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Abstract

We look for triple collision orbits which are collision-

less before triple collision. We developed a procedure

of fixing the positions of these orbits inside the initial

condition plane of the free-fall three-body problem as

a natural consequence of the use of symbol sequences.

Before looking for these orbits, an error regarding the

relation between triple collision points and binary col-

lision curves is corrected, that is, we confirmed that the
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intersections of binary collision curves of different gen-

erations (see the text for definition) are not the initial

points of triple collision orbits but of the orbits with

plural binary collisions along their trajectories. Then,

we numerically established that a triple collision point

(i.e., a point of the initial condition plane whose orbit

ends at triple collision) can be found as an intersec-

tion of three cylinders of the same generation. We do

not obtain triple collision orbits with symbol sequences

shorter than 8 digits. We obtained eleven triple col-

lision points inside the initial condition plane. The

orbits starting from these points have finite lengths in

the future and in the past since the problem is free-

fall. These orbits start at triple collision, expand the

size until the free-fall states, and goes back to triple

collision. Thus, these are time-symmetric with respect

to the time of free-fall. Two types of triple collision

orbits are identified. One type of orbits starts with a

positive triangle formed with three bodies and ends at

triple collision also with a positive triangle. The other
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type starts with a positive triangle and ends with a

negative triangle.
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1 Introduction and Motivation

The free-fall three-body problem is a forum of the three-body problem in

which the systematic numerical studies have been done for various kinds of

orbits including periodic orbits, escape orbits, triple collisions, oscillatory

orbits and so on. As for the free-fall problem itself, the celebrated paper

by Agekyan & Anosova (1967) has done a small number of numerical inte-

grations of the initial condition plane. So, no discussion on the global and

local structures of the plane was possible. Anosova continued the numerical

investigation of the problem (Anosova 1986; Anosova, Orlov, and Aarseth

1994). Tanikawa et al. (1995) started systematic integrations of orbits in the

initial condition plane of the free-fall problem with a fast computer focusing

on the search for collision orbits. The number of integrated orbits amounted

to a million. The number was more than a million in Tanikawa (2000). Then

gradually, some of the structure of the phase space of the free-fall problem

became known. Of course, the structure turned out extremely complicated so

that it becomes evident that to go farther, the survey of the network of inter-

mediate objects bridging the global and local structures are necessary. These

objects are periodic orbits, binary collision orbits, triple collision orbits, and

escape orbits.

Recently, searches for periodic orbits are popular (Rose & Dullin, 2013;

Iasko & Orlov, 2014; Dmitras̆inović & S̆uvakov, 2015; Rose 2015; Tanikawa,

2016; Li & Liao, 2017) and lots of them are found. On the other hand, search

for collision orbits requires rather special numerical techniques equipped with

efficient regularizations (Tanikawa et al. 1995). Triple collision requires more

severe conditions because the dimensionality of the triple collision is small
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compared with binary collision, that is, binary collisions form curves in a

certain section of the phase space, while triple collisions form points in the

same section. In addition, a numerical difficulty of orbit integrations with

respect to triple collision requires regularization of more efficient kind.

In the present paper, we overcome the above two difficulties and obtain

triple collision orbits by using symbol sequences (Tanikawa & Mikkola 2008,

2015) and by using our regularizing techniques (Mikkola & Tanikawa 1999,

2013). So far, we obtained triple collision orbits with symmetry. Thus,

Tanikawa & Mikkola (2000a, 2000b, 2015) obtained triple collision orbits in

the collinear three-body problem, and Tanikawa & Umehara (1998), Umehara

& Tanikawa (2000), and Tanikawa & Mikkola (2015) obtained isosceles triple

collision orbits. This time we obtain triple collision orbits of general starting

triangles.

The authors made mistakes in the former publications saying ”the cross

points of the binary collision curves of different types are triple collision

points” (Tanikawa, 2000, Fig.4). In fact, crosses inside the initial condition

plane are not necessarily triple collision points, but they are collision points

whose orbits have plural binary collisions along their trajectories. We correct

this error in section 4.1.

2 Equations of motion and the Algorithmic

regularization

The algorithmic regularization is a result of the marriage of symplectic in-

tegration and regularization. In general, a symplectic integration assumes a
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constant time step, whereas the regularization requires the time-step short-

ening when the gravitational attraction is large and the velocity changes are

large. This marriage was almost simultaneously carried out in two articles

(Mikkola & Tanikawa, 1999; Preto & Tremaine, 1999).

The idea of symplectic integration is to consider the evolution of solution

in time of the equations of motion as the canonical transformation of the

coordinates and momenta at some time t to a later time t′. The symplec-

tic method then uses a series of canonical transformations to propagate the

system forward in time. This means the integration is accurate compared

with those not taking into account the symplecticity. The idea of regulariza-

tion is to keep the same accuracy even in the close approach of gravitating

bodies. In the N -body problem, close approaches of bodies frequently take

place. The integration scheme of regularization comprises the coordinate

transformation and shortening of the step size of integration. The symplec-

tic integration does not like the step-size change, whereas the regularization

needs step-size changes.

