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Abstract—Minimizing energy consumption of concurrent applications on heterogeneousmulti-core platforms is challenging given the

diversity in energy-performance profiles of both the applications and hardware. Adaptive learning techniquesmade the exhaustive Pareto-

optimal space exploration practically feasible to identify an energyefficient configuration. Existing approaches consider a single

application’s characteristic for optimizing energy consumption. However, an optimal configuration for a given application in isolationmay not

be optimal when other applications are run concurrently. Approaches that consider concurrent application scenarios overlook the weight of

total energy consumption per application, restricting them fromprioritizing among applications.We address this limitation by considering the

mutual effect of concurrent applications on systemwide energy consumption to adapt resource configuration at run-time.We characterize

each application’s power-performance profile as a weighted bias through off-line profiling.We infer this model combinedwith an on-line

predictive strategy tomake resource allocation decisions for minimizing energy consumption while honoring performance requirements.

The proposed strategy is implemented as a user-space process and evaluated on a heterogeneous hardware platform ofOdroid XU3 over

the Rodinia benchmark suite. Experimental results show up to 61 percent of energy saving compared to the standard baseline of Linux

governors and up to 27 percent of energy gain compared to state-of-the-art adaptive learning-based resourcemanagement techniques.

Index Terms—On-chip resource allocation, heterogeneous multi-core systems, energy, concurrent applications

Ç

1 INTRODUCTION

EMBEDDED heterogeneous multi-core platforms (HMP)
require intelligent resource allocation strategies to achieve

energy efficiencywhile sustaining performance requirements.
At an application level, different applications running concur-
rently lead to significant diversity in workload characteristics
at run-time. At the hardware level, different actuation knobs
such as degree of parallelism (DoP), dynamic voltage-fre-
quency scaling (DVFS), and the type of active cores among a
heterogeneous set expose a wide range of performance-
energy trade-offs [1], [11], [15], [24]. Both these put together
exacerbates the challenge of understanding application
requirements, followed by allocating and scaling system
resources to co-optimize performance and energy efficiency.
Further, the energy consumption profile of an application
under different resource configurations varies based on the
application’s characteristics. Operating trivially at lower fre-
quency levels and fewer active cores for lower energy con-
sumption degrades the performance significantly. Despite the
abundance of resource configuration choices to minimize

energy consumption, the variation and diversity among dif-
ferent applications make it an exhaustive exploration [10],
[18]. Further, on-line selection of resource configuration
becomes even harder, considering an unknown sequence of
concurrent applications, workload variation, inter-application
interference and resource contention [1], [22]. Further, on-line
selection of resource configuration becomes even harder,
considering an unknown sequence of concurrent applica-
tions, workload variation, inter-application interference, and
resource contention [1], [22].

Encapsulation of applications’ characteristics as a metric
called bias (which is defined in Section 3) enablesmaking a rel-
evant choice of resource configuration for minimizing energy
consumption while respecting performance target [10], [12],
[18]. Existing resource management approaches use off-line
profiling to characterize the applications at design time and
use this information at run-time to avoid exhaustive search
[10], [16], [21]. Other approaches use on-line prediction strate-
gies, their efficiency and accuracy depend on the amount of
power-performance statistics collected over a significant
period of execution time [1], [18]. Both off-line and on-line
approaches are confined to extract an optimal resource
configuration of a single application running in isolation [3],
[10], [12], [18], and are thus not readily adaptable to multiple
concurrent application scenarios. While some approaches
[21], [22] consider multiple applications, those i) overlook the
combination of all the existing knobs (DoP, DVFS, and core
selection) in heterogeneous platforms [4], [21], [22], [26], ii)
ignore dynamic workload scenarios where applications
arrive and leave the system in an unknown manner, limiting
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their efficiency and adaptability in optimizing resource
allocation, and iii) do not consider the weight of total
energy consumption per application, restricting those from
prioritizing among applications [1], [22], [26]. This subse-
quently limits the significance of energy gains that can be
achieved, since an optimal resource management configura-
tion for one application (obtained from off-line/on-line profil-
ing) which results in lower energy could be non-optimal
when another application arrives for concurrent execution.
This necessitates a run-time resource management strategy
for understanding the applications’ characteristics under
concurrent workload scenarios.

An efficient way of adapting to varying workloads is to
profile applications’ power-performance metrics, combined
with the amount of energy representing a weighted charac-
terization. In this work, we present such weighted charac-
terization, which can be leveraged at run-time to prioritize
among a wide range of workload, containing memory and
compute intensive applications and re-evaluate the optimal
configuration. We consider DoP, DVFS, and core selection
combinatorially, which creates a large space of knob setting.
Searching among such space can make run-time manage-
ment inefficient [4]. Thus, we shift profiling and model gen-
eration to off-line to reduce the overhead of run-time
computation. We generate a bias model combining with a
performance model and use that at run-time for on-line
management. Moreover, we have an on-line performance
controller to manage resource contention and application
interference at run-time. Our contributions are:

� Off-line characterization and modeling of weighted
bias and performance for single and multi-threaded
applications.

� On-line management of weighted biases for prioritiz-
ing among concurrent applications, and selecting
optimal resource configuration to minimize the total
energy consumption ofmulti-programmedworkloads.

� Combine off-line characterization and on-line con-
troller to design a resource management framework
for HMPs, which can handle complexity of concur-
rent workload scenarios.

� Implementation and evaluation of the resource
management strategy on a heterogeneous hardware
platform of Odroid XU3, over embedded bench-
mark workloads.

The rest of this paper is organized as follows. Section 2
presents the background and motivation of the problem.
Section 3 describes the proposed method, including off-line
characterization and on-line management. Section 4 presents
the experimental setup, discusses, and evaluation of our
framework. Finally, Section 5 concludes the paper.

2 BACKGROUND AND MOTIVATION

In this section, we present the significance of concurrent
applications’ resource allocation and summarize relevant
existing approaches, along with their limitations.

