
i¼1

RACiθ

�2

�Pk
i¼1

RACiθ

�2

þPk
i¼1

�
1� R2

ACiθ

� (13)

and attenuation-corrected ρMAX

ρMAX wiθ ¼ ρMAX RACiθ ¼
1

1þ 1Pk
i¼1

ðR2ACiθ=ð1�R2
ACiθÞÞ

(14)

Using the estimators (2), (3), and (4) outside of their original context is, obviously, debatable;
here a stand is taken that they could be used as stand-alone estimators even without their original
contexts related to principal component- and factor analysis. Alternatively, the estimators (12),
(13), and (14) may be taken as outputs of renewed procedures in the factor- and principal
component analysis where λi is an attenuation-corrected loading. In all cases, the magnitude of the
attenuation-corrected correlation is higher than the observed loading and, consequently, the
attenuation-corrected reliability is expected to be higher than the reliability obtained by using
traditional estimator.

If we apply equation (10) to estimators (11) to (14), we get ACERs based on RAC. In the
extreme cases where all items can discriminate the test takers in a deterministic manner, that is,
in the case of RACi = RACj = 1, the ACERs based on the forms of theta (equation (12)) and
omega (equation (13)) would lead to perfect reliability irrespective of item variances:

ρTH RACX ¼ k
k�1

�
1� 1

k

�
≡ 1 and ρω RACX ¼ ðkÞ2

ðkÞ2þ0
≡ 1. In the case, estimator (11) reaches the

value αRAC ¼ 1 only when all item variances are equal. Then,bαRAC ¼ k
k�1

�
1� kσ2

ðkσÞ2
�
¼ k

k�1

�
1� 1

k

�
≡ 1. Otherwise, the maximum value is

αMAX
RAC ¼ k

k�1

�
1�Pk

i¼1
σ2i =ð

Pk
i¼1

σiÞ2
�
. Notably, in the case of deterministic discrimination (in any

of the items), a coefficient based on ρMAX (equation (14)) could not be used due to mathe-
matical reasons (it requires division by zero which is not defined).
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Numerical Examples of Attenuation-Corrected Correlation
and Reliability

Two hypothetical numerical examples illustrate how attenuation correction (10) affects reliability
when applied in different estimators: Case 1 represents tests with extreme difficulty level causing
radical attenuation in reliability; this case is comparable with the real-life case by Metsämuuronen
and Ukkola (2019) discussed above. Case 2 represents tests with incremental difficulty levels in
items comparable with the traditions in the achievement testing. The examples are created to
highlight the differences between the traditional estimator and the ACERs. Third example comes
by a larger simulation of 1440 real-life datasets.

The numerical tables and in-depth discussion in seen in Supplement Appendix 2. Here, only the
outlines of the results are discussed. Obviously, in-depth studies are needed to confirm the
behavior of the used estimators in real-world datasets as well as in the controlled situations.

Case 1: A Test of Extreme Difficulty Level

Assume a hypothetical dataset of five items with 0–2 points (Tables A1a–A1c in Supplement
Appendix 2). This could be a screening test of understanding instructions where all native
speakers are expected to get full marks while second language speakers or those with some
learning difficulty may make some mistakes in the test items.

Four points highlighted from Case 1 are relevant also later in Case 2. First, using equation (1),
the traditional coefficient alpha underestimates the reliability in an obvious manner: bα ¼ 0:352.
The low value is caused by reduction in item variances leading toMEC in observed ρiX ; even at the
highest, given the dataset, ρgX can reach values ρiX Max ¼ 0:616–0:894. Equation (11) gives an
attenuation-corrected estimate bαRAC ¼ 0:774. Although the correction of attenuation or deflation
in reliability based on the alpha formula is remarkable (0.42 units of reliability), it seems
conservative in comparison with the more advanced ACERs: equation (12) gives an estimatebρTH RACX ¼ 0:834 and equation (13) bρω RACX ¼ 0:873; all are notably higher than the traditional
alpha and theta ðbρTHθ ¼ 0:631Þ. In comparison with the different ACERs, the original alpha seems
deflated by 0.48–0.52 units of reliability. Notably, estimates by omega and maximal reliability
cannot be calculated because the correlation matrix is not positively definite.

