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Abstract 
 
The adoption of evolutionary approaches to study language change as a type of non-

biological evolution has gained increasing interest and brought variety of quantitative 

tools for linguistics. The focus has thus far mainly been on language families, or 

‘linguistic macroevolution’ and have taken the shape of linguistic phylogenetics. Here we 

explore whether evolutionary methods could be applicable for studying intra-lingual 

variation (‘linguistic microevolution’) by testing a population genetic clustering method 

for analyzing the ‘population structure’ of Finnish dialects. We compare the results with 

traditional dialect divisions established in the literature, and with K-medoids clustering, 

which is free from biological assumptions. The results are encouragingly similar with 

each other and agree with traditional views, suggesting that population genetic tools 

could be a useful addition to the dialectological toolkit. We also show how the results of 

the model-based clustering could serve as a basis for further study. 
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1 Introduction 
 
With written accounts dating back to at least the 14th century (Heeringa 2004), dialects 
have generated a great deal of interest among language researchers over the years, with 
systematic dialect study (dialectology) stemming back to the late nineteenth century 
(Chambers & Trudgill 1998). Dialectology has generally focused mainly on traditional 
(non-quantitative) research, although statistical analyses have also gained foothold from 
the 1950s onwards (Chambers & Trudgill 1998). Current dialectology includes a number 
of computational approaches, including multivariate analyses, dialectometry, 
Levenshtein distances, clustering and multidimensional scaling (e.g. Heeringa 2004; 
Leino et al. 2006; Hyvönen et al. 2007; Leino & Hyvönen 2008), and new methods 
continue to be developed. 
 Quantitative methodology from biology might provide a useful addition for the 
repertoire of dialectological tools. Biological methods have gradually seeped into other 
linguistic fields, most notably historical linguistics, where they are used to study 
‘linguistic macroevolution’ – e.g. language classification, divergence history, and the 
forces driving linguistic divergence (e.g. Gray & Atkinson 2003; Lee & Hasegawa 2011; 
Honkola et al. 2013; Syrjänen et al. 2013; Lehtinen et al. 2014). In studying linguistic 
macroevolution languages are regarded as roughly analogous to species. It might be 
possible to take this analogy a step further, as in a similar way as languages have 
language-internal variation which may be clustered to dialects, species also have 
internal variation which may be clustered to populations. Studies on biological 
populations focus specifically on studying this variation with specific tools in their own 
research fields (including e.g. population genetics and population ecology). This 
provides an interesting possibility of approaching dialects from a ‘microevolutionary’ 
perspective by adopting approaches from disciplines designed to explore within-species 
variation to the study of intra-lingual varieties. In this paper we examine the 
applicability of this ‘microevolutionary’ approach to dialect studies. 
 Our data comes from an atlas of Finnish dialects collected at the beginning of the 
20th century (Kettunen 1940a), which we analyze using population genetic clustering, 
and compare it with a generic distance-based clustering method. Both are also 
compared against dialectological studies. The study focuses largely on methodological 
exploration; Finnish dialects, with their extensive study history, provide a good baseline 
for this. While clustering plays a large role in this study, our main purpose is not to 
determine the number of dialects best supported by population genetic analyses but 
rather to achieve an in-depth view of dialect clustering as the initial stage for more 
advanced analyses. 
 We begin by briefly introducing the underlying theoretical framework – i.e. 
languages and dialects from an evolutionary perspective. Following this, we take a look 
at earlier dialectological research, outlining how Finnish has been divided dialect-wise 
in the past. We also take a look at quantitative dialectology related to Finnish dialects. 
Following this we introduce the data and the methods employed in this paper. Finally, 
we evaluate and discuss the results in the light of Finnish dialectology and conclude by 
presenting some examples of analyzing dialects with population genetic tools that go 
beyond the clustering step.  
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2 Background 
 

2.1. Linguistic evolution: how languages and dialects resemble species and 

populations 

 

The present study does not require extensive familiarity with the full range of analogies 
and similarities proposed between biological species and languages, which date back all 
the way to Darwin. Here, we focus on what we consider to be the three most important 
analogies or similarities, which serve as the core for applying biological methodology to 
study language data. Firstly, both have discrete heritable units. Secondly, these heritable 
units are packed in spatiotemporal “containers” – the individuals, which are typically 
structured in groups (populations). Thirdly, the individuals and the populations are 
susceptible to internal and external forces that affect the frequencies of the shared 
heritable units over time. In the following we discuss these points more in depth. A more 
in-depth evolutionary analysis of languages, largely compatible with what is discussed 
here, can be found in Croft (2000); a concise selection of analogies that is also generally 
compatible with the model we describe here can be found in Pagel (2009).  
 The heritable units in biology – the genetic information carried by organisms, e.g. 
genes, alleles, nucleotides and amino acids – transfer primarily vertically from parents 
to offspring through genetic inheritance. Additionally, horizontal gene transfer has been 
occasionally found to occur (e.g. Gasmi et al. 2015) and actually the early stages of life 
were presumably characterized by extensive horizontal gene transfer among 
prokaryotes (e.g. Campbell et al. 2008). The heritable units in languages – e.g. words, 
phrases, constructions – are transmitted via communication between individuals. This 
shows a significant difference between biological species and languages – that is, in 
biology the heritable units are carried over to a newly created individual (the offspring), 
while their linguistic counterparts are carried over to an existing speaker. What is 
similar in both cases is that the heritable units are continuously transferred between 
individuals or organisms that are part of that system, making it possible for the heritable 
units to persist to a considerable degree across generations. A characteristic that both 
these systems share, and one which makes them ‘evolutionary’, is that the heritable 
units and also their frequencies of occurrence change in time. 
 Both languages and species involve individuals serving as carriers for the 
heritable units. In the case of sexual reproduction and linguistic transmission the 
transfer of heritable units necessitates interaction between the individuals. In both 
processes the individuals do not interact uniformly with all the other individuals, so the 
heritable units within a single species or language are distributed unevenly. For this 
reason it is possible with both sexually reproducing species and languages to identify 
subgroups of individuals whose heritable units (genetic material or linguistic 
information) is closer to each other than it is to that of the other individuals. In biology 
these are groups are called ‘populations’, and they can be regarded as being analogous to 
e.g. dialects. Individuals in a biological population are generally capable of interbreeding 
with the members of another population, but tend to interbreed more within their own 
population. Over time this forms a clear detectable pattern in the shared heritable units. 
This is largely analogous with how the speakers of a dialect are more likely to 
communicate with each other although they are generally capable of communicating 
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with the speakers of other dialects. Due to this a distinct pattern of linguistic units – 
dialect, or more generally a linguistic variety – emerges. 1 
 The third essential similarity between languages and biological species, which is 
also true of within-species populations and intra-lingual varieties, is that the differences 
that we can observe in the heritable units can essentially be modeled as a combination 
of unpredicted (non-directional) changes and directional changes (selective pressures) 
(Croft 2000; Levinson & Gray 2012). The selective pressures are of course different for 
the two; for instance, social factors arguably act as an important type of selective 
pressure in the linguistic realm. Their closest counterparts in the biological realm could 
be within-species interactions, such as competition, which however do not have as much 
prominence as social selection has for languages. Although the biological and the 
linguistic realm generally operate under different rules and are influenced by separate 
selective pressures, they are not entirely disconnected; the speakers themselves are 
entities in the biological realm, and therefore also subject to biological pressures. 
However, we must also remember that humans counteract many biological selective 
pressures with cultural adaptations, making the overall picture of different selective 
pressures quite complex. 
 The aforementioned similarities between languages and intra-lingual varieties 
and biological species and within-species populations serve as the basis with which 
languages can be modeled under an evolutionary linguistic framework. The study of the 
evolutionary processes involving species (phylogenetics) and within-species 
populations (population genetics) are two distinct sub-disciplines of biology that share a 
general theory, but use different approaches – one designed to reveal a tree or network 
describing a large-scale pattern of accumulated changes and the other to describe 
minute differences between individuals of the same species. In a similar way we 
describe the present study, which focuses on modeling dialects with population genetic 
tools, as the study of "linguistic microevolution", to contrast it with studies focusing on 
differences between languages – "linguistic macroevolution" – such as phylogenetic 
linguistics. 
 

2.2 Finnish dialect division 
 
Subjective accounts of Finnish dialects are as old as written Finnish, with one of the 
earliest descriptions found in Mikael Agricola’s foreword for the New Testament 
(Agricola 1548). Systematic dialect research is generally considered to have begun 
around the nineteenth century, motivated partially by growing interest in national 
history and fieldwork focusing on collecting oral tradition (Hovdhaugen et al. 2000). 
Dialectology remained among the most active topics in Finnish linguistics until the mid-
twentieth century, when variationist studies shifted more towards sociolinguistics 
(Hurtta 1999). As a whole, the bulk of Finnish dialectology is traditional work, the large 
majority being detailed descriptions of individual dialects and dialect areas based on 
fieldwork, although some works have focused on Finnish dialect variation as a whole, 
such as Kettunen (1930, 1940a, 1940b), Hakulinen (1950), Rapola (1969) and Hormia 
(1978).  