2.1 Motivation

We demonstrate the challenges of resource management
for multiple concurrent applications through an example,

considering a workload scenario with ParticleFilter

running and StreamCluster arriving during ParticleFilter’s
execution. In this work, we use Odroid XU3 [14], which con-
sists of 4 ARM A15 big cores and 4 ARM A7 LITTLE cores
operating in various ranges of frequencies. We consider 6 dif-
ferent configurations for each application, which are compre-
hensive enough for showing the complexity of resource
management. The configurations present as nT , where n
shows the number of cores assigned to the application, and T
is the type of cores that can be big (b) or LITTLE (L). Figs. 1a
and 1b show the normalized energy consumption of Particle-
filter and StreamCluster when executing individually at fixed
frequency 1.8 GHz for big and 1.4 GHz for LITTLE cluster,
using 6 different configurations. The red and orange points
show the first and second optimum configurations in terms of
energy consumption. For both applications, mapping to 4L is
the best configuration when run individually - therefore, both
the applications can be mapped to 4L. However, under con-
current workload scenarios, the second application arrives
when the first application is already running on the best con-
figuration i.e., 4L. One solution is to map both applications to
4L, sharing the resources - since it is the knownbest configura-
tion when run individually [10]. Despite the approach in [10]
uses this solution, the configuration that provides the best
energy consumption for each individual application may not
be suitable for running those concurrently. The other solution
is to map the second application to the second best configura-
tion, which is 4b. Fig. 1c shows normalized energy consump-
tion of executing Particlefilter and Streamcluster concurrently
by considering different combinations ofmapping. The x-axis
shows different combinations of configurations as ðnT1;mT2Þ,
where nT1 refers tomapping configuration of Particlefilter and
mT2 refers to Streamcluster’s configuration.

The purple and green points in Fig. 1c show energy con-
sumption of the suggested solutions, which are not optimal.
On the other hand, it should be noted that the best configu-
ration (red point) in fact is 4b for the first application and 4L
for the second application, which requires migrations of the
first application from LITTLE cores to big cores. Even the
second best configuration (orange point) requires migration
of the first application from 4L to 2b. The comparison of the
energy consumption and execution time of these two

Fig. 1. Energy consumption of (a) Particlefilter, (b) Streamcluster, (c) Par-
ticleFilter and Streamcluster concurrently. Each application run in 6 con-
figurations - 1, 2, 4 big (b) and LITTLE (L) cores.
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applications (Particlefilter and Streamcluster) running concur-
rently, for four different configurations viz., ”4L, 4L”, ”4L,
4b”, ”2b, 4L”, and ”4b, 4L” is shown in Fig. 2. Mapping both
of the applications to ”4L” leads to the highest execution
time and energy consumption, while ”4b, 4L” results in the
lowest execution time and energy consumption. Thus, com-
bination of optimal configurations for each individual appli-
cation i.e., 4L is not optimal when two applications are
executing concurrently. Finding this optimal configuration
can be challenging for different types of applications due to
a large number of possible combinations for various config-
urations. Thus, in this paper, we aim to optimize energy
consumption over concurrent workload scenarios without
exhaustive search at run-time.

2.2 Related Work

The resource management approaches leverage machine
learning methods either offline or online for optimizing
energy consumption on embedded systems [9], [10], [12],
[17], [18]. On-line training [18] leads to exhaustive search at
run-time to find the optimal resource management for vari-
ous range of applications. On the other hand, off-line profil-
ing without on-line prediction and run-time monitoring is
not comprehensive enough for unknown workloads. The
techniques in [10], [12] use the off-line characterization of
applications as performance-per-power - called bias in this
content- for guiding resource management for a single
application, however, such approaches ignore concurrent
and dynamic workload scenarios and amount of consumed
energy for each application as a weight. We propose a
method that uses off-line profiling as weighted bias (which is
defined in Section 3) combining with on-line prediction and
run-time monitoring while considering dynamic multi-pro-
grammed workloads.

Table 1 comparatively summarizes the most recent and
relevant state-of-the-art approaches as per controlling knobs,
ability to handle dynamic multi-programmed workloads,
methodology, and decision strategies that they used. The
frameworks presented in [3], [10], [21], [22], [26] cannot
handle multi-thread applications and/or combinational opti-
mization of different knobs, restricting their scope. The
approach in [16] does consider multi-thread applications and
combinational knobs setting, however, this approach neglects
multi-application and dynamic workload scenarios. Power-
aware [2], Projection [26], and DyPO [10] consider the appli-
cation bias for guiding resource allocation, which we also
consider in this work. Thus, we select DyPO [10] for compari-
son against our work to show the effect of using weighted
bias for multi-application workload scenarios. DyPO uses
exhaustive off-line profiling to find an optimal resource
allocation for one application. AdaMD [4] is the most similar
work to our approach, which considers multi-applications
dynamic workload with combinational knobs setting,
however, it uses a different decision strategy that overlooks
the effect of the total energy consumption per application
as a weight. Our proposed approach (shown in the last
line of Table 1) presents a more comprehensive method
compared to the others, addressing energy optimization of
multi-application and dynamic workloads scenarios, consid-
ering weighted application bias. The experimental results in
Section 4 show the efficiency of our work over DyPO [10] and
AdaMD [4] which are themost relevant approaches.

3 PROPOSED METHOD

In this section, we present our resource management frame-
work and the approach for minimizing the energy consump-
tion of multi-application workload scenarios. Fig. 3 shows the
high level architecture of our methodology consisting of
two phases viz., off-line characterization - to generate
applications’ model, and on-line management - to infer the
off-line model for energy minimization and performance
guarantee. We profile different applications on the target
heterogeneous multi-core platform to extract applications’
characteristics and generate bias and performance models. In
the on-line phase, we use learned models as predictors to
extract applications’ characteristics i.e., applications’ bias.
TheOn-line Controller chooses an appropriate resource config-
uration that minimizes the energy consumption, and then
fine-tunes the allocation decisions to fit the application’s

Fig. 2. Energy and execution time of Particlefilter and StreamCluster run
concurrently in different configurations. L,b -Little, and big cores.

