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Abstract

In this manuscript we present a detailed proof for undecidability

of the equivalence of finite substitutions on regular language b{0, 1}∗c.
The proof is based on the works of Leonid P. Lisovik.

1 Introduction and history

This manuscript was written during the summer of 1997 while the author
worked as a research assistant in Prof. Juhani Karhumäki’s project. The task
for the summer was to read and verify in details the proof of undecidability of
the equivalence problem for finite substitutions on regular languages proved
by Prof. Leonid P. Lisovik from Kiev, Ukraine. As a result the author wrote
the present manuscript based on articles [8, 9, 10]. In the original articles a
lot of details were left to the reader.

The main motivation for the manuscript was that Lisovik in [10] was
able to prove that the equivalence problem problem for finite substitutions
was undecidable already for a quite simple regular language b{01, 1}∗c, see
Section 4. Lisovik’s proof for this language was simplyfied by Halava and
Harju [1] using the undecidability of the universe problem in integer weighted
finite automata instead of the undecidability track of Lisovik’s from the
inclusion problem of finite transducers (Section 2) through undecidability
in so called defence systems defined by Lisovik himself (Section 3). Note
that the regular language with undecidable equivalence problem for finite
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substitutions was later improved by Karhumäki and Lisovik1 [5] in 2002
(alternatively, see [6]) to the language ab∗c, and, further, by Kunc [7] in
2007 to the language a∗b.

As mentioned above, the root of undecidability in Lisovik’s proof is the
undecidability of the inclusion of two rational relations (recognized by finite
transducers), the result which was originally proved by Ibarra [4]. Lisovik
gave a new proof for this result in 1983 (see [8]) with a clever reduction
from the Post Correspondence Problem. Indeed, the main motivation for
publishing this manuscript now 24 years later lays on this proof, as it has
not been published in this form before. Recently, in [3] Harju and Karhumäki
presented a version of this proof with citation to this manuscript.

2 Finite transducers

Let Σ be an alphabet and denote by ǫ the empty word. The star operation
on Σ, Σ∗, is as usual the set of all word over Σ. Denote by Σ+ = Σ∗ \ {ǫ}.

We begin with a definition of finite transducer, FT for short, which is a
6-tuple (Q,Σ,∆, E, q0, F ), where

• Q is a finite set of states,

• Σ and ∆ are input and output alphabets,

• E ⊆ Q× Σ∗ ×∆∗ ×Q is a finite set of transitions,

• q0 ∈ Q is the initial state and F ⊆ Q is the set of final states.

FT is a finite automaton with output. If the underlying automaton is
nondeterministic, then FT is called generalized sequential machine, GSM for
short, or sequential transducer.

Let T be a finite transducer. Define the set

O(T ) ={(w, y) | w = a0 . . . an, y = b0 . . . bn, n ∈ N, ai ∈ Σ∗,

bi ∈ ∆∗, 0 ≤ i ≤ n, and there exists states qi ∈ Q, such that

(qi, ai, bi, qi+1) ∈ E and qn+1 ∈ F}

1It needs to be mentioned that Lisovik was a frequent visitor of Karhumäki’s group in

Turku around that time. Many stories of his peculiar but extremely friendly behaviour

are still told in Turku. The author remembers particularly well the party after the defence

of his PhD thesis in April 2002 where Lisovik participated, not with any official role on

the defence, but as a quest as he happened to visit Turku at that time: Lisovik gave

altogether almost ten speeches during the dinner and the topics of these speeches varied

somewher between math, life and basketball. For the sake of honesty it must be told that

after the first five speeches, Lisovik was encouraged by author’s official supervisor Prof.

Tero Harju to give more speeches. Naturally, the author is grateful for both, especially,

because according to the official protocol of the party, the PhD candidate has to reply to

all the speeches given with a new speech.
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If (w, y) ∈ O(T ), then we say that (w, y) ∈ Σ∗ ×∆∗ is recognized by T .
Let

L(T ) = {w | (w, y) ∈ O(T ) for some y}

be the language accepted by the finite transducer T .
A subset O(T ) of Σ∗×∆, which is recognized by a FT T is called rational

relation. We denote the family of rational relations of Σ∗ ×∆∗ by Rat(Σ∗ ×
∆∗).

It is clear that if A,B ∈ Rat(Σ∗ ×∆∗), then

A ∪B and

A · B = AB = {(w1w2, y1y2) | (w1, y1) ∈ O(A), (w2, y2) ∈ O(B)}

are in Rat(Σ∗ ×∆∗). The union is clear, since we may connected the FT’s
that recognize A and B, by merging their initial states of FT’s recognizing
A and B. The product AB is recognized, by an FT, where we define every
final state of FT recognizing A to be a initial state of the FT recognizing B.

The star operation for subset U of Σ∗ ×∆∗ is defined naturally by

U∗ =
⋃

i≥0

U i,

where U i is the i’th power of U defined using the product by initial values
U0 = {ǫ} × {ǫ}, U1 = U , and U i+1 = UU i for all i ≥ 1.