                                                           
1 The similarity between language-internal varieties and biological populations can be seen in Croft’s 

(2000) analogy between traditional geographical dialects and geographical races, as well as his analogy 

between social networks and biological demes. Similarly, Pagel (2009) likens dialects and dialect chains 

with geographical clines. 
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 There is a fairly good consensus on categorizing Finnish dialects. The most 
common general division splits the language into two principal dialect areas, Eastern 
and Western. This dichotomy was characterized already in the eighteenth century by 
Vhaël (1733), and became the default division in early nineteenth century (Rapola 1969, 
Wiik 2004). It is regarded as the clearest general division of Finnish dialects, and also 
serves as the foundation for more fine-grained divisions, particularly those that 
emphasize morphological and phonological features. 
 The eastern and western dialects are often subdivided into seven or nowadays 
often eight main dialects (e.g. Itkonen 1964, Savijärvi & Yli-Luukko 1994), which are 
generally clear, although slight variation can be found (e.g. Mielikäinen 1991, Leskinen 
1992). Itkonen (1964; 1989) is often considered the ‘gold standard’ of the eight-way 
divisions, splitting the western dialect area into Southwest, Southwest transitional, 
Häme, South Ostrobothnia, Middle / North Ostrobothnia and Far North, and the eastern 
dialect area into Savo and Southeast (Fig. 1). 
 

(Fig. 1 here) 
 
 Although the two-way division stands as the default division for Finnish, three-
way divisions have also been suggested. Based on Rapola (1969), one of the oldest of 
these is from 1777, when Erik Lencqvist suggested a division of Finnish into 1) Turku 
dialect, covering parts of the Southwest and Southwest transitional dialects, 2) 
Ostrobothnian dialect, which also included Häme and 3) Savo dialect. In essence, this 
suggested Itkonen’s (1964) Southwest as a main dialect rather than a subdivision. The 
three-way division has generated some later discussion by Mielikäinen (1991) and 
Paunonen (1991; 2006), who have suggested that e.g. synchronic typological features 
support this kind of division. Another kind of three-way division splits Finnish into 
eastern, western and northern areas, with the northern area being essentially a mixture 
of eastern and western influence. This division was originally proposed by Warelius 
(1848), and has been discussed later in e.g. Leino et al. (2006) and Hyvönen et al. 
(2007). The east-west-north trichotomy has been suggested to be more prominent at 
the lexical level, whereas the two-way division (east-west) is more prominent at 
morphological and phonological levels. 
 There are also some grounds for suggesting four principal dialect areas. 
Paunonen (2006), going beyond Lencqvist’s trichotomy, suggests that from a synchronic 
standpoint Finnish should be divided into 1) Southwest dialects, 2) Western dialects 
(covering Southwest transitional dialects, Häme dialects and South Ostrobothnian 
dialects), 3) Eastern dialects (covering Savo and Southeast dialects), and 4) Northern 
dialects, covering Middle / North Ostrobothnia and Far North. 
   
 
2.3 Quantitative dialect studies of Finnish 
 
In this section we look at four quantitative, (‘dialectometrical’) works on Finnish 
dialects. The works we discuss here include Wiik (2004), Leino et al. (2006), Hyvönen et 
al. (2007) and Leino & Hyvönen (2008), all of which – like the present paper – explore 
Finnish dialects as a whole.2 These do not represent the whole range of methods within 

                                                           
2 Alongside these studies we should also mention Embleton & Wheeler (1997; 2000), who have 

contributed to quantitative dialect studies of Finnish by creating the digitized version of the Dialect Atlas 
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quantitative dialectology; more on the subject can be found in e.g. Chambers & Trudgill 
(1998), Palander (1999), Nerbonne & Kretzschmar (2003) and Heeringa (2004). 
 Wiik (2004) is perhaps the most comprehensive quantitative take on Finnish 
dialects so far. He presents a numerical interpretation of the Dialect Atlas of Finnish 
(Kettunen 1940a), executed by counting co-occurring isoglosses by drawing each of the 
dialect atlas maps on transparent slides, visually inspecting the stacked slides and 
compiling progressively larger composite slides until he ended up with a summary of 
the entire atlas. Wiik reflects his calculations mainly against standard dialect divisions: 
the east-west dichotomy and Itkonen’s (1964) eight-way division (see section 2.2). The 
subgroups of each dialect area are also discussed carefully, and each of these is reflected 
against Wiik’s measurements. The work also outlines ‘core areas’ for each dialect, based 
on the coverage of the dialect features that have been considered ‘primary’ for each 
dialect. In general, the work does not attempt to redefine the dialect division from a 
quantitative perspective, but rather explore and refine the eight-way dialect division. To 
some extent the work resembles Séguy’s dialectometrical additions to the Atlas 
Linguistique de la Gascogne (see e.g. Chambers & Trudgill 1998 for an overview). What 
makes the work quite impressive is that it has been done mostly manually, using the 
paper version the dialect atlas. 
 The main focus of Leino et al. (2006) and Hyvönen et al. (2007) is on lexical 
variation, making it an interesting exception among the predominantly morphological 
and phonological dialect studies of Finnish. They employ multivariate analyses adopted 
from data mining, including principal component analysis, independent component 
analysis, multidimensional scaling and distance-based clustering, to explore the 
distribution maps produced in the course of editing the Dictionary of Finnish Dialects 
(Tuomi 1989). Their results agree surprisingly well with traditional dialect studies, with 
the exception that the lexical data appears to be better generalized using a north-east-
west trichotomy similar to the one suggested by Paunonen (1991) (see section 2.2), and 
not the east-west dichotomy. 
 Leino & Hyvönen (2008) expands the work started in Leino et al. (2006) and 
Hyvönen et al. (2007) to also cover morphophonological variation, using data from the 
digitized Dialect Atlas of Finnish (Embleton & Wheeler 1997; 2000) alongside the 
Dictionary of Finnish Dialects. Like in their previous works, they explore various 
approaches for analyzing the data: factor analysis, non-negative matrix factorization, 
aspect Bernoulli, independent component analysis and principal component analysis. 
Based on earlier work they prefer these methods over distance-based clustering, such as 
K-medoids, because they do not impose sharp boundaries and are thus a more natural 
choice for dialects. The work highlights how differently the methods work with these 
two datasets, which differ significantly from one another with respect to both content 
and quality. Based on their tests they present further results using factor analysis, which 
they found to perform reasonably well with both datasets. These results, perhaps more 
than anything else, highlight how lexical and morphophonological data reveal different 
but not entirely conflicting variation patterns. 
 Reflecting how the aforementioned works relate to this study, the data we 
examine is the same that Wiik (2004) and Leino & Hyvönen (2008) used, although 
differently represented, and our analyses represent partitional (non-hierarchal) 

                                                           

of Finnish, and who have used it to explore MDS techniques for visualizing dialect information. Another 

noteworthy dialectometrical investigation which we did not include here is the study by Palander et al. 

(2003), focusing on the regional dialects of Savonlinna. 
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clustering, also employed as part of Leino et al. (2006) and Hyvönen et al. (2007). 
Notable differences to the existing studies include our almost exclusive focus on 
partitional clustering, and our usage of population genetic thinking and tools. 
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3. Materials and methods 
 
3.1 Finnish Dialect Atlas 
 
The data used in the analyses comes from the Dialect Atlas of Finnish (Kettunen 1940a), 
compiled by Lauri Kettunen3 in the 1920s-1930s. During this period he travelled across 
Finland interviewing informants and documenting local regional speech. Based on 
Kettunen’s travelling memoires (Kettunen 1960) he generally interviewed at least two 
informants per municipality, and made efforts to find more in ambiguous cases. He 
looked for informants by consulting local priests and visiting old people’s homes and 
prisons, searching for old and uneducated locals that had been living in the area for their 
whole life. The resulting dialect atlas (Kettunen 1940a) mainly documents the 
distribution of morphological and phonological phenomena, with less information about 
lexical variation. It was accompanied by an explanatory book (Kettunen 1940b), and is 
closely related to his earlier dialect book (Kettunen 1930), which was intended to serve 
as an introduction to the atlas. 
 The atlas covers 213 linguistic features, presented as separate maps (Fig. 2), with 
information from 525 sites (municipalities), covering all of Finland except exclusively 
Swedish-speaking areas, located in the western and southern coast of Finland. It also 
covers Finnish-speaking areas in Ingria (Russia), Norway and Sweden, as well as 
Karelian-speaking areas in pre-WWII Finland. Each map shows the municipality-wise 
distribution of the different variants of linguistic features. The atlas does not document 
responses from each informant; the data points represent the combined information 
from all the informants from of that municipality. The number of variants per page range 
from 2 to 15, and the number of variants per municipality ranges from 1 to 4. Embleton 
& Wheeler (1997) estimated that the atlas covers up to 36 times as many dialect “facts” 
as the Survey of English Dialects. 
 The basic study unit of the atlas is “the dialect variant in a municipality”. While 
theoretically it would cover 111,825 study units, this is not the case; data is missing 
from 8.1 % of the study units. Especially certain peripheral areas have gaps in the data; 
for instance, there are altogether twelve municipalities with less than 100 dialect 
features. These include six municipalities in Northern Lapland, three mainly Swedish-
speaking municipalities in the coast of Ostrobothnia, two islands in the Baltic Sea, and a 
municipality in Karelia. The area with most gaps appears to be Lapland. Area-wise this is 
significant, as the municipalities in that area are fairly large. Despite the gaps, we 
analyzed the data as a whole in this study, using data from all the map pages and 
municipalities.4 
 Our analyses required a computerized version of the atlas, available thanks to the 
work by Sheila Embleton and Eric Wheeler as part of the Finnish Dialect Atlas Project, 
funded by Social Sciences and Humanities Research Council of Canada in co-operation 

                                                           
3 Information on South Ostrobothnia was not collected solely by Kettunen but instead taken from 

Laurosela’s work on the South Ostrobothnian dialect (1922). 
4  This decision is not without problems. In addition to the gaps within the data, Wiik (2004) has pointed 

out that the features in the atlas range from very generic to very specific, and including them as such gives 

both types equal weight. Some complex phenomena are also meticulously documented in the atlas, 

spanning multiple map pages. Some of the recorded features in the atlas also concern only a small area of 

Finland, meaning that the data for these features is intentionally missing from most municipalities.  
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with the Institute for the Languages of Finland (Kotus) (Embleton & Wheeler 1997; 
2000). An additional round of error checking for the digitized atlas was done by one of 
the authors of this paper. An online version of the data was published by Kotus in 2015 
(http://avaa.tdata.fi/web/kotus/aineistot). 
 

