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Master equations describing open quantum dynamics are typically first-order differential equa-
tions. When such dynamics brings the trajectories in state space of more than one initial state
to the same point at finite instants in time, the generator of the corresponding master equation
becomes singular while the dynamical map becomes non-invertible. The first-order, time-local, ho-
mogeneous master equations then fail to describe the dynamics beyond the singular point. Retaining
time-locality in the master equation necessitates a reformulation in terms of higher-order differential
equations. We formulate a method to eliminate the divergent behavior of the generator by using a
combination of higher-order derivatives of the generator with suitable weights and illustrate it with
several examples. We also present a detailed study of the central spin model and we propose the
average rate of information inflow in non-Markovian processes as a quantity that captures a different
aspect of non-Markovian dynamics.

I. INTRODUCTION

Almost all realistic quantum systems are open systems
with their dynamics determined by interactions with the
environment also. Although the evolution of the system
in the presence of its environment does not follow uni-
tary dynamics, the combined evolution of the system and
environment is unitary in nature. The reduced dynam-
ics of the system of interest is then obtained by tracing
over the environmental degrees of freedom from the time-
evolved combined density matrix as ρS(t) = TrE [ρSE(t)].
The reduced system dynamics induced by the joint evo-
lution of the system and its environment can be mod-
eled by a dynamical map given by ρS(t) = EtρS(0) [1–4].
While the dynamical maps describe changes in the state
of the open system across finite-time intervals akin to
the unitary time-evolution operator for closed systems,
continuous-time description of open quantum evolution
is typically formulated in terms of quantum master equa-
tions [5, 6]. Open quantum systems endowed with a
large separation in timescales of the system and environ-
ment are modeled using the Markov approximation and
their dynamics is described by a Markovian master equa-
tion. The quantum master equation under the Markov
approximation can be written in the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) form that corresponds to
completely positive and trace preserving open quantum
system dynamics [7, 8].

There are processes for which the Markovian ap-
proximation is not valid and we have to turn to non-
Markovian dynamics. Time-dependent, local-in-time,
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master equations of GKSL form can be formulated for
the non-Markovian case as well [9–12]. In this paper, we
present several physically realizable non-Markovian cases
for which forcing the description of the system dynam-
ics into a time-local master equation leads to a singular
generator. The propagation of states after the singular-
ity cannot be done formally using the time-local master
equation. Motivated by the rapid developments in the
ability to study open quantum dynamics experimentally,
we address this gap in the formalism and in the process
also propose a minor but useful modification to one of
the standard ways of quantifying information back flow
and non-Markovianity.

We investigate how processes in which the trajecto-
ries of distinct states diverge after a singularity can be
mathematically described. Note that the trajectories we
consider in the following are in the space of all possi-
ble quantum states of the system of interest. A suitable
parametrization of the state space, for instance, with the
Bloch ball of states of a single qubit, will allow us to
visualize these trajectories as well. We see how a gen-
eral master equation for such dynamics that holds true
for all time can be constructed in certain cases. Specifi-
cally, we propose higher-order master equations to weed
out the singularities in a manner that their solutions re-
duce to that of the traditional first-order equation at all
other points. The proposed higher-order equations natu-
rally take care of propagating the state through the sin-
gularities. Dynamics with singular points are typically
non-Markovian. Different approaches to characterize the
non-Markovianity resulting from the divergent behavior
of generators were studied in [13–17] and a measure to
characterize the nature and degree of the singularity was
proposed in [18]. Depending on the nature of the sin-
gularity in the generator of the first-order master equa-
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tion, we arrive at different forms of equivalent higher-
order master equations that avoid the singular behavior.
We are interested in exploring the connection, if any, be-
tween the nature of the singularity and the nature of the
non-Markovianity in the system. This however requires a
comparison of the degree of non-Markovianity in different
processes. There are several proposed measures of non-
Markovianity available in the literature [19–33], but they
do not typically allow for a direct comparison between
processes as explained later on. The characterization of
the singularity in [18] also is not suitable for compari-
son of different processes. To circumvent these difficul-
ties, we introduce a quantity to capture the persistence
of information inflow which, in turn can lead to meaning-
ful comparison of different non-Markovian processes. In
addition to using this quantity to compare the singular
processes, we extend its applicability and demonstrate its
utility in comparing generic non-Markovian processes as
well.

This paper is structured as follows. In Sec. II, we in-
troduce the relevant definitions and the problem. We
reinforce the issues of singular dynamics with an illustra-
tive example in Sec. III. A discussion on possible avenues
to resolve the issue is presented in Sec. IV. In Sec. V, we
apply our results to the example presented in Sec. III. We
comment on different classes of examples in Sec. VI using
our methods. A new quantity that enables comparison
of the observed non-Markovianity in different processes
is proposed in Sec. VII. Section VIII contains a brief dis-
cussion and our conclusion.

II. DYNAMICAL MAPS AND MASTER
EQUATIONS

The dynamics of an open quantum system that is ini-
tially in a product state with its environment can be ex-
pressed in terms of the completely positive and trace pre-
serving (CPTP) dynamical maps Et. The open system we
will be considering is a single qubit. Using the left-right
vectorization formalism [34] to write the equations of mo-
tion for the open dynamics of the qubit, we represent its
quantum states, ρt, by real vectors and the quantum dy-
namical maps Et as real four-dimensional matrices. Since
the Hilbert space associated with a qubit is a subset of
the four-dimensional linear space of Hermitian qubit op-
erators, it follows that any quantum state can be written
as ρ = (I+~r ·~σ)/2, where |~r| ≤ 1 and ~σ = (σx, σy, σz) is a
vector of Pauli operators. The condition |~r| ≤ 1 enforces
positivity of ρ and the states of the qubit can be repre-
sented as points in the Bloch sphere. The vector (1, ~r)
furnishes the real, four-dimensional representation of the
quantum state. The affine form of Et acting on the state
(1, ~r) is

Et =

(
1 ~0
~s T

)
, (1)

with ~s a translation vector and T a real three-dimensional
matrix. The Bloch sphere vectors transform as ~r′ ≡
Et(~r) = T~r + ~s.

The state of the system at time t is given by the dy-
namical map as

ρt = Et[ρ0], (2)

with ρ0 ≡ ρt=0. When Et is an invertible map, one finds
its time-local generator as

Lt = ĖtE−1t . (3)

Assuming the semigroup property Et+s = EtEs, we can
write a time-local master equation ρ̇t = Lt[ρt] in the
well-known GKSL form (choosing ~ = 1)

ρ̇t = −i[H, ρt] +

3∑
i=1

γi

(
LiρtL

†
i −

1

2

{
L†iLi, ρt

})
(4)

where tr(Li) = 0 and tr(LiLj) = tr(LjLi) = δij . In
other words, the Lindblad operators Li are traceless and
orthonormal. The dynamics described by the semigroup
master equation is Markovian. The Markovian mas-
ter equation may be generalized by introducing time-
dependent Lindblad-like operators and time-dependent
decay rates γi(t) in Eq. (4). This results in a GKSL form
for generators Lt of open dynamics that are not Marko-
vian in general,

ρ̇t =− i[H(t), ρt]

+

3∑
i=1

γi(t)

[
Li(t)ρtL

†
i (t)−

1

2

{
L†i (t)Li(t), ρt

}]
.