We shall next prove that the equivalence and inclusion of two rational
relations is an undecidable problem in the case where ∆ is unary. This
result has many proofs, for example cf. [4], [8]. We shall here present the
construction from [8].

Before the theorem, recall that the Post Correspondence Problem, PCP
for short, which asks for a given pairs of non-empty words over alphabet Γ,
(u1, v1), (u2, v2), . . . , (un, vn), whether there exists a sequence

1 ≤ α1, α2, . . . , αs ≤ n

such that
uα1

uα2
. . . uαs = vα1

vα2
. . . vα2

,

is known to be an undecidable problem. For more details about the PCP,
cf. [11], [2].

Theorem 2.1. Let A and B be two rational relations from Rat(Σ∗ × c∗).
Then it is undecidable, whether

1) A ⊆ B,

2) A = B.
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Proof. Assume that (u1, v1), . . . , (un, vn) is a sequence of pairs of non-empty
words over {a, b}. Define alphabet Σ = {a, b, i1, . . . , in}, and kα = |uα| for
all α = 1, 2, . . . , n.

Next we define needed subsets of Σ+ × c+:

L1 = {(iα, c
kα+1) | 1 ≤ α ≤ n}∗,

L2 =

n
⋃

β=1

kβ
⋃

j=1

Lβj ,

where Lβj = L1 · (iβ, c
j){(iα, c) | 1 ≤ α ≤ n}∗,

L3 = L2{(a, c), (b, c)}
∗ ,

L4 = L1{(a, c), (b, c)}
∗{(a, c2), (b, c2)}+.

Finally, for β ∈ {1, . . . , n}, let

Sβ = {µ | µ ∈ {a, b}∗, |µ| = |uβ|, µ 6= uβ},

and set

L5 =

n
⋃

β=1

⋃

µ∈Sβ

Mβµ,

where

Mβµ = L1(iβ , c){(iα, c) | 1 ≤ α ≤ n}∗{(a, c), (b, c)}∗(µ, c2kβ ){(a, c2), b, c2)}∗.

Now we define
Lu = L3 ∪ L4 ∪ L5.

Similarly, let Lv be defined for the second components of the pairs (uα, vα) in
the sequence. Note that Lu and Lv are in Rat(Σ∗ × c∗), since we can define
nondeterministic FT’s to recognize L1, Lβj ’s, Mβµ’s and therefore also L2,
L3, L4 and L5 are rational relations.

Next define L0 = {(iα, c) | 1 ≤ α ≤ n}+{(a, c2), (b, c2)}+. It is easy to
construct a FT, that recognizes L0.

Claim. L0 ⊆ Lu ∪Lv if and only if there does not exist sequence of αi’s,
such that 1 ≤ α1, . . . , αs ≤ n and uα1

. . . uαs = vα1
. . . vαs .
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Proof of the Claim. Assume that there exists such sequence α1, . . . , αs,
that PCP has solution and let

w = (x, y) = (iα1
. . . iαsuα1

. . . uαs , c
s+2(kα1

+···+kαs)) ∈ L0.

(i) If w ∈ L3, then for some w1 = (iα1
. . . ialphas , c

m) ∈ L2,

w = w1(uα1
. . . uαs , c

kα1
+···+kαs ).

Therefore w1 ∈ Lβj , for some β ∈ {α1, . . . , αs} and 1 ≤ j ≤ kβ , and so in
path recognizing w1, ibeta has outputs cj and j < kβ +1, so m < kα1

+ · · ·+
kαs + s. Therefore w /∈ L3.

(ii) Let βi’s, i ∈ {1, r} be a sequence such that 1 ≤ β1, . . . , βr ≤ n, and
let

w1 = (iα1
. . . iαsuβ1

. . . uβr
, cm) ∈ L4.

In the recognizing paths of w1, for each iαj
the output is kαj

+ 1 and for
uj, j ∈ {β1, . . . , βr}, the output is cℓj , where ℓj ≥ kj and at least for one j
ℓj > kj, because of {(a, c2), (b, c2)}+. So we have that m > kα1

+ · · ·+ kαs +
s+ kβ1

+ · · · + kβr
, and therefore w /∈ L4.

(iii) Assume that w ∈ L5. Then there exists integer β, 1 ≤ β ≤ s, and
γ1, µ, γ2 ∈ {a, b}∗ such that w ∈ Mαβµ, uα1

. . . uαs = γ1µγ2, |µ| = uαβ
and

µ 6= uαβ
. If

(iα1
. . . iαβ

. . . iαsγ1µγ2, c
m) ∈ Mαβµ,

then

m = (kα1
+ 1) + · · ·+ (kαβ−1

+ 1) + (s − β + 1) + |γ1|+ 2|µ|+ 2|γ2|

= kα1
+ · · ·+ kαβ−1

+ s+ |γ1|+ 2|µ|+ 2|γ2|.

