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Stationary processes form an important class of stochastic processes that has been
extensively studied in the literature, and widely applied in many fields of science.
Applications include modeling and forecasting various real-life phenomena such as
stock market behavior, sales of a company, natural disasters and velocity of a Brow-
nian particle under the influence of friction, to mention a few.

In this dissertation, we consider new methods for modeling and estimation of dis-
crete and continuous time stationary processes. We characterize discrete and con-
tinuous time strictly stationary processes by AR(1) and Langevin equations, respec-
tively. From these characterizations, we derive quadratic (matrix) equations for the
corresponding model parameter (matrix) in terms of autocovariance of the stationary
process. Based on the equations, we construct an estimator for the model parameter.
Furthermore, we show that the estimator inherits consistency and the rate of conver-
gence from the chosen autocovariance estimators. Moreover, its limiting distribution
is given by a linear function of the limiting distribution of the autocovariance estima-
tors. In addition, we apply the presented general theory in modeling and estimation
of a generalization of the ARCH model with stationary liquidity.





Stationaariset prosessit muodostavat merkittävän stokastisten prosessien luokan,
jota on tutkittu laajalti ja jolle löytyy sovelluksia monilta tieteen eri osa-alueilta. So-
velluskohteita ovat esimerkiksi monien reaalimaailman ilmiöiden mallintaminen ja
niiden ennustaminen, kuten pörssikurssit, yrityksen liikevaihto, luonnonkatastrofit
ja liikevastuksen vaikutuksen alaisen Brownin hiukkasen nopeus.

Tässä väitöskirjassa esitellään uusia menetelmiä diskreetti- ja jatkuva-aikaisten
stationaaristen prosessien mallintamiseksi ja estimoimiseksi. Diskreetti- ja jatkuva-
aikaiset vahvasti stationaariset prosessit karakterisoidaan AR(1) ja Langevin yhtä-
löiden avulla. Kyseisten karakterisaatioiden pohjalta johdetaan stationaarisen pro-
sessin autokovarianssin avulla ilmaistavat toisen asteen (matriisi)yhtälöt mallin
(matriisi)parametrille. Perustuen näihin yhtälöihin, mallin parametrille määritel-
lään estimaattori. Estimaattorin tarkentuvuuden ja suppenemisnopeuden osoitetaan
seuraavan suoraan valittujen autokovarianssiestimaattoreiden vastaavista ominai-
suuksista. Tämän lisäksi estimaattorin rajajakauma voidaan esittää lineaarisen
funktion avulla autokovarianssiestimaattoreiden rajajakaumasta. Esitettyä yleistä
teoriaa sovelletaan myös ARCH-mallin erään yleistyksen estimoimiseksi.
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1. Introduction

Stationary processes, a notion defined by Aleksander Khintchine in his paper [42]

in 1934, form undoubtedly one of the most important and widely studied classes of

stochastic processes. Some notable results from the early stages of development of

the field include spectral representation theorems of stationary processes and their

autocovariance functions, factorization of spectra, Wold’s decomposition, linear least

squares forecasting and filtering, and ergodic theorems. Details on these topics to-

gether with historical and bibliographical remarks can be found in [28]. For a brief

account of scientific history of time series analysis and stationary processes, we refer

to [19].

Probably the simplest example of a non-degenerate stationary process is a sequence

of independent and identically distributed random variables. These type of time se-

ries are encountered e.g. by flipping a coin or tossing a dice consecutively. As a

more non-artificial example, one could consider stock market returns to be realiza-

tions of stationary processes possessing memory. Although most real-life time series

are not stationary, many of them can be stationarized via a suitable transformation of

the original data. Due to the capitalist nature of the modern world based on constant

growth, various economy related time series exhibit a linear upward trend. In addi-

tion, many environmental time series are of seasonal nature. One classic example on

stationarizable time series is given by carbon dioxide concentration measurements

at Mauna Loa volcano. The data indicates not only a linearly rising trend, but also

seasonal behavior. After eliminating these expressions of non-stationarity by differ-

encing the original data, the transformed time series can be adequately modeled by

applying stationary processes [33].

The foregoing discussion connects stationary stochastic processes closely to tem-

poral phenomena. It is worth to mention that stochastic processes and stationarity

can be easily defined using more general parameter sets without time interpretations.
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Introduction

However, in this dissertation, we concentrate on stationary processes indexed by the

two most commonly used parameter sets, namely the integers and the real numbers.

Throughout this dissertation, we refer to these cases as ”discrete time” and ”continu-

ous time”, respectively.

Discrete time

In addition to temporal phenomena that are discrete at their core, typically measure-

ments of continuous time variables also result in discrete time series. Convention-

ally, the statistical modeling of discrete time data has been done by applying models

of the vast ARMA (autoregressive moving-average) family constituting the founda-

tion of the modern time series analysis. The origin of the ARMA processes dates

back to studies by Udny Yule and Eugene Slutsky from 1920s. Yule introduced pure

autoregressive processes in his paper [78] from year 1927, and the ideas were ex-

tended a few years later by Gilbert Walker [74]. Moving-average processes were

constructed by Slutsky in [66], a paper which was originally written in Russian also

in 1927. We also mention Herman Wold, who established ARMA models in his

work [77] renowned for the decomposition theorem named after him. As an im-

portant consequence of the theorem, any purely non-deterministic weakly stationary

process can be approximated by ARMA processes highlighting their generality. A

reader interested in the early scientific history of the ARMA processes may turn to

[57]. To this date, ARMA processes have given rise to an exhaustive number of

models of stationary processes. For example, various ARCH (introduced by Engle

[24]) and GARCH (generalized autoregressive conditional heteroskedasticity models

introduced by Bollerslev [12]) have been widely applied to describe fluctuations of

volatility in financial data. Different members of the ARMA family together with

estimation in these models have been considered e.g. in [46], [26], [30], [35], [45]

and [6], to mention a few. For a glossary on ARCH related models, see [13].

When applying ARMA models, there are a few issues that have to be overcome

by the practitioner. The first question to be addressed is the stationarity of the given

data together with the model selection problem. After fixing the used model, the

practitioner has to select a method for estimation of the related model parameters.

The final step is to apply model validation methods in order to evaluate the quality

of the estimated model. The foregoing discussion summarizes the three stages of the

Box-Jenkins method introduced in [14] giving explicit instructions for the modeling
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procedure, and consequently causing a boom of applications of ARMA processes.

Next, we give a brief overview on these stages of the Box-Jenkins method.

The approach to model identification taken in [14] relied heavily on the study of the

sample autocorrelation and partial autocorrelation functions that can lead to equivocal

interpretations especially in the case of more complicated ARMA processes. Thence-

forth, an array of more sophisticated methods have been proposed to be based, for

example, on canonical correlation analysis (see e.g. [2] and [71]). We also men-

tion different information criteria, such as AIC by Akaike [1] and BIC by Schwartz

[65], that are widely applied today in practice. However, there does not exist a single

model selection strategy superior to others in every given situation.

The estimation of the parameters of the chosen model is conventionally carried out

by applying different maximum likelihood methods such as optimizing exact, con-

ditional or quasi likelihood functions. However, since there exists no closed form

exact maximum likelihood estimators even for the simplest ARMA models, the re-

lated maximization problem has to be solved by applying some numerical method.