Second, because some of the MCERs based on changing the entire coefficient have concrete
interpretations, their estimates may be valuable benchmarks to the deflation in the traditional
alpha. The estimator based on RPC (equation (5)) gives the estimate bαRPC ¼ 0:863, the estimator
based onG (equation (6)) bαG ¼ 0:902, and the estimator based onD (equation (8)) gives the valuebαD ¼ 0:886. The estimates by G and D strictly indicates the proportion of logically ordered test
takers in the item after they are ordered by the score; this proportion can be calculated by p ¼
0:5 ×Gþ 0:5 and p ¼ 0:5 ×DðgjX Þ þ 0:5 derived from Metsämuuronen (2021b). For example,
by using D, in item g1 this proportion is p ¼ 0:5 × 0:842þ 0:5 ¼ 0:921, that is, 92.1% of all
observations in item g1 are in a logical order after ordered by the score. In all items together, the
average proportion is 92.9%. Hence, the set of items can discriminate very effectively those who
got full marks from other test takers. Thus, it seems that attenuation-corrected values reflect more
accurately the MEC-free reliability than the original estimate by alpha.

Third, that the magnitude of the estimates by αRAC is lower than the one by αRPC is not a general
characteristic. In Case 2, it is to be seen that bαRAC >bαRPC . That the estimate based on G is higher
than the one by RPC is not a general characteristic either; it is also a coincidence in the dataset. In
real-life settings with two or three categories in the item,G and RPC seem to give estimates that are
quite close to each other (see simulations in Metsämuuronen, 2021a, 2022b). However, that the
magnitude of the estimates by D are lower than those by G is expected because, with the same
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pairs of variables, D tends to give more conservative estimates of association than G (see
Metsämuuronen, 2021b). Also, that the magnitude of the estimates is higher when using G2 and
D2 in comparison with G and D is expected because G2 and D2 are developed to correct the
obvious underestimation obtained by G and D when the number of categories exceeded three (D)
or four (G). Using equation (7) based on G2, we get an estimate bαG2 ¼ 0:910 and by equation (9)
based on D2, we get bαD2 ¼ 0:894.

Fourth, to outline, because ρgX is severely attenuated with items of extreme difficulty level, the
estimate of reliability by coefficient alpha of a test with extreme difficulty level is severely at-
tenuated; the traditional alpha may underestimate reliability around 0.42–0.52 units of reliability
in comparison with attenuation-corrected coefficients. The simple correction for attenuation
(equation (10)) in each item and the related ACERs have a remarkable improvement over the
traditional estimator. By comparing these estimates with the other type of MEC-corrected es-
timates of reliability based on coefficient alpha, we note that the estimate by αRAC seems con-
servative when the test has an extreme difficulty level. This characteristic is not a general one as is
to be seen in Case 2. A simulation regarding the limits and characteristics of ACERs are discussed
with Case 3.

Case 2: Incrementally Structured Dataset

Assume a hypothetical dataset as in Tables A2a–A2c (Supplement Appendix 2) of five items with
0 –2 points with incremental difficulty level of items. This could be a short-ish sub-test of
“Algebra” as a part of a longer achievement test of mathematics.

Basically, the main result is the same as in Case 1: reliability estimated by the traditional
coefficient alpha (ðbα ¼ 0:411Þ), theta ðbρTH ¼ 0:531Þ , and omegabρω ¼ 0:563 are deflated because
the test comprises both very easy and difficult items; even at the highest in the given dataset, PMC
in the extreme items could not exceed values ρiX Max ¼ 0:451� 0:482. The estimates of the
ACERs by equations (10)–(12) are bαRAC ¼ 0:790 bρTH RAC ¼ 0:838, bρω RAC ¼ 0:881, respec-
tively. The estimate by the ACER based on the alpha formula comes quite close to the ones by
other types of MEC-corrected estimates by equations (5)–(7) (bαRPC ¼ 0:787, bαG ¼ 0:785, andbαG2 ¼ 0:806, respectively). In the case, the differences between αRAC and other deflation-corrected
estimates based on alpha are subtle but the difference between these and the traditional α is
notable; the traditional alpha seems to underestimate reliability around 0.38–0.47 units of reli-
ability, traditional theta seems to underestimate reliability around 0.25 units, and traditional omega
around 0.24 units of correlation.

