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Abstract. Solutions to the verifiable outsourcing problem based on
Yao’s Garbled Circuit (GC) construction have been investigated in pre-
vious works. A major obstacle to the practicality of these solutions is
the single-use nature of the GC construction. This work introduces the
novel technique onion garbling, which circumvents this obstacle by using
only a symmetric-key cipher as its cryptographic machinery. This work
also proposes a non-interactive protocol for verifiable outsourcing which
utilizes the onion garbling technique. The protocol works in a 3-party
setting, and consists of a preprocessing phase and an online phase. The
cost of a preprocessing phase which can support up to N computations
is independent of N for the outsourcing party. For the other two parties,
the memory and communication cost of N -reusability is proportional to
N ·m, where m is the bit-length of the input. The cost of input prepa-
ration and verification is O(m + n) symmetric-key cipher operations,
where n is the bit-length of the output. The overall costs associated with
the outsourcing party are low enough to allow verifiable outsourcing of
arbitrary computations by resource-constrained devices on constrained
networks. Finally, this work reports on a proof-of-concept implementa-
tion of the proposed verifiable outsourcing protocol.
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1 Introduction

Verifiable outsourcing of computations involves a possibly computationally weak
outsourcing party (outsourcer), and one or more worker parties (evaluators)
who are possibly untrusted by the outsourcer. The outsourcer sends the inputs
for the computation to the evaluator, and the evaluator sends back the result
of the computation along with some additional information which enables the
outsourcer to verify the received result. How much the outsourcer benefits from
outsourcing depends on how much less the cost of verification is compared to the
cost of performing the computation, CostC . Obviously, if the cost of verification
is greater than or equal to CostC , the outsourcer would rather perform the
computation itself. It is also desirable that, the cost of the verifiable computation
to the evaluator is as close as possible to CostC .

? This work is supported in part by Tekes.



2 T. C. M. Dönmez

Current and emerging trends such as cloud computing, fog computing, and
more recently, multi-access edge computing (MEC) increase the interest in find-
ing solutions to the verifiable computation problem. Furthermore, the number
of computationally weak devices have increased drastically in recent years due
to the ongoing realization of the Internet of Things (IoT).

There are different approaches to the verifiable computation problem. Some
solutions target specific computations, whereas others are general-purpose solu-
tions which allow arbitrary computations. Efficiency of general purpose solutions
based on probabilistically checkable proofs and fully-homomorphic encryption
are not yet at the acceptable level for practical applications, and the efforts to
reduce the verification cost below the cost of computation continue [16]. There
are also general-purpose solutions which are based on Yao’s Garbled Circuit
(GC) construction [18, 19]. These solutions enjoy the non-interactivity and in-
herent verifiability of secure 2-party computations using GCs. In this case, the
verification can be as simple as comparing a key value krevealed with two others
k0 and k1, where the verification succeeds if and only if krevealed ∈ {k0, k1}.1
However, the single-use nature of the GC construction is a major obstacle to
practical verifiable outsourcing using GCs. Following an evaluation, the evalua-
tor learns either krevealed = k0 or krevealed = k1. If the same GC is reused for a
second evaluation, nothing stops the evaluator from submitting the output key
revealed in the first evaluation (krevealed), even though the second evaluation
revealed k′revealed 6= krevealed. Because the GC is reused, k′revealed ∈ {k0, k1},
and the verifiability property is lost.

In many cases, using a new garbled circuit for each computation is not practi-
cal, as Boolean circuits for non-trivial computations can be quite large, resulting
in unacceptable memory and communication costs. Achieving full reusability in
GC-based protocols is possible [7, 8], however these solutions rely on (relatively)
costly cryptographic techniques such as fully-homomorphic encryption and func-
tional encryption. In case of full reusability, the cost associated with the con-
struction of the single GC can be amortized over several computations. This work
introduces the onion garbling technique, which provides N -reusability using only
a symmetric-key cipher. In case of N -reusability, N computations still require
N GC constructions, however the memory and communication costs are limited
to those of a single GC, plus a term which is independent of the circuit size.
This work also proposes a protocol for verifiable outsourcing of computations,
which utilizes the onion garbling technique. The protocol: (1) is non-interactive
in the sense that the outsourcer’s online time complexity is linear in the input
length; (2) does not provide privacy of inputs, outputs, or the computation; (3)
works in a 3-party setting, and consists of a preprocessing phase and an online
phase. The construction of a garbled onion (of N layers) is carried out in the
preprocessing phase by a computationally capable party (constructor) that is
trusted by the outsourcer. The cost of a preprocessing phase which can support
up to N computations is O(K) for the outsourcing party, where K is the se-
curity parameter (key size of the GC). The memory and communication cost