(5)

The presence of negative rates γi(t) < 0 for some i and t
can be regarded as non-Markovian behavior [14, 31–33].

Since the time-local master equation is first-order in
time, knowing the state at time t allows one to uniquely
determine the state at all later times t′ > t. In particular,
it follows that if the trajectories of two states ρ1(t) and
ρ2(t) intersect at some time t = tc, i.e., ρ1(tc) = ρ2(tc),
the trajectories will move together for all subsequent
times, i.e., ρ1(t′) = ρ2(t′) for t′ > tc. Since any such
merging of trajectories is irreversible, the dynamical map
in Eq. (2) becomes noninvertible in all such cases and
thus the generator as defined in Eq. (3) ceases to ex-
ist. However, there are several examples of physically
valid processes in which the trajectories of multiple states
converge at distinct points in time and then are again
separate for t > tc. Moreover, the trajectories of qubit
dynamics visualized on the Bloch sphere for all such pro-
cesses are analytic, even at those instants of time when
the inverse dynamical map does not exist. Clearly, the
first-order equation fails to describe the dynamics of these
processes. We illustrate such a process using the central
spin model in the next section and then propose a way of
describing such dynamics using higher-order differential
equations.
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III. EXAMPLE: CENTRAL SPIN MODEL

To illustrate the problem at hand, we examine here a
central spin model used to simulate the interaction of a
single electron spin confined to a quantum dot with a
bath of nuclear spins [35]. Consider a bath consisting of
N spin- 12 particles coupled to a central spin- 12 particle.
The interaction Hamiltonian is

H =

N∑
k=1

Akσz ⊗ σ(k)
z , Ak =

A√
N

(6)

such that each spin in the bath is interacting with the
central spin via the Pauli σz operator. Note that we have
scaled the coupling constant appearing in the Hamilto-
nian by a factor of 1/

√
N that will keep the total in-

teraction energy between the central spin and the ones
around constant irrespective of N . We will see later on
that this choice is required if we are to compare different
non-Markovian processes. We begin with an initial prod-
uct state for the total system of N + 1 particles such as,
η0 = ρ0 ⊗ I/2N . The final state of the central spin after
tracing out the bath of N surrounding spins at time t is

ρt = TrE
(
e−iHtη0e

iHt
)

=

 ρ11 cosN
(

2At√
N

)
ρ12

cosN
(

2At√
N

)
ρ21 ρ22

 (7)

with ρij for i, j = {1, 2} as the elements of ρ0. The
master equation typically used to describe this process
is [18]

ρ̇t = A
√
N tan

(
2At√
N

)
(σzρtσz − ρt) . (8)

The rate appearing in the equation above is propor-
tional to tan(t) and the equation is singular for all

t =
√
N(2k + 1)π/4A for k = 0, 1, 2, · · · . However,

this model is known to be exactly solvable for all N [35].
Moreover, it is easy to see that the dynamical map cor-
responding to this process,

Espint = diag

(
1, cosN

(
2At√
N

)
, cosN

(
2At√
N

)
, 1

)
(9)

is a well-defined diagonal matrix for all t. The trajecto-
ries of a pair of initial states of the central spin are plotted
on the Bloch sphere in Fig. 1. We see that the two tra-
jectories intersect at t = tc and the inverse map, E−1t
becomes one-to-many and singular at this point. The
master equation (8) fails to describe the observed tra-
jectory beyond this (first) singular point since beyond tc
the first-order differential equation yields identical evo-
lution for both intersecting trajectories. The dynamical
map outputs the correct final state for all times never-
theless and yields diverging trajectories after t = tc as
shown in the figure. The failure of the master equation

to predict the evolution beyond tc prompts us to explore
the existence of an alternate differential equation that is
consistent with the dynamics given by the map while at
the same time, does not exhibit singularities.

FIG. 1. Trajectories of two initially distinct states are shown
at different times on the Bloch sphere. The figure corresponds
to the evolution given by the Hamiltonian in Eq. (6) with
N = 1.

IV. HIGHER ORDER MASTER EQUATIONS

Since any nondiagonal dynamical map can be made
diagonal by a suitable choice of operator basis [36], we
explore the case of a general diagonal map. For the sake
of simplicity we will stick to unital maps for which ~s = 0
in Eq. (1). We point out that our arguments can also be
extended to non-unital maps in a straightforward man-
ner, as shown in examples later (see Sec. VI B below).
Choosing the affine map in Eq. (1) as a diagonal ma-
trix that describes the transformations of a state in each
subspace, we define

T = diag (fx(t), fy(t), fz(t)). (10)

Writing the initial state in the vectorized form ρ0 =
(1, x, y, z)T , the action of this unital map corresponds
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to the master equation:

dρ

dt
= Ėtρ0

=


1 0 0 0

0 ḟx
fx

0 0

0 0
ḟy
fy

0

0 0 0 ḟz
fz

 ·
 1
fx · x
fy · y
fz · z


= ĖtEt−1ρt ≡ Ltρt.

Here Lt would be indeterminate if 1/fi were singular. In
such a case, we seek well-defined higher-order derivatives
to obtain a valid description for the evolution of states.
Assuming that any function fi in the map has a zero at
tc and supposing that ḟi(tc) is nonzero, then ḟi/fi does
not exist at tc. Here we can Taylor expand both fi(t)

and ḟi(t) around the critical time tc with fi(tc) = 0. If

f̈i(tc) is also zero and ḟi(tc) is nonzero, then

f̈i
fi

=

...
fi(tc)

ḟi(tc)

is a well defined quantity at tc as well. Since E and L are
both diagonal, it is straightforward to see that

d2ρ

dt2
= L(2)

t ρt

is a differential equation for ρ(t) devoid of the singular-
ities that beset the first-order equation. Here we have
defined higher-order generators as

L(n)
t ≡ E(n)t E−1t =

dnEt
dtn
E−1t , (11)

with L(1)
t ≡ Lt. If the order of derivatives considered

above does not lead to a nonsingular equation, we extend
the same method to higher derivatives until we obtain a
nonzero finite value for the ratio.

Note that this method may still not yield a finite value
for some cases even if we consider all orders of derivatives.
In such cases we find that a combination of different order
generators with suitable weights of the form∑

n

pnρ
(n)
t = 0 (12)

would yield a non-diverging time-local master equation
that holds for all time. The coefficients pn can be ob-

tained from the higher derivatives of the generator L(n)
t

as described in the next section. The exact dynamics can
be found by solving these differential equations which re-
quire specifying more initial conditions than that for the
traditional master equation. Our approach is valid for
nondiagonal maps as well. For reasons of mathematical
complexity and the lack of experimental literature re-
quiring the usage of time-dependent Lindblad (or jump)
operators, the singularities present in such dynamics are
left unexplored in this paper.

