Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 134 (2018) 204-211

www.elsevier.com/locate/procedia

The 13th International Conference on Future Networks and Communications
(FNC 2018)

Security of Join Procedure and its Delegation in LoRaWAN v1.1
Tahsin C. M. Donmez**, Ethiopia Nigussie®

“Department of Future Technologies, University of Turku, Turku, Finland

Abstract

We examine the security features of LoRaWAN v1.1 and propose countermeasures for the determined security problems. Lo-
RaWAN is among the emerging wireless communication technologies for the internet-of-things (IoT) that provide long-range
connectivity for low-power IoT devices. As most IoT based applications operate without human intervention and deal with sensi-
tive data, it is crucial to keep the security of LoRaWAN under scrutiny. The examined features in this work are key management,
the newly introduced delegation of join procedure to network operators, backward compatibility, and replay protection for join
procedure. The evaluation of key management exposes the fact that LoRaWAN v1.1 does not provide forward secrecy. The closer
study of the join procedure delegation with backward compatibility reveals that they cannot securely coexist. The examination of
join procedure demonstrates that when the assumption of trustworthy network server fails, not only integrity but also confidentiality
of application data may be compromised. To overcome these issues, we proposed countermeasures that prevent the compromise of
integrity and confidentiality of application data in the cases of join procedure delegation and malicious network server.

© 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/)

Peer-review under responsibility of the scientific committee of the 13th International Conference on Future Networks and
Communications, FNC-2018 and the 15th International Conference on Mobile Systems and Pervasive Computing, MobiSPC 2018.

Keywords: LoRaWAN ; IoT ; security ; join procedure

1. Introduction

Internet of Things (IoT) is becoming ubiquitous through the deployment of IoT devices in virtually every corner
of the economy, such as wearable, individual households, industries and vehicles. According to forecast, billions of
devices will be interconnected using various connectivity technologies to sense and act on their environments in near
future. A 2017 report by Ericsson [1] predicts that, by 2022, the number of wide-area connectivity (such as LTE-M,
NB-IoT, Sigfox, LoORaWAN, and RPMA) based devices will reach 2.1 billion, and the number of short-range (such as
Wi-Fi, Bluetooth, and ZigBee) IoT devices will reach 15.5 billion. The large number of interconnected devices, their
limited resources, and the fact that they operate autonomously without human involvement, emphasize the importance
of security in ways which clearly indicate that security can neither be ignored nor be an afterthought for IoT. IoT
security is a multifaceted problem. The multitude of vulnerable IoT devices [2] is the embodiment of the failure of
free-market in creating incentives for security. Furthermore, each newly introduced connectivity technology inevitably
brings along its own set of vulnerabilities, and increases the overall security challenges of the IoT ecosystem. This
work focuses on the security of one of the wide area wireless communication technologies, LoRaWAN [3].

* Corresponding author. Tel.: +358-4652-2-9553.
E-mail address: tcmdon@utu.fi

1877-0509 © 2018 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nce-nd/3.0/)

Peer-review under responsibility of the scientific committee of the 13th International Conference on Future Networks and
Communications, FNC-2018 and the 15th International Conference on Mobile Systems and Pervasive Computing, MobiSPC 2018.
10.1016/j.procs.2018.07.202

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.07.202&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/

Tahsin C.M. Dénmez et al. / Procedia Computer Science 134 (2018) 204-211 205

Several Low Power Wide Area Network (LPWAN) technologies are emerging to provide connectivity for IoT appli-
cations, which require low-power long-distance wireless communication. These technologies often differ in their char-
acteristics, such as range, power consumption, data rate, and latency. In terms of these characteristics and the trade-offs
made between them, LPWAN complements traditional short-range wireless technologies [4]. LoRa™ is a wireless
physical layer solution for long-range low-power low-data-rate applications developed by Semtech. LoRaWAN™ is
a LPWAN specification optimized for wireless battery-powered end-devices based on LoRa. LoORaWAN specification
version 1.0.2 [5] and 1.1 [6, 7] were released in July 2016 and October 2017, respectively. Previous works studied
the security of LoRa-enabled systems. Vulnerabilities were discovered in LoRa physical layer [8, 9], specific imple-
mentations [10, 11], and in LoRaWAN protocol version 1.0 [12, 13, 14, 15]. Donmez et al. [16] studies the security
of version 1.1, but considers only the backward compatibility scenarios. In this paper, only LoORaWAN protocol vul-
nerabilities are of interest. At the time of writing, the authors were unable to find any work addressing the security of
LoRaWAN version 1.1.