TABLE 1
Summary of the Most Recent Existing Works Against the Proposed Method

Tech. Controlling knob Workloads Methodology Decision by

DVFS DoP TM Mul-th Mul-app Dyn. Off-line On-line Perf req. Bias WBias

PARMA [3] @ @ • @ • • @ @ • • •

Imitation [16] @ @ • @ • • @ @ @ • •

Online Conc. [22] @ • • • @ • • @ @ • •

Inter-cluster [21] @ @ • @ @ • @ @ @ • •

Power-aware [2] @ @ @ @ @ @ @ @ • @ •

Projection [26] @ • @ • @ @ @ @ @ @ •

DyPO [10] @ @ • @ • • @ • • @ •

AdaMD [4] @ @ @ @ @ @ • @ @ • •

Proposed approach @ @ @ @ @ @ @ @ @ @ @
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performance requirements as Instruction Per Second (IPS).
When multiple applications are running concurrently, the
Controller combines the resource configuration space of each
running application and prunes it to re-evaluate the suitable
resource configuration in a co-optimization manner. While
this may result in altering the resource configuration of
already running application(s) from an optimal point, the
total energy consumption of all the applications running will
be minimized. However, most of the existing approaches
neglect the possibility of task migration by arriving a new
application, restricting their efficiency in adapting to multi-
application dynamicworkload scenarios.

3.1 Off-Line Characterization

Given a multi-threaded application running on a heteroge-
neous platform, each core-type, DoP, and frequency level can
provide a different performance-per-power. We define bias
for each pair of application-configuration as the ratio of per-
formance-per-powerwhen an application runs on that config-
uration to the best performance-per-power. Bias for each
application running on each configuration may be exhibited
by applications based on their characteristics. Such character-
istics can be IPS, number of threads, CPU-intensity or mem-
ory-intensity of the application, and execution time of the
application. Understanding these biases for various applica-
tions can enable effective energy optimization decisions at
run-time, as the relative value of the bias can guide prioritiza-
tion among multiple applications. In addition to these, the
actual amount of energy consumed by an application shows
the significance of energy gains that can be achieved by choos-
ing a specific configuration. Specifically, in the context of
multi-programmed workloads, considering the amount of
energy consumption of an application lends an insightful
weightage to the application’s bias.We useweighted bias as the
combination of application bias and amount of energy to guide
resource configuration decisions.Weighted bias provides a bet-
ter characteristic of applications in terms of relative energy
consumption,which is essential for handlingmultiple concur-
rent applications. Thus, by considering the weight of energy
consumption for each application, we have a better estimation
of total energy consumption over different configurations and
workload scenarios. However, pruning a large resource con-
figuration space to learn applications’ biases at run-time leads

to an exhaustive searchmaking it impractical for on-line deci-
sion making [10]. Hence, we use an off-line profiling method
to model and characterize applications’ bias, which will be
inferred on-line for energyminimization decisions.

Application Bias. We define the application bias (AB) as a
list of configuration-biases for possible configurations in a
platform. We assume the heterogeneous platform to have a
maximum of N cores, composed of core types b and L, rep-
resenting typical big and LITTLE cores, and M and K vari-
ous frequency levels for each core type. We use ðPerfÞc and
ðPowÞc to represent performance and power consumption
when running an application on configuration c. We repre-
sent the configuration-bias as

CBc ¼ ðPerfÞc=ðPowÞc
ðPerfÞBc=ðPowÞBc

; (1)

where CBc shows the configuration bias of an application
when runs on configuration c, ðPerfÞBc and ðPowÞBc are
performance and power consumption on the best configu-
ration with minimum energy consumption for that appli-
cation. The computation of an application may consist of
different phases, such as CPU-intensive and memory-
intensive. Such phase variation leads to various perfor-
mance and power consumption for the application during
its execution time. In our test case (Rodinia benchmark
suite), the phase changes of applications are not signifi-
cant, thus, we calculate CBc for the phase which is domi-
nant in total energy consumption (i.e., CPU-intensive
phase). A higher CBc shows configuration c is more
proper for the application in terms of energy consump-
tion. When two applications are competing for resources
the application with a higher CBc has higher priority to
assign to the configuration c.

Weighted Bias. The bias of each application-configuration
multiplied by the weight of energy consumption of that
application represents the weighted-bias (WB) of the appli-
cation in the given resource configuration as

WB ¼ WA � CBc: (2)

The weight of energy consumption WA for each application
is calculated as

Fig. 3. High level architecture of the proposed method.
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WA ¼ AverageðEiÞ
Et

; (3)

where Ei represents energy consumption of the application
in 6 major configurations (Explained in Section 3.1.1) of the
platform, and Et is the total energy of the system (i.e., bat-
tery capacity). Upon estimating different weighted biases,
the application with higher weighted bias is chosen as the
priority.

3.1.1 Data Collection

We outline six major configurations that cover different
core types and degrees of parallelism including 1, 2, and
4 threads running on big (b) and LITTLE (L) clusters.
These configurations are represented as < num cores > <
core type > , including 1L, 2L, 4L, 1b, 2b and 4b. These 6
configurations are comprehensive enough to show the per-
formance-per-power characteristic of an application and
provide optimal bias and performance prediction in our
platform. For each of these configurations, we fix the fre-
quency levels at 1.8 GHz for the big cluster and 1.4 GHz
for the LITTLE cluster. Although we collect data in a plat-
form with 2 types of core, for the other platforms with a
higher number of core types, we can consider more than 6
configurations and collect the information. The collected
information is then used to generate the required models.
We select and run 9 different applications from Rodinia
benchmark suite [5], which provides workloads with a
wide range of behavior and is suitable for embedded pro-
cessor [7], [8], [17], [18], [25]. We execute each application
in the aforementioned six configurations on the Odroid
XU3 heterogeneous platform [14] to collect power con-
sumption, instructions-per-second, and execution time.
Considering various levels of frequency, the number of
total configurations is large even for off-line analysis.
Thus, we estimate the power consumption, instructions-
per-second, and execution time for the other frequency
levels by using the power and performance models [15],
[20], [23]. We use the collected data and estimated metrics
to model the configuration bias, energy consumption, and
performance satisfaction of each application in each con-
figuration. The bias model and performance model are
used at on-line management to minimize energy consump-
tion. Instead of storing the data for all the configurations,
we just store energy consumption of 6 various configura-
tions - 1L, 2L, 4L, 1b, 2b, 4b into App_Info_Array, as
application characteristic. The populated App_Info_Array
encapsulates the required information for calculating
the weighted bias, using the bias model. The details of
the bias model and performance model are explained in
the following.