Case 3. Larger Simulation of the Behavior of RAC and Attenuation-Corrected Estimator
of Reliability

A real-life dataset of 4022 nationally representative test-takers of a mathematics test with 30
binary items (FINEEC, 2018) is used as the “population” in simulation of the behavior of RAC and
ACERs in the real-life testing settings. The characteristic of the dataset is discussed in Supplement
Appendix 2. The dataset of individual items including several indicators of item–score association
is available at http://dx.doi.org/10.13140/RG.2.2.17594.72641. The dataset of reliabilities is
available at http://dx.doi.org/10.13140/RG.2.2.27971.94241. The main results of the simulation
are collected in what follows.

First note to make is that, with very small sample size (n = 25), both Rit and RAC seem to tend to
underestimate the population correlation in an obvious manner although RAC less than Rit (Figure
A1 in Supplement Appendix 2). Second, except the smallest sample size in the simulation, the RAC

in the samples tends to be overestimate the RAC in population mildly with small sample sizes and
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when the scale in the item is wide. This is understood by the fact that, with small sample sizes, the
probability to obtain near-deterministic patterns leading to high magnitudes of RAC is higher than
in the (larger) population. With items with a narrow scale (df(g) < 4) and with sample sizes around
n = 100 or higher, the possible overestimation is nominal (see Table A3 in Supplement Appendix
2).

Third, in the simulation dataset, the average estimates of reliability by DCERs are 0.04–0.07
units of reliability higher than those by the traditional estimators using their traditional linking
factor and score variable (Table A4 in Supplement Appendix 2). This follows strictly from the fact
that magnitude of the estimates by RAC and RPC tend to be higher than of those by Rit. That the
difference in the magnitude of the estimates in the simulation by the traditional estimators and
DCERs is not as dramatic as in Cases 1 and 2 is caused by the fact that the tests in simulation do not
allow to prepare tests of extreme difficulty. In the simulation, obtaining tests with extreme
difficulty level would have required very short tests using only items with extreme difficulty
levels.

Fourth, the estimates using RAC and RPC tend to give estimates with largely the same magnitude
(see Figure 1; Figure A2 in Supplement Appendix 2) and systematically higher than those by the
traditional estimators. This seems to refer to the phenomenon that both DCERs refer to the same
latent reliability which is underestimated around 5–8 % by the traditional estimators regardless of
the difficulty level of the test items. It seems that, with extreme datasets, the magnitude of the
estimates by RAC are mildly higher than those by RPC. This difference is nominal though.
Simulation of more extreme datasets would shed more light in this matter.

Figure 1. Average estimates of reliability by selected DCERs by the test difficulty.
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Fifth, when it comes to the difference between the sample and population estimates, except the
smallest sample size, the ACERs give stable estimates; the differences between the sample and
population estimates are subtle. As an example, when using alpha as the base and RAC as the
linking factor, the deviance between the sample and population estimates is, on average, 0.001–
0.003 units of reliability depending on sample size (Table A5 in Supplement Appendix 2). If the
sample size is n = 200 (or higher), difference is less than 0.001 units of reliability.