Though LoRaWAN version 1.1 has addressed most of the known security vulnerabilities in version 1.0.2 of the
protocol, it is possible that not all existing vulnerabilities were discovered, or new vulnerabilities were introduced
by version 1.1. The presented work examines the security of LoRaWAN version 1.1, and proposes countermeasures
for some of the identified security issues. Examined features include key management, join procedure delegation,
backward compatibility, and replay protection for the join procedure. Examination of key management exposes the
fact that LoORaWAN does not provide forward secrecy. Consideration of the newly added join procedure delegation
feature together with the backward compatibility of LoORaWAN reveals that they cannot securely coexist. Inspection of
the join procedure demonstrates that the possibly misplaced trust in the network servers may lead to the compromise
of not only the integrity but also the confidentiality of application data. The proposed countermeasures prevent the
compromise of the integrity and confidentiality of application data in case of 1) join procedure delegation and 2)
malicious network server.

The rest of the paper is organized as follows. Section 2 presents the key security features of LoRaWAN vl.1.
Section 3 discusses known security issues in the previous versions of the protocol, in particular, their applicability to
the current version and their possible extension to the new features added in version 1.1. Key and lifecycle management
issues, and the lack of forward secrecy in LoRaWAN is discussed in Section 4. Section 5 discusses the security
of LoRaWAN in backward compatibility scenarios, in particular, the effects of a fall-back on the version 1.1 join
procedure delegation feature. Section 6 discusses the security implications of a missing replay protection in the join
server. Finally, the conclusion is presented in Section 7.

2. Security overview: keys, counters, and join procedure

This section presents a brief overview of the security keys, their derivation, counters and nonces, and the join
procedure of LoORaWAN version 1.1. LoRaWAN defines two activation methods, Activation By Personalization (ABP)
and Over-The-Air Activation (OTAA). An ABP end-device (ED) is tied to a specific network during its manufacturing,
and unlike an OTA activated ED, it does not go through a join procedure. In many cases, security has to be considered
separately for ABP and OTAA EDs. OTAA is the more interesting case, and is also the recommended activation
method for higher security applications [6].

2.1. Security keys and key derivation

Security of LoRaWAN is built on two AES-128 root keys, AppKey and NwkKey. Root keys are specific to an
ED, and are stored by both the ED and its join server (JS). Root keys are used for deriving the two lifetime keys
JSIntKey and JSEncKey, the three network session keys NetSKeys (SNwkSIntKey, FNwkSIntKey, NwkSEncKey) and
the application session key AppSKey. Root keys are also used for protecting the integrity of Join-request messages,
and protecting the confidentiality of Join-accept messages triggered by Join-request messages.

JSIntKey is employed for protecting the integrity of Rejoin-request messages of type 1 and Join-accept messages.
JSEncKey is used for protecting the confidentiality of Join-accept messages triggered by Rejoin-request messages.
SNwkSIntKey is used for protecting the integrity of data messages and Rejoin-request messages of type 0 and type
2. FNwkSIntKey is used in partial integrity checks of uplink data messages by the forwarding network servers (NS).
NwkSEncKey is used for protecting the confidentiality of MAC commands. AppSKey is used for protecting the
confidentiality of application data.

Session key derivation happens in both the ED and the JS. The two nonce values involved in the derivation of the
four session keys are JoinNonce, and one of DevNonce, RJcount0, RJcountl, depending on the type of the message,
which triggered the session key derivation.

206 Tahsin C.M. Dénmez et al. / Procedia Computer Science 134 (2018) 204-211

ABP EDs are assigned session keys in the manufacturing stage, and the same session keys are used throughout the
ED’s lifetime.