3.1.2 Model Generation

After data collection, the data combination, i,e, (num cores,
core type, freqðGHzÞ, E1 . . .E6ðJÞ) is used to design a
generic i) bias model and ii) performance model for all the
applications. E1 . . .E6 are the measured energy consump-
tion for the 6 various configurations. The bias model is used
at run-time to estimate applications’ biases for each configu-
ration. To prevent exhaustive calculation at run-time, we

use a performance model to eliminate the configurations in
which the application does not meet the performance
requirements. For each application, the user can define a
specific requirement in terms of the execution time of the
application. We translate the user requirement to instruc-
tion per second and design a classifier that determines a
specific configuration for an application satisfies the
requirements or not. The input features of our models are
(num cores, core type, freq, E1 . . .E6), and output is CBc for
bias model, and a binary label, which shows meeting (1) or
not meeting (0) of the performance requirement, for perfor-
mance model. The linear relationship between inputs and
output motivates us to select Linear Regression for bias
model, and Ridge classifier for the performance model. Linear
Regression and Ridge classifier are easy to implement and
have low prediction error for the set of inputs and outputs
that we define. The bias for each configuration is estimated
as follows, using a linear regression model.

CBc ¼
X

bixi; (4)

where xi are the input features, and bi is the regression coef-
ficients learned using the collected data as follows:

CBc ¼� 0:3freq � 0:05core typeþ 0:04num cores

þ 0:01E3 þ 0:0017E4

� 0:0005E5 þ 0:001E6 þ 0:86:

(5)

Similarly, we have a classifier for the performance model
as follows:

P ¼
X

gixi; (6)

where P is the classification value, and gi is the ridge regres-
sion coefficients learned for classifier by using the collected
data. The more specific model based on Equation (6) is

P ¼ 0:7freq � 0:74core typeþ 0:14num cores

þ 0:01E1 � 0:07E2 þ 0:051E3 � 0:0018E4

þ 0:013E5 � 0:012E6 � 0:17:

(7)

When P is positive the predicted label is 1 (meet the
requirements), and when it is negative the label is 0 (do
not meet).

3.2 On-Line Management

The on-line Controller (as in Fig. 3) receives applications’
models, generated from the off-line profiling phase to make
resource configuration decisions. This Controller consists of
four main components viz., Application Monitoring, Predictor,
Configuration Selection and Performance Controller, as shown
in Fig. 4. Application Monitoring checks arriving and exit-
ing of the applications and creates a list of running applica-
tions with their information that collected off-line, called
App_Info. App_Info for each application is passed to the Pre-
dictor, and the predictor estimates the list of bias for all the
possible configurations of that application. Then, Configura-
tion Selection determines a suitable resource configuration
(core type, DoP, and frequency), followed by Performance
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Controller, which decides on resource scaling to honor per-
formance requirements.

3.2.1 Application Monitoring

For handling a dynamic and unknown workload scenario,
we periodically monitor the arriving and exiting of the
applications at run-time and update a list of running appli-
cations, which will be used in Configuration Selection. The
monitoring period is generic and can be adjusted at design
time. Application Monitoring extracts App_Info_Array for
each application and pass the information to the predictor
for bias generation. Our approach is generic but require one
time off-line profiling for collecting App_Info_Array. For
unknown applications, we use Online Learnermodule to col-
lect data at run-time. Application Monitoring can detect
application phase change and send a new App_Info_Array
for each phase of the application. However, in our case
study, the phase changes of applications do not significantly
affect energy consumption, thus we overlook that. In future
work, we will consider the various applications to show the
ability of phase change detection in Application Monitoring.

3.2.2 Predictor

Whenever a new application arrives, the Application Moni-
toring informs the Predictor, and the Predictor uses two mod-
els, which are designed off-line, to generate a bias list for
that application. The Predictor receives the App_Info, which
contains E1� E6, then estimates the configuration biases
for various combinations of core type i.e., b, L, DoP i.e., 1-4,
and frequency i.e., 0.2-1.4 GHz for LITTLE and 0.6-2 GHz
for big. To prevent excessive calculation, we first check if
the configuration meets the performance requirement for
the application, using the performance model. Then, we cal-
culate the bias for that application-configuration pair and
add the bias to the bias list. Each bias is linked to one possi-
ble configuration.

3.2.3 Configuration Selection

When a new application arrives, Application Monitoring
informs the Configuration Selection, and Configuration Selection
checks the App_Info for profiled information of the applica-
tion to select the configuration with the least energy con-
sumption (among E1 - E6). If this is the only application
currently running, the selected configuration is finalized. If
there are other application(s) that are concurrently running,
then the Controller searches for the optimal and feasible
configurations for all the running applications. A chosen

configuration is considered to be feasible when no two appli-
cations are running on the same core. Mapping more than
one application to one core cause relatively higher energy
consumption and lower performance [6] compare to the
other configurations (as shown in the motivation example in
Section 2.1). As our selected platform has 8 cores, the frame-
work can handle up to 8 concurrent applications which is rel-
atively high for embedded systems such as smartphones and
smartwatches. In the following, the details of handlingmulti-
ple applications are explained.

Handling Multiple Applications. The resource configuration
with the lowest energy consumption (maximum bias) for one
application can be unfeasible intuitively due to other concur-
rently running application(s). In this case, the Configuration
Selection formulates a configuration sub-space combining the
off-line characterized biases of each running application. The
Combinator component in Fig. 4 combines the running appli-
cations weighted bias lists and generates a combined bias list
by summing up every combination of weighted biases with
feasible configuration. Each element in the combined bias list
is linked to a set of feasible configurations for the running
applications. The element with the highest weighted bias
value links to the optimal set of configurations for the cur-
rently running applications. Whenever an application arrives
or leaves the system, the application list updates, then the
Combinator updates the combined bias list and selects
the configuration that is linked to the maximum value. This
new configuration may alter an application’s previous
optimal configuration to a sub-optimal choice, yet results in
lowering the combined energy consumption of all the applica-
tions. The chosen new configuration is enforced through (re-)
mapping, core folding/un-folding, task (re-) migration, and
DVFS. In Odroid XU3 there is per cluster DVFS thus, when
several applications are running in one cluster, the maximum
frequency which can satisfy the requirements of all the appli-
cationswill be selected.