The algorithmic integration, to begin with, extends the phase space and

introduce a new Hamiltonian in this space. Let p be the momenta of the

coordinates q. Let further T (p) be the kinetic energy and U(q, t) the force

function such that the Hamiltonian is H = T − U . If the time t is also

considered to be a coordinate and the corresponding momentum is B, then

for this system the function
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Λ = log(T +B)− log(U),

can be used as a Hamiltonian in the extended phase space. The equations of

motion derived from Λ are

p′ = Uq/U, q′ = Tp/(T +B) B′ = Ut/U, t′ = 1/(T +B) (1)

where the prime denotes differentiation with respect to the new independent

variable s and partial derivatives are denoted by subscripts. U is the potential

with

U = G

(
m2m3

r23
+

m1m3

r13
+

m1m2

r12

)
. (2)

We use interparticle vectors for the labeling of the relative coordinates

R1 = r3 − r2; R2 = r1 − r3; R3 = r2 − r1. (3)

as new coordinates and the velocities are Vk = Ṙk. Denoting Ri = |Ri|, we

have the potential

U = m2m3/R1 +m1m3/R2 +m1m2/R3. (4)

and the kinetic energy

T =
1

2M
(m2m3|V1|2 +m1m3|V2|2 +m1m2|V3|2). (5)

One obtains the following

Ṙk = Vk; V̇k = −M
Rk

|Rk|3
+mk

∑
ν

Rν

|Rν |3
(6)

with M = m1 +m2 +m3. Then, Eqns. (1) become

t′ = 1/(T +B); R′
k = Vk/(T +B); V′

k = V̇k/U, (7)
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sinceB = U−T is a constant. This form is suitable for the leapfrog algorithm.

Time and coordinates move with the ’subroutine’ X(h):

dt = h/(T +B) (8)

t → t+ dt (9)

Rk → Rk + dtVk (k = 1, 2, 3), (10)

and velocities with the ’subroutine’ V(h):

S =
∑
k

Rk/|Rk|3 (11)

δt = h/U (12)

Vk → Vk + δt(−MRk/|Rk|3 +mkS). (k = 1, 2, 3) (13)

It is possible to write the final leapfrog algorithm over n steps, so that the

total ’macro’ step has the length = n h. Then we obtain the leapfrog over

long intervals in the form

X(h/2)[V(h)X(h)]n−1V(h)X(h/2), (14)

where the power (n−1) means repetition of the operations. These leapfrogs,

with many values of the stepsize h, can be used in the Bulirsch-Stoer (1966)

extrapolation algorithm. The above leapfrog is regular even in point-mass

collisions, and gives correct trajectories for two-body problems.

3 Definition of the free-fall problem

We consider the free-fall problem with equal masses. The problem belongs

to the class of the planar three-body with zero-angular momentum. The
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triple systems of this problem are considered most unstable compared with

the systems with non-zero angular momentum because of the existence of

triple collisions. In particular, the equal mass case may be the most unstable

among other combinations of masses. There is no proof for this statement.

However, there is evidence. In fact, the problem reduces to the restricted

three-body problem if the mass of one of the bodies tends to zero, in which

problem there are so many stable periodic orbits. If two of the masses tend

to zero, the problem reduces to the superposition of two two-body problems

and is integrable, hence orbits are stable.

The definition of the problem is simple (see, e.g., Agekyan & Anosova

1967; Tanikawa et al. 1995). We put body 2 of mass m2 at A(−0.5, 0) and

body 3 of mass m3 at B(0.5, 0) both on the x-axis of the (x, y)-plane. We

put body 1 of mass m1 at any place P in

D = {(x, y) : x ≥ 0; y ≥ 0; (x+ 0.5)2 + y2 ≤ 1}.

Then, in the triangle formed by the three bodies, always AB is the longest,

PA the second longest, and PB the shortest. We consider the equal mass

case, i.e., m1 = m2 = m3 = 1. Then the triangles exhaust all possible

form of triangles if P moves in D (Fig. 1(a)). This initial condition region

is sometimes called Anosova’s region. More generally, suppose that three

masses are different. In this case, Anosova’s region does not exhaust the

form of triangles. We need larger areas. Look at Fig. 1(b). In this figure,

D11 corresponds to Anosova’s region. The other regions represent different

forms of triangles. As an example, in region D12, edge lengths satisfy PA ≥

AB ≥ PB, and triple systems correspond to different initial conditions from

those of D11. The plane formed with Dij is called the shape plane. We obtain
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the shape sphere if we glue D13, D43, D23, and D33 at infinity (Moeckel et al.

2012; Montgomery 1996; Kuwabara&Tanikawa 2010).

We integrate equations of motion with the AR (Algorithmic regulariza-

tion) code (Mikkola & Tanikawa 1999, 2013).