2.2. Counters and nonces

The general strategy adopted by LoORaWAN to deal with the saturation of counters can be summarized as follows.
In case of session counters, a security context switch is forced, resulting in the derivation of new session keys, and
the resetting of session counters. In case of lifetime counters, recommendations are given for limiting the periodicity
of increments, so that counters do not overflow within the planned ED lifetime. In addition to playing a role in the
correct (or incorrect) use of the block cipher modes of operations, LoRaWAN’s counters and nonces are also used for
replay protection.

Frame counters: LoRaWAN uses three counters called frame counters for keeping track of uplink/downlink data
messages. FCntUp counts uplink data messages, and is incremented with each uplink, except retransmissions. NFC-
ntDown counts downlink data messages carrying only MAC commands. AFCntDown counts downlink data messages
carrying application data (possibly along with MAC commands). FCntUp value is sent in FCnt field of uplink mes-
sages. Receiving network element synchronizes the FCntUp counter for the ED with the received value. Similarly,
either NFCntDown or AFCntDown is sent in FCnt field of downlink messages, and the receiving ED synchronizes
the corresponding local counter with the received value. In both cases, the synchronization occurs only if the mes-
sage is authenticated, and the received counter value is incremented compared to the local counter value, which is
the previously observed value. Frame counters are lifetime counters in case of ABP, and session counters in case of
OTAA.

DevNonce and JoinNonce: DevNonce is a 16-bit counter managed by the ED. It is initially set to 0, and then
incremented with every Join-request message sent. JoinNonce is a 24-bit counter. JS manages one JoinNonce counter
per ED. JoinNonce is initially set to 0, and then incremented with every Join-accept message sent to the corresponding
ED. DevNonce and JoinNonce are lifetime counters, and they must never repeat.

RJcount0 and RJcountl: RlcountO) and RJcountl are 16-bit counters managed by the ED. RJcount0 is incre-
mented with every type 0 or type 2 Rejoin-request message sent, and reset to 0 each time a Join-accept is successfully
processed. RIcountO must never repeat within a session. RJcountl is a lifetime counter, and is never reset. It is initially
set to 0, and then incremented with every type 1 Rejoin-request message sent.

2.3. Join procedure

An OTAA ED must successfully complete a join procedure in order to be able to communicate with the NS. Join
procedure involves the exchange of a Join-request (or Rejoin-request) and a Join-accept message between the ED and
the JS. Processing of the request and the Join-accept message, as well as the derivation of the session keys happen at
the ED and the JS. NS wraps, unwraps, and forwards request and answer messages between the ED and the JS. NS
also decides on the MAC version to be used by the ED and the JS, and manages the security session context switch
upon reception of the session keys. Figure 1 depicts LoORaWAN’s join procedure for the activation at home scenario.
It is also possible that the ED initiates the join procedure while roaming. The basic join procedure depicted in Figure
1 also applies to roaming activation, but the actual procedure is more involved in that case.

3. Applicability of v1.0 attacks to LoRaWAN v1.1

Donmez et al. [16] presents a consolidated list of known protocol vulnerabilities in LoRaWAN version 1.0, and
describes how each vulnerability was addressed in version 1.1. These v1.0 vulnerabilities lead to the following attacks:
Attack 1 - replay or eavesdrop, Attack 2 - ack spoofing, Attack 3 - replay or eavesdrop via fake session on ED, Attack
4 - replay or eavesdrop via fake session on NS, Attack 5 - DoS on ED via Join-accept replay, Attack 6 - DoS on ED
via Join-request replay, Attack 7 - bit flipping [12, 13, 16]. It is natural to start the study of v1.1 security by examining
the vulnerabilities in v1.0 and the resulting attacks. This section examines the possible applicability and extensibility
of these attacks to v1.1.