3.2.4 Online Learner

Handling Unknown Applications. To have a self-contained
framework, we provide an online learner as a trivial method
for handling unknown applications. When a new applica-
tion is detected by Application Monitoring, if the application
is known, the best configuration can be selected immedi-
ately by using the Predictor and Combinator, otherwise, the
online learner will be activated. The Online Learner collects
power measurements and performance of the unknown
application in the current frequency of the system by assign-
ing the application to 6 various configurations (1L, 2L, 4L,
1b, 2b, 4b), if the cores are free (the measurement time inter-
val is generic). We estimate the power consumption and
instructions-per-second for the other frequency levels by
using the power and performance models [15], [20], [23]. If
there is not enough free core for collecting data in all the 6
above-mentioned configurations, the controller changes the
current core assignment for the running applications to
release at least one big and one LITTLE core for collecting
data, then, after data collection, the controller predicts the
best configuration and updates the core assignment for all
the applications. By collecting such data, we can calculate
CBc values based on Equation (1). As the weight is in

Fig. 4. On-line management overview.
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relation to the total energy consumption of the application,
it can be calculated only after completion of the application.
Therefore, for unknown applications, we overlook the
weight and decide on the best configuration based on CBc

values. After application completion, we can calculate the
weight and weighted bias by using Equation (2) and store it
for the future. By having fewer free cores, our collected
data is less, and thus the predicted configuration for the
unknown application may not be the optimal configuration.
However, the experimental result shows it still improves
the energy consumption compare to the other frameworks.
The online learner can improve in future works.

3.2.5 Performance Controller

After finding the suitable configuration at the Configuration
Selection block, the performance controller fine-tunes the level of
DVFS for satisfying the applications’ performance require-
ments. The DVFS level that is selected in Configuration Selec-
tion may not satisfy concurrent applications’ requirements
due to applications’ interference and resource contention.
Thus on-line monitoring of performance and adjusting DVFS
at run-time is an important part of optimized resource alloca-
tion. Each application is assumed to present a target IPS as its
nominal requirement. The Performance Controllermonitors the
application’s performance (IPS) at run-time, and when the
current IPS of one application is less than target, the DVFS
level is increased one step i.e., 100 Mhz to meet the require-
ments. The on-line controller operates at every parametrizable
epoch e. Over every epoch, the applicationmapping, TM, and
DVFS decisions are enforced to the platform. When the sys-
tem is idle, and no application is monitored by Application
Monitoring, the Performance Controller sets the frequency of
each type of cores to their minimum level.

4 EVALUATION

4.1 Experimental Setup

Platform. We validate our experiments on an embedded
HMP platform of Odroid XU3 [14], which hosts a Samsung
Exynos 5422. The processor has 8 cores, organized into big
cluster - with 4 ARM A15 cores for high performance and
LITTLE cluster - with 4 ARM A7 cores for low power opera-
tion. The platform provides on-board power sensors for
measuring power consumption and operating system’s per-
formance counters for measuring performance in terms of
instructions per second. In the platforms without on-board
power sensors, we can use power models [27] for estimating
power consumption. Energy consumption is calculated by
multiplying of power consumption of cores and time

duration -which includes energy consumption of OS, our
framework, workload scenario, and other background appli-
cations. Power consumption of memory is negligible in
Odroid XU3 compare to the big and LITTLE CPUs [2]. Per-
cluster DVFS is supported by the platform by which the
frequency of big cores is adjustable between 0.2 to 2 GHz
with a 0.1 GHz step and the Little cores’ frequency is adjust-
able from 0.2 to 1.4 GHzwith the same steps size.

Implementation. The framework in this paper is imple-
mented as a Linux user-space process and is built on top of
the MARS framework [19]. The monitoring and resource
allocation decision making operate at a parameterizable
epoch, which is set to 1 s in this work.

Workload. To show the effectiveness of the proposed
method, we use a combination of single and multi-thread
applications from Rodinia benchmark suite [5] and create a
dynamic workload scenario. A summary of the used applica-
tions, their notations, and arrival times in our experiments is
shown in Table 2. The applications cover wide range of com-
pute/memory intensity from high compute intensity like
Streamcluster to low compute intensity like Srad. The
compute intensity levels are calculatedusing the speedupdef-
inition in [4] and normalized to one using the highest
speedup. The higher speedup shows higher compute inten-
sity for an application [4]. The created workload represents
the behavior frequently encountered in heterogeneous
embedded systems [18]. The workload contains various com-
binations of applications (in Table 2) entering and leaving
dynamically to make different sets of concurrent applications
for evaluation. For further evaluation, we use some other
applications from the machine learning area and theMibench
benchmark suite [13] as unknown applications. These appli-
cations are Sha, Patricia (Pa), and Dijkstra (Dij) which are in
the network and security category from Mibench and Knn,
linear regression (Lr), and list square (Ls) algorithms from
machine learning.

Comparison. We compared our proposed method with
recently proposed resource management approaches i) DyPO
[10] - which relies on off-load characterization for exploration
of optimal resource configuration and ii) AdaMD [4] - which
relies on on-line data collection for estimating speed-up and
resource allocation based on that. While DyPO is designed to
handle single application scenarios, it still considers combina-
tions of actuation knobs and bias for resource management
decisions, making it relevant for qualitative comparison
against our approach. The frameworks presented in [22], [26]
can handle multiple workloads, however, these methods do
not consider application bias, performance requirements, or
combination of essential actuation knobs in HMPs (discussed

TABLE 2
Summary of the Used Applications in the Experiments

Application Computation Domain Norm. compute int. Abbr. Notation Arrival time (s)

Particle filter Structured grid Filtering problem 0.625 Pf A1,A3,A6 0, 61, 243
Heartwall Structured grid Medical imaging 0.47 Hw A2,A7,A8 6, 349, 379
Streamcluster Dense linear algebra Data mining 1 Sc A4 67
Srad Structured grid Image processing 0.44 Sr A5 237
Breadth-first search Graph traversal Graph algorithms 0.53 Bf A9 383
Kmeans Dense linear algebra Data mining 0.8 Km A11 395
Leukocyte tracking Structured grid Medical imaging 0.97 Lt A10 389
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in Section 2.2). For example, the framework in [26] just
achieves 3 percent improvement versus the powersave gover-
nor with limitation in considering multi-thread applications.
For a fair comparison, we manage DyPO in a way to adapt
multi-application scenarios. DyPO prioritizes applications
based on performance-per-power and does not consider the
dynamic execution of concurrent workloads. However,
AdaMD considers the dynamic execution of concurrent appli-
cations, using adaptive mapping and dynamic DVFS.
AdaMD estimates speed-up i.e., ratio of performance in the
big and LITTLE cluster for each application, by collecting
data for 500 ms at run-time. Then, the speed-ups of applica-
tions are used as the ratio between the number of big and LIT-
TLE cores that assigned to those. After assigning the cores to
the applications by such a ratio, if still there is a free core, it is
assigned to the application with the highest speed-up.
AdaMD monitors the performance at run-time and increases
the frequency level when performances of applications are
lower than the required target.