Sixth, because of mild overestimation of population RAC, the ACERs seem to give mild
overestimation of the population reliability, specifically, with small sample sizes, polytomous
items, and if using rho as the base (Figure A3 in Supplement Appendix 2). The last is expected
because rho alone is known to give overestimations with finite sample sizes (Aquirre-Urreta et al.,
2019; see also Supplement Figure 3); RAC and rho combined seems to lead to greater overes-
timation than the other combinations. From this viewpoint, the MCERs based on alpha, theta or
omega and using RPC as the linking factor tend to lead to more conservative estimates. However,
from the factual estimate viewpoint, RAC and RPC seem to lead largely to estimates of same
magnitude (see Figure 1 above).

Seventh, regardless of the width of the scale in the items, the estimates by ACERs seem to bring
us nearer the population value than the other estimators except if rho would be selected as the base
(Figure A4 in Supplement Appendix 2). When the scale is very wide (more than seven categories),
ACERs tend to overestimate reliability mildly, but the values are still nearer the population value
in comparison with traditional estimators and MCERs in comparison. Using rho as the base for
ACER is not recommendable because of tendency to produce overestimates with finite samples.

Conclusion of Numerical Examples

As a conclusion from Cases 1, 2, and 3, it is known that, first, the proposed RAC and ACERs using
RAC as the linking factor may be advantageous in reflecting the true reliability, specifically, when
the test includes item with extreme difficulty levels. These types of tests are common in edu-
cational settings where the tests are often constructed so that both very easy and very demanding
items are included in a test. In these cases, the traditional item–score correlation may be radically
attenuated and deflated while RAC gives a plausible alternative to quantify the true association
between the item and score variable. Second, a larger simulation based on a real-world dataset
suggests that RAC gives estimates that are nearer the population value than PMCwith small sample
sizes although it seems to overestimate mildly the population RAC when the number of categories
in the item exceeds 5. Simulations in this regard would be beneficial. All in all, the larger
simulation (Case 3) did not include very extreme datasets. Simulation with datasets of extreme
difficulty levels would be beneficial.

Notably, the advance of ACERs in estimating the standard error of the measurement (S.E.m)
may be notable in the datasets where the item difficulties are extreme leading to an ultimately non-
normal score (see Case 1 above). Supplement Appendix 3 shows an example of a comparison of
estimates of S.E.m by using traditional estimators and ACERs. It is seen that, because of technical
reasons, a magnitude of a rough general estimate of the measurement error may decrease by 36%
or more if we use a deflation-corrected alpha instead of the traditional alpha. It seems that, in
comparison with other types of DCERs, ACERs combined with RAC give conservative estimate in
the case of tests with extreme item difficulty (see Metsämuuronen, 2022a). In any case, selecting
wisely estimators of reliability that produce estimates being nearer the true reliability value may
give us a notable advance in assessing the accuracy of the test scores.

All in all, ACERs discussed in this article are part of a larger family of deflation-corrected
estimators of reliability. Comparing different weight factors used in these estimators as well as
comparing ACERs with other DCERs (see Metsämuuronen, 2022a), would be beneficial in
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finding the best combinations of the base and the weight factor. For instance, some estimators may
be more usable or recommendable with binary items and some with polytomous items. Systematic
comparisons of different estimators and weight factors in different conditions such as varying the
test length, test difficulty, sample sizes, item types, and distributions of the latent variables would
be beneficial.

Conclusions and Limitations

Main Results in a Nutshell

The intention in the article was to illustrate the phenomenon of attenuation and deflation in the
estimates of reliability and to offer some practical solutions for the problem. The root reason for
the attenuation in reliability is the item–score correlation embedded in most of the traditional and
widely used estimators of reliability. Because the estimates of correlation by PMC between items
and the test score are always attenuated and deflated, this causes attenuation in the estimates of
reliability when using the traditional estimators such as coefficient alpha, theta, omega, and
maximal reliability. Examples show that, in the extreme cases, the estimates by alpha may be
radically deflated to the extent of 0.40–0.50 units of reliability and, in real life-settings, even more
than 0.60 units of reliability (see Gadermann et al., 2012; Metsämuuronen & Ukkola, 2019). As a
specific solution for the attenuation in the reliability, a new kind of attenuation correction is
proposed to replace PMC in the formulas: the attenuation-corrected PMC (RAC) as the proportion
of observed correlation of the maximal possible correlation with the given variables. Although the
numerical examples in the article were given in the context of measurement modeling, RAC is not
restricted to settings related to items and score variable.