1 For simplicity, a single output wire is assumed.
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for the other two parties is O(|C| · R + N ·m ·K), where |C| is the number of
gates in the Boolean circuit, R is the ciphertext size for the encryption scheme
used for encrypting the circuit, and m is the bit-length of the input. For large
circuits, this is significantly smaller compared to the cost of constructing and
transferring N independent garbled circuits, which is O(|C| · R · N). In other
words, N -reusability is achieved at a cost proportional to N ·m. The cost of input
preparation and verification to the outsourcer is O(m+n) symmetric-key cipher
operations, where n is the bit-length of the output. The overall costs associated
with the outsourcer are low enough to allow verifiable outsourcing of arbitrary
computations by resource-constrained devices on constrained networks [11].

The rest of this paper is organized as follows. Section 2 mentions related
works. Section 3 describes the onion garbling technique. Section 4 presents the
proposed protocol, and Section 5 discusses its security. Section 6 reports on the
implementation of the protocol. Sections 7 and 8 conclude the paper and discuss
future work.

2 Related Work

Applebaum et al. [1] show how to convert the privacy property in secure multi-
party computation to verifiability, using MACs and symmetric encryption. Ishai
et al. [10] define partial garbling schemes, where the security goals of garbling
schemes [3] are relaxed. They propose a verifiable computation scheme building
upon the garble+MAC paradigm of [1], where the only private input is a one-
time MAC, and the rest of the inputs are public.

Gennaro et al. [7] note that Yao’s GC Construction provides a one-time
verifiable computation, in addition to providing secure two-party computation.
In the same work [7], they formalize the notion of verifiable computation, and
propose a protocol for verifiable outsourcing of computations, which uses fully-
homomorphic encryption to overcome the single-use nature of the GCs.

3 How to Garble Onions

A garbled onion is a construction built upon a stripped down version of Yao’s
garbled circuits. A single garbled onion, or simply onion, consists of N lay-
ers of garbled circuits. The construction features two operations AddLayer and
Peel. AddLayer operation adds a new GC to the onion, placing it at the outer-
most layer. As a result, the GC which was previously at the outermost layer is
wrapped and no longer exposed. Each GC added via an AddLayer operation is
constructed in a way that depends on the GC at the layer immediately below.
This dependency allows the peeling of onion layers via the Peel operation, which
removes the outermost layer to expose the layer below.

While the description above is useful for introducing the idea, the construc-
tion would not be as useful if it were merely a collection of co-existing GCs,
as suggested by the mental image of an onion. Thanks to the dependency be-
tween the consecutive layers, an onion is fully defined by the single GC at its
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outermost layer, the input mappings for each layer, and two seed values. What
AddLayer actually does is the transformation of this single GC, so working on a
single circuit object suffices for the construction of an onion. Similarly, the Peel
operation is the transformation of the single GC at the outermost layer into the
GC at the lower layer. Consequently, the communication of only one GC (plus
the input mappings for each layer, and the two seed values) is sufficient for N
verifiable computations, where N is the number of onion layers. Fig. 1 depicts a
3-layer garbled onion.

Fig. 1. A 3-layer garbled onion. For each layer, only the two input gates and the single
output gate are shown. Numbers inside the boxes indicate the order of generation
within the stream.

Before we move on to describe the construction, evaluation, and peeling of
garbled onions in the following subsections, we explain what we mean by a
stripped down version of Yao’s GC.2 In Yao’s garbled circuit construction, each
wire is assigned two keys k0 and k1 corresponding to the two possible wire
values 0 and 1, respectively. For each gate gr, the keys k0s , k1s , k0t , and k1t are
used to double-encrypt the keys k0r and k1r , where each one of s and t is either