Also, the computation of the maximum likelihood function can already be involving

for a general ARMA process. In addition, the maximum likelihood method requires

knowledge of the exact distribution of the noise process, although Gaussian likeli-

hood approach may yield asymptotically consistent and asymptotically normal esti-

mators also for a non-Gaussian noise. Furthermore, also different least squares and

moment based methods have been applied in the estimation of ARMA processes.

Contrary to the maximum likelihood method, the ordinary least squares estimators

of a pure autoregressive process admit closed form representations. However, the

least squares method is restricted to ARMA processes that are causal and invertible,

since otherwise the related minimization problem may not have a finite solution. For

details on estimation of ARMA processes, and on modern time series analysis in gen-

eral, we refer to [16] and [29]. We also mention the recognized paper [31] by Hannan

on asymptotic properties of estimators of linear processes.

There exists an abundance of diagnostics for assessing the goodness of the esti-

mated model that are typically designed to recognize whether the estimated residuals

support the underlying assumptions of the noise process. That is, the residuals should

embody a realization of a white noise or an IID process, depending on whether strict

or weak stationary is under consideration. Perhaps the most well-known tool for

testing zero-autocorrelation of the residual series and adequacy of the model is the

Ljung-Box test [47], a modification of the test proposed by Box and Pierce in [15].

If the applied tests suggest that the estimated model is not satisfactory, then the prac-
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titioner is prompted to begin a new iteration of the Box-Jenkins method.

Continuous time

Time series of continuous time arise naturally in many physical applications, and

even if the observations are made discretely, it is justified to apply continuous time

models to the underlying phenomena. In addition, it might also be convenient to

apply continuous time models to irregularly spaced time series of discrete processes

(see e.g. [39]). The time evolution of a continuous time variable is often modeled

by stochastic differential equations (SDEs) that can be regarded as continuous time

analogs of stochastic difference equations such as ARMA equations. Moreover, in

many cases, introducing a suitable initial condition yields a stationary solution to a

SDE. However, the transition from discrete to continuous time is not straightforward.

For example, it is not obvious what should constitute the continuous time counterpart

of the discrete time white noise process. Attempts to preserve discrete time white

noise properties face several difficulties leading to a mathematically improper pro-

cess with autocovariance function given by the Dirac delta function. Nevertheless,

continuous time (Gaussian) white noise may be regarded as the formal derivative of

Brownian motion (for details, see e.g. [60] and [50]), which is the famous Gaussian

process with continuous paths and independent stationary increments.

The mathematical history of Brownian motion and SDEs date back to studies of

Thorvald Thiele [70], Louis Bachelier [4], Marian Smoluchowski [67] and Albert

Einstein [22] in the turn of the 19th and 20th centuries. From the aforementioned, the

paper by Einstein became the most celebrated and influential, and in many occasions,

it is regarded as the initiator of stochastic calculus. In his paper, Einstein derived a

Fokker-Planck differential equation for the probability density function of displace-

ment of a Brownian particle immersed in liquid noting that the mean-square of the

displacement grows linearly in time. Inspired by the work of Einstein, Paul Langevin

took apparently a more simple approach to the same problem based on the classical

laws of physics [44]. His model for a Brownian particle was presumably the first dif-

ferential equation involving a stochastic driving force (equivalent to continuous time

white noise process), but a rigorous mathematical treatment of the equation had to

wait for two major advancements.

The first of these advancements is largely due to Wiener, who gave a mathematical

construction of Brownian motion [75, 76] and hence, honoring his achievements, the

12
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mathematical formulation of Brownian motion is known as Wiener process. One of

the many key results of Wiener was that the sample paths of Brownian motion are

almost surely nowhere differentiable. Consequently, stochastic differential equations

involving Brownian motion are usually interpreted as formal representations of inte-

gral equations. However, since Brownian motion has almost surely infinite variation

on compact sets, the usual integration machinery, such as Riemann-Stieltjes, is not

available creating a demand for stochastic integration theory. Although Wiener con-

tributed significantly also to the theory of integration of deterministic functions with

respect to Brownian motion, the problem was thoroughly addressed by Kiyoshi Itô

by developing the modern stochastic calculus initiated in [36]. Nowadays, stochas-

tic differential equations are typically interpreted as Itô integral equations. However,

other approaches, such as Stratonovich and pathwise interpretations, exist as well.

For details on the topics discussed in this paragraph, we refer to [51], [37], [55] and

[61]. On the scientific history of Brownian motion and stochastic calculus, see e.g.

[38], [27] and [41].

Next, we turn to continuous time ARMA (CARMA) processes that can be regarded

as limits of discrete time ARMA processes as the time interval between successive

observations tends to zero. CARMA processes can be formally expressed as solu-

tions to stochastic differential equations together with a given interpretation. Usu-

ally, higher order CARMA differential equations are interpreted via observation and

state equations. Furthermore, under some restrictions on the AR polynomial and a

suitable (random) initial condition, they yield stationary solutions. For more details

on CARMA processes, we refer to [17] and references therein.

The CAR(1) process, better known as the Ornstein-Uhlenbeck process, is in fact

given by the Langevin differential equation for a Brownian particle, and it has been

extensively covered in the literature. The Langevin equation has been generalized

e.g. by replacing the driving Brownian force with other Lévy or stationary increment

processes. It is a well-known fact that the Langevin equation driven by a stationary

increment process satisfying mild integrability conditions admits a unique stationary

solution (see e.g. [9]). Furthermore, it was shown in [73] that a generalization of

the Langevin equation characterizes all stationary processes possessing continuous

sample paths. Extensions of the Langevin equation and estimation in such models,

and related models, have been considered e.g. in [3], [49], [58], [20], [68], [48] and

[54], to name a few. However, to the best of our knowledge, most of the literature

regarding the estimation related to the Langevin equation is restricted to specific,

often Gaussian or Lévy, driving forces. Especially fractional Ornstein-Uhlenbeck
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processes, which were introduced by [18], recovered by fractional Brownian motion

driven Langevin equations have received plenty of attention recently (see e.g. [34],

[7], [69], [8] and references therein). Finally, we mention the paper [43] by John

Lamperti, where he proved that there exists a one-to-one correspondence between

stationary and self-similar processes given by a transformation named after him. In

particular, the transformation of Brownian motion as a 1
2 -self-similar process recovers

the stationary Ornstein-Uhlenbeck process.

On this dissertation

The common theme of this dissertation is to introduce new statistical models for

stationary processes providing us with novel estimation methods. In Publication I,

Publication II, Publication III and Publication V, we study discrete time stationary

processes, whereas Publication IV is devoted to continuous time stationary processes.

The rest of this document is organized as follows.

In Chapter 2, we first introduce stationary processes in general, before discussing

the discrete and continuous time cases separately in the contexts of ARMA and

Ornstein-Uhlenbeck processes. In Chapter 3, we present some basic concepts and

results of asymptotic theory that are central for the publications of the dissertation.

Chapter 4 provides summaries of the publications.

In Publication I, by applying a discrete time Lamperti theorem, we show that all

strictly stationary processes are characterized by the AR(1) equation when the con-

ventional assumptions related to the noise process are relaxed. Under the assumption

of square integrability, the characterization lays the foundation for a novel estima-

tion method based on autocovariance estimators of the modeled stationary process.