Simulations suggest that RAC could be a useful coefficient to describe the association between
two variables with scales with a notable difference in width: RAC strictly refers to the proportion
we obtain of the maximal possible correlation with the given dataset. However, if the sample size
is small (n < 200), the proportion may be mildly smaller in the population. This is caused by the
fact that the probability to obtain deterministic or near-deterministic patterns in a small sample is
much higher than in a large population. Deterministic and near-deterministic patterns lead to
values RAC≈1 which are rarely obtained with large sample sizes and wider populations.

The characteristics of the RACwere not studied in the article in-depth; some limits are discussed
here. RAC reaches the value 1 when the maximum possible value of PMC is achieved, that is, when
the item and the score are in the same order. Value 0 is obtained when the observed correlation is 0.
RAC can also reach negative values; because the maximum possible value is always positive the
value of RAC is negative when the observed PMC is negative. Hence, RAC reaches the limits of
correlation ð�1 ≤RAC ≤þ 1Þ If, in the further simulations, RAC is found to be an asset in evaluating
attenuation in correlations, it may be worth considering reporting routinely as a related statistic to
the observed correlation. Specifically, in case the scales differ from each other in an obvious
manner as is usual in the measurement modeling settings between item and the score variable,
reporting either RAC or the maximal possible correlation given the dataset may help assess the
magnitude of possible attenuation or deflation in the observed estimates. Algorithms for esti-
mating the highest possible correlation given the item-and score variance are easy to develop.
Maybe, RAC could be considered also when choosing the best correction formula for the r2 effect
sizes (see, e.g., Skidmore & Thompson, 2011; Vacha-Haase & Thompson, 2004).

After the RACs are calculated, when applied to different base-forms of reliability, attenuation-
corrected alpha (ρα RACθ or αRAC), theta (ρTH RACθ), omega (ρω RACθ), and maximal reliability
(ρMAX RACθ) are easy to calculate. These ACERs may remarkably reduce the attenuation in the
estimate or reliability—in the numerical examples, deflation in the estimates by coefficient alpha
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was found to be as high as 0.38–0.52 units of reliability depending on the data structure and the
estimator used. In the real-life settings the deflation may be less remarkable; in a larger simulation
the deflation was around 0.04–0.07 units of reliability. It can be predicted that when the test
includes items with extreme difficulty levels (easy or difficult), ACERs would remarkably correct
the attenuation in the estimates of reliability.

Of the initiated ACERs, attenuation-corrected alpha seems to give conservative estimates of the
reliability in the case of tests with extreme difficulty level. However, with the tests of incre-
mentally structured difficulty level, the magnitude seems to be at the same level of magnitude as
with MEC-corrected estimates of reliability based on RPC, G and G2. Because ρgX never reaches
the limits of correlation when the scales of the variables are not identical, it is obvious that, in all
practical conditions faced in measurement modeling settings, αRAC > α, ρTH RAC > ρTH ,
ρω RAC > ρω, and ρMAX RAC > ρMAX . Simulations would be beneficial in exploring the behavior of
both RAC and different ACERs in different controlled situations. Specifically, simulations with
short tests, test with extreme difficulty levels, and studies related to different types of score
variables would be beneficial. Obviously, comparisons of different types of DCERs in different
conditions would be beneficial. The latter incudes also comparison of Zumbo et al.’s (2007)
ordinal alpha and ordinal theta with the DCERs discussed in this article.