Attacks 1-6 are not applicable in LoRaWAN version 1.1, as the underlying vulnerabilities were addressed. Ap-
plicability of Attack 7 in LoRaWAN version 1.0 depends on strong assumptions of malicious NS or NS-AS channel
with missing or broken integrity protection. LoORaWAN specification assumes trust in network servers, in addition to
secure channels between backend elements. While a malicious NS is an uncommon threat in the current paradigm, a
paradigm shift may change this situation. For example, adoption of the micro operator concept [17] would possibly in-
crease the likeliness of malicious network servers. Simply assuming trust in certain entities may limit the flexibility of
the obtained IoT solutions in the face of future changes. Applicability of Attack 7 in LoRaWAN version 1.1 is almost

Tahsin C.M. Dénmez et al. / Procedia Computer Science 134 (2018) 204-211 207

yin—regquest or Rejoin-request)
()i

m »' ~.m
| - g GW]. ™ .
m m
—_— E—
- -
ED m’ m' M (m’, NetSKeys) AppSKey
Gw2 JS AS
LoRa PHY LoRaWAN backend

[i [* o g
LoRaWAN MAC

—
Fig. 1. LoRaWAN’s join procedure.

the same as in the older versions, except that the inclusion of handover roaming in v1.1 makes the situation worse.
Handover roaming presents more possibilities for a man-in-the-middle attack, as the unprotected FRMPayloads are
first transported from the serving NS to the home NS, and from there to the AS.

Due to the newly added Rejoin-request messages in v1.1, it is necessary to evaluate the extensibility of Attacks
3-6 as they target LORaWAN’s join procedure. In order to examine the extensibility of these attacks, the possibility
of modifying these attacks to work with the Rejoin-request messages and the associated nonces RJcountO and RJ-
countl has to be considered. If a Rejoin-request message is replayed, it will be discarded by the NS based on the
last observed nonce value. NS only accepts nonce values which are incremented compared to the last observed value.
Unlike in version 1.0, all LoRaWAN 1.1 nonces, including RJ/countO and RJcountl, are counters. Prevention of reuse
is practically possible in all cases, as only the last observed values have to be tracked. Furthermore, Rejoin-request
messages are associated with the resulting Join-accept messages, which was not the case for Join-request messages
in version 1.0. The association is achieved through the inclusion of the nonce value used for the request message, !
in the MIC calculation for the Join-accept message. Finally, the inclusion of the request type JoinReqType in the
MIC calculation for the Join-accept message prevents the replay of a captured Join-accept message, in response to
a request of a different type. This inclusion is crucial because the counters DevNonce, RJcountO, and RJcount] will
inevitably take on the same values. As the Rejoin-request messages and the associated nonces do not suffer from the
vulnerabilities underlying Attacks 3-6, these attacks can not be modified in a straightforward manner to work with the
new features introduced in version 1.1

I LoRaWAN specification for version 1.1 [6, p. 55] does not state that DevNonce should be replaced with RJcount0 or RJcountl in Join-accept
MIC calculation, when the type of the request is not Join-request. This is probably an accidental omission.

208 Tahsin C.M. Dénmez et al. / Procedia Computer Science 134 (2018) 204-211

4. Root key compromise and forward secrecy

Physical access, key management, and life-cycle management are major challenges in IoT security. Deployment in
non-monitored areas drastically increases the risk of physical tampering, while the end-device and network constraints
make tasks such as re-keying and OTA firmware updates more difficult. The root keys stored in the end-devices are
intrinsic to the overall security of LoRaWAN, and they must be protected against physical tampering. The specification
leaves secure provisioning, storage, and usage of root keys out of scope, but points to SE (Secure Elements) and HSM
(Hardware Security Modules) as possible enablers for a solution. LoRaWAN does not feature OTA firmware updates.
This makes issuing fixes for the discovered vulnerabilities to the deployed end-devices impractical, and also makes it
more likely that different versions of the protocol will coexist in a network, which in turn elevates the importance of
addressing security issues related to backward compatibility.

LoRaWAN’s Join-request and Rejoin-request messages which carry DevNonce, RJcount0, RJcountl values are not
encrypted, and JoinNonce values can also be read once the Join-accept messages are decrypted using the compromised
keys.> With the nonces and root keys at hand, an attacker can recover every used session key. Therefore, LoORaWAN
(both the current and older versions) does not provide forward secrecy: session keys are not protected in case the root
keys are compromised. The lack of forward secrecy elevates the importance of mitigating root key compromise. If the
root keys of an ED are compromised at some point, an attacker who has sniffed and recorded past traffic can decrypt
all the downlink/uplink application messages to and from that ED.