V. MASTER EQUATION FOR THE SPIN
MODEL

The concept of higher-order equations can be nicely
illustrated considering the example of the central spin
model described earlier. It also offers a viable experimen-
tal setup to validate our findings. In general, characteriz-
ing the dynamics observed in an experiment requires an
accurate description of the decay rates. Using the tech-
niques of quantum process tomography, one may infer
the relevant rates with sufficient accuracy as described
below.

In terms of traceless operators Fα, Eq. (4) can be
rewritten as

ρ̇ =− i[H(t), ρt]

+
1

2

d2−1∑
α, β=1

cαβ(t)
(

[Fαρt, F
†
β ] + [Fα, ρtF

†
β ]
)
. (13)

We choose Fα to be Pauli operators (upto a normaliza-
tion constant) and H = hασα is the Hamiltonian. Sub-
stituting this in Eq. (13) outputs a traceless matrix for
ρ̇. Since Pauli matrices form a basis for 2 × 2 matri-

ces, we can express ~̇r ≡ (ẋ, ẏ, ż) in terms of the nine
Kossakowski coefficients cαβ and three parameters of the
Hamiltonian. From the experimentally observed data, we
can determine the values of (ẋ, ẏ, ż) at each time t using

ḟ = lim
h→0

[f(t+ h)− f(t)]/h for f ≡ (x, y, z).

Corresponding to 12 unknowns (nine from cαβ and
three more from hi) and three known quantities (ẋ, ẏ, ż),
we can setup 12 independent linear equations by choos-
ing four linearly independent initial states. For example,
the set of states ρ1 = |0〉 〈0| , ρ2 = |1〉 〈1| , ρ3 = |+〉 〈+|,
and ρ4 = |−〉 〈−| where |+〉 ≡ (|0〉 + |1〉)/

√
2, and

|−〉 ≡ (|0〉 + i |1〉)/
√

2, furnishes one such choice. De-
termining all the unknowns involves solving the resulting
linear equations. The first-order traditional master equa-
tion so obtained from the experimental data can now be
used to locate the singular points.

The quantum process tomography [37–41] described
above leads to the equation of motion given in Eq. (8) and
the corresponding dynamical map given in Eq. (9). The
generator of the dynamics is singular when one or more of
the elements of the diagonal dynamical map goes to zero.
By inspection, we see that these points correspond to the
zeros of cosN (ωt) where ω ≡ 2A/

√
N . As mentioned ear-

lier, despite the singularities in Lspin
t = Ėspint (Espint )−1,

the dynamical map in Eq. (9) is analytic for all t. In
order to construct a higher-order differential equation
that avoids the singular behavior, we therefore start from
the dynamical map ρt = Etρ0, where we have taken
Espint ≡ Et for simplicity. We consider higher derivatives
of the equation involving the dynamical map,

ρ
(k)
t = E(k)t ρ0, (14)

with the equation for ρ
(1)
t being the same as Eq. (8). The

strategy we adopt is as follows. The terms that appear
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in E(k)t are derivatives of cosN (ωt), which in turn are
functions of sin(ωt) and cos(ωt). Computing a sufficient
number of derivatives as in Eq. (14) allows us to invert

these functions and write them in terms of ρ
(k)
t and the

next suitable higher derivative of ρt can be expressed fully
in terms of its lower derivatives, leading to a higher-order
dynamical equation of the form given in Eq. (12).

The x component for the Bloch vector representing
ρt is transformed by the dynamical map as ρt,x =
cosN (ωt)ρ0,x. Since the y component also follows the
same pattern and since the map is diagonal, we focus
on obtaining a higher-order differential equation for ρt,x
without loss of generality. The equation so obtained also
applies to the full density matrix. Exploiting the proper-
ties of derivatives of sin(ωt) and cos(ωt), we express any
higher-order cosN (ωt) into a binomial sum of exponen-
tials that upon simplification turns to a sum of cosines.

cosN (ωt) =
1

2N

N∑
j=0

(
N

j

)
ei(N−2j)ωt. (15)

For even N we obtain a binomial sum of cosines as fol-
lows:

cos2m(ωt) =
1

4m

(
2m

m

)
+

1

22m−1

m∑
j=1

(
2m

m+ j

)
cos(2jωt).

(16)
Odd-order derivatives of ρt,x contain m terms each con-
taining sin(2jωt) for j = 1, . . . ,m. The first m odd-order
derivatives can be collected and rewritten as a system of
linear equations of the forma11 · · · a1m

· · · · · · · · ·
am1 · · · amm


 sin(2ωt)ρ0,x

...
sin(2mωt)ρ0,x

 =


ρ
(1)
t,x
...

ρ
(2m−1)
t,x


where aij denotes the coefficients gathered from odd dif-
ferentiations,

aij = (−1)i
1

22m−1

(
2m

m+ j

)
(2jω)2i−1. (17)

The superscript on ρt,x denotes the order of the time
derivative. The binomial coefficient that appears in aij
is distinct and nonzero for each value of j, while the fac-
tor (2jω)2i−1 is nonzero and different for each value of
i given a value of j. So we find that each aij is non-
zero and distinct which means that the determinant of
the m × m matrix A = [aij ] is always nonzero. This
system of linear equations can therefore be inverted so
as to express sin(2jωt)ρ0,x in terms of djρt,x/dt

j for
j = 1, 3, . . . , 2m−1. The right hand side of the equation
for the (2m+1)th derivative of ρt,x is then completely de-
termined by sin(2jωt)ρ0,x for j = 1, . . .m, which in turn
can be now written in terms of the odd derivatives of ρt,x.
This leads to a differential equation of order 2m + 1 of

the form
∑m
j=0 p2j+1ρ

(2j+1)
t = 0. Here we have used the

fact that both ρt,x and ρt,y have the same dynamics to
write the differential equation for the full density matrix.

For odd N we can do a similar analysis starting from

cos2m+1(ωt) =
1

22m

m∑
j=0

(
2m+ 1

j

)
cos[(2m− 2j + 1)ωt].

(18)

The first m+1, odd-order derivatives (ρ
(1)
t,x, . . . , ρ

(2m+1)
t,x )T

can be equated to a11 · · · a1,m+1

· · · · · · · · ·
am+1,1 · · · am+1,m+1


 sin(ωt)ρ0,x

...
sin[(2m+ 1)ωt]ρ0,x


with

aij = (−1)i
1

22m

(
2m+ 1

m+ j

)
[(2j − 1)ω]2i−1. (19)

This system of linear equations again yields sin[(2j +
1)ωt] for j = 0, 1, . . . , 2m in terms of the odd order
derivatives of ρt,x. Differentiating ρt,x twice more leads
to a master equation as desired. Note that when N →∞,

cosN (ωt)→ e−2A
2t2 with the singular behavior is pushed

to t → ∞. A Markovian, first-order, dephasing master
equation is obtained in this limit with many states being
mapped to the same state on the z axis of the Bloch
sphere asymptotically only.