Now since w ∈ L5 and |γ1µγ2| = kα1
+ · · ·+ kαs , we get that

|µ|+ |γ2| = kαβ
+ · · ·+ kαs ,

and since |µ| = kαβ
, finally

|γ2| = kαβ+1
+ · · ·+ kαs and |γ1| = kα1

+ · · ·+ kαβ−1
.

It follows that µ = uαβ
and we have a contradiction. Therefore w /∈ L5.

So w /∈ Lu and by similarly it can shown that w /∈ Lv, and we have
proved one direction of the claim.

Assume now that there is no sequence 1 ≤ α1, . . . , αs ≤ n such that the
instance of PCP has solution. Let w1 ∈ {a, b}+ and w = (iα1

. . . iαsw1, c
s+2|w1|) ∈

L0.
By assumption, w1 6= uα1

. . . uαs or w1 6= vα1
. . . vαs . We shall show that

if w1 6= uα1
. . . uαs , then w ∈ Lu. Of course then similarly, if w1 6= vα1

. . . vαs ,
then w ∈ Lv.
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(i) If |w1| > |uα1
. . . uαs |, i.e. |w1| > kα1

+ · · · + kαs , then for some
x, y ∈ {a, b}+, |x| = kα1

+ · · ·+ kαs , w1 = xy and

w = (iα1
. . . iαs , c

kα1
+···+kαs+s)(x, ckα1

+···+kαs )(y, c2|y|) ∈ L4.

(ii) If |w1| < |uα1
. . . uαs |, i.e. |w1| < kα1

+ · · · + kαs , then there exists
β ∈ {1, . . . , s} and j ∈ {1, . . . , kαβ

} such that

|w1| = kα1
+ · · ·+ kαβ−1

+ j − 1,

and so

w =(iα1
. . . iαβ−1

, c
(kα1

+1)+···+(kαβ−1
+1)

)(iαβ
, cj)

· (iαβ+1
. . . iαs , c

s−β)(w1, c
kα1

+···+kαβ−1
+j−1) ∈ L3.

(iii) If |w1| = kα1
+ · · · + kαs , then since w1 6= uα1

. . . uαs , there exists
β ∈ {1, . . . , s} and µ, γ ∈ {a, b}∗ such that

w1 = uα1
. . . uαβ−1

µγ and |µ| = |uαβ
| but µ 6= uαβ

,

and so

w =(iα1
. . . iαβ−1

, c(kα1
+1)+···+(kαβ−1

+1))(iαβ
, c)

· (iαβ+1
. . . iαs , c

s−β)(uα1
. . . uαβ−1

, ckα1
+···+kαβ−1 )(µ, c2|uαβ

|)(γ, c2|γ|) ∈ L5.

So w ∈ Lu, if w1 6= uα1
. . . uαs and so the claim is proved.

Now by the undecidability of PCP, it is undecidable whether L0 ⊆ Lu∪Lv

and whether L0 ∪ Lu ∪ Lv = Lu ∪ Lv. This proves the theorem.

Corollary 2.2. It is undecidable for two rational relations A and B from
Rat({0, 1}∗ × c∗), whether

1) A ⊆ B,

2) A = B.

Proof. Claim follows straight forwardly from Theorem 2.1, since we can en-
code the alphabet Σ into {0, 1}∗ and the result remains.

We shall next define a special type of finite transducer, so called Z-
transducer. FT T is called Z-transducer, if it is of the form

(Q, {0, 1}, {c, cc}, E, q0 , gf ),

i.e. it has input alphabet {0, 1}, output alphabet {c}, only one final state qf
and the set of transitions E ⊆ Q\{qf}×{0, 1}×{c, cc}×Q. We shall define
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Z-transducer as quadruple (Q,E, q0, gf ) from now on, since input and output
alphabets are fixed. Notice that Z-transducer reads one symbol at a time
and always outputs one or two c’s. Notice also that there is no transitions
from the final state qf in Z-transducer.

A Z-transducer is called deterministic if the underlying automaton is
deterministic, i.e. if for any a ∈ {0, 1}, q ∈ Q\{qf} there exists a unique
transition (q, a, b, p), where b ∈ {c, cc} and p ∈ Q. A Z-transducer is called
complete, if for any a ∈ {0, 1}, q ∈ Q\{qf} there exists at least one transition
of the form (q, a, b, p). Note that here determinism preserves completeness.
Note also that every Z-transducer can be maid complete by adding a garbage
state f into Q such that if there does not exists any transition (q, a, b, p) for
some q and a, then we add transition (q, a, c, f) to E and further we add
transition (f, a, c, f) to E for a ∈ {0, 1}.