Furthermore, we show that our closed-form model parameter estimator inherits con-

sistency and asymptotic normality from the autocovariance estimators. It is worth to

mention that the approach covers not only all ARMA processes but also essentially

any stationary processes.

In Publication I, we discussed how the proposed estimation method can be applied

to any square integrable stationary process, excluding a class exhibiting some specific

characteristics. In Publication II, we provide a detailed analysis of these special

cases. In particular, we show that the class consists of degenerate or approximately

degenerate processes and hence, they do not provide very useful models in general.

In Publication III, we study a variant of the ARCH model, whose proper estimation
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has proven to be a challenging task in the past (see e.g. [5]). Most importantly,

by applying the methods introduced in Publication I and Publication II, we define

closed-form estimators for the model parameters. Furthermore, we give sufficient

conditions under which the estimators are consistent.

In Publication IV, in order to extend the characterization of strictly stationary pro-

cesses of [73] to cover also multivariate settings, we first state a multidimensional

counterpart of the Lamperti theorem. After this, the characterization leads to a novel

estimation method of square integrable stationary processes and the unknown param-

eter matrix of the Langevin equation with a remarkable general driving noise process.

The method is based on continuous time algebraic Riccati equations (CAREs) and by

applying the related perturbation theory, we show that our estimator inherits consis-

tency from the chosen autocovariance (function) estimator of the stationary process.

Furthermore, the asymptotic distribution of the estimator is a linear function of the

limiting random process of the autocovariance estimator.

In Publication V, we complete our research of stationary processes by concerning

the multivariate discrete time setting. In a similar manner as in Publication IV, we be-

gin by extending the characterization of Publication I to cover multivariate settings as

well. Supposing square integrability, this leads to a CARE-based estimation method

for the parameter matrix of the characterization. The asymptotic properties of the

estimator are inherited as in the continuous time case treated in Publication IV.

Potential continuative topics for future research could be as follows: extensions

of the characterization to stationary processes indexed by different parameter sets

and the related estimation methods, prediction laws in the models proposed in this

dissertation, and assumptions on the noise such that the asymptotic results of the

introduced parameter estimators apply.
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2. Stationary processes

Stationary processes form a focal class of stochastic processes, and they have been

extensively studied in the literature and widely applied in various fields of science.

Also, in many cases, a non-stationary time-series can be stationarized via a suitable

transformation enabling the utilization of stationary models.

In general terms, a stochastic process is a collection (Xt)t∈T of random variables

defined on a common probability space (Ω,F ,P) and taking values in a common

measurable space (G,G). That is, Xt : Ω → G is a measurable function for every

t ∈ T . However, sometimes it is more convenient to view a stochastic process as

a function X : Ω × T → G of two variables. For an introduction to stochastic

processes, we refer to [62]. A more in-depth discussion of the topic including details

on stationary processes is provided in [28].

In this dissertation, we consider stochastic processes indexed by the real numbers or

the integers, and taking values in an n-dimensional real space. Hence, in the sequel,

we assume that either T = R or T = Z. Moreover, in this connection, we discuss

the one-dimensional case and hereby (G,G) = (R,B(R)), where B(R) denotes the

Borel sigma-algebra. However, the vast majority of the content of this chapter can be

extended to multivariate settings in a straightforward manner. We start by providing

the definitions of the two most commonly used types of stationarity.

Definition 2.1. Let X = (Xt)t∈T and Y = (Yt)t∈T be stochastic processes. If for ev-

ery m ∈ N and t = [t1, t2, . . . , tm]� ∈ Tm the random vectors [Xt1 , Xt2 , . . . , Xtm ]
�

and [Yt1 , Yt2 , . . . , Ytm ]
� have identical probability distributions, we write

X
law
= Y.

Definition 2.2. Let X = (Xt)t∈T be a stochastic process. If

(Xt+s)t∈T
law
= (Xt)t∈T

for every s ∈ T , then X is strictly stationary.
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The above definition states that multidimensional distributions of a strictly station-

ary process are invariant under uniform shifts in time. In general, stationarity of the

one-dimensional distributions (or n-dimensional with a fixed n) is not a sufficient

condition for strict stationarity, as the following example illustrates.

Example 2.3. Let X = (Xt)t∈Z be such that X2k+1 = Y for k ∈ Z, and (X2k)k∈Z
is an IID process independent of Y and X2k

law
= Y . Then the one-dimensional distri-

butions of X are stationary, but⎡
⎣X1

X3

⎤
⎦ law

=

⎡
⎣Y
Y

⎤
⎦ law

�=
⎡
⎣X0

X2

⎤
⎦ .

Definition 2.4. Let X = (Xt)t∈T be a stochastic process. If

(1) E(Xt) = μ, t ∈ T

(2) var(Xt) = σ2 < ∞, t ∈ T

(3) cov(Xt, Xt+s) = γ(s), t, s ∈ T ,

then X is weakly stationary. In this case, the function γ is called the autocovariance

function of X .

Corollary 2.5. From Definitions 2.2 and 2.4, it follows that every strictly stationary

process with a finite second moment is also weakly stationary. In addition, since

Gaussian distributions are characterized by the mean vector and the covariance ma-

trix, every Gaussian weakly stationary process is also strictly stationary.

Next, we turn briefly to autocovariance functions that can be characterized via the

property of positive semidefiniteness.

Definition 2.6. Let f : T → R. In addition, let m ∈ N, t ∈ Tm and z ∈ Rm be

arbitrary. If
m∑

i,j=1

zjf(ti − tj)zi ≥ 0,

then f is a positive semidefinite function.

Theorem 2.7. Let γ be the autocovariance function of a stationary process. Then

(1) γ(0) ≥ 0
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(2) |γ(t)| ≤ γ(0), t ∈ T

(3) γ(−t) = γ(t), t ∈ T

(4) γ is positive semidefinite.

Conversely, if f : T → R is symmetric and positive semidefinite, then it is the

autocovariance function of a (Gaussian) stationary process.

Proof. The first two properties are given by non-negativeness of variance and the

Cauchy-Schwarz inequality. Positive semidefiniteness of γ follows from the fact that

cov(X) is positive semidefinite and setting X = [Xt1 , . . . , Xtm ]
�. A proof for the

other direction in the case of T = Z can be found in [16]. However, the same proof

is applicable also when T = R.

Remark 2.8. In fact, positive semidefiniteness together with symmetricity of f gives

(1) and (2) with suitable choices of t and z in Definition 2.6.

In Publication II we apply the following result regarding the rank of a covariance

matrix as we study a certain class of stationary processes with cyclical type of auto-

covariance functions.

Lemma 2.9. Let X be an n-dimensional random vector. Then the algebraic multi-

plicity ma(0) of zero as an eigenvalue of Σ = cov(X) equals to the number of linear

dependencies within X . More precisely, ma(0) = k if and only if all elements of X

can be expressed linearly from (and no less than) n− k fixed elements of X .

Proof. Let us suppose without loss of generality that X is centered. First, assume the

redundancy of X . Then it is straightforward to find k linearly independent non-zero

vectors such that a�i X = 0 almost surely. Furthermore

Σai = E(XX�)ai = E(XX�ai) = 0

and thus, ai is an eigenvector of Σ associated with the eigenvalue zero. Next, assume

that ai is an eigenvector of Σ associated with the eigenvalue zero. Then

a�i Σai = a�i E(XX�)ai = E

[
(a�i X)2

]
= 0

and thus, a�i X = 0 almost surely. We conclude the proof by recalling that the
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eigenvectors of a covariance matrix are orthogonal ensuring that the linear system⎡
⎢⎢⎢⎣
a�1
...

a�k

⎤
⎥⎥⎥⎦X = 0

of equations is of full-rank k.