2 A more formal definition will also be given in Section 5 (See Definition 1).
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a gate index for a gate whose output wire is connected to an input wire of gr
(we will refer to such a gate as a child gate in the rest of the paper), or an
index of an input wire for the circuit. The two encryption keys and the key to
be encrypted are chosen respecting the structure of the truth table (TT), so
that the evaluation of the garbled circuit with the garbled inputs mimics the
in-the-clear evaluation with the corresponding non-garbled inputs. This process
yields the encrypted truth table (ETT) for the gate (see Fig. 2). There are two
components that exist in Yao’s GC construction, but not in the garbled onion
construction: row shuffling and row selection.3 Yao’s GC construction involves
the additional step of shuffling the rows of the ETTs, so that the values on a
gate’s input wires cannot be inferred from the index of the row opened during the
evaluation. Furthermore, evaluation of a GC requires at each gate the selection
of the row which should be decrypted using the keys assigned to the gate’s input
wires. Row selection is achieved via trial and error (only possible if authenticated
encryption is used), or via the point-and-permute technique [2]. In order to have
the verifiability property, it is sufficient that an evaluation with a particular set
of garbled inputs exposes one and only one of the keys for each non-input wire
of the circuit. When one is concerned solely with verifiability, all requirements
about privacy can be dropped, and hiding neither the orderings of ETT rows,
nor the truth tables is necessary. Therefore, the GCs in a garbled onion do not
have their ETT rows shuffled, and during the evaluation of an onion layer we let
the in-the-clear evaluation of the circuit guide the row selections.

Fig. 2. An encrypted gate. Note that the rows are not shuffled.

3 Even though the construction involves the encryption of TTs rather than full garbling
thereof, it is named as Garbled Onion in order to make its close connection with
garbled circuits apparent.
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3.1 Construction

Construction of an N -layered onion involves successively (N times) adding lay-
ers via the AddLayer operation. The resulting garbled onion consists of the
garbled circuit Co (which is the GC at the outermost layer), the input mappings
InMap, the seed value SeedInEncKeyStream (which generates the keystream
InEncKeyStream), and the seed value SeedOutKeyStream (which generates
the keystream OutKeyStream). InMap holds the key values (both k0 and
k1) that are assigned to the input wires of the GC at each layer, whereas
OutKeyStream determines for every layer the key values that are assigned
to the output wires of the GC. SeedInEncKeyStream and the correspond-
ing stream InEncKeyStream are optional components of the construction.
InEncKeyStream is a stream of encryption keys which are used for encrypt-
ing the input mappings InMap. Encryption of the input mappings is necessary,
for example, when their transfer between two mutually trusting parties have to
involve an untrusted third party as a conveyor.

All keys of a GC can be assigned values freely. Traditionally, this fact is
taken advantage of in GC optimizations such as the free-XOR technique [13]
and garbled row reduction [15], which make the keys in the same circuit inter-
dependent, or fix some of the keys to some known value. For a GC in an onion,
the keys associated with the output wires are assigned from OutKeyStream,
however every other key can be assigned values freely. We will refer to these keys
as assignable keys. Garbled onion construction takes advantage of this freedom
by making the garbled circuits in neighbouring layers inter-dependent. During
the formation of layer l via the (l + 1)th AddLayer operation, ETT rows of
Co are stored in the assignable keys,4 and the keys associated with the output
wires are assigned values from OutKeyStream. The assignable keys associated
with the input wires of the circuit are stored in InMap. Finally, ETT rows are
overridden by encrypting the circuit with the new keys, and the new transformed
Co is obtained.

Clearly, onion garbling requires that there are enough bits in the assignable
keys to store all ETT rows. The number of ETT rows for a garbled gate is equal to
the number of keys associated with the input wires for single-input gates (such as
NOT and NAND) and two-input gates (such as AND and XOR), and greater
in any other case. Assuming that the size of ETT rows is equal to the key size
K, if one or more gates in a circuit has more than two inputs, there won’t be
enough bits to store all ETT rows. There exists functionally complete sets whose
elements accept either one or two inputs (e.g. {AND,XOR}, {AND,NOT},
{NAND}). Therefore no constraints are posed with regard to which functions
are suitable for onion garbling and which are not.

The rules that guide the actual assignments of assignable keys can be cho-
sen arbitrarily. In our implementation (see Section 6), ETT row size is equal
to K (due to the use of one-time-pad for encrypting TT rows) and the total
number of ETT rows is equal to total number of assignable keys (because we

4 During the formation of the innermost layer (i.e. for l = 0), there are no ETT rows
to store, so the assignable keys are assigned random values.
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restrict ourselves to gates with 2 inputs). We chose to assign the ETT rows of
a gate to the keys associated with the input wires of that gate. With regard to
ordering, keys associated with the left wire are assigned from the upper rows of
the ETT, and between two keys which are associated with the same wire, the
key corresponding to value 0 is assigned from the upper row of the ETT. Fig. 3
depicts the assignment of the assignable keys according to these rules during an
AddLayer operation.

