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Abstract
Assuming that Siegel zeros exist, we prove a hybrid ver-
sion of the Chowla and Hardy–Littlewood prime tuples
conjectures. Thus, for an infinite sequence of natural
numbers𝑥, and any distinct integersℎ1, … , ℎ𝑘, ℎ′1, … , ℎ

′
𝓁 ,

we establish an asymptotic formula for∑
𝑛⩽𝑥

Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁)

for any 0 ⩽ 𝑘 ⩽ 2 and 𝓁 ⩾ 0. Specializing to either 𝓁 = 0

or 𝑘 = 0, we deduce the previously known results on the
Hardy–Littlewood (or twin primes) conjecture and the
Chowla conjecture under the existence of Siegel zeros,
due to Heath-Brown and Chinis, respectively. The range
of validity of our asymptotic formula is wider than in
these previous results.

MSC 2020
11N37 (primary), 11N36 (secondary)

1 INTRODUCTION

1.1 The Hardy–Littlewood–Chowla conjecture and Siegel zeroes

Let 𝜆∶ ℕ → {−1,+1} denote the Liouville function.We have the following well known conjecture
of Chowla [3]:
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Conjecture 1.1 (Chowla’s conjecture). Let ℎ′
1
, … , ℎ′𝓁 be distinct fixed natural numbers for some

fixed 𝓁 ⩾ 1. Then†

𝔼𝑛⩽𝑥𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁) = 𝑜(1)

as 𝑥 → ∞.

Here and in the sequel,𝑛 is understood to range over natural numbers, andweuse the averaging
notation 𝔼𝑛∈𝐴𝑓(𝑛) ∶=

1|𝐴| ∑𝑛∈𝐴 𝑓(𝑛) for any set 𝐴 of a finite cardinality |𝐴|. The reasons for the
primes in the notation ℎ′

1
, … , ℎ′𝓁 is for compatibility with Conjecture 1.3.

For 𝓁 = 1, Chowla’s conjecture is equivalent to the prime number theorem, but the conjecture
is open for all 𝓁 ⩾ 2, although a slightly weaker ‘logarithmically averaged’ conjecture is known to
hold for 𝓁 = 2 [27] or for odd 𝓁 [28, 29]. All the discussion here concerning the Liouville function
𝜆 has a counterpart for theMöbius function 𝜇, but for simplicity of expositionwe restrict attention
to the Liouville function here.
The analogous conjecture for the von Mangoldt function Λ∶ ℕ → ℝ+ is the well-known prime

tuples conjecture of Hardy and Littlewood [10]:

Conjecture 1.2 (Hardy–Littlewood prime tuples conjecture). Let ℎ1, … , ℎ𝑘 be distinct fixed
natural numbers for some fixed 𝑘 ⩾ 0. Then

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘) = 𝔖 + 𝑜(1)

as 𝑥 → ∞, where the singular series𝔖 is defined by the formula

𝔖 ∶=
∏
𝑝

𝛽𝑝, (1.1)

the local factors 𝛽𝑝 are defined by

𝛽𝑝 ∶= 𝔼𝑛∈ℤ∕𝑝ℤΛ𝑝(𝑛 + ℎ1)⋯Λ𝑝(𝑛 + ℎ𝑘) =

(
1 −

1

𝑝

)−𝑘(
1 −

|{ℎ1, … , ℎ𝑘} (mod 𝑝)|
𝑝

)
(1.2)

andΛ𝑝 ∶ ℤ∕𝑝ℤ → ℝ+ is the local vonMangoldt functionΛ𝑝(𝑛) ∶=
𝑝

𝑝−1
1𝑛≠0 (𝑝). (In this paper, we

adopt the convention that the empty product is equal to 1.)

It is not difficult to show the asymptotic

𝛽𝑝 = 1 + 𝑂

(
1

𝑝2

)
, (1.3)

so the product in (1.1) converges, though it could vanish if the ℎ1, … , ℎ𝑘 cover a complete set of
residues modulo 𝑝 for some prime 𝑝. Conjecture 1.2 is trivial for 𝑘 = 0 and equivalent to the
prime number theorem for 𝑘 = 1, but is open for all other values of 𝑘, with the 𝑘 = 2 case already
implying the notorious twin prime conjecture.