For example, a third order master equation is ob-
tained for N = 2 and ω = 1 in the central spin
model. The corresponding dynamical map is E(t) =
diag

(
1, cos2(t), cos2(t), 1

)
. Rewriting cos2(t) as [1 +

cos(2t)]/2 leads to ρ̇t = − sin(2t)ρ0, ρ̈t = −2 cos(2t)ρ0
and

...
ρt = +4 sin(2t)ρ0. Combining these derivatives we

see that

4ρ̇t +
...
ρt = 0. (20)

This higher-order master equation for the central spin
model with N = 2 is numerically solved for a pure initial
state r0 =

(
1/2, 1/

√
2, 1/2

)
as shown in Fig. 2. While

the first-order equation (8) is singular at π/2 and hence
is unable to propagate the solution beyond that point, we
see that the dynamics obtained from Eq. (20) is smooth
at all times, just as desired.

It is important to note that the higher-order equa-
tions can also be obtained by directly using the diverg-
ing generator and its derivatives leading to an equation

that closely resembles Eq. (12). We use ρ
(n)
t = L(n)

t ρt in

Eq. (12) so that
∑
n pnL

(n)
t ρt = 0 holds true for all ρt,

which in turn yields,∑
n

pnL(n)
t = 0. (21)

For the central spin model it is possible to start from

ρ
(1)
t = Ltρt instead of Eq. (14) and arrive at Eq. (21)

without considering the dynamical map. However the
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FIG. 2. Numerical solutions of the higher-order master equa-
tion (20) (dashed curves in white) are plotted component-wise
along with the elements of dynamical map from Eq. (9) with
N = 2 (colored solid curves). This plot displays the evolution
of each component of the Bloch vector for the initial pure state
~r0 =

(
1/2, 1/

√
2, 1/2

)
. Solutions given by higher-order equa-

tions exactly agree with that of the dynamical map and the
dashed white curves fall exactly on top of the solid colored
ones. This is unlike the solution of the first-order equation
which blows up at π/2 and cannot be propagated further.
Time on the x-axis is shown in units of 1/ω.

steps involved will be more complicated when using the
generator rather than the map because of the ρt appear-
ing on the right hand side. While using Eq. (14) makes it
simpler to see how the higher-order equation is obtained,
it also gives the impression that knowledge of the full dy-
namics in terms of the map at all times is necessary for
obtaining the higher-order equation. We point out here
that this is not the case and starting from the (singular)
generator obtained using the process tomography steps
outlined at the beginning of this section, one can directly
obtain the higher-order master equation.

We illustrate this approach for the central spin model
with N = 2 and ω = 1. As noted previously, the x and y
components of Bloch vector undergo the same dynamics
and so we consider only the x component, ρt,x. Denoting
the x component of generator by Lt,x, we have,

Lt,xρt,x = −2 tan(t)ρt,x,

L(2)
t,xρt,x ≡

(
L̇t,x + L2

t,x

)
ρt,x = 2

[
tan2(t)− 1

]
ρt,x,

L(3)
t,xρt,x ≡

(
L̈t,x + 3Lt,xL̇t,x + L3

t,x

)
ρt,x = 8 tan(t)ρt,x.

From the equations above, as expected, we recover

Eq. (20) in the form 4Lt + L(3)
t = 0.

From either of the methods we described above to ob-
tain the higher-order equations, it is clear that their order
is N + 1 for even N and N + 2 for odd N . Consequently,
we would need as many specified initial conditions to
overcome the issue of singularity. In other words, it is
mandatory to know the history of the particle to deter-
mine the further evolution of a state. As this feature

suggests the presence of memory effects to varying ex-
tents, it is then natural to speculate if a correspondence
between the number of bath spins and the degree of non-
Markovianity can be established. More on this is dis-
cussed in Sec. VII.

VI. HIGHER ORDER MASTER EQUATIONS
FOR OTHER TYPES OF SINGULAR OPEN

DYNAMICS

The singular behavior for the first-order master equa-
tion of the central spin model is not unique to this model.
We present several examples of CPTP maps with singu-
larities, the first-order master equations, and their corre-
sponding higher-order master equations whose solutions
are free of singularities. As before, we phrase our dis-
cussion in terms of dynamical maps because of the sim-
plicity and clarity afforded by this approach. Having the
dynamical maps at hand also helps in verifying that the
solutions of the higher-order master equations that are
obtained indeed do reproduce the dynamics faithfully.
We reiterate that as with the central spin model, the (sin-
gular) generator is sufficient to obtain the corresponding
higher-order equations and knowledge of the full dynam-
ics in terms of the dynamical map for all t is not needed.
We categorize the examples considered based on the dy-
namical map being unital or not.

A. Unital dynamical maps

We continue with the central spin model and consider
a case where the locations of the singularities of the first-
order master equation can be moved around by changing
the model parameters. This means that the difficulties
encountered in the numerical propagation of the first-
order equation can be modulated and for certain choices
of model parameters such solutions can become imprac-
ticable or even impossible to obtain. In this case, if one
were to take the restricted point of view of an observer
who has access only to the central spin and does process
tomography to determine the form of the generator, the
dynamical map for all times remains inaccessible to the
observer since even numerical integration of the obtained
first-order master equation may be precluded. Proceed-
ing to construct the higher-order master equation then
appears to be the only path forward for this restricted
observer in order to gain predictive power over its evolu-
tion.

We consider a central spin under the influence of two
environment spins with unequal interaction strengths as
given by the Hamiltonian,

H =
ω1

2
(σz ⊗ I⊗ σz) +

ω2

2
(σz ⊗ σz ⊗ I).

and Et = diag(1, cos(ω1t) cos(ω2t), cos(ω1t) cos(ω2t), 1)
is the map describing the reduced dynamics of the first
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qubit. The generator will include two tangent functions
each with a different argument. It is possible to change
the location of the singularity by altering the strength
of interaction. In addition, if we increase the number of
environment spins, the number of tangent functions in
the generator will also increase. When singularities are
aggregated, propagating the first-order differential equa-
tion beyond them, without accumulating significant er-
rors becomes increasingly difficult. For the case of two
environment spins, equations of motion for the x and y
components of the Bloch vector of the state of the central
spin are again the same (the dynamics of the z compo-
nent does not exhibit any singular behavior). The higher-
order equation for ρt,x is,

ρ
(4)
t,x + 2(ω2

1 + ω2
2)ρ

(2)
t,x + (ω2

1 − ω2
2)2ρt,x = 0. (22)

Solving this fourth-order equation yields the correct dy-
namics.

As a second example consider the dynamical map given
below which is CPTP for all γ, ω ≥ 0 and has no inverse
at ωt = (m + 1

2 )π,m ∈ Z due to the singular nature of
the dynamics of the x and y components of the Bloch
vector:

Et =

 1 0 0 0
0 e−γt cos(ωt) 0 0
0 0 e−γt cos(ωt) 0
0 0 0 e−γt

 . (23)

The functions appearing in this dynamical map are non-
periodic and the singularities in the dynamics occur at
periodic intervals of π/ω.