(Fig. 2 here) 
  
3.2 Data formatting 
 
For the analyses the dialect data needed to be in a format compatible with our two 
analyses – Structure and K-medoids (see section 3.3). Here we explain how this was 
accomplished. 
 Genetic data - more specifically, alleles (variants of a gene) sampled at specific 
loci (location of the gene) from several individuals of the same species serve as 
Structure’s input data. In order to infer dialect populations with Structure we treat the 
525 municipalities as individuals, the 213 map pages (each of which describes the 
distribution of the variants of a particular dialect feature) as genetic loci and the variants 
within each map page as alleles. 
 Biological organisms differ in how many alleles per locus their genotype includes. 
Mammals are generally diploid, i.e. for each locus they have two alleles: one inherited 
from the mother and one from the father. If a diploid organism has inherited the same 
allele for a certain locus from both parents, it is homozygous for that locus; if it has two 
different alleles, it is heterozygous.  There also exist organisms (e.g. male bees, wasps, 
ants, certain life stages of algae, ferns and mushrooms) that are haploid; these only have 
one allele in each locus. There are also polyploid organisms, with 3 or more alleles. 
 Most study units (94.3 %) in the dialect atlas are “haploid”, with only one variant 
of a linguistic feature per municipality. For example, on map 8 of the atlas (Fig. 2), 
representing variants for “forest”, the easternmost municipalities are marked with just 
one symbol (horizontal curvy lines); in the digitized data this is represented by 3 (the 
third box in the legend). In contrast, some of the municipalities in the east are “diploid”, 
as they are marked with both red triangles and crosses. In the digital version this is 
marked as (12, 13, i.e. the twelfth and fifteenth boxes in the legend). In total 5.6 % of the 
study units are “diploid”. A small number of the study units (0.1 %) included 3 or 4 
overlapping variants. Of these the third and fourth variant were excluded for simplicity’s 
sake. 
 In this work we turned the data into two forms, haploid and diploid, and analyzed 
both of them. Our main focus was on the diploid representation, as it covers almost all of 
the variation in the atlas. In contrast, the haploid version only covers the first marked 
variant for each linguistic feature. Following Structure’s guidelines, for the diploid 
coding the study units with two variants were left as they were (e.g. 12, 13); in cases 
with only one variant the variant was duplicated – e.g. 2 became (2, 2). 
 
 
3.3 Clustering methods 
 
3.3.1 Model and distance based clustering 
 
Placing data into meaningful subgroups has been of great interest in many fields, 
including dialect studies and biology, resulting in a wide selection of clustering methods 
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(e.g. Kriegel et al. 2009) based on different principles. Our focus in this study is on 
partitional clustering approaches, which produce non-hierarchal groups and are often 
used in inferring population structure from genetic data. Clustering can be roughly 
divided into two types: model-based and distance-based (Pritchard et al. 2000), both of 
which are used in this paper, and introduced in the following section. 
 In model-based methods, each cluster is assumed to be generated by a specific 
probability model. Model-based clustering aims to infer the probability models 
representing the clusters from the data itself, and place the data as best as possible into 
these clusters. Model-based methods tend to be computationally intensive, and have 
only recently gained foothold in research through tools based on Bayesian MCMC 
methods. In this study we use a model-based clustering tool called Structure (Pritchard 
et al. 2000), designed to infer population structures from genetic data. The method has 
been applied earlier to cluster languages and language varieties (Dunn et al. 2008; 
Reesink et al. 2009; Bowern 2012); here we use it specifically to study intra-lingual 
variation. 
 In contrast with model-based clustering, distance-based clustering is more 
straightforward; a distance or a similarity function is specified and used to measure 
distances between data points and cluster together points close to each other. These 
approaches are older than model-based methods, and are generally computationally 
faster. The distance-based method we use here is K-medoids (Kaufman & Rousseeuw 
1987), a method which has also been applied for the study of Finnish dialects earlier 
(Leino et al. 2006; Hyvönen et al. 2007). 
 
3.3.2 Structure 
 
As a population genetic clustering approach we use Structure (Pritchard et al. 2000), a 
model-based software that uses Bayesian methods to infer biological populations from 
genetic data (see Beaumont & Rannala 2004 for a general overview). Structure is not the 
only software of its kind; tools built on similar principles include e.g. BAPS (Corander et 
al. 2003) and TESS (Chen et al. 2007). 
 As is explained in Pritchard et al. (2000), Structure is designed to analyze a set of 
alleles (variants of a gene) sampled from individuals of the same species. The individuals 
can be assumed to originate from one ancestral population (a term that is essentially 
interchangeable with the term ‘cluster’), or have an admixed origin from several 
populations. Structure treats the ancestral populations and the placement of the 
individuals into the populations as separate unknown parameters that it endeavors to 
estimate simultaneously. The ancestral populations are represented by a model that 
specifies the allele frequencies for each locus, i.e. how widespread each allele is within 
each population. Structure infers a division by assigning a population for each of the 
data points, and then estimates the overall likelihood of the solution using the allele 
frequencies it has inferred for the ancestral populations. Then, following standard 
Bayesian MCMC methods, one of the unknown parameters is modified while the 
remaining parameters are retained, and a likelihood score for this new solution is 
estimated. If the new solution has a higher likelihood than the previous solution, it is 
accepted; if not, it is accepted with a probability of A/B, where A is the estimated 
likelihood of the current solution and B the estimated likelihood of the previous 
solution. The algorithm repeats the procedure, randomly modifying another unknown 
parameter and calculating the likelihood of the new solution and comparing it to that of 
the previous solution, and so on. Continuously repeating the aforementioned steps and 



 

12 
 

storing the results at predefined intervals yields a distribution of solutions, and 
gradually converges on the most optimal solution or solutions. Each finished analysis 
includes a likelihood estimate of the data when divided to K populations, which 
Structure summarizes from the entire MCMC run. Since the analysis generally starts 
with many unknowns for which arbitrary starting values are chosen, the iterations at the 
beginning of the analysis are not informative and possibly even misleading. For this 
reason, these initial results, referred to as ‘burn-in’, are discarded (Pritchard et al. 2000). 
 With the admixture model Structure produces soft or fuzzy populations by 
assigning each data point (municipality) a degree of membership (IC value) in each 
ancestral population. This makes it possible to infer a mixed origin for the data points. In 
this study we use this model, as it is naturally suited for dialects, which may often 
involve gradual transitions from one variety to the next. In contrast, the distance-based 
K-medoids clustering only infers hard clusters, where a data point can only belong to 
one of the clusters. 
 Structure requires the user to specify how many populations to infer, so it is 
useful to be able to determine how many clusters best explain the data. We will discuss 
methods for determining the optimal number of clusters in section 3.4. 
 The analyses for this study were run for all K (the number of populations) from 1 
to 20, with each analysis repeated 20 times to ensure the consistency of the results. The 
burn-in period was set to 10,000 generations and the number of MCMC repetitions after 
burn-in was set to 100,000 generations. The Admixture model was used, allowing 
individuals to originate from more than one population. As was already mentioned, we 
prepared two representations of the dialect data, diploid and haploid, and analyzed 
both, largely to see if this change in the nature and amount of the variation data affected 
Structure’s results. In the results section we focus primarily on the diploid results, which 
has better overall coverage of the linguistic variation. The haploid results are not given 
in the main text, but their comparisons with the diploid results are summarized in the 
appendices. 
 The results of the diploid Structure analyses are presented in two ways. Firstly, 
for each K, the repetition with the highest likelihood score is visualized on a map. 
Secondly, the repetitions of each K value, excluding clear outliers, were summarized 
using Structure Harvester (Earl & vonHoldt 2012) and CLUMPP (Jakobsson & Rosenberg 
2007; see section 4.3.1). 
 