2.0.1 Stationary increment processes

Many well-known processes, such as Brownian motion and the Poisson process, ex-

hibit stationarity in their increments. These so-called stationary increment processes

are imperative for this dissertation motivating the following short overview of the

topic.

Definition 2.10. Let X = (Xt)t∈T be a stochastic process. Let m ∈ N and t, s ∈ Tm

be arbitrary. If, for every h ∈ T ,⎡
⎢⎢⎢⎣
Xt1+h −Xs1+h

...

Xtm+h −Xsm+h

⎤
⎥⎥⎥⎦ law

=

⎡
⎢⎢⎢⎣
Xt1 −Xs1

...

Xtm −Xsm

⎤
⎥⎥⎥⎦ , (2.1)

then X is a stationary increment process.

The next lemma shows that the stationary increment property can be compactly

written in terms of laws of incremental processes.

Lemma 2.11. Let X = (Xt)t∈T be a stochastic process. Then X is a stationary

increment process if and only if

(Xt+h −Xh)t∈T
law
= (Xt −X0)t∈T , h ∈ T.

Proof. Let the above equality of laws hold for every h ∈ T and choose

t = [t1, . . . , tm, s1, . . . , sm]. Then⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xt1+h −Xh

...

Xtm+h −Xh

Xs1+h −Xh

...

Xsm+h −Xh

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

law
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xt1 −X0

...

Xtm −X0

Xs1 −X0

...

Xsm −X0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

giving (2.1). To prove the other implication, we simply choose s = 0 in (2.1).
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In the discrete case T = Z, we obtain even more convenient characterization of

stationary increment processes.

Lemma 2.12. Let X = (Xt)t∈Z be a stochastic process. Let ΔX = (ΔtX)t∈Z,

where ΔtX = Xt − Xt−1. Then X is a stationary increment process if and only if

ΔX is strictly stationary.

Proof. Let ΔX be strictly stationary and without loss of generality assume that t ≥ s.

Then⎡
⎢⎢⎢⎣
Xt1+h −Xs1+h

...

Xtm+h −Xsm+h

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
∑t1

k=s1+1 Δk+hX
...∑tm

k=sm+1 Δk+hX

⎤
⎥⎥⎥⎦ law

=

⎡
⎢⎢⎢⎣
∑t1

k=s1+1 ΔkX
...∑tm

k=sm+1 ΔkX

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Xt1 −Xs1

...

Xtm −Xsm

⎤
⎥⎥⎥⎦ .

The other direction is straightforward.

In Publication I and Publication IV, we consider centred stationary increment pro-

cesses with X0 = 0. In this case, we obtain the following useful representation for

the covariance function.

Lemma 2.13. Let X = (Xt)t∈T be a centred stationary increment process with a

finite variance function v(·) and X0 = 0. Then

cov(Xt, Xs) =
1

2
(v(t) + v(s)− v(t− s))

Proof. Since X0 = 0, and by stationarity of increments

EX2
t−s = E(Xt −Xs)(Xt −Xs) = EX2

t + EX2
s − 2EXtXs

yielding the result after a rearrangement of the terms.

2.0.2 Self-similar processes

Self-similar processes are stochastic processes whose distributions are invariant un-

der appropriate scalings of time and space. Moreover and most importantly for us,

self-similar processes can be characterized via bijective transformations of strictly

stationary processes. For details on self-similar processes, see [23]. We start an in-

troduction to self-similar processes by presenting the original definition concerning

the continuous time setting.

Definition 2.14. Let Y = (Yt)t≥0 be a stochastic process. If for every a > 0 there

exists b > 0 such that

(Yat)t≥0
law
= (bYt)t≥0,

then Y is self-similar.
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In his seminal paper [43], Lamperti proved that b has a particular functional form

under a few assumptions.

Theorem 2.15. Suppose that Y = (Yt)t≥0 is continuous in probability at zero, non-

trivial and self-similar. Then there exists θ ≥ 0 such that b = b(a) = aθ.

Above, by triviality it is meant that Yt is almost surely a constant for every t ≥ 0.

In the present-day literature, it is customary to define self-similarity according to

Theorem 2.15. Moreover, it can be shown that Y is completely degenerate (Yt = Y0

a.s. for every t) if and only if θ = 0 (see e.g. [23]) and hence, it is common to

consider only the case θ > 0. Since in Publication I we introduce discrete time θ-

similar processes and the related Lamperti transformation, we use a slightly modified

definition that covers both discrete and continuous time cases simultaneously.

Definition 2.16. Let θ > 0 and let Y = (Yet)t∈T be a stochastic process. If

(Yet+s)t∈T
law
= (esθYet)t∈T

for every s ∈ T , then Y is θ-self-similar.

Remark 2.17. The only difference between our definition and the standard definition

of the continuous time setting (see e.g. [64]) is that we do not consider the process

Y at the origin. Otherwise, our definition is obtained through a change of variable

from the conventional one. Moreover, from 2.16 it follows that limt→−∞ Yet = 0

in probability. Furthermore, if Y is stochastically continuous at zero, then Y0 = 0

almost surely coinciding with the standard definition.

One well-known example of a self-similar process is the fractional Brownian mo-

tion (fBm) that is widely applied e.g. in mathematical in order to model long-range

dependencies evident in financial time-series.

Example 2.18. The fractional Brownian motion BH = (BH
t )t≥0 with Hurst index

H ∈ (0, 1) is the zero mean Gaussian process with the covariance function

cov(BH
t , BH

s ) =
1

2
(|t|2H + |s|2H − |t− s|2H).

Equivalently, it is the unique zero mean Gaussian H-self-similar process with sta-

tionary increments. Particularly, with H = 1
2 we obtain the Brownian motion. For

more details on fBm, an interested reader may consider e.g. [59] or [53].

In [43], Lamperti also gave a transformation providing a one-to-one correspon-

dence between θ-similar processes and strictly stationary processes. Again, we state
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a corresponding result in our terms taking into account of the discrete and continuous

cases at the same time. Proofs of multivariate counterparts of the theorem can be

found in Publication IV and Publication V.

Definition 2.19. Let θ > 0, and let X = (Xt)t∈T and Y = (Yet)t∈T be stochastic

processes. We define the Lamperti transformation and its inverse by

(LθX)et = etθXt, t ∈ T(L−1
θ Y

)
t
= e−tθYet , t ∈ T.

Theorem 2.20. The Lamperti transformation Lθ, together with its inverse L−1
θ , de-

fines a bijection between the sets of strictly stationary processes and θ-self-similar

processes.

2.1 ARMA processes

In this section, we discuss the discrete case, where T = Z. In discrete time, stationary

time-series are often modeled by applying different ARMA (autoregressive moving-

average) models, or their extensions. One significant feature of the ARMA processes

is the following approximation property. Let X be an arbitrary stationary process

with γX(t) → 0 as t → ∞, and let k ∈ N. Then there exists an ARMA process with

the autocovariance function γk(·) such that γk(t) = γX(t) for every |t| ≤ k.