Known Limitations of the Study

The study did not discuss varying interpretations and limitations of different coefficients.
However, it is known that the estimators based on G and D have concrete interpretations in
reflecting the proportion of logically ordered test takers in the dataset (see Metsämuuronen,
2021b). It is also known that estimators based on RPC do not refer to the observed score but
something unreachable and theoretical (see the discussion in Chalmers, 2017). However, as an
indicator of theoreticalmaximum correlation, RPC could be used as a benchmark to RAC. From this
viewpoint, the ACERs (11), (12), (13), and (14) seem to lead us to more practical interpretations of
the observed score than those using RPC. Using the latter estimators outside of their original
context of principal component- and factor analysis may be debatable though; here, it was as-
sumed that the formulas of theta, omega, and rho could be used also as stand-alone estimators
without their original contexts.

The study did not tackle the question of possible overestimation of reliability if using at-
tenuation- and MEC-corrected estimators of reliability. However, as a benchmark, if we think that
RPC do not overestimate the true correlation, it may be relevant to conclude that a MEC-corrected
estimator based on RPC such as equation (5) would not overestimate reliability. A relevant
question is, what would be the mechanism for overestimation in attenuation-corrected estimator?
From this viewpoint, we recall the results by Aquirre-Urreta et al. (2019) that maximal reliability
may overestimate the true reliability with finite samples familiar in real-world testing settings.
Hence, DCERs based on rho, in general, may tend to overestimate the population reliability with
small and smallish sample sizes. Theoretical and empirical studies in the area would be beneficial.

All in all, this article intended to promote discussion of attenuation in reliability and to offer
possible practical solutions in the spirit of Schmidt and Hunter (1999) who suggested incor-
porating the knowledge from attenuation studies to the estimation of measurement error. The
closer we can reach the deflation-free estimates of reliability the more accurately we can evaluate
the overall quality of the measurement, describe the error in the test scores, correct the estimates in
regression and path modeling as well as correct the attenuation in the validity studies and meta-
analysis. Hopefully, the attenuation correction in correlation and ACERs proposed in this article
are found useful in this endeavor.
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Metsämuuronen 15

https://orcid.org/0000-0001-6027-0799
https://orcid.org/0000-0001-6027-0799
https://doi.org/10.1017/S0013091500008063
https://doi.org/10.1037/met0000176
https://doi.org/10.2307/270831
https://doi.org/10.2307/270831
https://doi.org/10.1111/j.2044-8295.1910.tb00207.x
https://doi.org/10.1177/0013164417727036
https://doi.org/10.4324/9780203867266
https://doi.org/10.4324/9780203867266
https://doi.org/10.1177/0013164411407315
https://doi.org/10.1177/0013164411407315
https://doi.org/10.20997/sr.19.2.4
https://doi.org/10.1037/a0033805
https://doi.org/10.1037/a0033805
https://doi.org/10.1007/BF02310555
https://doi.org/10.7275/n560-j767
https://doi.org/10.1080/01621459.1954.10501231


Green, S. B., & Yang, Y. (2009). Commentary on coefficient alpha: A cautionary tale. Psychometrika, 74(1),
121‒135. https://doi.org/10.1007/s11336-008-9098-4

Greene, V. L., & Carmines, E. G. (1980). Assessing the reliability of linear composites. Sociological
Methodology, 11, 160. https://doi.org/10.2307/270862

Gulliksen, H. (1950). Theory of mental tests. Lawrence Erlbaum Associates, Publishers.
Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika, 10(4), 255–282. https://doi.

org/10.1007/BF02288892
Heise, D. R., & Bohrnstedt, G. W. (1970). Validity, invalidity, and reliability. Sociological Methodology, 2,

104–129. https://doi.org/10.2307/270785
Jackson, P. H., & Agunwamba, C. C. (1977). Lower bounds for the reliability of the total score on a test

composed of non-homogeneous items: I: Algebraic lower bounds. Psychometrika, 42(4), 567–578.
https://doi.org/10.1007/BF02295979

Jackson, R. W. B., & Ferguson, G. A. (1941). Studies on the reliability of tests. Department of Educational
Research, University of Toronto.

Kaiser, H. F., & Caffrey, J. (1965). Alpha factor analysis. Psychometrika, 30, 1–14. https://doi.org/10.1007/
BF02289743

Kim, J.-O., & Mueller, C. W. (1978). Introduction to factor analysis: What it is and how to do it. Series:
Quantitative applications in the social sciences, no. 13. Sage Publication, Inc.