 
3.3.3. On the biological assumptions of Structure 
 
There are two notable biological assumptions embedded in Structure’s algorithm that 
deserve discussion. Firstly, Structure infers populations that correspond with the 
‘Hardy-Weinberg equilibrium’ (Pritchard et al. 2000), or HWE, as well as possible. This 
is an idealized state; in order for a biological population to be in HWE, it would need to 
be for example infinite in size, unaffected by any kind of natural selection and 
reproducing completely randomly (Hamilton 2009), a state which is not a valid 
generalization of real life populations on a longer time span.  
 It would also be unrealistic for language variants to remain in HWE, as it would 
require for example a random spread of linguistic variants across speaker populations 
and that the frequencies of linguistic variants should not be affected by any ‘selective’ 
force such as social selection. These requirements are not, however, often met as for 
example linguistic variants or innovations generally have a certain geographical pattern, 
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as language speakers in geographical proximity often communicate more. Additionally, 
languages are constantly changing for example due to contact-induced changes and 
innovations, which are not necessarily random. Therefore, the longer period of time we 
are observing, the less plausible it is to assume that languages or dialects would have 
remained the same and retained a HWE state. 
 For Structure this HWE criterion reflects above all the fact that Structure’s model 
does not cover mutation (or innovation), so the populations it infers are such that would 
be the result of a set of already existing alleles mixing at different ratios. From the 
perspective of languages this could be thought of as a situation where variation comes 
about predominantly through a process like intraference (Croft 2000), where already 
existing linguistic features are adopted by speakers of different dialects at different 
ratios. 
  Populations where the allele frequencies have remained unchanged (i.e. 
populations that are in HWE) would in essence represent ancestral populations, i.e. 
populations representative of the linguistic situation spanning far back in time. 
Correspondingly, if the data is not in HWE, as most likely is the case with the language 
data, these interpretations cannot be made and we need to assume that they reflect a 
population division that is, on a temporal scale, fairly close to the age of the data itself. 
With this in mind, the HWE assumption does not limit what we can analyze; however, if 
HWE is unlikely, we need to avoid making strong interpretations of the results that 
would necessitate it, such as assuming an unrealistic time depth.  
 Another assumption that Structure makes is that the variables in the data are 
independent: loci should be in ‘linkage equilibrium’. With genetic data when certain 
gene combinations occur together more often than they would randomly, they are said 
to be in ‘linkage disequilibrium’. This state may arise through several mechanisms, such 
as physical linkage, where loci are situated in the same chromosome and close to each 
other and thus the alleles in these loci tend to be inherited together. If the loci are 
further away from each other the alleles are more likely inherited independently and 
thus, also more likely to be in linkage equilibrium (Hamilton 2009). Linguistic 
information does not resemble genetic information in that features would be stored 
physically close.  On a cross-linguistic level, implicational universals, i.e. features that 
frequently co-occur across languages, could be seen as analogous to linked loci. 
However, Kettunen’s dialect data covers features that highlight differences between 
Finnish dialects, which are too specific to be universal features. Thus, here linkage 
would essentially be the presence of systematically correlated features of Finnish within 
the atlas. Indeed, we could expect certain characteristics within the atlas to have a 
degree of linkage, such as the meticulously documented instances of consonant 
gradation, which have been suggested to carry redundance by other studies of the 
dialect atlas, such as Wiik (2004). 
 Similarly as we did not exclude any data points from the analyses based on 
uneven coverage, we also refrained from excluding map pages based on assumed 
linkage. For language data there are no attested methods exist to study linkage from our 
type of data.5 However, we created one kind of ad hoc test with which to measure the 
extent of linkedness between the map pages in the atlas. The method which goes 

                                                           
5 Some biological linkage tests exist, in particular Lewontin’s D and its derivatives, based essentially on 

how much the allele combinations from two loci diverge from the expected frequencies of randomly 

combined alleles. We tested the D’ (Lewontin’s normalized D) metric  for language data but found out that 

this metric is not directly applicable for language data. 
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through all the data point (municipality) pairs (x, y) on each pair of map pages (a, b), and 
checks if the municipalities x and y are linguistically identical (i.e. the same set of 
dialectal features are used in both x and y) on map page a, and does the same for map 
page b. The cases where x and y are marked identically on at least one of the pages are 
counted as being “potentially linked” (Lp), and the cases where x and y are linguistically 
identical on page a as well as page b are counted as being “actually linked” (La). The 
calculation discards any cases where x or y have no marked features on either map page. 
After we have checked the linguistic features for all the possible municipality pairs on 
given pair of map pages and recorded La and Lp from them, we estimate the amount of 
linkage on that map page pair as La/Lp, i.e. the number of “actual linkage” cases divided 
by the number of “potential linkage” cases. Thus, the metric essentially calculates how 
many pairs of municipalities that had the potential of being identically marked on the 
two pages under inspection (by being marked with identical dialect features on either 
page) were actually marked identically on both pages. 
 All of the map page pairs were compared in this way, with the help of a custom-
made Python script. The results were visualized with R (R Core Team 2014) using 
heatmap.2 from the gplots package (Warnes et al. 2014). It should be noted that the 
linkage estimation test remains fairly rough, with considerable room for improvement.  
 
 
3.3.4 K-medoids 
 
K-medoids (Kaufman & Rousseeuw 1987) is a distance-based clustering method that, 
like Structure, creates non-hierarchal groups. It is essentially an improved type of K-
means clustering, being less sensitive to outliers than its predecessor. K-medoids has 
been used to explore lexical data from the Dictionary of Finnish Dialects (Leino et al. 
2006; Hyvönen et al. 2007). 
 As its input K-medoids takes data points represented as a set of features in 
numerical form (or in mathematical terms, data points represented as feature vectors in 
n-dimensional space, n being the number of features). K data points are randomly 
selected as medoids (centers for the groups), and the distance between each medoid and 
data point in the data set is calculated, and the points are assigned to the groups closest 
to them. After the points are assigned to groups, the algorithm calculates the total 
distance from each point to all the other points in the group. If this distance is lower 
than the combined distance from the original medoid point to the other points in the 
group, the point with the lowest combined distance becomes the new medoid. If the 
medoids changed, the algorithm re-evaluates each data point against the new medoids, 
and reassigns them to new groups as necessary. The re-evaluation of the medoid points 
and the reassignment of the data points continues until the groups do not change any 
more, or until the algorithm has gone through a predefined number of iterations. 
 The analyses were done using the same data that was used for Structure’s diploid 
analyses, although it had to be represented differently. K-medoids cannot account for 
missing data points, so for K-medoids missing (empty) characters and absent linguistic 
features were marked identically as 0s (Structure’s data representation, on the other 
hand, retains the distinctions between missing and absent features). The R package 
cluster (Maechler et al. 2014) and its command pam was used for the analyses, using the 
default settings. Like Structure, K-medoids also requires the user to specify the value of 
K. We asked K-medoids to divide the data into 2-20 clusters. Repetitions of the analyses 
suggested that the K-medoids clusterings were consistent.  
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3.4 Estimating optimal K values 
 
Both K-medoids and Structure rely on the user to specify the number of clusters or 
populations. Because of this, it is important to be able to estimate which partitioning 
best explains the data. 

The optimal K value in Structure can be estimated more formally using the ΔK 
metric and less formally from the mean log likelihood (Evanno et al. 2005). The mean 
log likelihood is calculated (after excluding outliers) by averaging the log likelihood 
values from all the repetitions for each K while ΔK displays how much the mean log 
likelihoods change on each K value when compared to the neighboring K values (K-1 and 
K+1). Thus, when the mean log likelihoods differ dramatically in a given K value 
compared to the neighboring K values, ΔK is high. Mean log likelihoods and ΔK were 
calculated for each K with the R package pophelper (Francis 2014). 

These two metrics may be used jointly to estimate the kind of partitioning that 
would best explain the data. Commonly the mean log likelihood values are small with 
small K values, and more or less plateau for larger K. (Pritchard et al. 2010). In this kind 
of situation it is suggested that the smallest K value with which the K values plateau is 
usually the one explaining the data the best. This point should also be the one that is 
supported in the ΔK calculations as the difference between neighboring values is 
supposed to be highest when reaching the plateau.   
 To estimate different K values for K-medoids we used the silhouette method 
(Rousseeuw 1986). It involves examining the relationship of within-dissimilarity (the 
average distance among the data points in the cluster) and between-dissimilarities (a 
data point’s average distance to points in a different cluster) of the data points. A 
silhouette value is expressed as a ratio of within-dissimilarity to the lowest between-
dissimilarity, so essentially it describes how well a data point fits its current cluster 
compared to the neighboring cluster. The silhouette value varies between -1 (a poorly 
classified point, i.e. much closer to the neighboring cluster) and 1 (a well-classified point, 
with considerable distance to the next best cluster). Across the entire result we can 
examine average silhouette width, the average of all the silhouette values for a clustering, 
which shows how well the current K value generally describes the data. The R package 
cluster (Maechler et al. 2014) was used to calculate silhouette values. 
 
 
3.5 Visualization 
 
Structure’s results for each municipality are given as a set of membership coefficients 
(IC values, see Fig 3); each municipality gets an IC value for each inferred population. 
The IC values can be regarded as percentages that sum up to 100%, and show how the 
inferred populations are mixed on each data point (municipality). E.g. when we infer 
three populations, a municipality could have a 70 % membership for population A, 20 % 
membership for population B and 10 % membership to population C. These 
membership coefficients allow flexible visualization. 
 The standard way of visualizing results such as these would be to use Structure’s 
bar plot visualization (Fig. 3a), which can show the full mixture of the dialectal 
characteristics for each municipality. However, even though this type of visualization is 
very detailed, it is not very illustrative if you are interested in the geographical location 
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of the studied units. To obtain visual clarity for our main results we chose to group the 
membership coefficients into two distinctly colored main classes, which were plotted 
onto a map. These two classes were core dialects (municipalities with IC > 0.75; colored 
with saturated colors) and transitional dialects (municipalities with IC = 0.50 - 0.75; 
colored with less saturated colors); this is shown on Fig. 3b. Notably, this could also have 
been done with more than two classes (Fig 3c), but we felt no need for it for the 
purposes of this study. 
 These colored clusters were plotted on a base map representing Finnish 
municipal boundaries in the 1920s, digitized with modern Finnish national topographic 
database elements using the geographic information system ArcGIS. The base map was 
prepared by Ilpo Tammi for the BEDLAN project. The digitization was mainly based on 
the facsimile of Suomen kartta 1920 (Harju 2009) and the Atlas of Finland 1925 
(Geographical Society of Finland 1928). Supplementary sources, chiefly the Atlases of 
Finnish ethnic culture (Vuorela 1976, Sarmela 1994), were used to identify the historical 
boundaries for extraterritorial areas linked with Finnish dialects. 
 Our visualization of the results (Figs 7-9) has the setback of displaying just the 
highest membership coefficient values instead of the entire mixture. Visualization 
showing the full mixture of the IC values is also possible, but this type of visualization 
would be fairly difficult to interpret for a geographical area of the size that we are 
studying. Fig. 4 gives examples of this type of visualization.  
 