Let T be a Z-transducer. As for FT’s, we define the set

O(T ) ={(w, y) | w = a0 . . . an, y = b0 . . . bn, n ∈ N, ai ∈ {0, 1},

bi ∈ {c, cc}, 0 ≤ i ≤ n, and there exists states qi ∈ Q, such that

(qi, ai, bi, qi+1) ∈ E and qn+1 = qf}

Note that in deterministic Z-transducer T , for all w ∈ {0, 1}∗, there
exists either a unique path when reading word w or a prefix u of w such
that u ∈ L(T ). Since there is no transitions from final state, we see that if
w = uv, v is a nonempty word, then u ∈ L(T ) implies w /∈ L(T ).

Corollary 2.3. Let C and D be two Z-transducers, C is deterministic and
D nondeterministic and complete. It is undecidable, whether O(C) ⊆ O(D).

Proof. In the proof of Corollary 2.2 we mentioned the coding of the alphabet
Σ in Theorem 2.1 to binary alphabet. Let (u1, v1), . . . , (un, vn) be the in-
stance of PCP used in the proof of Theorem 2.1. We can for example use cod-
ing δ, where k = 1 + max1≤i≤n{|ui|, |vi|} and alphabet Σ = {a, b, i1, . . . , in}
is encoded to set {10i1 | k ≤ i ≤ k + n+ 1}.

If we now code with χ each element w = (v, cm) ∈ Σ+ × c+ used in the
proof of Theorem 2.1 in such a way that χ(w) = (δ(v)0, cm+|δ(v)0|). Denote
by χ(Li) the coded set Li, i = 1, 2, 3, 4, 5, u, v, 0.

Clearly χ(L1) can be reorganized by a non-deterministic Z-transducer,
when reading δ(iα) the transducer outputs cc for kα + 1 first input symbols
and c for the others. When reading the last 0 in the input, Z-transducer
outputs one c and moves to final state.

Using the same idea, also other χ(Li)’s can be recognized by a non-
deterministic Z-transducer. Actually

χ(L0) = {(δ(iα), c
|δ(iα)|+1) | 1 ≤ α ≤ n}+{(δ(a), c|δ(a)|+2), (δ(b), c|δ(b)|+2)}+(0, c)

can be reorganized by a deterministic Z-transducer.
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Now since χ(L0) ⊆ χ(Lu)∪ χ(Lv) if and only if L0 ⊆ Lu ∪Lv, the claim
follows by the proof of Theorem 2.1.

We shall use result in above corollary in the next section.

3 Defense Systems

In this section we shall consider so called defense systems, DS for short.
Result in this section is from [9]. A DS system is intended to defense some
elements of the set integers Z. The elements of Z are also called defense
nodes. Any DS is a triple V = (K,H,Γ), where K is set of lines,

K = {i | 1 ≤ i ≤ s, i, s ∈ Z},

H is the set of instructions and Γ is the set of attacking symbols.
Each node can be defended by lines from K. In other words, each node

can be defended by s different lines. The initial situation in our case is that
only node 0 is defended by line 1, and the other nodes don’t have defence at
all.

The attacking system is supposed to ‘send’ symbols from the set Γ to the
defending system. This means that attacks can be thought as a words from
Γ∗.

Each rule of the set H is of the form (k, a, j, z, p), where 1 ≤ k, j ≤ s,
a ∈ Γ, z ∈ {−1, 0, 1} and p is the real number 0 ≤ p ≤ 1. Each rule
means that when attacking symbol a is send, defense of node i by line k is
transferred with probability p to defense of node i + z by line j. We shall
denote the probability above also pza,k,j. Naturally for all a ∈ Γ

s
∑

j=1

1
∑

z=−1

pza,k,j = 1,

i.e. on each attacking symbol something necessarily happens. Note that the
underlying system in defense systems is nondeterministic and therefore the
model of defense systems we defined is sometimes called nondeterministic
DS, NDS for short.

We fix the attacking symbol set Γ = {0, 1} in this paper.

A NDS can also be viewed as a countable Markov system. To simplify
notations we denote each configuration of a NDS by an integer. If node i is
defended by line j, we denote this configuration by integers i · s + (j − 1).
Recall that the initial configuration is that node 0 is defended by line 1,
which is represented as an integer 0.

Let w ∈ {0, 1}∗. We shall denote the probability that the NDS is in the
configuration k ∈ Z in response to a finite sequence of attacking signals w
by pw(k).
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Figure 1: A picture illustrating a defense system in the initial configuration
defending the node 0 by the line 1.

Let D = (K,H,Γ) be a defense system. D is called unreliable if, for some
w ∈ Γ∗, after attacking sequence w the probability that node 0 is defended
by some line is 0, i.e. pw(j) = 0 for all 0 ≤ j ≤ s − 1. The word w here is
called critical. If there is no critical words w ∈ Γ∗ that D, then D is called
reliable.

Theorem 3.1. [9] The unreliability of NDS is undecidable, i.e. it is unde-
cidable for a given NDS B = (K,H, {0, 1}), to determine whether there exist
w ∈ {0, 1}∗ such that pw(j) = 0 for all 0 ≤ j ≤ s− 1.