Heuristically, an ARMA process is a stochastic process dependent on its own his-

tory and on the history of a noise process. In the literature, the noise is conventionally

assumed to be white. That is, a sequence of uncorrelated random variables with a

common mean and variance. It would also be possible to consider strictly, but not

weakly stationary noise processes (see e.g. [52]). However, since the main results

of this dissertation are estimation methods based on the second moments, we assume

that the IID processes serving as noises are also weakly stationary with variance

σ2 < ∞.

The principal references for this section are [16], [56] and [29].

Definition 2.21. Let ε = (εt)t∈Z be a white noise or an IID process. If

Xt − φ1Xt−1 − . . .− φpXt−p = εt + θ1εt−1 + . . .+ θqεt−q, t ∈ Z, (2.2)

then X = (Xt)t∈Z is an ARMA(p, q) process.
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The left-hand side and the right-hand side of 2.2 are known as the autoregressive

and moving-average parts of the ARMA process, respectively. Moreover, {φi}pi=1

and {θi}qi=1 are the respective model parameters.

Definition 2.22. Let X = (Xt)t∈Z be an ARMA(p, q) process. Then X is a causal

(with respect to ε) if there exists a sequence (ψt)t∈N∪{0} such that

∞∑
t=0

|ψt| < ∞

and

Xt =
∞∑
k=0

ψkεt−k, t ∈ Z. (2.3)

Remark 2.23. It is clear from (2.3) that if X is causal, then X is also stationary,

where the type of stationarity is inherited from the noise process ε. However, the

converse is not true in general. It is possible to construct stationary ARMA processes

for which Xt is correlated with the future values εs, s > t, of the noise. Since these

type of solutions of ARMA equations seemingly violate causality, it is customary that

only solutions of the form (2.3) are considered. For more details on the topic, see e.g.

[16] or [56].

The ARMA equation (2.2) can be compactly written by employing polynomials of

the lag operator.

Definition 2.24. Let X = (Xt)t∈Z. The lag operator L is defined by

LXt = Xt−1, t ∈ Z.

Definition 2.25. The lag polynomial representation of an ARMA(p, q) process X is

given by

φ(L)Xt = θ(L)εt, t ∈ Z,

where

φ(L) = 1− φ1L− φ2L
2 − . . .− φpL

p

θ(L) = 1 + θ1L+ θ2L
2 + . . .+ θqL

q

are the lag polynomials of the autoregressive and moving-average parts of X , respec-

tively.

The existence of a causal solution to an ARMA equation can be discussed in terms

of the lag polynomials. A proof for the following theorem can be found e.g. in [56].

24



Stationary processes

Theorem 2.26. Let X = (Xt)t∈Z be an ARMA(p, q) process such that the corre-

sponding lag polynomials φ(L) and θ(L) do not share roots. Then X is causal (with

respect to ε) if and only if the roots of φ(L) lie outside the closed unit disk of the

complex plane. Furthermore, the coefficients of the causal representation (2.3) are

given by

ψ(z) =

∞∑
k=0

ψkz
k =

θ(z)

φ(z)
, |z| ≤ 1. (2.4)

Remark 2.27. The structure of the proof of Theorem 2.26 in [56] shows that if the

roots of φ(L) lie outside the closed unit disk, then X is causal with (2.4) regardless

of whether the two polynomials share roots or not.

Remark 2.28. From (2.4) it is obvious that X is the unique solution to the ARMA

equation (2.2).

Corollary 2.29. An AR(1) process

Xt − φ1Xt−1 = εt, t ∈ Z (2.5)

is causal if and only |φ1| < 1.

The following theorem encapsulates the existence of a unique stationary solution

to a non-redundant ARMA equation.

Theorem 2.30. Assume that the lag polynomials φ(L) and θ(L) do not share roots.

Then there exists a unique stationary solution to (2.2) if and only if φ(z) �= 0 for all

|z| = 1.

In the case of a pure autoregressive ARMA process, there exists so-called Yule-

Walker equations for the parameters in terms of the autocovariance function that can

also be applied in estimation. Furthermore, in this dissertation, we define estimators

for square integrable stationary processes inspired by the classical result. On how to

derive the following classical system of equations, we refer to [29].

Lemma 2.31. Let X = (Xt)t∈Z be a causal AR(p) process and let σ2 be the variance

of the noise process ε. Set Φ = [φ1 . . . φp]
�, γp = [γ(1) . . . γ(p)]� and

Γp =

⎡
⎢⎢⎢⎢⎢⎢⎣

γ(0) γ(1) . . . γ(p− 1)

γ(1) γ(0) . . . γ(p− 2)
...

...
. . .

...

γ(p− 1) γ(p− 2) . . . γ(0)

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Then the Yule-Walker equations

γ(0)− Φ�γp = σ2

ΓpΦ = γp

are satisfied.

2.1.1 On ARMA family

There exists an abundance of extensions and variants of ARMA models from which

we next present a few that are selected with varying criteria, e.g. relevance to articles

of the dissertation or recognition in the literature in general. First, we define the

difference operator providing us with a straightforward way to stationarize processes

exhibiting e.g. seasonal behavior.

Definition 2.32. Let X = (Xt)t∈Z and s ∈ N. The seasonal difference operator Ds

is defined by

DsXt = (1− Ls)Xt = Xt −Xt−s, t ∈ Z.

For s = 1 we use a simpler notation D := D1.

Definition 2.33. Let ε = (εt)t∈Z be a white noise or an IID process. In addition, let

h and H be non-negative integers. If

φ(L)Φ(Ls)DH
s DhXt = θ(L)Θ(Ls)εt, t ∈ Z, (2.6)

where φ(L) and θ(L) are as in Definition 2.25, and

Φ(Ls) = 1− Φ1L
s − Φ2L

2s − . . .− ΦPL
Ps

Θ(Ls) = 1 + Θ1L
s +Θ2L

2s + . . .+ΘQL
Qs,

then X is a SARIMA(p, h, q)(P,H,Q)s (seasonal autoregressive integrated moving-

average) process with period s.

Remark 2.34. If the roots of φ(L) and Φ(Ls) lie outside the closed unit disk, then by

Remark 2.27 the process Yt := DH
s DhXt is causal with respect to ε. Furthermore,

if there is no redundant factors in (2.6) and max(h,H) > 0, then by Theorem 2.30

there exists no stationary solution X .

The next member of the ARMA family has plenty of applications e.g. in mathe-

matical finance, since it enables the modeling of time-varying variance. The study of

such dynamic volatility models was initiated by [24] and [12].
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Definition 2.35. Let α0, . . . , αq−1, β1, . . . βp−1 ≥ 0 and αq, βp > 0. If

Xt = σtεt and σ2
t = α0 +

q∑
i=1

αiX
2
t−i +

p∑
i=1

βiσ
2
t−i,

where ε = (εt)t∈Z is an IID sequence with εt independent of Xt−i for i ≥ 1, then X is

a GARCH(p, q) (generalized autoregressive conditional heteroskedasticity) process.