 

(Fig. 3 here) 
(Fig. 4 here) 

   
 
 Unlike Structure, K-medoids places each data point (municipality) explicitly into 
one cluster, and consequently does not produce membership coefficients which would 
show mixture proportions. These can be visualized on a map by simply giving a unique 
color for each cluster. In the visualizations the K-medoids clusters match with the 
corresponding populations in Structure as well as possible, and use the same saturated 
colors that are used for the “core dialect” class (IC > 0.75) in Structure. As K-medoids 
does not membership coefficients, its clusters are more clear-cut than the populations 
produced by Structure.   
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4. Results 
 
4.1. The optimal number of clusters 
 
The average likelihoods from the Structure analyses (Fig. 5a) increase gradually as the K 
value increases from 2 to 14 without reaching a clear plateau. With values exceeding 
K=14 the likelihoods begin to fluctuate across runs and their mean values decrease. The 
changes in the likelihood values are quite small – this essentially means that the K values 
between 2 and 14 explain the data almost equally well, with K=14 being the best by a 
small margin. Although likelihood values do not emphasize any certain K value well 
above all others, the ΔK values (Evanno et al. 2005) (Fig. 5b) show a notable peak with 
K=2, suggesting that a division into these two clusters would represent the best 
uppermost division of the data. 
 

(Fig. 5 here) 
 
 The average silhouette widths, calculated for the K-medoids clusterings, range 
from 0.15 to 0.24 (Fig. 6), meaning that the clusterings are neither too good nor 
exceptionally bad. This is generally in line with Structure’s likelihood values – that is, no 
K value explains the dialect data exceptionally better than the others. Unlike Structure’s 
log likelihoods, the silhouette values remain fairly stable also beyond K=14. K=3 appears 
to be the least optimal of the lower K values. The average silhouette widths stabilize at 
K=6 and beyond. K=16 has the highest average silhouette width, 0.24, albeit by a very 
small margin. 
 

(Fig. 6 here) 
 
Except for ΔK peaking with K=2, the support metrics do not clearly favor any specific K 
value. The high silhouette values above K=14 suggests that exploring clusterings at 
higher numbers may be of interest, whereas Structure’s likelihoods suggest that they are 
of less interest. Here we decided to focus on the clusterings within Structure’s high 
likelihood area (K=2-14). 
 
 
4.2 Dialect clusters  
 
The populations inferred by Structure were generally in line with the clusters found by 
K-medoids. Divisions with K values 2–8 (Fig. 7) were most similar between the two. 
Divisions with K=9–14 (Fig. 8) showed more variation across analyses, in especially in 
the order in which the clusters or populations appeared as K increased. 
 In what follows we will examine the dialect divisions in detail, beginning with the 
more stable divisions (K=2–K=8), followed by the less stable ones (K=9–K=14). We also 
compare these with CLUMPP visualizations, which align repetitions of Structure runs as 
well as possible, revealing solutions that disagree across repetitions. In general, the 
clusterings were clear, except for some northeastern municipalities that appeared as 
transitional areas for random dialect clusters from K=6 onwards in Structure, and from 
K=3 onwards in K-medoids. This was likely caused by the scarcity of linguistic features 
in those municipalities, as they seemed to cluster together with less documented 
municipalities with higher K values in K-medoids (see section 4.2.2 for more details). 
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4.2.1. Divisions from K=2 to K=8 
 
Except for K=3, Structure and K-medoids suggest essentially identical divisions with all 
but one K value between 2 and 8 (Fig. 7). The first division, K=2, is between the Eastern 
and Western dialect groups. With K=3 the Eastern group remains unchanged in both, 
but Structure separates the Southwest dialect area (red in Fig. 7) from the Western 
dialects while K-medoids splits the Western dialects to Middle / North Ostrobothnia + 
Far North (blue) and the rest (purple). In K=4 the Eastern dialect group remains intact 
while in the Western dialect area Häme (purple) appears next to Southwest (red), and 
the northernmost cluster (blue) now roughly covers Ostrobothnia and Far North. 
 With K=5 the Eastern dialect area splits into two clusters: Southeast (dark gray) 
and Savo (green). Increasing the K value to six separates South Ostrobothnia (orange) 
from Middle / North Ostrobothnia + Far North (blue). K=7 separates Southeast Häme + 
Päijät-Häme (brown) from the main Häme dialect, while K=8 makes the Far North 
dialects (olive green) a separate cluster. To sum up, a division to 8 clusters gives two 
Eastern dialects (Savo and Southeast) and six Western dialects (Southwest, Häme, 
Southeast Häme + Päijät-Häme, South Ostrobothnia, Middle / North Ostrobothnia + 
North Kainuu + Kemijoki, and Far North) in both analyses.  
  

(Fig. 7 here) 
 

     
4.2.2. Divisions from K=9 to K=14  
 
Most of the new clusters between K=9 and K=14 (Fig. 8) are subdivisions of Eastern 
dialects, with less within the Western dialect area. The analyses also start to disagree 
more with higher K values. 
 Some clusters appearing with these K values are fairly stable, including the 
Southwest transitional dialect area (light green) – present with K values 10-14 with both 
Structure and K-medoids – and Päijät-Häme (bright blue) – appearing with K=11-14 in 
Structure and with K=14 in K-medoids. With its appearance, the brown cluster, formerly 
covering Southeast Häme and Päijät-Häme, decreases in size to cover just Southeast 
Häme. 
 Among the less stable clusters we find Central Karelia (yellow), which appears 
first with Structure’s K=10, and later in both analyses, with K=13 and K=14. The 
contents of this cluster fluctuate to some extent; with Structure’s K=10 and K=13 it 
covers Border Karelia (eastern parts), while in other cases it does not. Some clusters 
also only appear with one type of analysis: a cluster covering South Savo + Savonlinna 
transitional (light blue) appears only in Structure, with K=12 and K=14; similarly, 
Central Ostrobothnia (turquoise) only appears with Structure (K=13), as does Border 
Karelia (aniline red), with K=14. One unusual cluster, tentatively pointed out in section 
4.2 and also marked with aniline red, appears with K-medoids with K values between 9 
and 14. This covers Border Karelia, Ingria and a small selection across the border areas. 
Upon closer inspection the municipalities covered by this cluster are among those that 
are less extensively documented by the dialect atlas, suggesting that K-medoids is more 
sensitive to how well-documented a data point is than Structure. 
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 One area that deserves further attention is the dark red cluster, covering areas in 
Central Finland, Kainuu and the Savonian Wedge. These appear as one large 
(geographically discontinuous) cluster with K=11 in K-medoids, while the Structure 
analyses point more towards a strong transition in this area, with either end varyingly 
serving as the core area; Structure’s K=9 and K=13 shows Central Finland as the core, 
and the rest (K=11, K=12, K=14) show Kainuu as the core. With higher K values K-
medoids also distinguishes the core areas as separate clusters. In these cases Central 
Finland is colored gray and Kainuu dark red on the maps. 
 Finally, we should also note that the fluctuation in the eastern area is reflected in 
the shape of the green cluster identified as Savo with lower K values, which reduces to 
either East Savo (K=9, K=11 and K=13 in Structure, K=11-14 in K-medoids) or North 
Karelia + North Savo (K=12 and K=14 in Structure). 
 

(Fig. 8 here) 
 
 
4.3. Stability of the results 
 
4.3.1 Comparing different diploid runs with CLUMPP 
 
The results in Figs 7-8 only show the Structure runs with the highest likelihoods. 
However, because of the stochastic nature of Structure the results can vary across runs 
even when the same K value and general parameters are used. In some cases we may see 
label switching – i.e. the different repetitions with the same K value identify same 
clusters but show them in a different order in Structure’s results. The different runs may 
also reveal genuine multimodality, where independent runs of the same K value produce 
qualitatively different clusterings.  
 To overcome the problem of needing to choose a single Structure run to 
represent the results of a K value, the results of multiple runs can also be combined 
using a tool called CLUMPP. The tool takes Structure’s results, aligns the populations 
from the analyses run with the same K value so that they match each other as well as 
possible (solving possible label switching problems), and produces a combined result 
from the membership coefficients of all the runs of the same K value. Consequently, 
cases where the clusters match each other well in different repetitions of K appear 
similar to how they are shown in the highest likelihood run, whereas areas where the 
inferred populations differ across repetitions become more ambiguous and show more 
transitions across the populations. 
 Differences between the CLUMPP visualizations (Fig. 9) and the highest 
likelihood runs (Figs 7-8) show that repetitions with same K value do not always 
identify the same clusters as the highest likelihood run. This shows up as more admixed 
populations in the CLUMPP visualizations compared to the highest likelihood runs. For 
instance, the Southwest dialects (light red in Fig 9) as well as the south of Häme (light 
purple in Fig 9) appear as more admixed areas with K=3 than they did with the highest 
likelihood runs (red and purple in Figs 7-8), suggesting that some of the repetitions 
identified different populations. Based on the pattern that the admixture shows, the 
conflicting populations might be somewhat closer to the results of the K-medoids 
analyses. In K=4 the Southwest dialects become more coherent (red in Fig 9), indicating 
that the independent repetitions agree on that area, whereas Häme and the lower part of 
the eastern dialects are more ambiguous, showing light purple and light green areas 
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which essentially suggest that some of the repetitions with K=4 identified the Southeast 
dialects rather than Häme.  
 Some of the highest likelihood Structure populations agree well with the CLUMPP 
visualizations, indicating that they are quite stable, e.g. the eastern and western dialects. 
There are also some dialect areas that do not appear directly in the CLUMPP 
visualizations, although they were present in the highest likelihood runs, such as Central 
Ostrobothnian (turquoise) and Central Karelia (yellow). Also, the Southwest transitional 
area (light green) appears only weakly with K=14. This suggests that these areas are not 
necessarily as robustly supported by the variation data from the atlas as the other 
dialectal areas. 
 