Figure 1: The geometry of the free-fall problem. (a) The initial

condition plane. (b) The shape space. D11 corresponds to the

D shaped domain in Fig. 1(a). The other Dij are obtained by

reflections. As examples, D21 is the mirror image of D11 with

respect to the y-axis; D12 is the mirror image of D11 with respect

to their boundary circle. (cf. Tanikawa & Mikkola 2015)

3.1 Symbols and symbol sequences

Let us define symbols and symbol sequences (Tanikawa & Mikkola 2008,

2015; Montgomery 1998). In the planar three-body problem, three-bodies

generally form a triangle (two-dimensional simplex, or 2-simplex), and oc-

casionally they form a collinear configuration (one-dimensional simplex, or

1-simplex). Montgomery (2007) proved that all solutions to the zero-angular

momentum, negative energy Newtonian three-body problem admit a collinear

configuration (syzygy) except for the Lagrange homothetic solutions. There

will be an infinite sequence of collinear configurations unless the orbit ends
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in triple collision. Considering this property of the three-body problem, we

give a symbol to an orbit each time when three bodies form a 1-simplex, or

become a syzygy state.

We give the orientations to the simplex (triangle) so that it is positive

when three bodies 1, 2, and 3 are arranged counter-clockwise around their

gravity center, while it is negative when clockwise (Tanikawa & Mikkola

2015). We sometime call the triangle itself positive or negative.

Until the preceding paper, the authors defined the symbols and symbol

sequences as follows: We give symbol 1 if a positive 2-simplex degenerates

into a 1-simplex with body 1 at center, symbol 2 if a positive 2-simplex into a

1-simplex with body 2 at center, and symbol 3 if into a 1-simplex with body

3 at center. We give symbols 4, 5, and 6 if a negative 2-simplex degenerates

into a 1-simplex respectively with center at bodies 1, 2, and 3.

In this stage, the authors did not take into account the resulting symbolic

dynamics. This time, Richard Montgomery kindly read our manuscript and

suggested that the number of symbols should be not six but three. Six sym-

bols are redundant. The authors are convinced. The authors have experience

of an elementary symbolic dynamics in the case of collinear three-body prob-

lem (Tanikawa & Mikkola 2000b). There the authors introduced two symbols

and effectively treated the symbols sequences, and discussed elementary sym-

bolic dynamics.

Now we introduce three symbols 1, 2, and 3. The redundancy came with

the introduction of the front and back sides of triangles and with the consid-

eration of the discrimination of the syzygy crossings from the front and back

sides. However, these two crossings can be identified in the symbol sequences
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either at even or odd digits because two different crossings alternate.

Now neglecting the difference of crossings from the frontside and backside,

we give symbol 1 when a 2-simplex degenerates into a 1-simplex with body 1

at center, symbol 2 when a 2-simplex into a 1-simplex with body 2 at center,

and symbol 3 when a 2-simplex into a 1-simplex with body 3 at center.

We denote a symbol sequence s by

s = . . . s−3s−2s−1•s1s2s3 . . . (15)

where si is either 1, 2, or 3. As time goes on, positive and negative 2-

simplexes alternate. In our setting, symbols s1, s3, s5, . . . , s−2, s−4, s−6, . . .

correspond to the syzygy crossings from the front to back sides, whereas

symbols s2, s4, s6, . . . , s−1, s−3, s−5, . . . correspond to the syzygy crossings

from the back to front sides. The period (•) separates the past and future.

The part of the sequence to its right represents the future sequence, while

the sequence to its left represents the past sequence. s1 is the symbol for the

present. We integrate the orbits to the future. So, we as a rule consider the

future symbol sequence:

s =• s1s2s3 . . . (16)

A finite sequence of symbols is called a word. The word is called a k-word

if the length of the word is k. The set of symbol sequences which contain a

k-word in a fixed position is called a k-cylinder. In the present paper, we

consider the k-cylinder which contains its k-word at the initial k-digits, i.e.,

s =• s1s2s3 . . . sk ∗ ∗∗ (17)

where *** represents an arbitrary (infinite) sequence of symbols.
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3.2 Division of the initial condition plane

By abuse of notation, we will also say that an initial condition is in a partic-

ular k-cylinder if its symbol sequence lies in that cylinder. The k-cylinders

then form open sets of the initial condition plane, which, together with their

boundaries, partition the initial condition plane for a fixed k. As we will soon

see, these boundaries are curves separating one cylinder from another and

correspond to initial conditions having binary collisions. For example, the

3-cylinders 123 and 121 are separated from each other by initial conditions

lying in the 2-cylinder 12 which have, at their 3rd collinearity, a 1-3 binary

collision. These domains, and the bounding curves, cover all of the initial

condition plane with the exception of the triple collision initial conditions

which will lie at intersections of some binary collision curves. The reason all

of the plane is so partitioned, for a given k, is that the only initial condition

having the empty symbol sequence is the Lagrange orbit corresponding to

the point C in Fig.1.

For illustration, we give in Fig. 2 two divisions of Anosova’s region by

the set of 3-cylinders (Fig.2(a)) and 4-cylinders (Fig.2(b)). For conciseness

sake, we denote a cylinder, say, •s1s2s3s4 . . . simply by s1s2s3s4. As seen in

the figure, the set of 3-cylinders divide Anosova’s region into two, and the set

of 4-cylinders into 5. T1 and T2 are the initial points of triple collision orbits

on the circular boundary of Anosova’s region (Tanikawa&Umehara 1998,

Fig.4). T1, in particular, represents the Lagrange equilateral triple collision.