† See Section 2 for our conventions on asymptotic notation.
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It is natural to unify Conjectures 1.1 and 1.2 as follows.

Conjecture 1.3 (Hardy–Littlewood–Chowla conjecture). Let 𝑘,𝓁 ⩾ 0, and let ℎ1, … , ℎ𝑘, ℎ′1, … , ℎ
′
𝓁

be distinct fixed natural numbers. Then

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁) = 𝔖 + 𝑜(1)

as 𝑥 → ∞, where𝔖 is defined by (1.1) when 𝓁 = 0 and is equal to 0 otherwise.

Clearly Conjectures 1.1 and 1.2 correspond to the special cases 𝑘 = 0 and 𝓁 = 0, respectively, of
Conjecture 1.3. One could also generalize this conjecture by replacing the forms 𝑛 + ℎ𝑗, 𝑛 + ℎ′𝑗′ by
more general linear forms 𝑎𝑗𝑛 + 𝑏𝑗, 𝑎′𝑗′𝑛 + 𝑏

′
𝑗′
, no two of which are scalar multiples of each other,

but we do not do so here in order to simplify the notation.
Only the 𝑘 + 𝓁 ⩽ 1 cases of Conjecture 1.3 are currently known, even if one assumes the gen-

eralized Riemann hypothesis, though see [26] for some recent progress in the function field case,
and the recent works [15], [16] for some progress on an averaged version of this conjecture. On
the other hand, it turns out (perhaps surprisingly) that some progress on this conjecture can be
made under an opposing hypothesis, namely the existence of a Siegel zero. We use the notational
conventions from Heath-Brown’s work [11]:

Definition 1.4 (Siegel zero). A Siegel zero 𝛽 is a real number associated to a primitive quadratic
Dirichlet character 𝜒 of conductor 𝑞𝜒 such that 𝐿(𝛽, 𝜒) = 0 and

𝛽 = 1 −
1

𝜂 log 𝑞𝜒

for some 𝜂 ⩾ 10 (which we call the quality of the zero).

The lower bound on 𝜂 ismostly in order to ensure that log log 𝜂 is positive; the precise numerical
value of the lower bound is not important. From Siegel’s theorem, we have the (ineffective) upper
bound

𝜂 ≪𝜀 𝑞
𝜀
𝜒 (1.4)

on the quality of a Siegel zero for any 𝜀 > 0.
There are prior results in the literature towards Conjecture 1.3 in the presence of a Siegel zero

when only either the von Mangoldt function or the Liouville function appears in the correlation.
These results are due to Heath-Brown [11] in the case of two-point correlations of the von Man-
goldt function, and due to Chinis [2] in the case of the Chowla conjecture (with previous work by
Germán and Katái [6] on the two-point case). We can summarize them as follows:

Theorem 1.5 (Prior results on Hardy–Littlewood–Chowla given a Siegel zero). Suppose that one
has a Siegel zero 𝛽 with associated conductor 𝑞𝜒 and quality 𝜂.

(i) [11, Theorem 1] For any distinct fixed natural numbers ℎ1, ℎ2, one has

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)Λ(𝑛 + ℎ2) = 𝔖 + 𝑂

(
1

log log 𝜂

)
uniformly for all 𝑞250𝜒 ⩽ 𝑥 ⩽ 𝑞300𝜒 , where𝔖 is defined by (1.1).
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(ii) [6, Theorem 2] One has

𝔼𝑛⩽𝑥𝜆(𝑛)𝜆(𝑛 + 1) ≪
1

log log 𝜂
+ 𝜖(𝑥)

for 𝑞10𝜒 ⩽ 𝑥 ⩽ 𝑞
(log log 𝜂)∕3
𝜒 , where 𝜖(𝑥) is a quantity that goes to zero as 𝑥 → ∞ (uniformly in the

choice of Siegel zero).
(iii) [2, Theorem 1.2] For any distinct fixed natural numbers ℎ′

1
, … , ℎ′𝓁 , one has

𝔼𝑛⩽𝑥𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁) ≪

1

(log log 𝜂)1∕2 log1∕12 𝜂

for 𝑞10𝜒 ⩽ 𝑥 ⩽ 𝑞
(log log 𝜂)∕3
𝜒 .