The traditional master equation for the above map is

ρ̇t =
1

4

{
γ(σxρtσx − ρt) + γ(σyρtσy − ρt)

+ [γ + 2ω tan(ωt)] (σzρtσz − ρt)
}
. (24)

For simplicity, assume that ω = γ = 1. The higher-order
master equation for this example looks like

ρ
(4)
t +Mρt = 0, (25)

where M = diag (0, 4, 4, −1) . Choosing different values
of ω and γ results in a master equation of different degree
than the above.

It would be misleading to dismiss the singularities in
the first-order equations as manually avoidable by choos-
ing to “jump” over those discrete points while regular-
izing the traditional master equations, either by analyti-
cally integrating the rates or via forceful numerical tech-
niques. Although one may try to “escape” the singular
points by carefully choosing the integration limits, it re-
lies on having the exact knowledge of location of singu-
larities. However, one can come up with examples where
it is impossible to obtain all singular points analytically.
The advantage of using higher-order equations is further

emphasized by the fact that it is not necessary to know
when singularities occur, as shown in the next example.
Returning to the generic form in Eq. (10) for the diagonal
unital map, consider the following choice:

fx(t) = fy(t) =
1

6
(2 + 4e−γt − 3 sin2(ωt)), (26a)

fz(t) =
1

3
(4e−γt − 1). (26b)

This dynamical map is constructed in such a way that it
is not possible to obtain all the singular points analyti-
cally. In addition to γt = log(4) and ωt = (m+1/2)π for
m = 0, 1, 2, . . . for any γ, ω ≥ 0, the dynamics exhibits
singular behavior whenever the following transcendental
equation holds true: γt = log 4− log(3 sin2(ωt)−2). The
traditional master equation is

ρ̇t =
γ

4− eγt

[
(σxρtσx − ρt) + (σyρtσy − ρt)

]
+

(
γ

eγt − 4
+

4γ + 3ωeγt sin(2ωt)

8 + eγt[1 + 3 cos(2ωt)]

)
× (σzρtσz − ρt) . (27)

The higher-order equation provides a reliable description
since it naturally gets rid of all the singularities regardless
of our knowledge on their whereabouts. We obtain the
following higher-order master equation when γ = ω = 1
that holds for all times,

ρ
(5)
t = 4ρ

(1)
t − 3ρ

(3)
t . (28)

In this last example for unital maps, we demonstrate
the presence of singularities due to the presence of ze-
ros at discrete times, in all three diagonal elements of
the dynamical map. For 1/n1 + 1/n2 + 1/n3 ≤ 1 and
a1, a2, a3 ≥ 0, the following choice of diagonal elements
of the map from Eq. (10) stays CPTP:

fx(t) = 1− 2

(
1− e−a1t

n1
+

1− e−a2t

n2

)
, (29a)

fy(t) = 1− 2

(
1− e−a1t

n2
+

1− e−a3t

n3

)
, (29b)

fz(t) = 1− 2

(
1− e−a2t

n2
+

1− e−a3t

n3

)
. (29c)

The constants aj and nj determine when the singulari-
ties occur and we can identify one set of singular points
observed for each component of the Bloch vector of the
state of the system qubit at times

tj =
1

aj
ln

(
1

1− nj
4

)
, j = 1, 2, 3.

The rates appearing in the traditional master equation
are given by

γx =
1

4

(
ḟx
fx
− ḟy
fy
− ḟz
fz

)
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and its cyclical permutations among x, y, z. For this
map, singularities occur in all three Bloch vector com-
ponents at distinct times determined by the constants aj
and nj . The higher-order equations without singularities
that holds for all times is given by

M1ρ
(3)
t +M2ρ

(2)
t +M3ρ

(1)
t = 0, (30)

where

M1 = diag (0, 1, 1, 1) ,

M2 = diag (0, a1 + a2, a1 + a3, a2 + a3) ,

M3 = diag (0, a1a2, a1a3, a2a3) .

B. Non-unital dynamical maps

The Jaynes Cummings Hamiltonian in the interaction
picture for a two level atom coupled to a quantized elec-
tromagnetic field is given by

ĤJC = ω
(
aσ+ + a†σ−

)
. (31)

This model corresponds to a non-unital dynamical
CPTP map [5]:

EJC(t) =

 1 0 0 0
0 f(t) 0 0
0 0 f(t) 0

f2(t)− 1 0 0 f2(t)

 . (32)

The corresponding generator is:

LJC(t) =


0 0 0 0

0 ḟ/f 0 0

0 0 ḟ/f 0

2ḟ/f 0 0 2ḟ/f

 . (33)

This example is presented to show that our method can
be applied to non-unital maps also. For a real function f ,
the time evolution corresponds to a time-local Lindblad-
like master equation [13],

ρ̇(t) = − ḟ(t)

f(t)

[
2σ−ρtσ+ − σ+σ−ρt − ρtσ+σ−

]
. (34)

where σ+ = |e〉 〈g|, and σ− = |g〉 〈e|. Choosing f(t) =
cos(ωt) corresponds to the Jaynes-Cummings model on
resonance, describing the interaction of an atom with a
cavity field. We see that Eq. (34) is singular just like
Eq. (8) because of the tan(ωt) term. However, the regu-
larized, higher-order master equation in this case will be
different from the spin model (N = 1) described earlier
which has a second-order master equation. Noticing that

L(4) + 4ω2L(2) = diag
(
0, −3ω4, −3ω4, 0

)
, (35)

a straightforward calculation reveals that

M1ρ
(4)
t +M2ρ

(2)
t +M3ρt = 0, (36)

where

M1 = diag (0, 1, 1, 1) ,

M2 = diag
(
0, 4ω2, 4ω2, 4ω2

)
,

M3 = diag
(
0, 3ω4, 3ω4, 0

)
.

We can equivalently rewrite Eq. (35) as,

ρ
(4)
t + 4ω2ρ

(2)
t =

3

2
ω4(σzρtσz − ρt). (37)

The right hand side of Eq. (37) has a different set of oper-
ators compared to Eq. (34) and it resembles a dephasing
term with σz operators rather than the σ± appearing
in the first-order master equation. This highlights the
fact that the higher-order master equations may have a
substantially different form from the first-order ones in
general. However, the presence of the higher derivatives
means that these equations do not lend themselves to the
usual interpretation of rates or Lindblad operators. For
instance, in the present case, the operator M3 acting on
the state ρt cannot be understood as a generator of time
translations in the same manner as LJC. The meaning
imparted by extra terms present in higher-order equa-
tions appear to be context-dependent and thus inferring
their exact meaning is beyond the scope of this study.
It may be noted that the dynamics described by both
Eqs. (34) and (37) are the same except at the singular
points.