In addition to the models introduced above, we mention fractionally integrated

ARMA (FARIMA) models, where the difference operators D and Ds may also admit

non-integer exponents h and H . Here Dh = (1−L)h can be interpreted through the

binomial expansion together with the gamma function. For more details, we refer to

[16]. Furthermore, in non-linear ARMA (NARMA) models the dependence of Xt

on the history is given by a non-linear function (the interested reader may consult

e.g. [25]). Also exogenous variables have been incorporated to ARMA models (AR-

MAX) and their variants, from which we next give an example that we investigate

in Publication III. The model can been seen as a GARCH(0, 1)-X model capturing

effects of a liquidity process on the time-dependent volatility.

Example 2.36 (GARCH(0, 1)-X). Let α0 ≥ 0 and α1, l1 > 0. Then, we set

Xt = σtεt and σ2
t = α0 + α1X

2
t−1 + l1Lt−1,

where ε = (εt)t∈Z is an IID process with E(ε0) = 0 and var(ε0) = 1. Furthermore,

L = (Lt)t∈Z is a positive process and independent of ε.

2.2 Ornstein-Uhlenbeck processes

In this section, we discuss the continuous case, where T = R. In continuous time,

the well-known Ornstein-Uhlenbeck process can be regarded as the analog of the dis-

crete time AR(1) process. Ornstein-Uhlenbeck processes (of the first kind) arise out

of the Langevin differential equation (2.7) evidently similar to the AR(1) equation

(2.5). For example, in (2.5) the noise is given by the increments of a random walk,

whereas in (2.7) the shocks are given by the infinitesimal changes of the Brownian

motion, which is the scaling limit of random walks by Donsker’s theorem (see e.g.

[10]). Moreover, in Publication I, we show that Equation (2.5) characterizes all dis-

crete time strictly stationary processes, when the corresponding noise is allowed to be

possibly correlated. Furthermore, in Publication IV we show that (2.7) characterizes

all continuous time strictly stationary processes possessing continuous paths, when
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the concept of the noise is extended in a similar manner. Thereby, we give a short in-

troduction to Ornstein-Uhlenbeck processes and some of their extensions. For more

details on the Ornstein-Uhlenbeck process, see e.g. [27].

Definition 2.37. Let θ > 0 and let W = (Wt)t∈R be a two-sided Brownian motion.

If

dUt = −θUtdt+ dWt, t ∈ R, (2.7)

then U = (Ut)t∈R is the Ornstein-Uhlenbeck process (of the first kind).

Above, the two-sided Brownian motion is simply the concatenation of two inde-

pendent copies of Brownian motion indexed by the positive and negative integers,

respectively. By the next theorem, the classical Langevin equation admits a (strictly)

stationary solution.

Theorem 2.38. The solution to (2.7) with a given random ”initial” condition U0

reads

Ut = e−θt

(
U0 +

∫ t

0
eθsdWs

)
.

Moreover, the unique stationary solution is given by

U0 =

∫ 0

−∞
eθsdWs.

Remark 2.39. Technically speaking, U0 is not an initial value in the classical sense

as we are considering Equation (2.7) in R. However, we use this loose notion in the

continuation as it does not leave any room for confusion.

Remark 2.40. The stochastic integrals in Theorem 2.38 can be interpreted e.g. as

path-wise Riemann-Stieltjes integrals, Wiener integrals or Itô integrals. Nevertheless,

in our case, these integrals exist and coincide. An overview on Riemann-Stieltjes

integrals can be found in [63]. For details on stochastic integration, we refer to [37]

and [55].

Theorem 2.41. The unique stationary solution to (2.7) is the zero mean Gaussian

process with the following autocovariance function

γ(s) =
e−θ|s|

2θ
.

Equivalently, it is the unique stationary Gauss-Markov process with continuous paths.

Equation (2.7) can be generalized by replacing the Brownian motion e.g. with a

two-sided fractional Brownian motion recovering the so-called fractional Ornstein-

Uhlenbeck process in Theorem 2.38. A two-sided fBm is the zero-mean Gaussian
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process with the covariance function given in Example 2.18. However, due to the

dependency of increments with H �= 1
2 , a two-sided fBm can not be constructed by

concatenating two independent and identical copies of one-sided fractional Brownian

motions. Moreover, since fBm is not a semimartingale for H �= 1
2 , the classical Itô

calculus is not available. However, since the paths of fBm are almost surely (α-

Hölder for α < H) continuous, one can still interpret the stochastic integrals of

Theorem 2.38 as path-wise Riemann-Stieltjes integrals. This fact is encapsulated

by Theorem 2.42 (see e.g. [63] and [32]) together with Theorem 2.43 [73]. For an

exhaustive discussion on integration with respect to fractional Brownian motion, we

refer to [53]. For details on fractional Ornstein-Uhlenbeck processes, see e.g. [40].

Theorem 2.42. Let f be a continuous and g be a monotonically increasing function

on the interval [0, t]. Then the Riemann-Stieltjes integral∫ t

0
f(s)dg(s)

exists. Moreover, the integration by parts formula∫ t

0
f(s)dg(s) = f(t)g(t)− f(0)g(0)−

∫ t

0
g(s)df(s)

is valid and the integral on the right-hand side exists as a Riemann-Stieltjes integral.

Theorem 2.43. Let X = (Xt)t∈R be a continuous stationary increment process with

X0 = 0. Assume that

sup
t∈[0,1]

E
(
log |Xt|�{|Xt|>1}

)2+δ
< ∞ (2.8)

for some δ > 0. Then, for every θ > 0,

lim
u →∞

∫ 0

−u
eθsdXs

exists almost surely defining an almost surely finite random variable.

As a consequence, we obtain the next elementary corollary.

Corollary 2.44. Let X = (Xt)t∈R be a continuous stationary increment process with

X0 = 0. Assume that supt∈[0,1] E|Xt|α < ∞ for some α > 0. Then the assertion of

Theorem 2.43 is satisfied.

Proof. Let δ > 0 be fixed. Then there exists M > 1 such that x
α

2+δ > log (x) for all

x ≥ M . Now, we write

E
(
log |Xt|�{|Xt|>1}

)2+δ
= E

(
log |Xt|�{1<|Xt|<M}

)2+δ
+ E

(
log |Xt|�{M≤|Xt|}

)2+δ
,
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where the first term is clearly bounded. For the latter, we obtain

E
(
log |Xt|�{M≤|Xt|}

)2+δ ≤ E

(
|Xt|

α
2+δ �{M≤|Xt|}

)2+δ ≤ E|Xt|α

completing the proof.

Finally, we present a theorem elaborating the connection between the Langevin

equation (2.7) and stationary processes. The related integral is well-defined by The-

orems 2.42 and 2.43. Details can be found, for example, in Publication IV.

Theorem 2.45. Let θ > 0 and let X = (Xt)t∈R be a continuous stationary increment

process with X0 = 0 satisfying (2.8) for some δ > 0. Then the generalized Langevin

equation

dUt = −θUtdt+ dXt, t ∈ R

admits a unique stationary solution given by

Ut = e−θt

∫ t

−∞
eθsdXs.
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3. Asymptotic theory

In this chapter, we recall some basic concepts and theorems that are central for the

publications of this dissertation. First, we take a relative general approach to weak

convergence of random elements enabling the treatment of function spaces consid-

ered in Publication IV.

3.1 On weak convergence

We start by giving a definition for weak convergence of random elements taking

values in a general metric space (M,d). The metric induces a topology on M with

a basis given by the open balls {y ∈ M : d(x, y) < r}, where x ∈ M and r > 0.