Kim et al. [14] proposed a key scheme to achieve forward secrecy. In their scheme, root keys are used only for
an initial join procedure and then purged from the ED. For any subsequent activations, session keys of the previous
session are used where normally the root keys would be used. In case of a device compromise, the only keys that can
be recovered by an attacker are the session keys of the ongoing session. These keys cannot be used for deriving the
session keys used in the previous sessions. Assuming the only change made to LoORaWAN v1.1 session key derivation
is the replacement of the root keys with the corresponding session keys from the previous session, application session
key for an ongoing session can be derived as follows:

AppS Key = aes128_encrypt(LastAppS Key, 0x02|JoinNoncelJoinEUI|DevNonce’|pad16)

Decrypting application traffic from the previous session requires the attacker to recover the application session key
used in the previous session, LastAppSKey, from a single plaintext-ciphertext pair and a collection of ciphertexts
encrypted with LastAppSKey. In this approach, it is still possible to recover from session losses on the NS. However,
if the join server ever looses track of the last used session’s key for a device, the result would be the same as the loss
of root keys on the JS, and the device would not be able to perform joins or rejoins.

5. Backward compatibility and security

Backward compatibility is always a desired feature but it also has the potential to affect security in a negative
way. As of March 2018, LoRaWAN version 1.0 devices and backends have been deployed in 100 countries by 76
network operators, and also by private providers and initiatives [18]. Lack of OTA firmware updates would make
full migration to LoRaWAN v1.1 difficult, even if all the deployed end-devices were capable of running version 1.1.
In case of LoORaWAN, potential security problems caused by backward compatibility are two-fold: a fall-back may
enable the exploitation of vulnerabilities associated with the older version, or it may break a feature introduced in the
new version. As exploitability of version 1.0 vulnerabilities in case of a fall-back are studied in our previous work
in [16], the focus in this work is on assessing the effects of backward compatibility on the newly introduced join
procedure delegation feature.

5.1. Join procedure delegation

In LoRaWAN v1.0, security of both network and application data depends on a single root key AppKey, whereas
LoRaWAN vl1.1 features two root keys AppKey and NwkKey. Apparently, the sole reason behind the introduction
of the second root key is enabling the delegation of join procedure to network operators, without compromising the

2 Join-accept messages are encrypted using NwkKey in case of version 1.0, rootkey NwkKey or lifetime key JSEncKey, in case of version 1.1
3 RJcount0 or RJcount] may replace DevNonce depending on the join request type.

Tahsin C.M. Dénmez et al. / Procedia Computer Science 134 (2018) 204-211 209

confidentiality of the application data [6]. The delegation is achieved by surrendering NwkKey to the network operator.
The network operator is not able to eavesdrop on application data because the application session key AppSKey is
derived from AppKey, i.e. security of application data depends only on AppKey.

Introduction of a whole new root key suggests that join procedure delegation is an important use-case scenario to
consider, however the LORAWAN specification does not specify how a delegated join procedure works. We assume
the following for join-procedure delegation:

e Part of version 1.1 JS functionality, namely AppSKey derivation, is carried out in a server in possession of
AppKey, outside the control of the network operator. AppSKey derivation is carried out according to the MAC
version decided by the NS, in accordance with the specification [6]. This server will be referred to as JS_A.

o The rest of version 1.1 JS functionality is carried out in a server under the control of the network operator. With
NwkKey in hand, the network operator derives the network session keys, and constructs Join-accept messages,
in accordance with the specification [6]. This server will be referred to as JS_N.

e The serving NS decides on the MAC version (MACVersion) in accordance with the specification [7]. The NS
communicates the decision on MAC version to both JS_N and JS_A. The ED learns of the serving NS’s decision
via the OptNeg flag included in the Join-accept message constructed by JS_N.