In addition, we compare our method against Linux’s
powersave, performance, ondemand, interactive, and conservative
governors, which are standard baselines, as used on mil-
lions of smartphones [22]. Powersave and performance gov-
ernors set the frequency to the lowest and highest level to
provide low power and high performance, respectively.
The other governors adjust the frequency level based on uti-
lization threshold.

4.2 Experimental Results

In this section, we present the experimental results containing
i) accuracy of the proposed models, ii)functional analysis of
our method during real experiments, and iii) evaluation and
comparison of energy and performance trade-off against
state-of-the-art approaches.

4.2.1 Accuracy Evaluation

As discussed in Section 3, we design two models for perfor-
mance prediction and bias prediction. The performance
model is a classifier that receives features of an application
and one configuration point, as a data sample, and predicts
whether the input configuration satisfies the application
requirement (class 1) or not (class 0). For accuracy evaluation
of the performance model, we test our model by using 810
data samples. These 810 data samples are various combina-
tion of num cores, core type, and freq for 9 applications from
the Rodinia benchmark suite. We consider 3 states for
num cores - 1, 2, and 4, 2 states for core type - big and LITTLE,
and 15 states for frequency levels, which create 90 various
configurations. We use 80 percent of these samples for train-
ing. Fig. 5 shows the percentage of error for the performance
model when using for each application on 90 configurations.
For most of the applications, the prediction error is less than
10 percent, except Hw and Pf. The last bar in Fig. 5 shows the
error of the performance model by considering all the 810
data samples which is less than 10 percent. For compensating
the performance prediction error, we provide run-time per-
formancemonitoring in our framework.

We also evaluate the prediction error of the bias model
which is explained in Section 3.1. The input features of this
model are the same as the performance model, and the

outputs are bias predictions. Fig. 6 shows percentage of
error in bias prediction for each application in various con-
figuration points. The bias error is less than 1.6 percent for
all of the applications, which is low enough. The last bar in
Fig. 6 shows the total error of the bias model by considering
810 data samples that is less than 1 percent. To this end, our
approach provides reliable prediction models leading to
optimizing energy consumption under performance con-
straints better than state-of-the-art approaches.

4.2.2 Functional Analysis

For the evaluation purpose, we present the instantaneous
power consumption of the big and LITTLE cores on the system
to show the effect of resource management decisions, using
DyPO, AdaMD, and our proposed approach. We ran various
combinations of 7 different applications (presented in Table 2)
from the Rodinia benchmark suite [5], such that there are at
least 2 applications that execute concurrently. Fig. 7 shows the
variation of power during the whole run-time by using a
dynamic workload scenario. As shown in Fig. 7, AdaMD con-
sumes relatively higher power in the big cluster and lower
power in the LITTLE cluster. The AdaMD maps applications
to big and LITTLE cores in a ratio of their speedup, for bal-
anced workload sharing between big and LITTLE cores. For
example, if the speedup is 2 for an application, AdaMD
assigns 2 big and 1 LITTLE core to that application, thus the
power consumption of the big cluster is relatively higher. Con-
versely, in DyPO, the power consumption of the LITTLE clus-
ter is higher due to mapping applications to LITTLE cores for
lower energy consumption. In DyPO, the best mapping con-
figuration for every single application is mapping to LITTLE
cores, except for Km and Lt, leading to an increase of power
for the big cluster at t ¼ 389s and t ¼ 395s. Our approach tries
to map the applications to the best configuration either LIT-
TLE or big cores. Thus, the power consumption of LITTLE
cores in our approach is lower than DyPO, which maps most
of the applications to LITTLE cores. Our approach uses the
big cores, whenever LITTLE cores are busy, leading to higher
power consumption for the big cluster compared to DyPO.

For a detailed analysis,we zoom in on the power consump-
tion of the big and LITTLE clusters, using our approach. Fig. 8

Fig. 5. Error in performance model for various applications.

Fig. 6. Error in bias prediction for various applications.
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shows details of frequency, power consumption, and applica-
tion to core mapping at the whole run-time. We demonstrate
the times when an event occurs (applications arrive or leave)
by vertical dotted lines and directional arrows, which show
the arriving or leaving of applications. By occurring each
event, our resource management technique decides for
task migration, task mapping, and DVFS, after calculating
Weighted Bias. In Fig. 8, A2 arrives when A1 is running, which
leads to migration of A1 to the big cluster. The same scenario
happens for A3 and A4. Due to the lower weighted biases for
A1 and A3, A2 and A4 have a relatively higher priority for
mapping to the LITTLE cluster. By assigning each application
to each cluster, our framework increases the frequency of that
cluster for performance satisfaction, thus the power of that
cluster increases (as shown in power and frequency plots).
When A5, A6, and A7 execute concurrently, our framework
combines the bias lists of these 3 applications and selects the

configuration with maximum combined bias, which is shown
in Fig. 8. With the new configuration, the requirements of
applications are not satisfied due to the congestion and inter-
ference, thus the frequency of the big and LITTLE clusters is
increased step by step, resulting in power increasing. By the
completion of each application, the mapping configuration
for the rest of the applications is updated. A8, A9, A10, and
A11 create 4 concurrent applications scenario, which leads to
updating configuration after the arrival of each application
and increasing power consumption of big cluster up to 2 W.
After completion of A11, the new configuration does not sat-
isfy the performance requirements of the 3 remained applica-
tions, thus our framework increases frequency step by step
(from t ¼ 407s to t ¼ 439s). As shown in Fig. 8, our approach
adapts to dynamic workload scenarios and handles multiple
concurrent applications at run-time for minimizing total
energy consumption.