VII. COMPARING NON-MARKOVIAN
PROCESSES

The necessity to explore higher-order differential equa-
tions for a clear description of singular processes natu-
rally begs the question of the relationship, if any, be-
tween the extent of non-Markovianity and the order of
equations, or essentially, the nature of singularities. This
prompts us to seek a means of comparing different singu-
lar non-Markovian processes using existing measures of
non-Markovianity. Non-Markovianity manifests itself in
various ways such that there is no single measure or a set
of instructions by which comparison of its “degree” can
be conclusively done. Multiple measures have been de-
veloped as indicators of non-Markovian dynamics in the
past, based on, for example, the nearest approximation to
Markovian channels [22], entanglement between system
and ancilla along with the deviations from the divisibil-
ity of dynamical maps [23], non-monotonic behavior of fi-
delity [24], quantum Fischer information [25], the volume
of accessible states [26], non-zero quantum discord [27],
and the behavior of trace distance [28–30]. There have
been multiple studies to investigate the inflow of infor-
mation and some of these studies have also considered
those cases when the map is non-invertible [15–17]. Our
interest, however, is on the relationship between nature
of singularities and extent of non-Markovianity from the
perspective of information inflow. We shall mainly focus
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on the trace distance measure defined in [28] owing to
its quantitative nature and applicability to experimental
realizations [42].

A quantum process is non-Markovian if there is an ini-
tial pair of states ρ1(0) and ρ2(0) such that the trace
distance D(ρ1(t), ρ2(t)) starts to increase for some time
t > 0. A measure of non-Markovianity introduced by
Breuer, Laine and Piilo [28] defined in terms of this prop-
erty is

N (Et) = max
ρ1,2(0)

∫
t,σ>0

dt σ(ρ1(0), ρ2(0), t), (38)

where

σ(ρ1(0), ρ2(0), t) =
dD(Etρ1(0), Etρ2(0))

dt
, (39)

denotes the time derivative of the trace distance of the
evolved pair of states. The trace distance for states ρ1
and ρ2, in turn is given by

D(ρ1, ρ2) =
1

2
Tr‖ρ1 − ρ2‖, (40)

where the modulus of an operator A is ‖A‖ =
√
A†A.

The integral over time in Eq. (38) extends over all in-
tervals in which σ(t) > 0. The maximum is taken over
all pairs of initial states ρ1,2(0). Note that the Breuer-
Laine-Piilo (BLP) measure, N (Et) is a positive functional
of the dynamical map Et and that it acts as a measure
for the maximal total inflow of information from the en-
vironment back to the open system. By construction, all
Markovian processes have N (Et) = 0.

For the spin model, σ(t) is positive at periodic inter-

vals and N (Espint ) adds up to infinity for any N when
the contributions from all the periods are added up.
Therefore this measure cannot be used to compare the
degree of non-Markovian behavior corresponding to dif-
ferent values of N . Analysis of other measures of non-
Markovianity like the one quantified based on the change
in Bloch sphere volume V (t) of the set of accessible states
of the evolved system [26] also reveals a similar behav-
ior independent of N precluding the comparison that we
seek. The divergent behavior of the BLP and related
measures is not unique to the central spin model we con-
sider.

Information inflow from the environment to the sys-
tem is an unmistakable signature of non-Markovian evo-
lution. In order to explore the exchange of information
of between the two in the central spin model, we look at
the mutual information between the central spin and its
environment of spins. Using the von Neumann entropy
S for a system ρ calculated as S(ρ) = −Tr(ρ log ρ), the
mutual information I is evaluated as

I(ρsys, ρenv) = S(ρsys) + S(ρenv)− S(ρjoint),

where ρsys is the state of the system as in Eq. (7),
ρenv = I/2N is the bath state, and ρjoint = Uη0U

† for

U = e−iHspint, all evaluated at time t. This mutual infor-
mation is plotted for different values of N in Fig. 3. We
see from the oscillatory behavior of the mutual informa-
tion that information is delocalized between the system
and the environment and then localized back in the re-
spective components in an alternating manner. The rate
at which this exchange occurs depends on the number of
environment spins, N . The time taken by the informa-
tion, once delocalized, to again return to the central spin
scales as

√
N . Note that this scaling is connected to the

choice we made in Eq. (6) for the Hamiltonian where the
coupling between the central spin and the environment
spins scaled as 1/

√
N . We emphasize that this is differ-

ent from the example considered in Ref. [28] wherein the
interaction Hamiltonian was not scaled with the num-
ber of spins in the environment. This choice resulted in
a process that had no Markovian limit as a function of
N . However, in our case, we recover the expected case
of Markovian evolution as N → ∞ with the delocalized
information never returning to the central qubit.

FIG. 3. Mutual information between the central spin and
environment is plotted for varying number of spins in the
bath. The number of spins in the bath are placed as labels
next to each curve in the plot. The higher the number of
interacting spins, the longer the interval between vanishing of
mutual information, eventually reaching infinity for large N .
Here we have chosen A = 0.5 with Ak = 0.5/

√
N . Time on

the x-axis is shown in units of 1/ω.

The dynamics of the mutual information highlights
an aspect of non-Markovian evolution that is not typi-
cally addressed by the various known measures of non-
Markovianity. While the amount of inflow of informa-
tion from the environment is captured by a measure of
non-Markovianity like the BLP measure, we see that cen-
tral spin models with different N are also characterized
by the time scales at which the inflow happens. Non-
Markovianity is indeed recognized as a feature that makes
mathematical descriptions of physical phenomena rather
difficult. In the absence of a comprehensive, all encom-
passing, understanding of non-Markovian quantum evo-
lution, we are led to consider the possibility that more
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than one measure may be necessary for capturing differ-
ent aspects of non-Markovianity. We consider whether
persistence of information exchange is an aspect of non-
Markovianity that can be quantified in a manner that it
complements the existing measures. In addition to the
central spin model, several processes allow the identifica-
tion of ‘cycles’ in their evolution such that the contribu-
tion of further dynamics to BLP measure after the first
cycle is redundant. Taking a cue from this we propose
supplementing the BLP measure with another quantity
that determines a characteristic time τ over which the
integral defining the BLP measure in Eq. (38) can be lim-
ited to. The average rate of inflow of information over one
such cycle can then be used as an effective quantifier that
allows us to compare the degree on non-Markovianity of
different processes belonging to the same family. In other
words the ratio N (Et)/τ with N (Et) redefined as

N (Et) = max
ρ1,2(0)

∫ τ

t,σ>0

dt σ(ρ1(0), ρ2(0), t), (41)

becomes the figure-of-merit we explore in the subsequent
discussion.

Finding an optimal pair of states that maximize the in-
tegral under consideration in Eq. (41) is made easier with
the help of theorems proved in Ref. [43], which state that
an optimal pair of states must be orthogonal to each other
and are restricted to the boundary of the state space. For
qubit systems, this choice reduces to finding the optimal
pair of pure, mutually orthogonal states that lie on the
surface of the Bloch sphere. For all the examples dis-
cussed below, we have found the optimal pair of states by
discretizing the surface of the Bloch sphere and evolving
the antipodal states by the chosen dynamical map. The
maximum of the sum of trace distances between evolved
states over all the time intervals in [0, τ ] for which σ > 0
is then divided by τ for determining the quantity of in-
terest,

Mτ (Et) :=
N (Et)
τ

. (42)

This rate of information inflow can be applied to any
generic non-Markovian process.