Proof. In this proof we shall use the undecidability result of Corollary 2.3.
Let C be a deterministic Z-transducer and D be a nondeterministic and

complete Z-transducer, C = (K1,H1, q0, qf ) and D = (K2,H2, g0, gf ). De-
fine a nondeterministic complete Z-transducer D′ = (K3,H3, g0, gf ), where

K3 = K1 ∪K2,

H3 = H1 ∪H2 ∪ {(g0, a, b, q) | (q0, a, b, q) ∈ H1)}.

Z-transducer D′ satisfies O(D′) = O(D), but the transducer also has paths
of C in it, although they are not accepting paths.

Let s be the number of elements of the set

K = K1 ×K3 = {(q, g)j | 1 ≤ j ≤ s} and (q, g)1 = (q0, g0).

Let
H ⊆ K × {0, 1} × {−1, 0, 1} ×K

so that ((qk, gℓ)i, a, z, (qr, gt)j) ∈ H, if

(qk, a, b1, qr) ∈ H1 and (gℓ, a, b2, gt) ∈ H3,

9



and z follows by the rules (b1, b2 ∈ {c, cc})

z =











−1 if b1 = b2c,

0 if b1 = b2,

1 if b2 = b1c.

(3.1)

Moreover H contains elements

((qf , gf ), a, 0, (qf , gf )), (3.2)

((q, f), a, 1, (qf , qf )), where {q, f} ∩ {qf , gf} 6= ∅, a = 0, 1. (3.3)

. We shall refer the elements of H as rules.
We shall now associate a NDS B to construction above. Let

Mz
a,k = {j | ((q, g)k, a, z, (q, g)j ) ∈ H}

and let m(a, k, z) = |Mz
a,k| and

m(a, k) =
1

∑

z=−1

m(a, k, z).

Let B = (K ′,H ′, {0, 1}) be a defense system, such that K ′ = {1, . . . , s},
if ((q, g)k, a, z, (q, g)j ) ∈ H, then (k, a, z, j, pza,k,j) ∈ H ′, pza,k,j = 1/m(a, k).
This probability is obvious by the construction.

Claim. The existence of finite sequence w ∈ {0, 1}∗ such that the NDS B
has pw(j) = 0 for all 0 ≤ j ≤ s−1 is equivalent to the fact that O(C) 6⊆ O(D).

Before the proof, we note few facts about the construction. Our defense
system B simulates the calculations of Z-transducers C and D′ at a same
time in its lines, which can be thought as an elements of K = K1 ×K3.

By (3.1), z gives the difference of lengths of outputs in C and D′. It
follows that if the defended node is 0, the outputs of C and D′ are equal. If
the node is negative, the length of the output of C is larger than the length
of the output of D′ by the absolute value of the node. If it is positive, then
vice versa.

Now we are ready to proof the equivalence mentioned above.

Proof of the Claim. Assume first that O(C) 6⊆ O(D). This means that
there exists a word w ∈ {0, 1}∗ such that for unique y ∈ c∗, (w, y) ∈ O(C),
but (w, y) /∈ O(D). We have two cases:

i) If w ∈ L(D), then for all (w, y′) ∈ O(D), y′ 6= y. There exists four kind
of paths in our NDS B, that have positive probability on attacking sequence
w, we separate them in terms of calculations of C and D′:

10



1) If the simulation of D′ is similar to simulation of C. Then we are
all the time defending the node 0 and end up in state (qf , qf ). Now for
a word wa, a ∈ {0, 1}, we use rule (3.3) and the defense shifts to node 1,
since z = 1. Note that we can add several symbols to w, and defense of
node moves to one larger by every symbol. The simulation of C does not
change from beginning, since no subword of accepted word can be accepted
in deterministic Z-transducer.

2) If the simulation of D′ reaches the final state gf before than the sim-
ulation of C. After that the rule used is (3.3). Every step of this rule moves
the defense of the node to the node one larger. After that we may add a
symbols from {0, 1} to the end of w to get the defense to a positive node.

3) If simulation of D′ is not in the final state when the simulation C
ends. Again after that we may add symbols of {0, 1} to the end of the word
w to get the defense to a positive node.

4) If the simulations of D′ and C reach the final state at the same time,
i.e. in the end of w. Of course the node defended at that time can’t be 0,
since then the outputs would be equal in C and D, and that is impossible,
by the fact that (w, y) /∈ O(D). We can again add symbols to end of w, and
the rule used is (3.2) and that does not change the defense anywhere.

By cases 1-4, we see that, there exists a word wv, v ∈ {0, 1}∗ such that
pwv = 0 for all 0 ≤ j ≤ s− 1. This follows, since there is a limit for symbols,
that has to be added to get all these possible paths of defense to positive
nodes.

ii) If w /∈ O(D), then the 1-3 above cases are possible, and again there
exists wv, v ∈ {0, 1}∗, such that NDS B is unreliable.

So we have proved that if O(C) 6⊆ O(D), then NDS B is unreliable.