A circle on the x-axis is the initial point of a collinear triple collision orbit (see

Tanikawa & Mikkola 2015, Table 2 for a sequence of triple collision points).

In Tanikawa et al. (1995), we introduced the types of collision. The
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collision point is of type-3 if the point is the initial positions of the orbit for

which bodies 1 and 2 collide, the collision point is of type-1 if the point is

the initial positions of the orbit for which bodies 2 and 3 collide, and the

collision point is of type-2 if the point is the initial positions of the orbit for

which bodies 3 and 1 collide. We also introduced the types of collision curves.

The collision curve is of type-3 if it comprises collision points of type-3, the

collision curve is of type-1 if it comprises collision points of type-1, and the

collision is of type-2 if it comprises collision points of type-2. This definition

applies in the present paper.

It is to be noted here that there are structures of small scale close to the

y-axis with |x| < 0.01. We need a special treatment for this region. We

neglect this part of Anosova’s region in the present report, and will treat it

elsewhere.

Figure 2: The structure of the initial condition plane. (a) 3-cylinders •132...

and •131..., (b) Division by 4-cylinders, •1321..., •1323..., •1321..., •1311...,

and •1313.... The circle on the x-axis denotes a triple collision point (see

section 5).

4 Collision curves

Let us introduce some terminology. A point in the initial condition plane is

called a binary-collision point (BCP) if it is a starting position of the orbit
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which experiences a binary collision. BCPs usually form curves in the initial

condition plane (Tanikawa et al. 1995; Tanikawa 2000; Tanikawa & Mikkola

2015). We call these the binary collision curves (BCCs), or frequently simply

the collision curves. Collision curves are the sections (by the initial condition

plane) of the stable and unstable manifolds of the binary collision manifold

(Llibre 1982) if the past and future symbol sequences are used. In our case,

collision curves are the sections of the stable manifolds since only the future

sequences are used. However, in the case of the free-fall problem, the future

and the past are identical. So, the collision curves are also the sections of

the unstable manifolds.

Property 1. Boundaries of cylinders are formed with collision curves.

(Tanikawa et al. 1995; Tanikawa & Mikkola 2008, 2015).

Proof. Suppose that k-cylinders (k > 0) A =• · · · 1 ∗ ∗∗ and B =• · · · 2 ∗ ∗∗

have a common boundary. In A, body 1 passes through between bodies 2

and 3, while in B, body 2 passes through between bodies 1 and 3 (see the

figure below). Then at the boundary, bodies 1 and 2 necessarily collide. The

other combinations of the last digits can be treated similarly. □

*———*———* +——+———-+

3 1 2 1 2 3

A B

The boundary collision curve of cylinders A =• · · · 1∗∗∗ andB =• · · · 2∗∗∗

is a type-3 curve. Similarly, the boundary curve between A =• · · · 1 ∗ ∗∗ and

C =• · · · 3 ∗ ∗∗ a type-2 curve, and B =• · · · 2 ∗ ∗∗ and C =• · · · 3 ∗ ∗∗ a
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type-1 curve. Thus, different from the case of Tanikawa et al. (1995), types

of collision curves are specified by the last digit of symbols of the neighboring

two cylinders. As an example, in Fig. 2(a), the boundary collision curve of

cylinders 132 and 131 is of type 3.

4.1 Orbits which have plural binary collisions

along their trajectories.

Figure 3: (a) A collision orbit on the collision curve of type-2 and of the

fourth generation. It forms the boundary of cylinders 1321 and 1323. (b) A

collision orbit on the collision curve of type-3 and of the sixth generation. It

forms the boundary of cylinders 132311 and 132312.

Figure 4: An orbit with two collisions as a boundary of cylinders 132131,

132311, 132312, and 132132. The initial point is the intersection of two

collision curves.

As we have announced in the last paragraph of Introduction, we correct

and modify the erroneous statement on triple collision points. Let us intro-

duce new terminology. The boundary collision curves of k-cylinders (k > 0)

will be called the (collision) curves of the kth generation. Let us state a

caution. Frequently, a boundary curve of a (k + 1)-cylinder is a boundary
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curve of a k-cylinder, that is, some part of the boundaries of cylinders does

not change as the number of digits increases. In this case, we call the cor-

responding boundary the kth generation. If there are given one or more

k-cylinders, we sometimes say that these cylinders are of the same (kth)

generation.

True triple collision points inside the initial condition plane are shown in

Fig.11 of Tanikawa (2000) and will be treated in the following section.

Assertion. Intersections of collision curves of different generations are the

initial points of orbits which have plural collisions along their trajectories.