The delegation of join procedure makes sense only when one assumes the existence of application sessions, which
span several network sessions. If this is not the case, i.e. if the network session and the application session always
start and end simultaneously, then a new AppSKey has to be derived each time new network session keys are derived.
Clearly the derivation of AppSKey can not be delegated, unlike the other tasks involved in the join procedure which
depend on the root key, NwkKey. So, the network operator can never handle a join procedure without the involvement
of the party holding the root key, AppKey. However, nowhere in the specification application sessions that span
multiple network sessions are explicitly mentioned. There is also no mention of any mechanisms that would enable
such session scheme. For example, it is not possible for the ED to know when to derive a new AppSKey and when to
keep using the old one, following the processing of a Join-accept message.

In another perspective, lack of forward secrecy has negative implications for join procedure delegation. If the
surrendered root key NwkKey ever falls into the hands of an attacker, application data sent or received during the
sessions involving a fall-back can be decrypted, even if the session took place before the compromise. When forward
secrecy is achieved via the mechanism suggested by Kim et al. [14], delegation of join procedure to a network operator
is still possible. Device owner surrenders the root key NwkKey to a network operator in case the initial join procedure
has not yet taken place, and the last used network session keys, otherwise. However, it is up to the network operator
to purge the root key (if received), and any session keys that are no longer needed in order to maintain the forward
secrecy.

5.2. Fall-back to version 1.0 breaks join procedure delegation

The relevant backward compatibility scenario involves a v1.1 ED and a v1.0 NS*. We consider the case where
a device owner surrenders the NwkKey of v1.1 ED to a network operator, assuming that this will not enable the
operator to eavesdrop on application data. However, the fall-back mechanism for session key derivation described
in the specification [6] invalidates the device owner’s initial assumption about confidentiality. Furthermore, if the
application implements own end-to-end integrity solution as suggested in the specification, end-to-end integrity is also
broken, if the implemented integrity solution depends on AppSKey. In case of a fallback, all session keys, including
AppSKey, are derived using the NwkKey of the version 1.1 ED as follows [6, p. 55]:

AppS Key = aes128_encrypt(NwkKey, 0x02|JoinNonce|NetID|DevNonce|pad16)
FNwkS IntKey = aes128_encrypt(NwkKey, 0x01|JoinNonce|NetI D|DevNonce|padl6)
S NwkS IntKey = NwkS EncKey = FNwkS IntKey

4 In LoRaWAN version 1.0 there is no separate element called a join server. The NS also serves as the JS.

210 Tahsin C.M. Dénmez et al. / Procedia Computer Science 134 (2018) 204-211

Surrendering NwkKey to a network operator running a v1.0 backend does not make sense, and must be avoided by
the device owner. However, it may also be the case that at the time of surrendering the NwkKey the network operator
is running a v1.1 NS, but later reverts to v1.0.> Or the network operator still runs a v1.1 NS, but the NS, perhaps
maliciously, decides on MAC version 1.0, even though the highest common version between the ED and itself is 1.1.
Consequently, the ED will end up using its NwkKey for deriving the AppSKey.

Theoretically, handover-roaming may cause a fall-back when the backend that serves the roaming ED runs an
older version. However, handover-roaming is itself a v1.1 feature, and there is no version to fall-back to for the
current version 1.1, i.e. handover-roaming into a version 1.0 network is not possible. Handover-roaming involves the
entrustment of only the network session keys. Unless the network operators take it a step further, and entrust the
network root keys surrendered to them, to other operators they have roaming agreements with, handover roaming
should not introduce further problems with regard to join procedure delegation.