Fig. 3. The mapping between the ETT rows of a parent gate and the keys associated
with the output wires of its children, during AddLayer and Peel operations.

The assignment from OutKeyStream to the keys associated with output
wires follow a particular rule in order to allow the possibly resource-constrained
outsourcer to generate, use, and discard keys one at a time as they become
needed during the verifications of the computations for subsequent layers. The
stream has to be accessed from opposite ends during the construction and during
the computations, as the layers are traversed in reverse order: the innermost
layer of the onion is the first layer that is constructed, and it is used in the very
last outsourced computation. The computationally capable constructor takes the
burden of reversing the order, so that the outsourcer can use the keys in the order
they are generated from the stream. The same is also true for InEncKeyStream.
During the encryption of the input mappings, InEncKeyStream is accessed in
reverse order, so that the outsourcer can generate, use, and discard encryption



8 T. C. M. Dönmez

keys one at a time as they become needed during the preparation of garbled
inputs for subsequent layers. For both streams, the keys associated with the
same layer are treated as a block, and the reversal of streams during construction
occur only at the block level (See Fig. 1).

Note that the reversal of InEncKeyStream and OutKeyStream is not nec-
essary if they can flow in both directions, i.e. if it is possible to efficiently obtain
not only the next stream element, but also the previous one. Whether or not
a stream can flow in both directions depends on the cryptographic machinery
used. Using AES-CTR [5] with a combination of layer index and gate index as
counter allows random access to the generated keystream, which is more than
what is needed: a keystream which flows in both directions. In this case, the
outsourcer is able to follow the streams backwards one AES operation at a time,
so the constructor does not need to reverse them.

3.2 Evaluation

The evaluation of an onion layer, i.e. the evaluation of the garbled circuit Co

using the garbled inputs, is almost identical to regular garbled circuit evaluation
except a few differences. The gates of Co are visited in the usual order. Before a
visited garbled gate is evaluated, the corresponding gate in the un-garbled circuit
is evaluated, yielding an index i of the TT row, as well as the gate output read
at that index. The selection of the ETT row to be decrypted is guided by the
in-the-clear evaluation, i.e. the index of the ETT row that has to be decrypted
is i. The key for decrypting this row is computed from the garbled outputs of
its children, which are already visited and evaluated at this point. Decryption
of the row yields the garbled output of the gate. Once all the gates are visited,
garbled circuit evaluation is complete.

3.3 Peeling

Peeling removes the outermost layer to expose the GC at the layer below. Peeling
can only be carried out when all the keys associated with the circuit’s input wires
are known. Peel operation involves going through the circuit gate by gate from
inputs to outputs the same way as it is done during evaluation, but twice. During
the first pass, at each gate g, the key that was not revealed during the evaluation
is revealed. In order to do this, we first find an index i such that TT (i) 6= v,
where v is the value output by g during the in-the-clear evaluation. Then, ETT
row with index i is opened. This is possible because if g has a child gate, then
it already went through this key-revealing process. The second pass through
the circuit involves carrying out the assignments made during the AddLayer
operation (corresponding to the layer being peeled) in reverse order (See Fig. 3).
Using the assignable keys associated with the output wire of gate g, where one
is revealed during evaluation, and the other one is revealed during the first pass
through the circuit, half of the ETT rows for the parent gate of g is recovered.
The other half is recovered using the keys associated with the output wire of the
other child.
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The reason why the circuit is traversed twice during peeling is that the re-
evaluations using the ETTs and overwriting the ETTs of parent gates cannot be
done in a single pass through the circuit (from children to parent), if we insist
keeping memory usage to a single circuit size. Finally, note that at each layer
of the onion, exactly two decryption operations are needed per gate: one during
evaluation and the other during peeling.