4.2.3 Mapping Configurations

The decisions of our resourcemanagement strategy are guided
by Weighted Bias, while in DyPO, decisions for single applica-
tion scenarios are guided by Bias i.e., performance-per-power.
The application with higherWeighted Bias has a higher impact
on energy consumption, which should thus be assigned a
higher priority for resource allocation and energy optimiza-
tion. Decisions on AdaMD guided by speedup and similar to
DyPO does not consider any weight for applications. For com-
paring the mapping strategies between DyPO, AdaMD, and
ourmethod, we present run-timemapping configuration with
these three approaches at t ¼ 0, t ¼ 7; and t ¼ 31 in Table 3.
The table shows how mapping configuration changes by
the arrival of A2 and completion of A1 in three different

Fig. 7. Power consumption of big and Little clusters, running dynamic
workload scenario, using our proposed method, DyPO, and AdaMD.

Fig. 8. Frequency, power consumption, and application to core mapping by using our framework when a dynamic workload scenario is running. Appli-
cations arrive and leave in an unknown manner. The dotted line indicates the arrival or leaving of applications. L1-L4 are LITTLE cores and b1-b4 are
big cores.
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frameworks. At t ¼ 7, by A2 arrival, DyPO searches for the
best configuration based on the bias. The best configuration is
4 LITTLE for A2, thus DyPO assigns 4 LITTLE cores to A1 and
A2 simultaneously, which leads to overloading LITTLE cores
and decreasing performance of A1, and A2. While running
both A1 and A2 on 4 LITTLE cores leads to lower power con-
sumption, increasing execution time of these to applications
result in higher energy consumption. On the other hand, our
method by calculating weighted bias finds mapping A1 to
4 big and A2 to 4 LITTLE is more efficient. AdaMD estimates
speed-up which is 2 for both A1 and A2, leading to assigning
2 big cores and 1 LITTLE core for each application. In AdaMD,
when an application leaves the system and cores are free, the
controller assigns one more core to the application with the
highest speedup, thus when A1 leaves the system at t ¼ 31,
A2 is mapped to 3 big cores and one LITTLE core. Our
resource allocation strategy chooses a resource configuration
suitable for minimizing the energy consumption of the priori-
tized application, while any other concurrent applications
may be re-allocated to sub-optimal configurations, the overall
energy consumption isminimized.

4.2.4 Energy and Performance Evaluation

Fig. 9 shows a comparison of energy consumption of the sys-
tem, by using different approaches under various concurrent
workload scenarios. All the workload scenarios are dynamic
and applications arrive and leave the system in an unknown
manner. The blue bar shows the energy consumption of the
system using our approach, which is the lowest in most of
the combinations of concurrent workloads. Although power-
save approach provides relatively low energy consumption, it
does not respect performance requirements and increases the
execution time. For the first two workload scenarios, DyPO
assigns both applications to 4Lwhich is the best configuration
for a single execution of each one. Such mapping may result
in lower power consumption but higher execution time, lead-
ing to higher total energy consumption compare to our
method.On the other hand,AdaMDuses less number of cores

compared to our method, however, Fig. 9 shows its mapping
strategy is not optimal. The power consumption by AdaMD
is high due to using the big cores which results in even higher
energy consumption compare to DyPO in the first workload.
In the third and fourth workloads, the best configurations for
singular execution are 4L for Hw and 1L for Bf and Sr. Thus,
when Hw is running singular, our method map it to 4L, and
when the second application arrivesHw releases one core for
that. Therefore, the total energy consumption in our approach
is less than the other approaches. In dynamic workload sce-
narios, the order of arriving applications also affects energy
consumption and must be considered by resource manage-
ment. DyPO does not consider arriving order of applications,
thus for both Km+Lt and Lt+Km workloads the selected con-
figurations are the same, and the energy consumption is not
optimal. However, our method and AdaMD consider such
factor andmanage the resources based on that. AdaMDmaps
the applications to the available cores based on their arriving
orders. Our method by considering weighted bias andmigra-
tion of applications at run-time can handle the dynamicwork-
loads, leading to lower energy consumption in both cases.
Our method maps each application to its best configurations
at first, and when the second application arrives, changes the
configuration. As shown in Fig. 9, AdaMD results in lower
energy consumption for 3 concurrent applications compared
to ourmethod, however, it leads to significantly higher energy
consumption for 4 concurrent applications scenario.

To this end, our method provides lower energy consump-
tion compared to the other related works considering the
dynamic arrival of applications. We create a mixed workload
scenario (Mixed WL) by combining 11 applications (as in
Fig. 8) to evaluate the approaches under more complex work-
loads. The energy consumption under such a workload sce-
nario is shown in Fig. 11. Our framework, which is shown in
the blue bar has the lowest energy consumption. Thus, while
the other approachesmay provide lower or equal energy con-
sumption under some workload scenarios, our method offers
the lowest energy for complexworkloads.

TABLE 3
Run-Time Mapping Configurations With Different Approaches

Instance t = 0 t = 7 t = 31

Cluster LITTLE big LITTLE big LITTLE big

DyPO A1 A1 A1 A1 0 0 0 0 A1A2 A1A2 A1A2 A1A2 0 0 0 0 A2 A2 A2 A2 0 0 0 0
AdaMD A1 0 0 0 A1 A1 0 0 A1 A2 0 0 A1 A1 A2 A2 A2 0 0 0 A2 A2 A2 0
Proposed A1 A1 A1 A1 0 0 0 0 A2 A2 A2 A2 A1 A1 A1 A1 A2 A2 A2 A2 0 0 0 0

Mapping configuration is shown as a per-cluster vector, where AN represents application-N being mapped to a core and 0 represents idle core.