5.3. Proposed countermeasure for eavesdropping

We propose two alternative countermeasures for preventing the network operator from eavesdropping on applica-
tion data. The first countermeasure involves the alteration of AppSKey derivation mechanism, by introducing a special
case for join procedure delegation. If the join procedure for the ED is delegated, JS_A derives AppSKey from AppKey,
independent of the MAC version decided by the NS:

AppS Key = aes128_encrypt(AppKey, 0x02|JoinNonce|JoinEU I|DevNonce|pad16)

The ED must derive AppSKey in the same way as JS_A does. One option is to have the ED preconfigured to always
derive AppSKey from AppKey, independent of the received OptNeg flag value. The behaviours of JS_N and ED with
regard to the derivation of the network session keys are still guided by the NS’s decision on the MAC version. The
second countermeasure introduces a mechanism which allows a device owner to configure the ED in order to restrict
its operation to a minimum protocol version. Setting minimum protocol version to 1.1 would prevent eavesdropping
of application data in the join procedure delegation case, at the expense of breaking backward compatibility of the
v1.1 ED. The ability to set the minimum protocol version may also be desirable for other cases. For example, it would
be possible to set minimum protocol version of the end-devices to 1.1 for security-sensitive applications, in order to
prevent vulnerabilities associated with the older version from affecting them [16].

6. Missing replay protection in JS and countermeasure

The specification assigns the responsibility of keeping track of last observed DevNonce values to the NS [6, p. 53].
A malicious network server (or a man-in-the-middle attacker if channel integrity is compromised or non-existent) can
easily cause a JS to saturate its 24-bit JoinNonce counter, by replaying the same Join-request message repeatedly.
With each processing of the Join-request message, the JS increments the JoinNonce counter for the ED. If the JS
implementation allows its JoinNonce counter to overflow and a reuse occurs, previously used session keys may be
derived and used again, if DevNonce values also repeat.® Actually, if JoinNonce and DevNonce resets can be achieved
simultaneously, all previously used session keys will eventually be reused. As the task of assigning device addresses
lies with the (malicious) NS, inclusion of DevAddr within the encryption and MIC blocks does not pose a challenge to
the attacker. Session key reuse breaks confidentiality and replay protection of data messages, among other things, as
described in [12]. The specification leaves end-to-end integrity out of scope, partially based on the assumption that NSs
are trustworthy. This case demonstrates that, end-to-end confidentiality of application data may also be compromised,
if the NS is malicious.

The same replay protection vulnerability also applies to Rejoin-request messages of types 0 and 2, as the specifica-
tion gives the responsibility of keeping track of RJ/count0_last values to the NS [6, p. 58]. Consequently, a malicious
NS can saturate the JoinNonce counter of the JS by replaying not only Join-request messages but also Rejoin-request
messages sent for the purpose of rekeying, reassigning DevAddr, or handover roaming. As a result, the JS implemen-
tation enforcing a limit on the frequency of join requests will not be a solution.

3 In this case, the NS would need added support for join procedure delegation.
© A repetition of DevNonce values can be caused for example by cutting power to a v1.0 ED.

Tahsin C.M. Dénmez et al. / Procedia Computer Science 134 (2018) 204-211 211

We propose a countermeasure for protecting the application data from replay attack. In the proposed countermea-
sure, the JS keeps track of DevNonce_last and JcountO_last values, and enforces the replay protection mechanisms
described above, independently from the NS. In addition, a JS realizes the saturation of the JoinNonce counter and
stops processing Join-request and Rejoin-request messages from the corresponding ED if the JoinNonce counter over-
flows.

7. Conclusion

In this work, security of LoRaWAN v1.1 was examined and countermeasures were proposed for the determined
security issues. The security features included in the examination were key management, join procedure delegation,
backward compatibility, and replay protection in join procedure. Though LoRaWAN v1.1 has addressed most of
security vulnerabilities of v1.0, the evaluation in this work disclosed the lack of forward secrecy, flaw in delegation of
join procedure in case of fall-back, and limitations in replay protection. Due to the lack of forward secrecy, the impact
of root key compromise on application security is escalated. The investigation of the newly introduced delegation of
join procedure revealed that integrity and confidentiality of application data may be compromised because of fall-
back or malicious behavior of network server. The investigation of the replay protection mechanisms revealed that a
malicious network server is able to replay OTA activation messages to the join server, and this may in turn causes
the overflow of a counter nonce, and the compromise of the integrity and confidentiality of application data. The
proposed countermeasures tackle the application data integrity and confidentiality violations in case of join procedure
delegation and malicious network server.