Furthermore, if the metric space is separable, then the Borel sigma-algebra B(M)

equals to the sigma-algebra generated by the open balls [11].

Definition 3.1. Let (M,d) be a metric space and let (XT )T≥1, XT : Ω → M be a

sequence of random elements. If for every bounded continuous f : M → R it holds

that Ef(XT ) → Ef(X), then XT converges weakly to X and we write XT
law−→ X .

In Publication IV, we consider weak convergence in the space C = C([0, t],Rm)

of m-dimensional continuous functions with a fixed t > 0. The space C equipped

with the sup-norm ‖f‖∞ = sups∈[0,t] ‖f(s)‖, where ‖ · ‖ is the usual l2 vector

norm, is a separable metric space. Furthermore, it can be shown that sufficient

conditions for weak convergence are given by tightness of the induced measures

μT (A) = P (XT ∈ A) on (C,B(C)) and convergence of the finite dimensional distri-

butions (see [10] or [21])

P(XT (s1) ∈ A1, . . . , XT (sn) ∈ An), n ∈ N, s ∈ [0, t]n and Ai ∈ B(Rm). (3.1)

Next, we provide the definition of tightness in a general metric space.

31



Asymptotic theory

Definition 3.2. Let Π be a family of probability measures on a metric space (M,d).

If for every ε > 0 there exists a compact Kε ⊂ M such that 1 − μ(Kε) ≤ ε for all

μ ∈ Π, then the family Π is tight.

By applying the Arzela-Ascoli theorem and Kolmogorov’s continuity criterion, one

can obtain the following result on tightness in the space of continuous functions. For

details, see e.g. [10] and [21].

Theorem 3.3. Let (XT )T≥1 be a sequence of random elements XT : Ω → C. Then

the corresponding sequence of induced probability measures is tight if

(1) For every ε > 0 there exists N such that

P (|XT (0)| > N) ≤ ε for T ≥ 1.

(2) For some α, β, C > 0 it holds that

E|XT (s1)−XT (s2)|β ≤ C|s1 − s2|1+α for T ≥ 1 and s1, s2 ∈ [0, t].

Furthermore, for XT
law−→ X it suffices to show convergence of the finite dimen-

sional distributions (3.1) and item (2) of Theorem 3.3. Indeed, from convergence of

the finite dimensional distributions it follows that

P(|XT (0)| > N) ≤ P(|X(0)| > N) +
ε

2
≤ ε,

when M and T are chosen to be large enough.

3.2 On estimation

The models of stationary processes introduced in this dissertation lead to autocovari-

ance based estimators for the related model parameters in the spirit of the classical

Yule-Walker estimators. The Yule-Walker estimators can be defined through Lemma

2.31 by replacing the autocovariances with estimated values providing us with a

moment based estimation method of pure autoregressive ARMA models. Conven-

tionally, a general ARMA model is estimated by applying the maximum likelihood

method. However, in this case, the practitioner has to be aware of the exact distri-

bution of the noise process. For details on estimation of ARMA models, we refer to

[16].
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Moreover, in this dissertation, we show that our estimators inherit their consistency

from the autocovariance function of the concerned stationary process. Also, we de-

rive the limiting distributions of the estimators in terms of the limiting distribution of

the autocovariance function. For this, we utilize the well-known convergence theo-

rems presented in this section. First, we recall the continuous mapping theorem (for

a proof, see[21]).

Theorem 3.4. Assume that (XT )T≥1 is a sequence of random elements on (M,d)

converging weakly to X . Let (M̃, d̃) be another metric space and f : M → M̃ have

discontinuity set Df with P(X ∈ Df ) = 0. Then

f(XT )
law−→ f(X).

Remark 3.5. Theorem 3.4 is also valid for convergence in probability and almost

sure convergence. However, without any additional assumptions on f , it does not

hold true for Lp convergence in general.

Corollary 3.6. Assume that (XT )T≥1 converges weakly to X and (YT )T≥1 con-

verges in probability to a constant c. Then

XT + YT
law−→ X + c

XTYT
law−→ cX

XT

YT

law−→ X

c
, if c is invertible.

Moreover, if the convergence of XT takes place in probability, then the foregoing

results are valid in probability.

Proof. The results follow from the fact that ZT := [XT , YT ]
� converges weakly (or

in probability) to [X, c]�, and applying the continuous mapping theorem to ZT with

functions f1(x, y) = x+ y, f2(x, y) = xy and f3(x, y) =
x
y .

Corollary 3.6 is also known as Slutsky’s theorem. Next, we state the delta method.

For a proof, we refer to [72] .

Theorem 3.7. Let f : Rm → Rn be differentiable at θ ∈ Rm, and let (XT )T≥1 be a

sequence of random vectors in Rm. If l(T )(XT − θ)
law−→ X for some rate function

l(T ) → ∞, then

l(T )(f(XT )− f(θ))
law−→ f ′

θX,

where f ′
θ is the Jacobian matrix of f at θ.
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In Publication I, we make use of the following simple corollary regarding normally

distributed limits.

Corollary 3.8. Let f : Rm → R be differentiable at θ ∈ Rm, and let (XT )T≥1 be

a sequence of random vectors in Rm. Suppose that l(T )(XT − θ)
law−→ X , where

X ∼ N (μ,Σ). Then f ′
θ is the gradient of f at θ and

l(T )(f(XT )− f(θ))
law−→ N

(
f ′
θμ, f

′
θΣ(f

′
θ)

�
)

The following theorem, also known as the Cramér-Wold device, can be proved by

applying Lévy’s continuity theorem. For details, see e.g. [72].

Theorem 3.9. Let (XT )T≥1 be a sequence of random vectors in Rm. Then XT

converges weakly to X if and only if

a�XT
law−→ a�X for all a ∈ Rm.

Finally, in Publication III, we utilize the next non-conventional variant of the law

of large numbers. For the reader’s convenience, we give also the proof, which was

omitted from the original publication.

Theorem 3.10. Let (XT )T∈N be a sequence of random variables with a mutual ex-

pectation. In addition, assume that var(Xj) ≤ C and |cov(Xj , Xk)| ≤ g(|k − j|),
where g(i) → 0 as i → ∞. Then

1

n

n∑
k=1

Xk → E(X1)

in L2(Ω) (and hence, also in probability).

Proof. We have that

E

(
1

n

n∑
k=1

Xk − E(X1)

)2

=
1

n2
var

(
n∑

k=1

Xk

)
,

where

var

(
n∑

k=1

Xk

)
=

n∑
k,j=1

cov (Xk, Xj)

=

n∑
k=1

var(Xk) + 2
n∑

k=1

k−1∑
j=1

cov(Xk, Xj)

≤ nC + 2
n∑

k=1

k−1∑
j=1

|cov(Xk, Xj)| .

34



Asymptotic theory

Fix δ > 0. Then, there exists Nδ ∈ N such that g(|k−j|) < δ whenever |k−j| ≥ Nδ.

Note also that by Cauchy-Schwarz |cov(Xk, Xj)| ≤ C. Assume that n > Nδ. Now

n∑
k=1

k−1∑
j=1

|cov(Xk, Xj)| ≤
n∑

k=1

k−Nδ∑
j=1

g(|k − j|) +
n∑

k=1

k−1∑
j=k−Nδ+1

C

≤ n2δ + nNδC.