4 Protocol for Verifiable Outsourcing using Garbled
Onions

In this section, we present a protocol for verifiable outsourcing of computations
using garbled onions. The protocol works in a 3-party setting, and consists of
a preprocessing phase (offline phase) and an online phase. The three parties in-
volved are the outsourcer (a possibly computationally weak party who outsources
the computations and verifies the results), the evaluator (a computationally ca-
pable untrusted party who performs the computation), and the constructor (a
computationally capable trusted party who constructs the garbled onion).5

Before going into the details of the protocol, we briefly discuss why only the
3-party setting is considered. When the same party plays the role of both the
constructor and the outsourcer, the protocol becomes applicable in the 2-party
(outsourcer-evaluator) setting. In this case, it is not necessary to encrypt the
input mappings or send them to the evaluator (See steps 5 and 6 of the pre-
processing phase), but the outsourcer has to be capable of preparing, storing,
and transferring the preprocessing material. Capable outsourcers exist, for ex-
ample, in the realm of distributed computing projects such as SETI@home6 and
Folding@home7, where computations are outsourced to CPUs and GPUs of vol-
unteers over the Internet, and the possibility of dishonest evaluators makes veri-
fiability desirable. The problem in this case is that the underlying onion garbling
technique requires N circuit preparations for N computations, i.e. memory and
communication costs are amortizable over several computations, but the compu-
tational cost is not. Therefore, the protocol does not provide practical benefits
in the 2-party setting, unless the extra cost -due to the cost of preprocessing
exceeding the cost of the computation- can be somehow justified.

The following subsections describe the preprocessing and online phases of the
protocol.

4.1 Preprocessing Phase

This subsection describes a preprocessing phase which allows at most N veri-
fiable outsourced computations. The constructor prepares all the preprocessing
material without the involvement of the outsourcer and the evaluator, who may

5 By (un)trusted we mean (un)trusted by the outsourcer.
6 https://setiathome.berkeley.edu/
7 https://foldingathome.org/
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receive their share of the preprocessing material anytime before the first out-
sourced computation begins, and possibly at different times.

Preprocessing Phase

1. Constructor generates the non-garbled circuit C corresponding to the computation
which will be outsourced.

2. Constructor generates two random seed values SeedInEncKeyStream and
SeedOutKeyStream, and uses them to initialize the streams InEncKeyStream
and OutKeyStream, respectively.

3. Let the number of input and output wires of C be m and n, respectively. Con-
structor generates the first 2 · N ·m keys from InEncKeyStream, and the first
2 ·N · n keys from OutKeyStream.

4. Onion construction: Constructor generates an N -layer garbled onion by N suc-
cessive AddLayer operations (Section 3.1).

5. Constructor encrypts each key in the input mappings InMap individually using the
keys generated from InEncKeyStream, and obtains the encrypted input mappings
EncInMap.

6. Constructor sends N , EncInMap, and Co (the garbled circuit at the outermost
layer) to the evaluator.

7. Constructor sends N , SeedOutKeyStream, and SeedInEncKeyStream to the
outsourcer.

8. Evaluator generates the non-garbled circuit C independently from the constructor
(knowledge of the outsourced computation is sufficient for carrying out this task).
Alternatively, C could be sent to the evaluator by the constructor.

4.2 Online Phase

This subsection describes the online phase for a single computation. Each one
of the N possible computations follows the same steps. Parties involved in the
online phase are the outsourcer and the evaluator. Both parties independently
keep and maintain as internal state an index l, which is the index of the layer
that will be used for the next computation. Initially, l = N − 1. The outsourcer
initializes two keystreams InEncKeyStream and OutKeyStream with the seeds
SeedInEncKeyStream and SeedOutKeyStream, respectively. Internal state of
the outsourcer includes, in addition to l, two key values: the last used values from
each stream. Whenever the outsourcer needs an encryption key to decrypt an
input mapping, or a key for verifying a received computation result, it simply
gets the next key from the corresponding stream, and updates its internal state.

Online Phase

1. When the outsourcer wants to outsource a computation, it checks whether l ≥ 0. If
l < 0, verifiable outsourcing is not possible, and the protocol terminates. If l ≥ 0,
outsourcer initiates the computation by sending l to evaluator.
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2. Evaluator checks whether both parties agree on the onion layer that will be used for
the computation. In case of agreement, evaluator sends to outsourcer the encrypted
input mappings for (only) layer l.

3. Outsourcer decrypts the input mappings using encryption keys generated from
InEncKeyStream, revealing the garbled inputs gi corresponding to its input bits
bi, as well as those corresponding to ¬bi. We will refer to the latter as unused
garbled inputs and denote them with g′i. Outsourcer sends bi and gi to evaluator.