Acknowledgements

This work is supported in part by Tekes under the project Wireless for Verticals (WIVE). WIVE is a part of 5G
Test Network Finland (SGTNF).

References

[1] “Ericsson Mobility Report”, June 2017 https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-june-
2017.pdf

[2] Nicola Dragoni, Alberto Giaretta, and Manuel Mazzara. (2018) “The Internet of Hackable Things”, in Paolo Ciancarini et al. (eds) PROCEED-
INGS OF 5TH INTERNATIONAL CONFERENCE IN SOFTWARE ENGINEERING FOR DEFENCE APPLICATIONS, Advances in Intelligent
Systems and Computing, Springer, Vol. 717, pp. 129-140. doi: 10.13140/RG.2.2.19643.72482

[3] “LoRa Alliance Technology”, https://www.lora-alliance.org/technology

[4] U.Raza, P. Kulkarni and M. Sooriyabandara, “Low Power Wide Area Networks: An Overview,” in IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 855-873, Secondquarter 2017. doi: 10.1109/COMST.2017.2652320

[5] LoRa Alliance Technical Committee. LoRaWANTMSpeciﬁcation, July 2016. LoRa Alliance, version 1.0.2.

[6] LoRa Alliance Technical Committee. LoRaWANTMSpecification, Oct 2017. LoRa Alliance, version 1.1.

[7] LoRa Alliance Technical Committee. LoRaWANT™Backend Interfaces 1.0 Specification, Oct 2017. LoRa Alliance, version 1.0.

[8] E. Aras, G. S. Ramachandran, P. Lawrence and D. Hughes. (2017). “Exploring the Security Vulnerabilities of LoRa,” in 3rd IEEE International
Conference on Cybernetics (CYBCONF), Exeter, 2017, pp. 1-6. doi: 10.1109/CYBConf.2017.7985777

[9] E. Aras, N. Small, G. S. Ramachandran, S. Delbruel, W. Joosen, D. Hughes. (2017). “Selective Jamming of LoRaWAN using Commodity
Hardware”. doi: 10.1145/3144457.3144478.

[10] S. Tomasin, S. Zulian and L. Vangelista, “Security Analysis of LoRaWAN Join Procedure for Internet of Things Networks,” 2017 IEEE
Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, CA, 2017, pp. 1-6. doi: 10.1109/WC-
NCW.2017.7919091

[11] Notes on LoRaWAN security. Feb 1, 2017. URL: https://medium.com/@brocaar/notes-on-lorawan-security-7e74 1a8ee4fa (visited on 2017).

[12] Xueying Yang. “Lorawan: Vulnerability Analysis and Practical Exploitation”. Delft University of Technology, 2017. URL:
https://repository.tudelft.nl/islandora/object/uuid:87730790-6166-4424-9d82-8fe815733f1e?collection=education

[13] Gildas Avoine, Loic Ferreira, “Rescuing LoORaWAN 1.0,” unpublished. URL: https://fc18.ifca.ai/preproceedings/13.pdf

[14] Jaehyu Kim and JooSeok Song, “A Dual Key-Based Activation Scheme for Secure LoRaWAN,” Wireless Communications and Mobile Com-
puting, vol. 2017, Article ID 6590713, 12 pages, 2017. doi:10.1155/2017/6590713

[15] Seunglae Na, DongYeop Hwang, WoonSeob Shin and Ki-Hyung Kim, “Scenario and countermeasure for replay attack using join re-
quest messages in LoRaWAN,” 2017 International Conference on Information Networking (ICOIN), Da Nang, 2017, pp. 718-720. doi:
10.1109/ICOIN.2017.7899580

[16] Tahsin C. M. Dénmez, and Ethiopia Nigussie, “Security of LoRaWAN v1.1 in Backward Compatibility Scenarios,” accepted in The 15th
International Conference on Mobile Systems and Pervasive Computing, 2018.

[17] Matinmikko, M., Latva-aho, M., Ahokangas, P. et al. Wireless Pers Commun (2017) 95: 69. https://doi.org/10.1007/s11277-017-4427-5

[18] “LoRaWAN NETWORKS?”, https://www.lora-alliance.org/