Assume next that NDS B is unreliable. It means that there exists se-
quence w ∈ {0, 1}∗ such that pw(j) = 0 for all 0 ≤ j ≤ s − 1. By the fact
that C is deterministic and therefore complete, it means that some subword
of w must be in L(C), since otherwise there is a path in C for a input word
w and therefore in B node 0 has positive defense probability for some line,
which is related to element (q, q) ∈ K, q ∈ K1.

Now assume that v is the subword of w such that v ∈ L(C) and let y be
the unique element of {0, 1}∗, such that (v, y) ∈ O(C). Now (v, y) /∈ O(D),
since otherwise there would be a possible defense in node 0 after attacking
sequence v and after v the instruction used would be the corresponded to
rule (3.2) which does not move the defense anywhere. Therefore for the
attacking sequence w there would be a defense in the node 0 with positive
probability, which is not possible by the assumption.

Now we have finally proved the Claim.

By Corollary 2.3 it is undecidable whether O(C) 6⊆ O(D) and therefore
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the unreliability of NDS is also undecidable.

Note that since unreliability is a complement of reliability, this also means
that reliability is undecidable.

4 Finite substitutions

Let Σ and ∆ two alphabets. For a set S denote by 2S the power set of S,
i.e. the collection of all subsets of S.

A mapping ϕ : Σ∗ → 2∆
∗

is called substitution, if

1) ϕ(ǫ) = {ǫ} and
2) ϕ(xy) = ϕ(x)ϕ(y).

Because of condition 2, a substitution is usually defined by giving the
images of all letters in Σ.

Let ϕ be as above and L be a language over Σ∗, i.e. L ⊆ Σ∗. We denote

ϕ(L) =
⋃

w∈L

ϕ(w).

Two substitutions ϕ, ξ : Σ∗ → 2∆
∗

are equivalent on language L if

ϕ(L) = ξ(L).

A substitution ϕ is called ǫ-free, if ǫ /∈ ϕ(a) for all a ∈ Σ. And it is called
a finite substitution if, for all a ∈ Σ, the set ϕ(a) is finite.

A language L is called regular, if it is accepted by a finite automaton. It
is known that regular languages are closed under finite substitutions, which
means that if L is regular , so is ϕ(L) for finite substitution ϕ.

Next theorem states an undecidability result concerning finite substitu-
tions and regular languages. It is from [10]

Theorem 4.1. The equivalence problem for ǫ-free finite substitutions on
regular language b{0, 1}∗c is undecidable.

Proof. We shall use Theorem 3.1. Let V = (K,H, {0, 1}) be a NDS de-
fined in previous section, K = {1, .., s}, H is the set of instructions and
attacking symbol set is {0, 1}. We shall define two finite substitutions
ϕ, ξ : {b, 0, 1, c}∗ → {0, 1}∗ such that ϕ and ξ are equivalent on language
b{0, 1}∗c if and only if NDS V is reliable.
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First we define following sets and words:

Da = {(k, z, j) | (k, a, j, z, p) ∈ H for some p > 0}, a ∈ {0, 1},

D = D0 ∪D1,

w = 010010001 . . . 10s+11, w0 = ǫ, w1 = w, w2 = ww,

αk = 01001 . . . 10k1, βk = 0k+11 . . . 10s+11, for 1 ≤ k ≤ s,

w = αkβk, F (k, z, j) = βkw
z+1αj , F (k, z) = F (k, z, j)βj = βkw

z+2,

Ta =
⋃

(k,z,j)∈Da

{F (k, z, j)}, Ca =
⋃

(k,z,j)∈Da

{F (k, z)}, a ∈ {0, 1}

C = C0 ∪C1, M = {w}, B = {ww}, N = {βk | 1 ≤ k ≤ s}, and S = {α1}.

Now we can define finite substitutions ϕ, ξ : {b, 0, 1, c} → {0, 1}∗:

ξ(b) = S ∪MN = {α1} ∪ {wβk | 1 ≤ k ≤ s},

ϕ(b) = ξ(b) ∪M = {α1} ∪ {wβk | 1 ≤ k ≤ s} ∪ {w},

ξ(c) = ϕ(c) = M ∪NM = {w} ∪ {βkw | 1 ≤ k ≤ s},

ξ(a) = ϕ(a) = B ∪ Ta ∪NTa ∪ CaN ∪NCaN

= {ww} ∪ {βkw
z+1αj | (k, z, j) ∈ Da}

∪ {βℓβkw
z+1αj | 1 ≤ ℓ ≤ s, (k, z, j) ∈ Da}

∪ {βkw
z+2βℓ | 1 ≤ ℓ ≤ s, (k, z, j) ∈ Da}

∪ {βℓ1βkw
z+2βℓ2 | 1 ≤ ℓ1, ℓ2 ≤ s, (k, z, j) ∈ Da},

for a = 0, 1. Let L be the language b{0, 1}∗c. Now clearly ξ(x) ⊆ ϕ(x) for
all x ∈ L, since ξ(a) ⊆ ϕ(a) for all letters a ∈ {b, 0, 1, c}. Therefore to prove
that ξ(L) = ϕ(L) iff and only iff V is reliable, we have show that ϕ(L) ∈ ξ(L)
iff and only iff V is reliable.