4. Onion evaluation: Evaluator evaluates the onion layer with index l using bi and
gi (Section 3.2), and sends the computation result r (the keys associated with the
output wires of the circuit) to outsourcer.

5. Outsourcer interprets and verifies the received computation result r. Let rj be the
key associated with the jth output wire. For each j:
– Outsourcer generates two keys from OutKeyStream. Let the key which is

generated first be k, and the other one be k′.
– If rj = k, outsourcer accepts oj = 0 as the jth bit of the result.
– If rj = k′, outsourcer accepts oj = 1 as the jth bit of the result.
– If rj /∈ {k, k′}, outsourcer concludes that evaluator tried to cheat, and rejects

the received result r. The protocol terminates.
Let o be the bit string whose jth bit is oj . If rj ∈ {k, k′} for all j, then outsourcer
accepts o as the verified result of the computation.

6. If l > 0 (i.e. if there is a layer to peel), outsourcer sends the unused garbled inputs
g′i to evaluator.

7. Onion peeling: In order to prepare for the next computation, evaluator peels the
outermost layer using g′i (Section 3.3).

8. Both outsourcer and evaluator decrement l by one.

5 Proof of Security

This section discusses the security of the protocol with respect to the verifia-
bility property. We follow the formalization of verifiable computation presented
in [7]. The security of the protocol is expressed in Theorem 2. First, we note the
differences between the “garbled” circuits in the garbled onion construction and
Yao’s garbled circuits, and define the former based on the differences.

Definition 1. An onion-garbled circuit (OGC) is a construction built in the
same way as a garbled circuit, with the following exceptions:

– Fact 1: ETT rows are not permuted for any of the gates.

– Fact 2: Let k
bj
out,j be the keys associated with the output wires of the circuit,

where j ∈ {0, ..., n − 1}, n is the bit-length of the output, and bj ∈ {0, 1}
is the value assigned to wire j during the in-the-clear evaluation. k

bj
out,j are

assigned from a keystream OutKeyStream generated by a stream cipher SC
(instead of being randomly assigned).

– Fact 3: Rest of the keys are not necessarily randomly assigned (but assigned
from the ETT rows of another OGC, as described in Section 3.1).

The following lemma is intuitively clear, so it is stated without a proof.
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Lemma 1. Yao’s GC construction is still correct when all ETT row permu-
tations are the identity permutation, and when the keys are chosen arbitrarily
(rather than randomly).

Theorem 1. An OGC provides one-time secure verifiable computation.

Proof. (sketch) We argue the one-time secure verifiable property of an OGC,
based on that of a GC. Gennaro et al. [6, Theorem 3] show that Yao’s garbled
circuit scheme is a one-time secure verifiable computation scheme.8 Their proof
depends only on the correctness of Yao’s garbled circuit construction, and not
on its privacy. By Lemma 1, an OGC is also correct. The proof for one-time
secure verifiable property of Yao’s GC construction can be informally expressed
as follows: in order to cheat successfully, the evaluator must either correctly
guess a key which was not revealed during evaluation, or break the encryption
scheme used for encrypting the circuit. It is the possibility of guessing the keys
that requires our attention, because selection of keys differ between a GC and
an OGC. Following a computation, the evaluator learns that one of the two

keys associated with output wire j is k
bj
out,j . If the stream cipher SC used for

generating OutKeyStream is secure, the revealed keys do not give an adversarial

evaluator non-negligible advantage for guessing k
1−bj
out,j . Therefore the one-time

secure verifiable property of an OGC can be argued along the same lines as for
a GC, except instead of relying on the fact that keys are chosen randomly, one
has to consider the security of SC, and rely on the resulting pseudorandomness
of OutKeyStream. Intuitively, the enabling property behind the verifiability
provided by GCs is that the evaluator is able to open at most one row from each
gate, given inputs for a single computation, and this property holds for both
GCs and OGCs despite their differences (Facts 1-3).

Theorem 2. The Protocol for Verifiable Outsourcing using Garbled Onions (Sec-
tion 4) provides up to N verifiable computations, if the garbled onion constructed
in the preprocessing phase has N layers.