Let us show the example orbits. One is the orbit starting at (x, y) =

(0.09775, 0.5504), and the other is the orbit starting at (0.04273, 0.400). The

former point is on the boundary curve of 4-cylinders 1321 and 1323, hence

on the curve of the 4th generation, while the latter point is on the boundary

curve of 6-cylinders 132311 and 132312, hence on the curve of the 6th genera-

tion. We plot the trajectories of both orbits in Fig. 3. The initial conditions

are similar. So the forms of the trajectories are close to each other. There are

differences. The trajectory in Fig. 3(a) has a binary collision between body

1 and body 3 at t = 0.6559..., while the trajectory in Fig.3(b) has a binary

collision between body-1 and body-2 at t = 1.0051.... We see two binary col-

lisions are at different places, at different times, and between different pairs

of bodies.

The boundary curves of 4-cylinders 1321 and 1323 and 6-cylinders 132311

and 132312 intersect at point (0.110361, 0.567465). We show the trajectories

of the orbit starting at this point in Fig. 4. The trajectories experience
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collisions at t = 0.67383 and at t = 1.40746. We see two (consecutive)

collisions along the trajectories. For the moment, we do not have a point

where three or more collision curves of different generations cross.

It is to be noted that 4-cylinder 1321 has two components (Fig. 2(b)).

The two components are disconnected also in the shape space as can be seen

easily. This phenomenon may complicate in future the study of symbolic

dynamics of our three-body problem.

5 Triple collisions inside the ini-

tial condition plane

We know that triple collision orbits on the boundary of the initial condition

plane have a special property that a lot of (possibly an infinite number of)

collision curves pass through their initial points (see, e.g., Fig. 7 of Tanikawa

2000). We have a candidate of triple collision orbits inside the initial condi-

tion plane from our previous work. In Fig.11(a) and (b) of Tanikawa (2000),

curves of types-1, -2, and -3 meet at a point. We did not confirm that

the orbit starting at this point actually ends at triple collision by drawing

trajectories. This orbit is included in the present paper.

We denote the initial point of a triple collision orbit by a triple collision

point (TCP). The corrections for the erroneous statement of the former pa-

pers continue. In this section, we try to make clear the conditions of triple

collision points in the initial condition plane.
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Property 4. Triple collision points are obtained as intersections of different

types of collision curves of the same generation.

Proof. Suppose that a collision curve in which bodies i and j collide and a

collision curve of the same generation in which bodies i and k collide intersect.

Then at intersections, bodies i, j, and k collide at the same instant. □

Let us show the division of the initial condition plane by the set of cylin-

ders with increasing digits. We have already shown the divisions by the set

of 3- and 4-cylinders in Fig. 2. There, intersections of boundary collision

curves are only on the boundaries of the plane. In Fig. 2(a), the collision

curve of type-3 as the boundary cylinders 132 and 131 crosses the circular

boundary of type-2. The intersection is the isosceles triple collision point

T2 which we mentioned in the end of Introduction. In fig. 2(b), two curves

of type-2 cross the circular boundary also of type-2. The intersections are

not triple collision points. One of the curves starting at point T2 crosses the

x-axis at x = 0.18058.... This is a collinear TCP (see Tanikawa & Mikkola

2015).

We see that 3-cylinder 131 is bounded by three curves: the arc of the

circular boundary connecting T2 and point B, the arc of the x-axis connecting

the cross (×) and B, and a curve connecting T2 and the cross. These are all

collision curves. 3-cylinder 132 is bounded by four arcs of collision curves

neglecting the structure close to the y-axis. 4-cylinders in Fig. 2(b) are also

bounded by arcs of collision curves. We do not any more raise the names of

collision curves of higher generations. It is a cumbersome work.

The division of the initial condition plane by the set of 6- and 7-cylinders
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are depicted in Fig. 5. We note that no new regions appear in the division

by the set of 5-cylinders. We expect that the shadowed region may contain

triple collision points. However, in the present paper, we do not treat the

region. This region is divided into an infinite sequence of regions (see, e.g.,

Fig. 2 of Tanikawa & Umehara 1998). Each of these regions is considered to

have a similar phase space structure to our region of the present paper.

In Fig. 5(a), a thick curve is the type-3 collision curve of the 6th genera-

tion, while thin curves are of younger generations. There are no intersections

between curves of the 6th generation. There is an intersection (denoted by

+) of curves of the 4th and 6th generations in the upper part of the plane.

This point is the starting point of the orbit which has two collisions along its

trajectories. We talked about this orbit in §3.1 and showed its trajectories

in Fig. 4.

In Fig. 5(b), the division of the initial condition plane by the set of 7-

cylinders is shown. There is only one new curve of the 7th generation. As

before, we show it by a thick curve, and the curves of younger generations by

thin curves. This time there arise necessarily no triple collision points since

there are no intersections between collision curves of the 7th generation.

Finally, we find triple collision points in the division by the set of 8-

cylinders. We show the results in Figs. 6 and 7. In Fig. 6, we have four

curves of the 8th generation. Two upper thick curves do not intersect each

other though they intersect with other curves of younger generations. The

lower two curves of the 8th generation intersect each other. The structure

in the upper part of Fig. 6 is complicated, so we enlarged in Fig. 7(a) the

region inside the larger box of Fig. 6. In the figure, regions denoted (a), (b),
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(c), (d), (e), and (f) are 8-cylinders 13231131, 13231123, 13213123, 13231211,

13231121, and 13213213.