(Fig. 9 here) 
 
4.3.2. Comparing Structure diploid, Structure haploid and K-medoids 
 
Looking further into the stability of the dialect clusters inferred in the analyses, we 
compared the K-medoids results with the diploid results, as well as the haploid results 
(a more extensive comparison of these can be seen in the appendices). Despite 
differences between the analysis methods, differences in data representation, and the 
smaller amount of represented dialectal variation in the haploid data compared to the 
diploid data, the results from these three are surprisingly close to one another with 
lower K values (2-8). With these values all the approaches classify the dialects 
identically, with the exception of K=3, which is in agreement only between the two 
Structure runs. With higher K values the results begin to disagree somewhat more, as 
was already seen in section 4.2.2.  
 
4.4. Testing for linked features 
 
As was mentioned in section 3.3.3, Structure assumes that the data is in ‘linkage 
equilibrium’, meaning that it should cover only independent loci (or in our case 
uncorrelated linguistic features). Although we explored the data as a whole, we also 
tested for possible connectedness of the features using an approach based on counting 
the number of municipality pairs with identical dialect features across map pages (see 
section 3.3.3 for a more detailed explanation). The heat map produced from this 
comparison is given in Fig. 10. 
 

(Fig. 10 here) 
 
The histogram indicates that connectedness between the linguistic features is generally 
modest or low (yellow-orange). Potential problems with correlating features lie in the 
features located in the right side (red). As a whole the map pages do not seem to be 
extensively linked to one another; there are some map pages that produce somewhat 
higher linkage estimates than others, e.g. the map pages 70-80. However, upon closer 
inspection, some of these higher linkage estimates appear to be focused on maps 
covering smaller geographical areas. As in these cases the linkage test discards 
municipalities without any recorded dialect features, the estimates are based on a 
smaller number of municipality pairs. These cases are identifiable from the results by 
examining how many potential linkage (Lp) and actual linkage (La) cases were recorded 
when comparing the pages, and filtering out cases whose Lp or La values are below 
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some threshold (the appendices include an example heat map filtered in this way). 
Notably, the linkage test in its current form seems to produce biased results on map 
pages which contrast a dialect variant with a very small geographical area with another 
variant covering the remainder of the map. Such a case can be seen for instance on page 
137, with contrasts a characteristic limited to a particular area within the Eastern 
dialects with a characteristic covering the rest of the map; this shows up as a reddish 
stripe at the corresponding position on the heat map, suggesting systematic linkage of 
this map page to all the other pages. 
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5. Discussion 
 
Our results suggest that Structure and similar population genetic clustering tools could 
be of value for linguists investigating intra-lingual data once it has been appropriately 
formatted; population genetic clustering inferred Finnish dialect areas quite sensibly. 
Below we sum up the results and the restrictions of the analyses, and describe how the 
results could serve as a basis for further analyses. 
 
5.1 Individual dialect divisions vs. principal dialect areas of Finnish 
 
The focus of this paper is generally less on amending the Finnish dialect division and 
more on exploring the suitability of new methodology for modeling dialectal diversity. 
Here we briefly look at the results against the principal dialect divisions outlined in the 
literature (2, 3 or 4 dialect areas), and also see how the division into 8 dialect areas 
compares with the accustomed eight dialect areas (see Itkonen 1964). 
 The ΔK values suggested the two-way division (K=2) as the best uppermost 
hierarchal division. The resulting division is a fairly accurate match with traditional 
Eastern and Western dialect areas. The K=2 results were generally very uniform, with 
the different analyses showing only minute differences along the borders. Structure’s 
results were more descriptive, also showing the transitional areas along the border. The 
two-way split also remained fairly uniform with the haploid analysis and the stability of 
the diploid east-west division can also be seen in CLUMPP visualization. Considering the 
emphasis on morphophonological features in Kettunen’s atlas, this was also the 
expected result. 
 Three-way divisions had a slightly higher likelihoods than the two-way division 
with Structure but were not supported by average silhouette values or ΔK values. 
Different analyses disagreed to some extent on how the data should be divided with 
K=3. Interestingly, the suggestions line up fairly well with divisions suggested in the 
literature. The K-medoids result was a fairly close match to the three-way division from 
Leino et al. (2006) and Hyvönen et al. (2007). Structure’s highest likelihood, on the other 
hand, seemed to follow the three-way division originating from Lenqvist, later discussed 
in Paunonen (1991; 2006) and Mielikäinen (1991), with Southwest standing out as a 
principal dialect area. CLUMPP visualization for K=3 showed fuzzier populations 
especially around Häme, suggesting disagreement between the Structure runs. 
 The four-way division in the present analyses differed from Paunonen’s (2006) 
four-way division, with South Ostrobothnia grouped together with Middle / North 
Ostrobothnia dialects and Far North, and not with South Western transitional dialects 
and Häme dialects as in Paunonen. Also here Structure’s likelihood was slightly higher 
but the division was otherwise not highly supported.  
 One notable difference between the K=8 division when compared against the 
customary eight-way dialect division of Finnish is absence of the Southwest transitional 
dialect area (which only appeared with higher K values), and its replacement with 
Southeast Häme (see e.g. Rapola 1969, Wiik 2004). This division is compatible with the 
east-west dichotomy, with six western and two eastern clusters, emphasizing how 
strongly the two-way division is rooted in the data. 
 An interesting experiment for future studies might be to subdivide the 
populations produced by K=2 separately, as is done for a different type of data in 
Evanno et al. (2005). With this we could also attempt to explore the robustness of the 
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traditional eight-way division. This would make sense since the traditional eight-way 
division of Finnish is subordinate to the two-way division. 
 
5.2 Inferred dialect clusters compared with existing knowledge of Finnish dialect 
areas 
 
In addition to looking at divisions with specific K values, we also visually compared our 
inferred dialect clusters with dialect division maps found in the literature, including 
Kettunen (1940a), Hakulinen (1950), Rapola (1969), Hormia (1978), Mielikäinen 
(1994), Savijärvi & Yli-Luukko (1994), Itkonen (1964; 1989),6 as well as some of the 
dialectometrical maps from Wiik (2004). This was done by scanning the maps from the 
literature and scaling them so that they matched our dialect maps with clusters as well 
as possible. Overlapping the images of the maps provided a fairly straightforward way to 
compare not only our results against traditional dialect maps from the literature but also 
our results produced with different data sets against each other. 
 By comparing the highest likelihood visualizations of the Structure analyses and 
the visualizations of the K-medoids analyses against each another, and also inspecting 
the runs with different K values against each other, we could group the clusters into 38 
distinct dialect areas with specific borders. 20 of these dialect areas matched closely 
with the dialect divisions shown in the literature. Structure’s highest likelihood analyses 
across different K values covered 18 of these attested dialect areas, and K-medoids 
covered 17. 
 Some general trends were also apparent from the visual comparisons. For 
instance, the western dialect areas were notably much more stable and coherent across 
the analyses while the eastern dialects fluctuated more. This could reflect the differences 
in the histories of western and eastern Finns: in the east the gradual expansion to north 
and their slash and burn agriculture made them more mobile than the people in the 
west, who had more stable settlements and land ownership (Virrankoski 2012). The 
ambiguity in the east could also reflect the relatively young nature of the dialects in this 
area. For instance, the Savo dialects emerged according to Wiik (2004) only around 
1000 years ago and their gradual expansion and mixing with other dialects was still 
going on around 300 years ago. In any case, an in-depth look into the dialect transitions 
could be of interest in the future. 
 
 
5.3. Using population genetic clustering as a basis for further study 
 
The correspondence between the results of the different methods along with good 
agreement against traditional dialect areas suggest that dialect data can be examined 
successfully with population genetic tools. Proper verification of the approach creates a 
solid basis for future applications of microevolutionary methodology, which provide a 
huge potential for shedding light on linguistic phenomena. However, the present study 
has only scratched the surface of applying population genetic tools for exploring dialect 
material. Population genetics provides a framework and the tools to examine language-
internal variation, such as how the linguistic variation is (spatially) organized or why the 
dialects emerged and how they are maintained. Indeed, Wieling & Nerbonne (2015) call 

                                                           
6 Most of these maps can be found in Wiik (2004). 
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for studies focusing on resolving factors underlying linguistic variation. We hope that 
the approach presented in this paper contributes to achieve this goal.  
 The focus of this paper is on thoroughly exploring the cornerstone of many 
population genetic analyses – clustering the data as populations – but besides of this we 
shortly present some examples of the possibilities the model-based clustering methods 
provide for further studies. In the methods section we have already shown that the 
results themselves can be visualized in a variety of ways according to the needs of the 
study. Here, we give two examples of how the membership coefficients can be used for 
calculating new measurements. 
 The membership coefficients include information that reflects population 
admixture, and these values can be used to quantify how diverse the language of a given 
municipality is. This diversity may be calculated for example with Shannon-Wiener 
diversity index (H) (also called e.g. as Shannon’s entropy) (Legendre & Legendre 2012) 
which is one of the diversity indices commonly used in ecology to measure the diversity 
of ecological communities. In general, it uses proportions of characters of interest to 
calculate the diversity, for which we can use the inferred IC values. It is calculated by 
multiplying each IC value of a given municipality with its logarithm, and by taking the 
negative sum of these, i.e. 
 