The main result of this paper is the following common generalization and strengthening of
these results.

Theorem 1.6 (New results on Hardy–Littlewood–Chowla given a Siegel zero). Let 0 ⩽ 𝑘 ⩽ 2 and
𝓁 ⩾ 0, and let ℎ1, … , ℎ𝑘 , ℎ′1, … , ℎ

′
𝓁 be fixed distinct natural numbers. Suppose that one has a Siegel

zero 𝛽 with associated conductor 𝑞𝜒 and quality 𝜂. Let 0 < 𝜀0 < 1 be fixed, and let 𝑥 lie in the
range

𝑞
10𝑘+ 1

2
+𝜀0

𝜒 ⩽ 𝑥 ⩽ 𝑞
𝜂1∕2

𝜒 . (1.5)

Then we have

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁) = 𝔖 + 𝑂

⎛⎜⎜⎝ 1

log
1

10max(1,𝑘) 𝜂

⎞⎟⎟⎠, (1.6)

where𝔖 is as in Conjecture 1.3.

Remark 1.7. The 𝑘-dependent exponent of 10𝑘 in the range (1.5) can be improved somewhat,
particularly when 𝑘 = 1, but wewill not attempt to optimize it here. On the other hand, in order to
improve the exponent 1

2
in (1.5) in the case 𝑘 = 0, it seems necessary to be able to obtain non-trivial

bounds on short character sums such as∑
𝑛∈𝐼

𝜒(𝑛 + ℎ′1)⋯𝜒(𝑛 + ℎ′𝓁)

for intervals 𝐼 of length less than 𝑞1∕2𝜒 , which is beyond the range of direct application of the Weil
bounds and completion of sums (and for 𝓁 > 1 we were not able to adapt the Burgess argument
[1] to such sums due to the lack of multiplicative structure). The exponent 1

10max(1,𝑘)
in (1.6) can

similarly be improved, but we will not attempt to do so here.

Note that Theorem 1.6 improves the dependence on the quality 𝜂 of Siegel zero, and also allows
for correlations that involve both the von Mangoldt function Λ and the Liouville function 𝜆, so
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long as the former function appears at most two times. This latter restriction is an inherent lim-
itation of our current state of knowledge of correlations for functions like the divisor function
𝜏 ∶= 1 ∗ 1; in particular, 𝑘-point correlations 𝔼𝑛⩽𝑥𝜏(𝑛 + ℎ1)⋯ 𝜏(𝑛 + ℎ𝑘) are currently only well
understood when 𝑘 ⩽ 2.
As a direct corollary to Theorem 1.6, we can state the following strengthening of previous

results.

Corollary 1.8. Suppose that one has a Siegel zero 𝛽 with associated conductor 𝑞𝜒 and quality 𝜂. Let
0 < 𝜀0 < 1 be fixed.

(i) For any distinct fixed natural numbers ℎ1, ℎ2, one has

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)Λ(𝑛 + ℎ2) = 𝔖 + 𝑂

(
1

log1∕20 𝜂

)

uniformly for all 𝑞41∕2+𝜀0𝜒 ⩽ 𝑥 ⩽ 𝑞
𝜂1∕2

𝜒 , where𝔖 is defined by (1.1).
(ii) For any distinct fixed natural numbers ℎ′

1
, … , ℎ′𝓁 , one has

𝔼𝑛⩽𝑥𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁) ≪

1

log1∕10 𝜂

uniformly for all 𝑞1∕2+𝜀0𝜒 ⩽ 𝑥 ⩽ 𝑞
𝜂1∕2

𝜒 .
(iii) For any fixed integer ℎ ≠ 0, one has

𝔼|ℎ|<𝑝⩽𝑥𝜆(𝑝 + ℎ) ≪ 1

log1∕10 𝜂

uniformly for all 𝑞21∕2+𝜀0𝜒 ⩽ 𝑥 ⩽ 𝑞
𝜂1∕2

𝜒 .