Proof. (sketch) First, we observe that a new OGC is constructed for each of the
N layers. By Theorem 1, each OGC provides one-time secure verifiable compu-
tation. However, the OGCs are constructed in an interdependent fashion, so it
is necessary to show that previous computations do not compromise the veri-
fiability of later computations. Consider the (N − l)th computation which uses
layer l of the garbled onion. In order to cheat successfully, the evaluator must
correctly guess a key which was not revealed during evaluation. But different
from the case in Theorem 1, the evaluator is in possession of all the keys in
OutKeyStream which are associated with layers li > l, in addition to the keys

revealed during the current computation (k
bj
out,j). If the stream cipher used for

generating OutKeyStream is secure, knowledge of these keys do not give an ad-

versarial evaluator non-negligible advantage for guessing k
1−bj
out,j . Finally, we note

8 This justifies the previously mentioned inherent verifiability claim regarding secure
2-party computations using GCs.
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that the keys k
1−bj
out,j for layer l are revealed to the evaluator (Online Phase, Step

6) only after the verification for layer l is completed (Online Phase, Step 5).

6 Implementation

This section introduces FairEnough [4], a proof-of-concept implementation of the
onion garbling technique and the protocol for verifiable outsourcing described
in Section 4. Each of the three parties involved in the protocol are implemented
in their own classes (Outsourcer, Evaluator, Constructor), and they commu-
nicate via TCP sockets to run the protocol. The implementation is based on
Fairplay [14], which dates back to 2004. Several CG optimizations (e.g. free-
XOR [13], GRR2 [17], FleXOR [12], half gates [20]) have been developed since
that time, and these optimizations are not included in Fairplay.9 As mentioned
in Section 3.1, onion garbling takes a different approach compared to these opti-
mizations, and Fairplay was a suitable starting point for our implementation due
to being uncluttered with incompatible optimizations. The main functionality
kept from the original Fairplay project is the generation of circuit objects from
SFDL programs via the SFDL compiler, circuit optimizer, and SHDL parser.
SFDL programs describe a 2-party computation, where both parties (referred to
as Alice and Bob in Fairplay) may have inputs and outputs. In case of outsourc-
ing, we assume that only the outsourcing party has inputs and outputs. The
outsourced computation is described as an SFDL program with only BobInput

and BobOutput, which represent the outsourcer’s inputs and the outputs, re-
spectively.

7 Conclusion

This work tackled an efficiency issue related to the use of garbled circuits for
verifiable computations, which arise from the single-use nature of a garbled cir-
cuit. The onion garbling technique was introduced, which leverage the freedom
in the assignment of keys during the construction of a garbled circuit, in order to
encode many garbled circuits into a single one. A protocol for verifiable compu-
tations, which utilize the onion garbling technique, was proposed. The protocol
achieves N -reusability in the sense that the memory and communication cost of
N verifiable computations is significantly less compared to the trivial solution,
which involves the construction and transfer of N distinct garbled circuits. But
most importantly, the costs incurred on the outsourcing party is sufficiently small
to allow verifiable outsourcing by a resource-constrained device on a constrained
network.

8 Future Work

This work addressed a major obstacle to practical verifiable outsourcing us-
ing GCs, namely the single-use nature of the constructed GCs. Another major

9 For a more recent, optimized framework for circuit garbling, see for example [9].
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obstacle to practical verifiable outsourcing using GCs is the size and runtime
inflation due to the conversion to Boolean circuit. Running both branches for
each branching, and running each loop the maximum number of times it can be
run give the resulting circuit its obliviousness property. Obliviousness is essential
when privacy is desired, but not when the only security goal is verifiability. In
the proposed protocol, the evaluator is provided with the knowledge of the in-
puts and the computation, and is able to perform the in-the-clear computation.
In this case, it would be a good trade-off to let go off the obliviousness prop-
erty, if in turn the size and runtime inflation could be eliminated. This suggests
moving away from the circuit model of computation, but of course one would
want to keep the verifiability which comes with the garbled circuit evaluations.
Investigation of the applicability of onion garbling beyond the circuit model of
computation is left as future work.

The proof-of-concept implementation introduced in Section 6 was useful in
writing parts of this work, as following working source code provides some de-
gree of reassurance against possible errors and omissions during the textual de-
scription of the ideas. We believe that the codebase could prove to be a useful
resource for the motivated reader as well, for clarifying ambiguities and filling
in gaps, caused by weaknesses in our writing. We note however that, the im-
plementation was not meant to assess feasibility, and deployment on an actual
resource-constrained device is left as future work.
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