𝐻 = −∑𝑝𝑖log(𝑝𝑖)

𝑞

𝑖=1

 

 
In the case of languages the index is low when the amount of linguistic diversity is low, 
that is, when traits specific to one dialect only is dominant in a certain municipality 
(Figure 11). In contrast, the index is high when the municipality harbors traits typical to 
multiple dialects and the dialects are present in equal frequencies. Diversity values 
could be e.g. further compared to other spatial attributes to understand why the high 
linguistic diversity is located in the given areas. 
 

(Fig. 11 here) 
 
 The similarity of the inferred populations in relation to one another is another 
thing that we cannot directly see from Structure’s membership coefficients; Structure 
essentially produces populations with which it can describe the entirety of the data, but 
we cannot directly see how (linguistically or genetically) similar or different these 
populations actually are. Quantifying the linguistic differences between the inferred 
dialect populations could be a topic of interest for example to study drivers of dialectal 
divergence (which is the focus in our forthcoming paper, Honkola et al. ms). A 
population genetic metric that allows us to shed light on this is FST, which estimates the 
amount of genetic differentiation between populations. A related metric ΦST, has been 
used outside of biology for studying differences between folktale types (Ross et al. 
2013). 
 In principle FST measures how much reduction there has been in heterozygosity 
(i.e. changes in the allele frequencies) due to subpopulation divergence (Hamilton 
2009). Thus, it compares the total expected heterozygosity of all the populations (HT) 
with the averaged expected heterozygosity of the studied subpopulations (HS), and is 
calculated with the following formula: 
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𝐹𝑆𝑇 =
𝐻𝑇 − 𝐻𝑆

𝐻𝑇
 

 
If the expected averaged heterozygosities of the subpopulations equal to the total 
expected heterozygosity of all the populations, (HT = HS), the allele frequencies in the 
different subpopulations do not differ from each other and suggests that there is no 
population structure. However, if these values differ, it suggests that the population has 
an inferrable substructuring.7  Further, large FST values indicate large differences in the 
allele frequencies of the populations and thus greater differentiation, while small values 
reflect more similar allele frequencies and consequently smaller differences between 
populations. 
 The expected heterozygosities needed for the FST calculation are calculated from 
the observed allele frequencies in a population. Therefore it is possible to calculate the 
expected ‘linguistic heterozygosities’ from the observed frequencies of different 
linguistic variants.  For the example analysis shown here, we isolated the “core areas” 
from the results of a K=14 analysis, i.e. municipalities with IC values > 0.75 (Fig. 12). We 
then calculated the linguistic differences between the core areas with FST. The FST values 
shown here were calculated using GenAlEx (Peakall & Smouse 2006, 2012), but there 
are many other tools available.  
 The FST values varied between 0.81 and 0.42 (Table 1), reflecting stronger 
differences than one tends to find with comparable biological data. It is likely that the 
nature of the dialect data affects this; unlike genetic data, which covers a systematic 
sample collected without an intention of maximizing population-wise differences, the 
dialect atlas covers features that serve to highlight the contrasting characteristics of 
Finnish dialects as well as possible. From a linguistic perspective our FST values are 
generally distributed as one would expect them to; for instance, the six highest pairwise 
FST values are all according to the east-west dichotomy. The six lowest FST values 
indicate similarity between 1) Savo, Karelia and Southeast dialects, 2) the Häme dialects 
and the Southwestern transitional dialects, and 3) Kainuu dialects and Middle / North 
Ostrobothnia,8 all of which are plausible transitional areas (cf. e.g. Wiik 2004). We have 
used these values elsewhere and compared the dialectal differences to cultural, 
environmental and administrative differences of the same areas (Honkola et al. ms.).  
 

(Fig. 12 here) 
(Table 1 here) 

                                                           
7 Inferring population structure from the differences of heterozygosities is based on the idea that if there 

is subpopulation structure the subpopulations differ in their allele frequencies and their averaged 

heterozygosity cannot be as high as in the total population.  
8 The low FST values between Kainuu and Central/North Ostrobothnia reflect what is shown on map 14 in 

Wiik (2004) – that is, the border between the eastern and the western dialect areas is the least steep 

around this area. Notably, Hyvönen et al. (2007) also produced a combined cluster of Kainuu and 

Central/North Ostrobothnia using lexical data, further highlighting the fuzziness of the east-west border 

in this area.  
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6. Conclusion 
 
In this paper we endeavored to take Finnish dialect studies to a less explored 
methodological direction, examining the dialect atlas of Finnish with population-genetic 
and distance-based clustering. We have had the fortunate situation of being able to take 
advantage of the vast knowledge that exists on Finnish dialects, which has also allowed 
us to focus more on methodological matters. We did not dig extremely deep into the 
intricacies of the Finnish dialect division, and instead focused more on exploring new 
approaches for analyzing the Dialect Atlas of Finnish and discussing analogies between 
within language and within-species variation, which in many ways is at the core of this 
approach. 
 The results suggest that population genetic clustering performs reasonably well 
with dialect data. In general the clusterings did not significantly clash with existing 
dialect research, and although biological allele and dialect datasets have notable 
differences, population genetic clustering was able to capture dialect variation quite 
well. The different analyses produced fairly consistent results especially with lower K 
values. Although the traditional K-medoids clustering was also quite efficient in 
inferring dialect clusters, a clear advantage for Structure were there resulting 
membership coefficient values, which allow for detailed visualization (e.g. soft clusters) 
and further research and allowing to take into account the missing data in the analyses.  
This also allows one to explore the proportion of admixture as meticulously as one 
desires. 
 The expectations built into biological analysis tools and their potential effects on 
the results are an important matter to consider when dealing with non-biological data. 
Firstly, Structure’s algorithm models populations as sets of allele frequencies that are 
compared to the allele frequencies of the “model population”, with allele frequencies in 
Hardy-Weinberg equilibrium (HWE). This does not mean that the input data needs to be 
in HWE. Therefore, HWE does not truly limit what we can study, but can limit how we 
can interpret the results. If the object of our study is not in HWE, its allele frequencies 
are undergoing a change although the analysis assumes them to remain the same. In this 
case we run into problems if we assume that the populations that Structure infers are 
accurate representations of populations much more ancient than the data we have 
analyzed, especially if the inferred population is small. Secondly, for all statistical 
analyses the variables should be independent from each other; in the case of Structure it 
assumes that each of the loci (dialectal feature) should be independent from the other 
loci. We could not find a test for feature-wise linkage for the kind of linguistic data that 
we have that could be readily adopted; this prompted us to devise a simple preliminary 
test for this purpose, which did not point to significant linkage in the dialect atlas. 
However, as the method we used is a preliminary metric that has not been extensively 
tested, the matter of linkage should be given further attention in future studies.  
 Computational approaches in historical linguistics, such as phylogenetics, have 
initiated a field in linguistics essentially analogous to the study of macroevolution of 
biological species. The population genetic framework, which operates on a 
microevolutionary level, could be used to study variation within a language. Here, we 
have adopted this approach for dialect study and present some possible applications, in 
the hope that this approach could open new doors for studying linguistic variation in the 
future. 
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Figure 1 
The ‘gold standard’ of Finnish dialect divisions, suggested by Terho Itkonen 
(Itkonen 1964). The main areas are: Southwest (1a-b), Southwest transitional 
(2a-e), Häme (3a-f), South Ostrobothnia (4), Middle / North Ostrobothnia (5a-b), 
Far North (6a-e), Savo (7a-h), and Southeast (8a-c). The primary division of these 
dialects is between western dialects (1-6) and eastern dialects (7-8).
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Figure 2 
An example page from the Dialect Atlas of Finnish (Kettunen 1940a). The legend 
in the upper right lists the variants of the dialect feature that the map covers. The 
depicted page 8 documents morphophonological variation within the word metsä 
(‘forest’). 
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Figure 3 
Two visualization styles for a division of Finnish dialects into 3 populations using 
Structure. Municipalities marked in white have not been studied. a) Traditional 
Structure barplot output. Each vertical line (perpendicular to the x-axis) 
represents one of the studied 525 municipalities and the color represents the 
dialect admixture proportions within that municipality (the frequencies of the 
three clusters). b) Frequency data plotted on a map, with frequencies of each 
inferred cluster (IC) divided to two classes: More saturated colors represent the 
core areas of the dialects, where the IC value is high (0.75-1); less saturated 
colors shows the transitional areas, with IC values between 0.5 – 0.75. c) Like b 
but with five frequency classes, showing the dialect transitions more accurately. 
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Figure 4 
A close-up of South Ostrobothnia and the surrounding areas with K=8, using 
three visualizations: a) dialects represented with two frequency classes. 
Municipalities in white along the coast represent areas without data; between 
dialects, they represent strong admixture – i.e. all IC values below 0.5. b) The 
same result shown as frequency bars, revealing the dialect admixture better. c) A 
small part of the map with percentages also shown. 
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Figure 5 
a) Estimated mean log likelihood of the data of K=1-20 (outliers excluded) b) ΔK 
of K=2-19 and diploid data. 
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Figure 6 
Average silhouette widths with K=2-20.
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Figure 7 
Dialect divisions K=2-8, with Structure diploid on the top row and K-medoids 
results on the bottom row. Structure diploid results use two shades of color to 
differentiate core areas (more saturated colors, IC values 0.75-1) from 
transitional areas (less saturated colors, IC values 0.5-0.75). White municipalities 
in the peripheral areas are undocumented whereas white municipalities in 
central areas indicate strong admixture (IC values under 0.50). The area shown 
separate from the rest of the map indicates Värmland in Sweden where people 
from eastern Finland migrated in the 16th century. The colors in K=8 correspond 
with the following dialects:  red = Southwest; purple = West Häme; brown = 
Southeast Häme + Päijät-Häme; orange = South Ostrobothnia; blue = Middle / 
North Ostrobothnia + North Kainuu + Kemijoki; olive green = Far North; green = 
Savo; gray = Southeast. A more detailed explanation of the areas is given in 
section 4.2.1. 
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Figure 8 
Dialect divisions K=9-14, with Structure diploid results presented in the top row 
and K-medoids results in the bottom row. The areas with the same color do not 
necessarily represent identical dialect areas across the maps. Other details are 
discussed in Figure 7. A more detailed explanation of the areas is given in section 
4.2.2.
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Figure 9 
Dialect divisions K=2-14 visualized with CLUMPP after excluding outliers. Color 
pairs for municipalities below the maps are in the order of appearance to assist to 
observe the appearing clusters and their frequency. 
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Figure 10 
Heat map and histogram for the municipality pair comparisons for each map 
sheet. The data points along the horizontal and vertical axes correspond to the 
map pages of the atlas. The color scale represents the level of linkage, with red 
(1.0) representing a high linkage percentage, and yellow a low linkage percentage 
(0.0). 
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Figure 11 
Shannon-Wiener indices (SWI) calculated for each municipality after dividing the 
data to seven populations. SWI are divided into ten equal-sized classes ranging 
from smallest SWI indicating lowest amount of linguistic diversity (municipalities 
colored with white) to the class of largest SWI indicating the largest amount of 
linguistic diversity (municipalities colored with black).
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Figure 12 
Core areas identified from a K=14 Structure run using an IC value threshold of 
0.75. 
 