Suppose first that V is reliable. Let x = x0 . . . xn+1 ∈ L, u = u0 . . . un+1,
where xi ∈ {b, 0, 1, c} and ui ∈ ϕ(xi) for all integers 0 ≤ i ≤ n + 1. Note
that x0 = b and xn+1 = c. We have to show that there exists vi ∈ ξ(xi) for
all 0 ≤ i ≤ n+ 1 such that v = v0 . . . vn+1 = u.

First we note that the only difference in images by ξ and ϕ is in images of
b, and ξ(b) \ϕ(b) = M . Therefore,if u0 6= w, we have trivial solution ui = vi
for all 0 ≤ i ≤ n+ 1. So we assume that u0 = w.

We shall use parenthesis to illustrate factorizations by ϕ and ξ to ui’s
and vi’s. Now we divide into three cases:
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(i) If n = 0, then x = bc and we have two cases:
1) If u1 = w ∈ ϕ(c), then u0u1 = (w)(w) = (α1)(β1w) ∈ ξ(x).
2) If u1 ∈ NM ⊆ ϕ(c), i.e. for some 1 ≤ k ≤ s, u0u1 = (w)(βkw) =

(wβk)(w) ∈ ξ(x).

(ii) If n ≥ 1 and u1 /∈ B. We shall show that there is a factorization such
that ui = vi for 2 ≤ i ≤ n+ 1 and u0u1 = v0v1. Here we have four cases:

1) If u1 ∈ Tx1
, then, for (k, z, j) ∈ Dx1

,

u0u1 = (w)(βkw
z+1αj) = (α1)(β1βkw

z+1αj) = v0v1, v0 ∈ S, v1 ∈ NTx1
.

2) If u1 ∈ NTx1
, then, for (k, z, j) ∈ Dx1

and 1 ≤ ℓ ≤ s,

u0u1 = (w)(βℓβkw
z+1αj) = (wβℓ)(βkw

z+1αj) = v0v1, v0 ∈ MN, v1 ∈ Tx1
.

3) If u1 ∈ Cx1
N , then, for (k, z, j) ∈ Dx1

and 1 ≤ ℓ ≤ s,

u0u1 = (w)(βkw
z+2βℓ) = (α1)(β1βkw

z+2βℓ) = v0v1, v0 ∈ S, v1 ∈ NCx1
N.

4) If u1 ∈ NCx1
N , then, for (k, z, j) ∈ Dx1

and 1 ≤ ℓ, t ≤ s,

u0u1 = (w)(βℓβkw
z+2βt) = (wβℓ)(βkw

z+2βt) = v0v1, v0 ∈ MN, v1 ∈ Cx1
N.

(iii) If n ≥ 1 and u1 ∈ B, then we need the reliability of V . Let t =
min{i | i ≥ 1, ui /∈ B}. So the word u0u1 . . . ut−1 = w(ww) . . . (ww) = w2t−1.

Since V is reliable, there exists for attacking sequence x′ = x1 . . . xt−1 ∈
{0, 1}∗ a sequence

(j0 = 1, x1, j1, z1, p1)(j1, x2, j2, z2, p2) . . . (jt−2, xt−1, jt−1, zt−1, pt−1)

of elements of H such that pi > 0 for all 1 ≤ i ≤ t− 1 and

t−1
∑

i=1

zi = 0. (4.1)

Therefore there exists a sequence

(j0 = 1, z1, j1)(j1, z2, j2) . . . (jt−2, zt−1, jt−1),

where (ji−1, zi, ji) ∈ Dx1
. Now define v0 = α1, and for 1 ≤ i ≤ t− 1,

v′i = βji−1
wzi+1αji ∈ Txi

,

we get that

v0v
′
1 . . . v

′
t−1 = α1β1w

z1+1αj1βj1w
z2+1αj2 . . . βjt−2

wzt−1+1αjt−1

= wwz1+1wwz2+1w . . . wwzt−1+1αjt−1
.
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Now by (4.1) we get that

v0v
′
1 . . . v

′
t−1 = w2t−2αjt−1

.

So we have that u0u1 . . . ut−1 = v′0v
′
1 . . . v

′
t−1βjt−1

. We may already set vi =
v′i for 1 ≤ i ≤ t− 2.

Now we have two cases depending on t. First if t = n+ 1, then we have
two cases:

1) If un+1 ∈ M , then vt−1 = v′t−1 and vn+1 = βjt−1w ∈ NM and so
u = v.

2) If un+1 ∈ NM , un+1 = βkw, then we set

vt−1 = vn = βjt−2
wzt−1+2βk ∈ CxnN and vn+1 = w ∈ M.