The purpose of cutoff time τ is to identify the time
limit by which a pre-determined amount of information
flows into the system from its environment. The inter-
val τ varies greatly depending on the required proxim-
ity to the initial state. This statement is equivalent to
choosing an error tolerance ε > 0 for comparing the sim-
ilarity of the dynamical map at a later time Et with
the initial map E0 = I. It is well known that in finite
dimensional state spaces, all norms are equivalent [44].
Without loss of generality, we employ the L1-norm for
measuring the distance between the dynamical maps.
In other words, we need the first occurrence of time
τε for which ‖Eτε − E0‖1 =

∑
i,j |(Eτε)ij − (E0)ij | ≤ ε,

where i and j denote row and column indices, respec-
tively, and (dEt/dt)|τε < 0 so as to select only those

times for which the map is returning. Choosing a suf-
ficiently smaller tolerance typically leads to longer re-
currence times. Although the for purpose of comparing
different non-Markovian processes belonging to the same
family, the first occurrence of information inflow up to
the prescribed tolerance level is sufficient, one might as
well choose any such occurrence as long as comparisons
are done on an equal footing.

We will demonstrate the discussion above using
the example described in Eq. (23), namely, Et =
diag(1, e−γt cos(ωt), e−γt cos(ωt), e−γt). Consider two
such processes with ω1 = 100, ω2 = 50 and γ1 = γ2 =
1 ≡ γ. Any general non-Markovian process, especially
the ones with non-Markovian decay, need not bring the
dynamical map as close to the identity matrix as desired
and thus the tolerance level for comparison must be care-
fully chosen. We can mitigate this problem by choosing
the first local minima for both the processes as the re-
spective tolerance limits and then choose the maximum
of the two to ensure both processes witness the norm
reaching the assigned limits. For the processes at hand,
we fix a tolerance level of ε = 0.5. We desire to find the
time τ for which ‖Eτ − I‖1 ≤ 0.5. We determine that τ0.5
is 0.0568 and 0.1169 for the first and second processes,
respectively, as is evident from the Fig. 4. The quantity
M1

τ for the first process turns out to be 30.1507 andM2
τ

is 14.3495 for the second, which is consistent with the
observation that the process having frequent oscillations
turns out to be more non-Markovian than the one with
slower oscillations.

FIG. 4. L1 norm for the dynamical map from Eq. (23) for the
initial time and intermediate time is plotted as a function of
time. The tolerance level is fixed at 0.5. The first arrivals of
information inflow to the required tolerance are denoted by
τ10.5 and τ20.5 for different oscillation frequencies, respectively.
The lesser time for the recurrence of information inflow in-
dicates a higher degree of non-Markovianity. Note that time
has the units of 1/γ in this figure.

Defining a process-independent cutoff time τ for a non-
periodic process is a challenging task. Hence, one may
naively assign an infinite-time period for all such pro-
cesses, allowing the BLP measure to also accumulate to
infinity over an unbounded time interval. It is easy to
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see that Mτ (Et) for any process is a bounded quantity.
The key point is that the BLP measure is limited by the
maximum difference in the trace distance for a pair of
states and thus is always bounded by 1 for qubits. Since
this increase in trace distance happens over a finite time,
the proposed measure will always have a finite limiting
value. However, it may not be straightforward to obtain
the measure value in such cases.

For the spin model, choosing tolerance limits as ε =
10−2 and 10−3 leads to cutoff times τ = 6.184 and 6.252,
respectively, both of which are close to 2π. The cor-
responding measure values turn out to be 0.3226 and
0.3198. One may as well choose ε = 0 indicating com-
plete inflow of information resulting in a cutoff time same
as the period of the process which is 2π. In addition to
the generic procedure to find the cutoff time the τ for
any process, the periodic and quasi-periodic processes
offer simpler ways of fixing it.

Periodic Cases: All periodic processes repeat their
dynamics after their respective time periods T and thus
naturally furnish a time τ until which the BLP measure
must be calculated. The complete dynamics of the sys-
tem is captured by the dynamical map Et whose period
shall then ensure that all the states on the Bloch sphere
revisit their initial configuration corresponding to t = 0
exactly and any dynamics beyond this period is redun-
dant for eliciting the degree of non-Markovian behavior.
Note that multiple pairs of states might revisit their ini-
tial configurations even before one cycle of the dynamical
map is complete. By choosing the period of the map we
are insisting that all states return to their positions in
state space. The initial configurations are typically ones
in which there are no system-environment correlations,
particularly if one considers only completely positive dy-
namical maps. Since all system states have reset their
correlations, if any, with the environment at intervals de-
fined by the period of the map, we can use T as the
upper limit of the integral in Eq. (41). The integral itself
will have the same value if integrated over any interval of
length T . The average rate of information inflow is then
defined as,

Mτ (Et) =
1

T
max
ρ1,2(0)

T∫
0

σ>0

dt σ(ρ1(0), ρ2(0), t). (43)

We demonstrate the utility of Eq. (43) by applying it to
the spin model described in Sec. III. Extension to other
periodic cases is straightforward. For the spin model,
the time period of the map depends on N . We find
that T = 2π

√
N for odd N and π

√
N for even N and

σ > 0 in the interval [π
√
N/2, π

√
N ] for all N and ad-

ditionally in the interval [3π
√
N/2, 2π

√
N ] for odd N .

The average rate of information inflow for this example
isMτ (Espint ) = 1/(π

√
N). We see thatMτ (Espint ) is able

to distinguish between central spin models with differ-
ent number of bath spins and allow comparisons among
them in terms of their degree of non-Markovianity. This

FIG. 5. Average rate of information inflow, Mτ (Espin
t ), for

the central spin model plotted against the number of bath
spins. Scaling the coupling constant in Eq. (6) as 1/

√
N

plays an important role in keeping the total interaction en-
ergy between the central spin and the environment constant,
independent of N . In this case we see that the evolution be-
comes Markovian when N → ∞ as expected with Mτ (Espin

t )
approaching zero in this limit.

is unlike the previously proposed measure of singular be-
havior from Ref. [18] where the value of the measure is
1/2 irrespective of N . In our discussion of the dynamics
of mutual information earlier, we noted that Markovian
evolution is expected as N → ∞. We see that as ex-
pected,Mτ (Espint ) converges to zero as N becomes large
as shown in Fig. 5, indicating Markovian limiting behav-
ior.

We would like to highlight that the scaling constant
directly affects the decay rate. Suppose the interaction
strength in the Hamiltonian of the central spin model
in Eq. (6)is B. The corresponding average inflow rate
from Eq. (43) is then proportional to B. In the discus-
sion above, we have considered the interaction strength
as A/

√
N with A = 1/2.