Hence

E

(
1

n

n∑
k=1

Xk − E(X1)

)2

≤ nC + 2n2δ + 2nNδC

n2
= 2δ +O

(
1

n

)

concluding the proof, since δ was arbitrary small.
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4. Summaries of the articles

Publication I It was shown in [73] that a generalization of the Langevin equation

(2.7) characterizes continuous time strictly stationary processes having continuous

sample paths. Motivated by this result, we show that in discrete time the correspond-

ing characterization is given by the AR(1) equation

Xt = φXt−1 + Zt, t ∈ Z, (4.1)

where now 0 < φ < 1 and the noise Z belonging to a certain class of processes is not

necessarily white. Based on Equation (4.1) and under the assumption of finite second

moments, we show that φ satisfies

φ2γ(n)− φ(γ(n+ 1) + γ(n− 1)) + γ(n) = r(n), n ∈ Z, (4.2)

where γ and r are the autocovariance functions of X and Z, respectively. We discuss

how to find the correct solution to (4.2) and show that for this, it suffices to know two

values of r such that
r(n)

γ(n)
�= r(m)

γ(m)
.

Consequently, Equations (4.2) provide us with a set of natural estimators for the

model parameter φ of Yule-Walker type. We prove that consistency and asymptotic

normality of these estimators are inherited from the chosen autocovariance estimators

of the observed stationary process X . Moreover, since the delta method is employed

in derivation of the asymptotic distribution of the estimators, it is obvious that the

same technique is applicable also when the limiting distribution of the autocovari-

ances differs from normal.

Finally, we provide a simulation study illustrating convergence of the estimators in

the case of AR(1) and ARMA(1, 2) processes.

Publication II In Publication I, we showed that the system (4.2) of equations admits

a unique solution and consequently the proposed estimation method can be applied,
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except within some special class of functions γ. In Publication II, we provide a com-

prehensive analysis of these special cases. We prove that the functions belonging to

the class are indeed autocovariance functions of some (strictly) stationary processes.

In addition, we show that such function γ is either dense in [−γ(0), γ(0)] or periodic.

The latter means that there exists Nγ such that γ(m+Nγ) = γ(m) for every m ∈ Z.

Moreover, in the periodic case, the corresponding stationary process is driven linearly

by only two random variables. That is, Xt is a linear combination of two fixed ran-

dom variables with possibly time-dependent coefficients. Furthermore, if γ is dense,

then it can be approximated with autocovariance functions of such stationary pro-

cesses. As an important consequence, we obtain that if the autocovariance function

r of the noise Z satisfies the natural assumption r(n) → 0 as n → ∞, then the

corresponding stationary process in (4.1) can not be of the special type. Thus, the

estimation method of Publication I is applicable.

Publication III We study a variant of the ARCH model in the context of estimation

of the three model parameters by applying the method introduced in Publication I

and Publication II.

The model is defined by

Xt = σtεt, σ2
t = α0 + α1X

2
t−1 + l1Lt−1, t ∈ Z,

where α0 is a non-negative, and α1 and l1 are positive parameters. Moreover, (εt)t∈Z
is a centred IID noise process with unit variance and (Lt)t∈Z is a positive process

independent of the noise. The model is widely applied in mathematical finance and

hence, σ and L are often referred as volatility and liquidity, respectively.

We start by analyzing the existence and uniqueness of a solution with both, non-

stationary and stationary liquidities. If the liquidity process is (strictly) stationary,

then there exists a unique (strictly) stationary solution X2 and in this case, we give

sufficient and necessary conditions for existence of the autocovariance function. We

write the process X2 in the form (4.1) that under the assumption of finite autocovari-

ance leads to a set of quadratic equations of type (4.2). As in Publication I, these

equations can be used to define estimators for the three model parameters α0, α1 and

l1.

We also give sufficient conditions for consistency of the typical autocovariance

estimators

γ̂N (n) =
1

N

N−n∑
t=1

(X2
t − μ)(X2

t+n − μ),
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where μ is the sample mean of the observations (X2
1 , X

2
2 , . . . , X

2
N ), expressed in

terms of the AR(1) parameter α1 and the liquidity process L. Consequently, consis-

tency of the parameter estimators follows. We provide several interesting examples

of the liquidity process that satisfy the abovementioned requirements. Finally, we il-

lustrate our results by using squared increments of a fractional Brownian motion and

a compensated Poisson process as liquidities in a simulation study.

Publication IV Inspired by the results of previous publications and the demand for

multivariate models arising out of real-life phenomena, we investigate modeling of

multivariate continuous time strictly stationary processes together with estimation of

the parameter matrix of the multidimensional Langevin equation.

In order to extend the characterization of [73] to multiple dimensions, we define

Θ-self-similar processes for a positive definite matrix Θ. Furthermore, we state the

Lamperti theorem in our setting giving one-to-one correspondence between multi-

variate strictly stationary and Θ-self-similar processes. Consequently, we show that

the Langevin equation

dUt = −ΘUt + dGt, t ∈ R,

where G is a stationary increment process of a certain class, characterizes multivariate

strictly stationary processes possessing continuous paths. As in Publication I (cf.

Equation (4.2)), the characterization provides us with quadratic equations

B�
t Θ+ΘBt −ΘCtΘ+Dt = 0, t ≥ 0 (4.3)

for the parameter matrix Θ, where the coefficients are expressed in terms of the au-

tocovariance γ(s) = E(UsU
�
0 ) of the stationary solution and cov(Gt) for a fixed

t. These type of matrix equations are known as continuous time algebraic Riccati

equations (CAREs) that are extensively studied in the literature. Especially the ex-

istence and uniqueness of a solution is a well-studied topic when (4.3) takes a sym-

metric form with positive semidefinite Ct and Dt. We construct an estimator based

on CAREs, and show that the estimator is consistent under consistency of the chosen

autocovariance (function) estimator of the stationary process. Moreover, we derive

the asymptotic distribution of the estimator as a linear function of the asymptotic dis-

tribution of the autocovariance estimator. Furthermore, we provide expressions for

the autocovariance γ in terms of the variance function of the noise and exemplify how

these expressions can be utilized in order to verify that the forementioned asymptotic

results are valid in a Gaussian case.
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Publication V We complete our research of stationary processes by treating the mul-

tivariate discrete time case. We start by proving that an AR(1) type equation charac-

terizes all multidimensional strictly stationary processes by providing a discrete time

multivariate version of the Lamperti theorem. Consequently, we derive quadratic

equations for the model parameter matrix Φ that are similar to (4.2). However, the

obtained equations are not of the symmetric form and hence, the uniqueness of a

solution is ambiguous. On the other hand, by applying the approach adapted from

Publication IV, we derive symmetric CAREs for Θ = I−Φ of the form (4.3). More-

over, by using similar techniques as in Publication IV, we show that the correspond-

ing estimator Θ̂T inherits consistency and the rate of convergence from the chosen

autocovariance estimators of the stationary process. Furthermore, its limiting distri-

bution is given by a linear function of the limiting distribution of the autocovariance

estimators.

In addition, in order to highlight the analogy between the discrete and continuous

time cases, we derive equations of the type (4.2) in continuous time, and present the

main results of Publication IV paralleling them to the obtained discrete time results.
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