Krippendorff, K. (1970). Estimating the reliability, systematic error and random error of interval data.
Educational and Psychological Measurement, 30(1), 61–70. https://doi.org/10.1177/
001316447003000105

Kuder, G. F., & Richardson, M. W. (1937). The theory of the estimation of test reliability. Psychometrika,
2(3), 151–160. http://dx.doi.org/10.1007/BF02288391

Lawley, D. N. (1943). A note on Karl Pearson’s selection formulae. Proceedings of the Royal Society of
Edinburgh Section A: Mathematic, 61(1), 28–30. https://doi.org/10.1017/S0080454100006385

Li, H. (1997). A unifying expression for the maximal reliability of a linear composite. Psychometrika, 62(2),
245–249. https://doi.org/10.1007/BF02295278

Li, H., Rosenthal, R., & Rubin, D. B. (1996). Reliability of measurement in psychology: From Spearman-
Brown to maximal reliability. Psychological Methods, 1(1), 98–107. https://doi.org/10.1037/1082-
989X.1.1.98

Lord, F. M. (1958). Some relations between Guttman’s principal component scale analysis and other
psychometric theory. Psychometrika, 23(4), 291–296. https://doi.org/10.1002/j.2333-8504.1957.
tb00073.x

Lord, F. M., Novick, M. R., & Birnbaum, A. (1968). Statistical theories of mental test scores. Addison-
Wesley Publishing Company.

Martin, W. S. (1973). The Effects of Scaling on the Correlation Coefficient: A Test of Validity. Journal of
Marketing Research, 10(3), 316–318. http://dx.doi.org/10.2307/3149702

Martin, W. S. (1978). Effects of Scaling on the Correlation Coefficient: Additional Considerations. Journal of
Marketing Research, 15(2), 304–308. https://doi.org/10.1177/002224377801500219

Martinson, E. O., & Hamdan, M. A. (1972). Maximum likelihood and some other asymptotical efficient
estimators of correlation in two-way contingency tables. Journal of Statistical Computation and
Simulation, 1(1), 45–54. https://doi.org/10.1080/00949657208810003

McDonald, R. P. (1970). Theoretical canonical foundations of principal factor analysis, canonical factor
analysis, and alpha factor analysis. The British Journal of Mathematical and Statistical Psychology,
23(1), 1–21. https://doi.org/10.1111/j.2044-8317.1970.tb00432.x

McDonald, R. P. (1985). Factor analysis and related methods. Lawrence Erlbaum Associates.
McDonald, R. P. (1999). Test theory: A unified treatment. Lawrence Erlbaum Associates.
Metsämuuronen, J. (2017). Essentials of research methods in human sciences. SAGE Publications.

16 Applied Psychological Measurement 0(0)

https://doi.org/10.1007/s11336-008-9098-4
https://doi.org/10.2307/270862
https://doi.org/10.1007/BF02288892
https://doi.org/10.1007/BF02288892
https://doi.org/10.2307/270785
https://doi.org/10.1007/BF02295979
https://doi.org/10.1007/BF02289743
https://doi.org/10.1007/BF02289743
https://doi.org/10.1177/001316447003000105
https://doi.org/10.1177/001316447003000105
http://dx.doi.org/10.1007/BF02288391
https://doi.org/10.1017/S0080454100006385
https://doi.org/10.1007/BF02295278
https://doi.org/10.1037/1082-989X.1.1.98
https://doi.org/10.1037/1082-989X.1.1.98
https://doi.org/10.1002/j.2333-8504.1957.tb00073.x
https://doi.org/10.1002/j.2333-8504.1957.tb00073.x
https://doi.org/10.2307/3149702
https://doi.org/10.1177/002224377801500219
https://doi.org/10.1080/00949657208810003
https://doi.org/10.1111/j.2044-8317.1970.tb00432.x
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