 
 
 
 
 
 
 
 



 

43 
 

Table 1 
Pairwise FST values indicating linguistic differences of the populations presented 
in Fig. 12. The color codes in Fig. 12 match the ones in Table 1. 
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  Structure (diploid) Structure (haploid) K-medoids 

K=2 Eastern Eastern Eastern 

  Western Western Western 

K=3 Eastern Eastern Eastern 

 Western w/o Southwest Western w/o Southwest 
Middle / North Ostrobothnia + Far 
North 

  Southwest Southwest 
Southwest + Häme + South 
Ostrobothnia 

K=4 Eastern Eastern Eastern 

 Southwest Southwest Southwest 

 Häme Häme Häme 

  Ostrobothnia + Far North Ostrobothnia + Far North Ostrobothnia + Far North 

K=5 Southwest Southwest Southwest 

 Häme Häme Häme 

 Ostrobothnia + Far North Ostrobothnia + Far North Ostrobothnia + Far North 

 Savo Savo Savo 

  Southeast Southeast Southeast 

K=6 Southwest Southwest Southwest 

 
Middle / North Ostrobothnia + Far 
North Middle / North Ostrobothnia + Far North 

Middle / North Ostrobothnia + Far 
North 

 Häme Häme Häme 

 Savo Savo Savo 

 Southeast Southeast Southeast 

  South Ostrobothnia South Ostrobothnia South Ostrobothnia 

K=7 Southwest Southwest Southwest 

 
Middle / North Ostrobothnia + Far 
North Middle / North Ostrobothnia + Far North 

Middle / North Ostrobothnia + Far 
North 

 Savo Savo Savo 

 Southeast Southeast Southeast 

 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 West Häme West Häme West Häme 

  Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme 

K=8 Southwest Southwest Southwest 

 Savo Savo Savo 

 Southeast Southeast Southeast 

 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 West Häme West Häme West Häme 

 Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme Southeast Häme + Päijät-Häme 

 Far North Far North Far North 

  
Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

K=9 Southwest Southwest Southwest 

 East Savo Savo Savo 

 Southeast Southeast 
North + Border Karelia + Ingria + 
Coastal 

 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 West Häme West Häme West Häme 

 Southeast Häme Southeast Häme + Päijät-Häme Southeast Häme 

 Far North Far North Far North 
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  Structure (diploid) Structure (haploid) K-medoids 

 
Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

  Central Finland Southwest transitional Southeast Proper + Savitaipale / Lemi 

K=10 Savo Savo Savo 

 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 West Häme West Häme West Häme 

 Southeast Häme + Päijät-Häme Southeast Häme Southeast Häme 

 Far North Far North Far North 

 
Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

 Southwest Southwest Southwest 

 Southwest transitional Southwest transitional Southwest transitional 

 South Karelia Southeast Southeast Proper + Savitaipale / Lemi 

  Central Karelia Päijät-Häme 
North + Border Karelia + Ingria + 
Coastal 

K=11 Southeast Southeast Southeast Proper + Savitaipale / Lemi 

 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 West Häme West Häme West Häme 

 Southeast Häme Southeast Häme Southeast Häme + Päijät-Häme 

 Far North Far North Far North 

 Middle / North Ostrobothnia Middle / North Ostrobothnia 
Middle / North Ostrobothnia + North 
Kainuu + Kemijoki 

 Southwest Southwest Southwest 

 Southwest transitional Southwest transitional Southwest transitional 

 Kainuu + Savonian Wedge Kainuu + Savonian Wedge 
Central Finland + Savonian Wedge + 
South Kainuu 

 East Savo East Savo East Savo 

  Päijät-Häme Päijät-Häme 
North + Border Karelia + Ingria + 
Coastal 

K=12 Southeast Savo 
North + Border Karelia + Ingria + 
Coastal 

 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 Southeast Häme Southeast Häme Southeast Häme 

 Far North Far North Far North 

 Middle / North Ostrobothnia South Karelia Middle / North Ostrobothnia 

 Southwest Southwest Southwest 

 Southwest transitional Southwest transitional Southwest transitional 

 Päijät-Häme Päijät-Häme East Savo 

 North Karelia + North Savo Central Karelia Southeast Proper + Savitaipale / Lemi 

 Kainuu + Savonian Wedge Central Ostrobothnia proper Kainuu + Savonian Wedge 

 South Savo + Savonlinna transitional 
Central Ostrobothnia highlands + North 
Ostrobothnia West Savo 

  West Häme West Häme West Häme 

K=13 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 West Häme West Häme West Häme 

 Far North Far North Far North 

 Southwest Southwest Southwest 

 Southwest transitional Southwest transitional Southwest transitional 

 Central Finland Middle / North Ostrobothnia Middle / North Ostrobothnia 

 East Savo Southeast East Savo 

 Päijät-Häme Päijät-Häme 
North + Border Karelia + Ingria + 
Coastal 
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  Structure (diploid) Structure (haploid) K-medoids 

 South Karelia South Savo South Karelia 

 Central Karelia North Karelia + North Savo Central Karelia 

 Southeast Häme Southeast Häme Southeast Häme 

 Central Ostrobothnia proper 
Kainuu + Savonian wedge + Ostrobothnia 
highlands Kainuu + Savonian Wedge 

  
Central Ostrobothnia highlands + North 
Ostrobothnia Border Karelia + Southeast Savo West Savo 

K=14 South Ostrobothnia South Ostrobothnia South Ostrobothnia 

 West Häme West Häme West Häme 

 Southeast Häme Southeast Häme Southeast Häme 

 Far North Far North Far North 

 Middle / North Ostrobothnia Southeast Middle / North Ostrobothnia 

 Southwest Southwest Southwest 

 Southwest transitional Southwest transitional Southwest transitional 

 Päijät-Häme Päijät-Häme Päijät-Häme 

 South Karelia Savo-Vyborg transitional South Karelia 

 Central Karelia 
Central Ostrobothnia highlands + North 
Ostrobothnia Central Karelia 

 North Karelia + North Savo North Karelia + North Savo East Savo 

 Kainuu + Savonian Wedge Central Ostrobothnia proper Kainuu + Savonian Wedge 

 
South Savo + North Karelia + Border 
Karelia South Savo + Savonlinna transitional 

North + Border Karelia + Ingria + 
Coastal 

  Border Karelia Border Karelia Central Finland 

Table 2: Clusterings compared to one another. The cells shaded grey highlight the differences 
between the clusterings. On each row, the cells may be all white (indicating that the same cluster 
could be identified from all the clusterings), one cell may be grey and two white (indicating that 
two of the analyses agreed with one another while the third one disagreed), or one cell may be 
white and two have different shades of grey (indicating that the three analyses disagreed). 
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K 
Str (diploid) vs. 
K-medoids 

Str (diploid) vs.  
Str (haploid) 

Str (haploid) vs.  
K-medoids 

2 0 0 0 

3 0,67 0 0,67 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 0 0 0 

8 0 0 0 

9 0,33 0,33 0,33 

10 0,30 0,30 0,20 

11 0,45 0 0,45 

12 0,33 0,42 0,50 

13 0,31 0,46 0,38 

14 0,21 0,29 0,50 
Table 3: Percentage of disagreeing clusters with different analyses across different K values, 
calculated by dividing the number of disagreeing clusters with the K value (e.g. with K=3 two 
clusters out of three (67 percent of all the clusters) disagreed between the analyses. 
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Figure 1: A linkage test heat map filtered by removing data points where potential linkage (Lp) 
value was less than a 25% of the highest Lp value in the results. This illustrates one way of 
identifying less reliable estimates. 
 

 