Quasi-periodic cases: In what follows, we supple-
ment our proposal for modification of BLP measure with
an example where we find τ although the map has only
an approximate periodicity. Consider the following 3-
spin model with the Hamiltonian,

H =
1 + π

4
(σz ⊗ I⊗ σz) +

1− π
4

(σz ⊗ σz ⊗ I)

and the corresponding map describing the reduced
dynamics of the first qubit, Et = diag(1, [cos(t) +
cos(πt)]/2, [cos(t) + cos(πt)]/2, 1). Clearly, there does
not exist a period for this map since the two frequencies
appearing (1 and π in this case) are incommensurate. We
propose two different approaches for finding the suitable
time τ .

For all quasiperiodic processes, the general method can
be understood as a corollary of the Poincaré recurrence
theorem. The theorem states that for all finite dimen-
sional systems with a time-independent Hamiltonian, the
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state vector |ψ(T )〉 returns arbitrarily close to the ini-
tial state |ψ(0)〉 [45]. Proceeding with the method of
obtaining τ earlier, we fix the error limit ε to 0.1 for
the three-spin example considered above which results in
τ0.1 = 5.92. Integrating Eq. (43) over all the intervals
wherein the trace distance between a pair of states in in-
creasing until τ0.1, we find the modified measure Mτ0.1

to be 0.5204. Similarly, τ0.01 = 43.95 and τ0.001 = 43.98
yield the measure values as 0.5130 and 0.5128, respec-
tively. Noticeably, these values are more or less similar
for different tolerance levels. Since higher accuracy can
only be achieved after longer times, BLP measure val-
ues will also accumulate proportionally for the optimal
pair of states. Thus we conjecture that the measure val-
ues remain almost the same for lesser tolerance values as
well.

The presence of quasi-periodicity allows us to adopt an
alternative procedure which is as simple as rationalizing
the irrational frequencies that appear so that the result-
ing terms of the dynamical map have a well-defined pe-
riod. Since the irrationals are dense in R, we are always
guaranteed to find the rational approximation of any ir-
rational number to the needed accuracy. For the case
at hand, choosing 22

7 as the approximation of π yields
the period as 14π. The proposed measure N (Et)/τ then
has the value 0.5129, which is also closer to the values
obtained by the other method.

In the sense of information inflow, we may conclude
that certain processes are more non-Markovian than the
others, as evidenced by the measure we introduced. In
essence, the proposed addition to the BLP measure cap-
tures the differences in the degree of non-Markovianity
between any two processes as advertised.

VIII. DISCUSSION AND CONCLUSION

State preparation or initialization of a quantum system
is a ubiquitous and important step in pretty much all ex-
periments exploring the quantum realm. Initialization is
an important step in running any algorithm in a quantum
information processor and it is called for in most other
applicable quantum technologies as well. Whether it is in
the context of initializing an ensemble of identical quan-
tum systems that are in different states into a common
initial state or in the context of driving a single quantum
system in an arbitrary state deterministically into a spe-
cific initial state, the preparation device has to induce dy-
namics on the system such that it is a many-to-one map
of the kind we have discussed at length. During initial-
ization, the quantum system of interest undergoes open
quantum dynamics in contact with a preparation device
that serves as its immediate environment. Our analysis
shows that the preparation step can very well correspond
to a singular point in the dynamics. Unless the strong as-
sumption is made that after initialization the system and
the preparation device are in a completely uncorrelated
product state, further evolution of the system state may

depend on the state from which the initialization process
started. Note that in fact, the preparation device must
return to the same quantum state after initialization ir-
respective of the system state that was prepared for all
preparations to yield identical subsequent dynamics.

In this paper we have explored in detail how such
singular behavior in open quantum dynamics can be
described mathematically using master equations with
higher-order time derivatives. We see that such singu-
lar behavior may be much more common than previ-
ously imagined in the context of state preparations, lend-
ing added significance to our results. Our construction
not only provides a means of propagating system states
across the singular points of the normal first-order master
equations, it also highlights the role that the environment
can play in endowing various trajectories in state space
that meet at the singular point with independent and
distinct subsequent evolution. It may even be possible
to observe subtle variations in subsequent trajectories of
the same initial state in quantum process tomography
experiments arising from differences in the starting point
of state initialization and residual correlations that may
exist between the system and state preparation device.

It is interesting to note that from the various ex-
amples we have considered wherein higher-order master
equations turned out to be useful, there is no particu-
lar discernible pattern for the structure of such equa-
tions. While a detailed characterization of the families
of higher-order equations that may appear is beyond the
scope of the present work, one way of understanding the
possible origin of this variety is the following. Since the
trajectories of multiple states coincide at the singular
points, it is safe to say that at these points, relevant
information that determines the future of each trajec-
tory no longer resides in the state of the system. Given
that quantum information can lie delocalized across mul-
tiple subsystems, this information can either lie delocal-
ized across the system and its environment, be contained
entirely in the state of the environment or both. The
trajectories separating again can then be attributed to
this information flowing back. The information inflow
need not always produce a change in the state of the sys-
tem that is first-order in time. It may affect higher-order
time derivatives due to the interplay between the system-
environment dynamics and the flow of information from
the environment and/or from the delocalized form back
to the system state.

In a different context, this idea was presented in [46]
where, using the Jaynes-Cummings model, an exam-
ple was constructed in which two different system-
environment interactions can lead to identical master
equations but different trajectories for a qubit. The dif-
ference between the two Hamiltonians involves an in-
stantaneous switch in the parameters that happens at
a singular point in the dynamics such that the first-order
master equation remains the same. However, two differ-
ent solutions of the same master equation starting from
the same initial state are obtained with and without the
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switch. From our point of view, the switch corresponds
to rapidly changing the system-environment parameters
exactly when the information that determines and dif-
ferentiate subsequent dynamics of the qubit is not avail-
able in its state. The effect of the switch is in modifying
higher-order time derivatives of the system state and so it
does not appear in the first-order master equation. The
trajectories followed by the same initial state with and
without the switch are both solutions of the first-order
equation but looking at the overall evolution it is easy to
distinguish the two as expected.

The role of information inflow from the environment
into the system that disambiguates trajectories after sin-
gular points in the context of the experimentally imple-
mentable central spin model led us to the question of
non-Markovian behavior in such models. With the aim
of comparing the degree of non-Markovianity across dif-
ferent instances of the central spin model we introduced
the typical time-scale for information inflow as a quan-
tity that captures a different aspect of non-Markovian
behavior compared to the standard approaches to quan-
tifying such behavior. The average rate of informa-
tion inflow introduced by combining this quantity with
a well-established non-Markovianity measure helped us
compare central spin models with different numbers of

environment spins with regard to the degree of non-
Markovianity in the evolution of the central spin. We
also explored the limiting case of Markovian behavior
that emerges when the number of environment spins be-
come very large. We then showed that the notion of an
average rate of information inflow can be extended to
generic non-Markovian open evolution as well and its ap-
plicability need not be limited to examples with singular
behavior. We discussed these extensions for various types
of non-Markovian dynamics possible for a single qubit.
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