Figure 5: Divisions of Anosova’s region. (a) Division by 6-cylinders. There is

only one intersection inside Anosova’s region between collision curves. This

is the cross point of curves of generations 4 and 6, which means the point is

not a triple collision point. (b) Division by 7-cylinders. There is only one

collision curve of generation 7. In this case also there is not a triple collision

point.

Figure. 7(b) is an enlargement of the small box in Fig. 6. There are

four curves. Three thick curves are those of the 8th generation, while one

thin curve is of the 3rd generation. Three thick curves intersect at two

points (0.19208270, 0.3093601) and (0.22202750, 0.30096440). We find that

collision curves of the same generation and of the three types meet at a triple

collision point. In other words, three cylinders of the same generation meet

at a point. In fact, for the case of the left triple collision point, three 8-

cylinders 13213211, 13213212, and 13213213 meet at this point. The same

is true for the right triple collision point. We show in Figs. 8(a) and (b) the

trajectories of the orbits starting at these two points.
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Figure 6: Cylinders in Anosova’s region: 8-cylinders. Boundary curves for

digit-8 are illustrated with thick curves. Boundary curves of younger gener-

ations are with thin curves. The upper and left cylinders have small areas.

So we do not inscribe the symbol sequences.

Figure 7: 8-cylinders in Anosova’s region. (a) Enlargement of the larger

box in the former figure. Cylinders named a – f have the following sym-

bol sequences. a:13231131; b:13231123; c:13213123; d:13231211; e:13231121;

f:13213213. (b) Enlargement of the smaller box in the former figure. Two

crosses represent the triple collision points whose orbits are collisionless

until triple collision. The coordinates are (0.19208270, 0.30936018) and

(0.22202750, 0.30096440).

Figure 8: Trajectories of triple collision orbits on the boundaries of the

8-cylinders. The initial points are illustrated by two +’s in Fig.7. (a)

the orbit starting at (0.19208270, 0.30936018); (b) the orbit starting at

(0.22202750, 0.30096440).
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6 Other triple collision orbits

Now, we are convinced that triple collision points can be found in the regions

where three collision curves of the same generation meet. For the moment,

our search will be not systematic. We look for the structures at which three

cylinders meet. We find eight places. We show in Fig. 9 the places enclosed

by boxes. Let us show the structure inside each box one by one.

Figure 9: Boxes containing triple collision points in the initial condition

plane. Some of the collision curves up to and including the 8th generation

are inscribed for reference. Represented are the coordinates of the lower-left

and upper-right corners of the boxes. Box 1: (0.145,0.325),(0.165,0.345);

Box 2: (0.08,0.365),(0.105,0.385); Box 3: (0.075,0.41),(0.085,0.42); Box

4: (0.08,0.445),(0.095,0.465); Box 5: (0.10,0.515), (0.115,0.525); Box 6:

(0.145,0.635),(0.165,0.655); Box 7: (0.18,0.575),(0.20,0.595); and Box 8:

(0.27,0.565),(0.29,0.585).

In Fig. 10(a), three 10-cylinders 13213212-11, -12, -13 meet at (0.15567083,

0.33309483). For conciseness, we denote the cylinder regions by using the

last two digits. The same convention will be used in what follows. In Fig.

10(b), three 14-cylinders 132312121212-11, -12, and -13 meet at two points

(0.09012264, 0.38213664) and (0.10106723, 0.37459122) denoted by +. In Fig.

10(c), three 12-cylinders 1323121212-11, -12, and 13 meet at (0.08212247,

0.41682453). In Fig. 10(d), three 10-cylinders 13231212-11, -12, and -13

meet at (0.08875296, 0.45639865). In Fig. 10(e), three 8-cylinders 132311-
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Table 1: Triple collision points. The initial coordinates, the time of collision,

digits of symbol sequences, the side of the triangle at triple collision, and the

serial numbers of figures.

No x y t Digits side Figs.

1 0.19208270 0.30936018 1.35458 8 back 7(b),8(a)

2 0.22202750 0.30096440 1.30831 8 back 7(b),8(b)

3 0.10677930 0.52012268 1.83657 8 back 10(e),11(e)

4 0.08875296 0.45639865 1.99380 10 back 10(d),11(d)

5 0.15567083 0.33309483 1.67790 10 back 10(a),11(a)

6 0.15882908 0.64735217 2.90464 11 front 10(f),11(f)

7 0.08212247 0.41682453 2.16131 12 back 10(c),11(c)

8 0.27949737 0.57593177 3.04707 13 front 10(h),11(h)

9 0.19095011 0.58286178 3.08930 13 front 10(g),11(g)

10 0.09012264 0.38213664 2.30804 14 back 10(b),12(a)

11 0.10106723 0.37459122 2.28158 14 back 10(b),12(b)

11, -12, and -13 meet at (0.10677930, 0.52012268). In Fig. 10(f), three

11-cylinders 132132132-11, -12, and -13 meet at (0.15882908, 0.64735217).