Again u = v.
Second case is that t ≤ n. Then we set vi = ui for t+ 1 ≤ i ≤ n+ 1 and

so we have four cases for vt and vt−1:
1) If ut ∈ Txt , for some (k, z, j) ∈ Dxt ut = βkw

z+1αj , then we set

vt−1 = v′t−1 and vt = βjt−1
βkw

z+1αj ∈ NTxt,

to get u = v.
2) If ut ∈ NTxt, for some (k, z, j) ∈ Dxt , 1 ≤ ℓ ≤ s, ut = βℓβkw

z+1αj ,
then we set

vt−1 = βjt−2
wzt−1+1αjt−1

βjt−1
βℓ = βjt−2

wzt−1+2βℓ ∈ CxtN

and

vt = βkw
z+1αj ∈ Txt,

to get u = v.
3) If ut ∈ CxtN , for some (k, z, j) ∈ Dxt , 1 ≤ ℓ ≤ s, ut = βkw

z+2βℓ, then
we set

vt−1 = v′t−1 and vt = βjt−1
βkw

z+2βℓ ∈ NCxtN,

to get u = v.
4) If ut ∈ NCxtN , for some (k, z, j) ∈ Dxt , 1 ≤ ℓ, t ≤ s, ut = βℓβkw

z+2βt,
then we set

vt−1 = βjt−2
wzt−1+1αjt−1

βjt−1
βℓ = βjt−2w

zt−1+2βℓ ∈ CxtN

and

vt = βkw
z+2βt ∈ CxtN,
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to get u = v.
Now we have proved that if V reliable then ϕ(L) ⊆ ξ(L).

Assume now that V is unreliable, i.e. there is a word x′ = x1 . . . xn such
that px′(j) = 0, for all 1 ≤ j ≤ s. Let x = bx′c = x0x1 . . . xnxn+1 ∈ L. We
shall first prove next claim

Claim. There is no elements v′i ∈ Txi
for all 1 ≤ i ≤ n such that

w2n+1 = α1v
′
1v

′
2 . . . v

′
nβj .

Proof of The Claim. Assume the contrary. This means that there exists
sequence

y = β1w
z1+1αj1βj1w

z2+1αj2 · · · βjn−1
wzn+1αjn

such that

(1, , x1, j1, z1, p1)(j1, x2, j2, z2, p2) · · · (jn−1, xn, jn, zn, pn)

is a sequence in H, pi > 0 for all i, and

α1yβjn = w2n+1

Now to get the number of w correct on the left hand side, we must have

1+ (z1 +1)+1+ (z2 +1)+ · · ·+1+ (zn +1)+1 =

n
∑

i=1

zi +2n+1 = 2n+1,

so
∑n

i=1 zi = 0, but this contradicts the fact that x′ is critical word. This
ends the proof of the claim.

Clearly w2n+2 ∈ ϕ(x) and we shall next show that w2n+2 /∈ ξ(x). Assume
contrary that w2n+2 ∈ ξ(x), then for all 0 ≤ i ≤ n+1 there exists vi ∈ ξ(xi)
such that w2n+2 = v0 . . . vn+1. Clearly the case v0 = α1 ∈ S is only possible,
since v0 = wβj ∈ MN leads to a contradiction. Assume that x1 = a ∈ {0, 1}
and let

P = {u | u is a prefix of wk for some integer k}.

We divide the proof to five cases according to v1:

1) If v1 ∈ B, i.e. v1 = ww, then v0v1 = α1ww /∈ P .
2) If v1 ∈ NTa, i.e. for some 1 ≤ ℓ ≤ s and (k, z, j) ∈ Da v1 =

βℓβkw
z+1αj , then v0v1 /∈ P .

3) If v1 ∈ CaN , i.e. for some 1 ≤ ℓ ≤ s and (k, z, j) ∈ Da v1 = βkw
z+2βℓ,

then v0v1 /∈ P .
4) If v1 ∈ NCaN , i.e. for some 1 ≤ ℓ, t ≤ s and (k, z, j) ∈ Da v1 =

βℓβkw
z+2βt, then v0v1 /∈ P .

5) If v1 ∈ Ta, then let t = min{i | vi /∈ Txi
, 1 ≤ i ≤ n}. Now if

v0v1 . . . vt−1 ∈ P , then v0v1 . . . vt−1 = wrαj for some integers r and j, where
1 ≤ j ≤ s.
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Assume now that t = n. If now vn+1 = w, then v0v1 . . . vnvn+1 /∈ P ,
and if vn+1 = βjw ∈ NM , by Claim above v0v1 . . . vnvn+1 6= w2n+2 and so
necessarily t < n.

Now we have four cases on whether vt ∈ B, vt ∈ NTxt , vt ∈ Cxt or
vt ∈ NCxtN , but like cases 1-4 above, these cases lead to contradiction,
since v0v1 . . . vt /∈ P .

So we have proved that w2n+2 /∈ ξ(x) and therefore the prove of the
theorem is completed.
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