Corollary 1.8(ii) can further be applied to strengthenChinis’s result [2, Corollary 1.1] on Sarnak’s
conjecture on Möbius disjointness being true at infinitely many scales under the assumption of
Siegel zeros. Applying Corollary 1.8 and Sarnak’s argument for the implication from Chowla’s
conjecture to Sarnak’s conjecture (as in [2]), we see that, under the hypotheses of Corollary 1.8,
for any fixed deterministic 𝑓 ∶ ℕ → ℂ, we have∑

𝑛⩽𝑥

𝜆(𝑛)𝑓(𝑛) = 𝑜(𝑥)

in the range 𝑞1∕2+𝜀0𝜒 ⩽ 𝑥 ⩽ 𝑞
𝜂1∕2

𝜒 . This improves on the range 𝑞10𝜒 ⩽ 𝑥 ⩽ 𝑞
log log 𝜂∕3
𝜒 in [2].

Corollary 1.8(iii) relates to the conjecture (considered in, for example, [23], [25], [15], [16]) that∑|ℎ|<𝑝⩽𝑥 𝜆(𝑝 + ℎ) = 𝑜(𝜋(𝑥)), proving it for infinitely many 𝑥 under the existence of infinitely
many Siegel zeros (of arbitrarily high quality).
We lastly note that, after the submission of this paper, Matomäki and Merikoski [17] proved a

quantitatively stronger version of Corollary 1.8(i).
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1.2 Overview of proof

The general strategy for proving results such as Theorem 1.6 is now well known: in the presence
of a Siegel zero (and for 𝑥 comparable in log-scale to 𝑞𝜒), the function 𝜆 ‘pretends’† to be like the
Dirichlet character 𝜒, and the von Mangoldt function Λ = 𝜇 ∗ log similarly ‘pretends’ to be like
𝜒 ∗ log, so the correlation in (1.6) is of comparable complexity to the average

𝔼𝑛⩽𝑥(𝜒 ∗ log)(𝑛 + ℎ1)⋯ (𝜒 ∗ log)(𝑛 + ℎ𝑘)𝜒(𝑛 + ℎ
′
1)⋯𝜒(𝑛 + ℎ′𝓁)

(in practice we also have to insert some sieve weights to account for the fact that not all numbers
are rough). This is a twisted and weighted version of the divisor correlation

𝔼𝑛⩽𝑥𝜏(𝑛 + ℎ1)⋯ 𝜏(𝑛 + ℎ𝑘)

which, as previously mentioned, is well understood for 𝑘 ⩽ 2, basically because the Weil bounds
for Kloosterman sums ensure that 𝜏 has level of distribution at least 2∕3, the key point being
that this is larger than 1∕2. The twist by 𝜒 introduces the need to estimate character sums
such as

𝔼𝑛⩽𝑥𝜒(𝑛 + ℎ1)⋯𝜒(𝑛 + ℎ𝑘)𝜒(𝑛 + ℎ
′
1)⋯𝜒(𝑛 + ℎ′𝓁),

which can be adequately controlled by the Weil estimates for character sums since we are in the
regime 𝑥 ≫ 𝑞

1∕2
𝜒 .

To make this strategy rigorous, we will approximate the functions Λ, 𝜆 by a series of more
tractable approximants that involve the exceptional character 𝜒 (as well as the scale 𝑥). We will
do this by executing the following steps in order.

(i) Replace the Liouville function 𝜆 with an approximant 𝜆Siegel, which is a completely multi-
plicative function that agrees with 𝜆 at small primes and agrees with 𝜒 at large primes. (This
step was also performed in [2, 6].)