In Fig. 10(g), three 13-cylinders 13231213213-21, -22, and -23 meet at

(0.19095011, 0.58286178). Finally, in Fig. 10(h), three 13-cylinders 13231213213-

21, -22, and -23 meet at (0.27949737, 0.57593177).

We summarize the coordinates of the above triple collision points in Table

1. Here we provide the coordinates in the precision of 8-digits, in contrast to,
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for example, 25 digits of the figure-8 orbit obtained by Simó (2002) with the

aid of, perhaps, multi-precision arithmetic. We use standard double precision

arithmetic and provide the reliable initial 8 digits, which are in fact sufficient

to reproduce our results.

We added four data. t is the time of approach to triple collision. We

cannot obtain the exact collision time. The time in the table is that the

integration is available. Our experience says that the integration with the

extrapolation method takes much time to return the result if the time exceeds

this value. Column ”digits” shows when in the symbol sequence the triple

collision takes place. The shortest digits are eight. We do not say that the

triple collision points with symbol sequences of length equal to or less than

14 are exhausted because our survey is not complete. Column ”side” shows

the side of the triangle formed by three bodies toward triple collision. All

orbits start with the front side. Eight of them end with the backside triangle.

Finally, column ”Figs.” indicates the serial numbers of figures in which the

positions of the triple collision points and trajectories are shown. Thus, for

example, 7(b),8(a) tells us that for No.1 triple collision, the positions are

shown in Fig.7(b), and trajectories are shown in Fig. 8(a).

We find two types of triple collision points as listed in Table 1. One type

is shown in Fig. 7(b) and Figs. 10(a), (b), (c), (d), and (e). The other type is

shown in Figs. 10(f), (g), and (h). The differences are apparent. One is the

difference of angles which cylinders make at the triple collision point. The

cylinders with ’11’ at the last two digits have narrow width toward the cross

point in the former case. This structure may reflect the dynamics. The other

is the difference at which digit the triple collision takes place. In Fig. 7(b)
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and Figs. 10(a), (b), (c), (d), and (e), triple collision takes place at even

digits, whereas in Fig. 10(f), (g), and (h), triple collision takes place at odd

digits. Geometrically, the orientation of the triangle is negative in the former

case just before the triple collision, whereas the orientation is negative in the

latter case. One can confirm this looking at the trajectories in Figs. 8, 11,

and 11. For the moment, we do not have a good explanation.

We see a similarity in the structure of divisions of Fig. 7(b) and Fig.

10(b). In both cases, two triple collision points are near the top of the

tongue-like structure extended from the x-axis. There are a lot of tongue-

like structures nested each other or neighboring each other. So, we expect

that a lot of (possibly an infinite number of) triple collision points exist in

our area.

Figure 10: The division of the plane in the boxes of Fig. 9. Three curves

meet at a triple collision point. Thin curves are boundary curves of younger

generations.

We show the trajectories of the remaining nine triple collision orbits. The

Seven of them are in Fig. 11. Each of trajectories is named (a) ∼ (h) which

corresponds the triple collision point in Fig. 10 of the same name. We show

in Fig. 12 two trajectories of orbits corresponding to the points of Fig. 10(b).
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Figure 11: The trajectories of triple collision orbits whose initial conditions

are shown in Fig. 10.

Figure 12: The trajectories of triple collision orbits whose initial conditions

are shown in Fig. 10(b) and in Table 1.
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7 Discussions

We expect that the number of triple collision points inside Anosova’s region

be infinite. There can be at least two kinds of sequences of these orbits. One

sequence comes from the infinite similar structures of Anosova’s region to

the lower-right point B. The other sequence is inside our region. We already

pointed out that the number of tongue-like structures extending from the x-

axis may be infinite, and each of these structures may contain triple collision

points near the top as in Figs. 7 and 10(b).

The next target of research will be the systematic search for the triple

collision points. Individual tasks are simple: To find places in the initial

condition plane where three cylinders of the same generation meet. How

to automatically find this place? This seems not easy. Another direction of

study will be to search for triple collision orbits with non-zero initial velocities

and yet with zero angular momentum.

The collision curves cross the x-axis perpendicularly because of the sym-

metry of the problem. So, the structure of the phase plane near the x-axis

is expected to be not so much complex. On the other hand, our preliminary

study shows that the phase plane near the y-axis has rich structure. This

area is worth to be investigated.

Richard Montgomery raised a few questions concerning the characters of

symbol sequences for bi-asymptotic solutions to triple collision (Montgomery,

2007). One of them is whether any finite symbol sequence is possible or not.

The related question is what symbol sequences are possible. The present

paper is a first step to answer his questions.
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8 Conclusions

In this paper, we give symbols 1, 2, or 3 along an orbit each time when

the triangle formed with three bodies m1,m2,m3 becomes collinear. Due

to the theorem of Montgomery (2007), except for the Lagrange equilateral

configuration, all triple systems of any form experience collinear configuration

until infinite future or until triple collision, if any. So, the symbol sequence is

given to all orbits of the initial points of the free-fall problem except point C

of Fig. 1. If we truncate the symbol sequences at the kth digit, k-cylinders

(k > 0) are obtained. For each k, the set of k-cylinders together with their

boundaries divide the initial condition plane without gaps.