Fig. 9. Energy consumption of system over various dynamic workload scenarios, using different frameworks.
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For better evaluation, we present percentage of energy
saving for each approach against performance governor in
Fig. 10. Our approach (blue bar) provides the highest energy
saving in most of the workload combinations. Our frame-
work saves energy consumption up to 12 ,27, and 61 percent
more than DyPO, AdaMD, and Linux governors, respec-
tively. While in the mixing of 3 concurrent applications,
AdaMD has higher energy saving, in Mixed WL, which is a
more complex workload scenario AdaMD has lower energy
saving. In summary, our approach provides higher energy
saving under dynamic workload scenarios compare to the
state-of-the-art approaches.

Fig. 12 shows the average execution time of each applica-
tion that is used in Mixed WL scenario, using various
resource allocation approaches. The red circles show the
execution time target for each application, the execution
time higher than the red circles is not acceptable. The blue
bar in Fig. 12 shows our approach, which meets the execu-
tion time targets for all the applications in the Mixed WL
scenario while minimizing the energy consumption. Fig. 12
shows powersave governor neglects applications target
requirements and leads to the execution time up to 3 times
higher than our approach. Thus, our approach provides an

optimum trade-off between the execution time of applica-
tions and energy consumption.

Fig. 13 shows the trade-off between energy consumption
and execution time and where each approach stands on this
trade-off. The ideal solutionwould be at the bottom left corner
of this plot. Therefore, the closer each approach to the bottom
left corner, the better its overall utility. The figure shows
powersave approach offers the lowest energy consumption by
compromising the execution time. The performance approach
has the highest energy consumption with a little improve-
ment in execution time compare to interactive, conservative and
ondemand approach.AdaMD andDyPO provide lower energy
consumption compare to the aforementioned governors
while still satisfy the performance requirements, as shown in
Fig. 12. Our approach provides a suitable trade-off that offers
lower energy consumption than AdaMD and DyPO while
meeting the execution time targets.

Anothermetric for the evaluation of frameworks that focus
on energy optimization is performance-per-watt (PPW). The
higher PPW shows relatively higher performance and lower
power consumption. Fig. 14 shows comparison of normalized
PPW in various approaches under Mixed WL. In this Figure,
the PPW for each approach is normalized to 1, using the high-
est value for PPW. Our approach provides the highest PPW,
which is 22 percent higher than AdaMD, and 11 percent
higher thanDyPO.

Fig. 11. Energy consumption of system over mixed dynamic workload
scenario, using different frameworks.

Fig. 10. Energy savings achieved by our approach compared to different approaches for various dynamic workload scenarios.

Fig. 12. Execution time of running applications in dynamic workload sce-
nario, using various frameworks.

Fig. 13. Execution time- Energy trade-off.

Fig. 14. PPW (Performance per watt) comparison.
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Handling Unknown Applications. We evaluate our framework
by some unknown applications without any initial informa-
tion. We compare the energy consumption of the system
under such workload scenarios against the Linux gover-
nors, which is shown in Fig. 15. Dypo and AdaMD do not
support unknown application scenarios, thus could not
optimize energy consumption under such kind of workload
scenarios. Fig. 15 shows energy consumption for various
workload scenarios from 1 unknown application executing
individually to a combination of known and unknown
applications. As shown in Fig. 15, Our framework still offers
the lowest energy consumption. Although Powersave gov-
ernor may provide low energy consumption, it cannot guar-
antee performance requirements.

4.3 Run-Time Overhead

We estimate the run-time overhead of our framework by
considering i) CPU and memory usage, ii) execution time
overhead, and iii) energy overhead.

CPU and Memory. The memory usage of our framework
is OððNcore:NfreqÞNAppÞ, where Ncore is the number of cores in
each cluster, which is 4 in our platform, Nfreq is the maxi-
mum number of frequency levels, which is 18 in our plat-
form, and NApp is the number of concurrent applications.
Whenever a new application arrives, we require temporary
storage with the above-mentioned order to generate the
combined bias list and make a resource management deci-
sion. We monitor the CPU usage of our framework by using
htop command in the Linux. The CPU usage is variable
depends on the stage of the execution of our framework.
For example, when a new application arrives, or an applica-
tion leaves the system, the Configuration Selection is called,
and the CPU usage by our framework increases for at
most 2.2 s. The maximum CPU usage by our framework is
23 percent of one big core, which is 3 percent of all the avail-
able cores. During the execution of applications, our frame-
work uses 11 percent of one big core, which is 1 percent of
all the available cores.

Execution Time. The major part of execution time of our
framework is related toConfiguration Selection (as presented in
the Fig. 4). The execution time of configuration selection is vari-
able depends on the number of concurrent applications and
the number of feasible configurations for those applications.
The space of feasible configurations and the configurations
that meet the target requirements of the applications varies at
run-time. The smaller space requires less exploration time.
The time complexity of our framework isOððNcore:NfreqÞNAppÞ.

We measure the execution time of our framework for various
workload scenarios from 2 to 4 concurrent applications and
the results show time interval varies from 0.09 - 2.2 s which
is negligible compare to the applications execution time
(from 75 to 546 s).

Energy. For calculating the energy overhead, we monitor
the instantaneous power consumption of our framework.
The power consumption of our framework is considerable
only when Configuration Selection is called. When Configura-
tion Selection executes, the power consumption of our frame-
work increases up to 0.2 Watt for at most 2.2 s. The number
of calling Configuration Selection depends on the workload
scenario, for example in 2 concurrent workload scenario it
is called 2 times and in the Mixed WL, it is called 22 times.
If we consider the highest energy consumption (0:2� 2:2)
for all the 22 times, the total energy consumption of our
framework would be 0:2� 2:2� 22 ¼ 9:68J , and the energy
overhead is 9.68 divided by the total energy consumption of
the system, which is 420 J in Mixed WL. Therefore, the
energy overhead is 2.3 percent, which is considered in
the reported experimental results.

5 CONCLUSION

We proposed a resource management strategy for minimiz-
ing energy consumption of multi-programmed workloads
by characterizing each application’s power-performance
profile off-line. We model the applications’ weighted bias
from the off-line profiling and use that for the on-line man-
agement of concurrent applications. In on-line management,
we combine applications’ biases to find the best configura-
tion that provides the lowest energy consumption while
honoring the performance requirements of concurrent
applications. We evaluated the proposed approach on a real
embedded platform against other relevant resource man-
agement strategies. Our approach provides lower energy
consumption while satisfying the performance require-
ments of the standard embedded benchmark suite.
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