1. We numerically established that a triple collision point (i.e., a point of

the initial condition plane whose orbit ends at triple collision) can be found

as an intersection of three cylinders of the same generation. We do not obtain

triple collision orbits with symbol sequences shorter than 8 digits.

2. We obtained eleven triple collision points inside Anosova’s region. The

orbits starting from these points have finite lengths in the future and in

the past since the problem is free-fall. These orbits start at triple collision,

expand the size until the free-fall states, and goes back to triple collision.

Thus, these are time-symmetric with respect to the time of free-fall.

3. Two types of triple collision orbits are identified. One type of orbits

starts with a positive triangle formed with three bodies and ends at triple

collision also with a positive triangle. The other type starts with a positive

triangle and ends with a negative triangle.
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4. The intersections of binary collision curves of different generations are

the initial points of orbits with plural binary collision along their trajectories.
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Figure 1: The geometry of the free-fall problem. (a) The initial

condition plane. (b) The shape space. D11 corresponds to the

D shaped domain in Fig. 1(a). The other Dij are obtained by

reflections. As examples, D21 is the mirror image of D11 with

respect to the y-axis; D12 is the mirror image of D11 with respect

to their boundary circle. (cf. Tanikawa & Mikkola 2015)
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Figure 2: The structure of the initial condition plane. (a) Division by the set

of 3-cylinders •132... and •131..., (b) Division by the set of 4-cylinders,

•1321..., •1323..., •1321..., •1312..., and •1313.... The circle on the x-axis

denotes a triple collision point (see section 5).
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Figure 3: (a) A collision orbit on the collision curve of type-2 and of the

fourth generation. These orbits form the boundary of cylinders 1321 and

1323. (b) A collision orbit on the collision curve of type-3 and of the sixth

generation. These orbits form the boundary of cylinders 132311 and 132312.
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Figure 4: An orbit with two collisions as a boundary of cylinders 132131,

132311, 132312, and 132132. The initial point (0.110361, 0.567465), that is,

the coordinates of body 1, is the intersection of two collision curves.
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Figure 5: Divisions of Anosova’s region. (a) Division by the set of 6-cylinders.

There is only one intersection of collision curves inside Anosova’s region. The

point is denoted by + whose coordinates are (0.110361, 0.567465). This is

the cross point of curves of generations 4 and 6, which means the point is

not a triple collision point. (b) Division by the set of 7-cylinders. There is

only one collision curve of generation 7. In this case also there is no triple

collision points.
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Figure 6: Cylinders in Anosova’s region: 8-cylinders. Boundary curves for

digit-8 are illustrated with thick curves. Boundary curves of younger gener-

ations are with thin curves. The upper and left cylinders have small areas.

So we do not inscribe the symbol sequences.
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Figure 7: 8-cylinders in Anosova’s region. (a) Enlargement of the larger

box in the former figure. Cylinders named a – f have the following sym-

bol sequences. a:13231131; b:13231123; c:13213123; d:13231211; e:13231121;

f:13213213. (b) Enlargement of the smaller box in the former figure. Two

crosses represent the triple collision points whose orbits are collisionless

until triple collision. The coordinates are (0.19208270, 0.30936018) and

(0.22202750, 0.30096440).
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Figure 8: Trajectories of triple collision orbits on the boundaries of the 8-

cylinders. The initial points are illustrated by two +’s in Fig.7. (a) The

trajectories of the orbit starting at (0.19208270, 0.30936018); (b) The trajec-

tories of the orbit starting at (0.22202750, 0.30096440).
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Figure 9: Boxes containing triple collision points in the initial condition

plane. Some of the collision curves up to and including the 8th generation

are inscribed for reference. Represented are the coordinates of the lower-left

and upper-right corners of the boxes. Box 1: (0.145,0.325),(0.165,0.345);

Box 2: (0.08,0.365),(0.105,0.385); Box 3: (0.075,0.41),(0.085,0.42); Box

4: (0.08,0.445),(0.095,0.465); Box 5: (0.10,0.515), (0.115,0.525); Box 6:

(0.145,0.635),(0.165,0.655); Box 7: (0.18,0.575),(0.20,0.595); and Box 8:

(0.27,0.565),(0.29,0.585).
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Figure 10: The division of the plane in the boxes of Fig. 9. Three curves

meet at a triple collision point. Thin curves are boundary curves of younger

generations. 43
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Figure 11: The trajectories of triple collision orbits whose initial conditions

are shown in Fig. 10 and in Table 1.
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(b)

x=0.10106723,y=0.37459122, t=0 - 2.28158
A triple collision orbit on the boundaries of cylinders
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Figure 12: The trajectories of triple collision orbits whose initial conditions

are shown in Fig. 10(b) and in Table 1. (a) The trajectories of the orbit

starting at (0.09012264, 0.38213664); (b) The trajectories of the orbit starting

at (0.10106723, 0.37459122).
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