(ii) Replace the vonMangoldt functionΛwith an approximantΛSiegel, which is theDirichlet con-
volution𝜒 ∗ logmultiplied by a Selberg sieve weight 𝜈 to essentially restrict that convolution
to almost primes. (This step essentially also appears in [11].)

(iii) Replace 𝜆Siegel with a more complicated truncation 𝜆
♯
Siegel which has the structure of a ‘Type

I sum’, and which agrees with 𝜆Siegel on numbers that have a ‘typical’ factorization.
(iv) Replace the approximant ΛSiegel with a more complicated approximant Λ♯Siegel which has

the structure of a ‘Type I sum’. (This step is inspired by a similar Type I approxima-
tion to the divisor function 𝜏 (and its higher order generalizations) recently introduced in
[18, 19].)

(v) Now that all terms in the correlation have been replaced with tractable Type I sums, use
standard Euler product calculations and Fourier analysis, similar in spirit to the proof of
the pseudo-randomness of the Selberg sieve majorant for the primes in [9, Appendix D], to
evaluate the correlation to high accuracy.

† Following [8], we informally say that one arithmetic function 𝑓 ‘pretends’ to be another g if they are often close to each
other when evaluated at rough numbers.
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More succinctly, the proof of Theorem 1.6 proceeds by justifying all of the following
approximations:

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁)

(𝑖)
≈ 𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ

′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁)

(𝑖𝑖)
≈ 𝔼𝑛⩽𝑥ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ

′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁)

(𝑖𝑖𝑖)
≈ 𝔼𝑛⩽𝑥ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁)

(𝑖𝑣)
≈ 𝔼𝑛⩽𝑥Λ

♯
Siegel(𝑛 + ℎ1)⋯Λ♯Siegel(𝑛 + ℎ𝑘)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁)

(𝑣)
≈ 𝔖,

(1.7)

where the precise meaning of the symbol ≈ is given in (2.11) below.
The steps (i)–(v) are executed in Sections 4–8, respectively. Interestingly, the hypothesis 𝑘 ⩽ 2

is only used in step (iv) of this process.
Steps (i) and (ii) of the strategy rely ultimately on thewell-known phenomenon that in the pres-

ence of a Siegel zero, one has 𝜒(𝑝) = −1 for most primes 𝑝 that are comparable to the conductor
𝑞𝜒 in log-scale. Traditionally, such phenomena are justified using complex-analytic methods, and
in particular by exploiting the Deuring–Heilbronn phenomenon. It turns out that an alternate
approach relying almost entirely on elementary methods leads instead to significantly superior
dependence on the quality 𝜂 of the zero; see Proposition 3.5. This eventually enables us to obtain
a wider 𝑥 range in Theorem 1.6 than in previous results.
Step (iii) involves splitting 𝜆Siegel, which is a kind of character-twisted divisor sum, into two

parts as 𝜆♯Siegel + 𝜆
♭
Siegel, where 𝜆

♯
Siegel accounts for the small divisors (with a smooth truncation)

and 𝜆♭Siegel accounts for the large divisors. It turns out that 𝜆
♭
Siegel has a negligible contribution to

the correlation (basically because smooth numbers become extremely rare at large scales). This
is shown by first constructing a majorant for 𝜆♭Siegel (in Lemma 6.1) that after some Euler product
computations is seen to be small ‘on average’ in a suitable sense.†
Steps (iv) and (v) morally speaking amount to computing correlations such as

𝔼𝑛⩽𝑥,𝑛=𝑎(𝑞)(𝜒 ∗ log(𝑛))(𝜒 ∗ log(𝑛 + ℎ)) (1.8)

with power-saving error term (for 1 ⩽ 𝑎 ⩽ 𝑞 ⩽ 𝑥𝛿 for a small 𝛿 > 0), as well as correlations of the
form

𝔼𝑛⩽𝑥𝑓(𝑛 + ℎ1)⋯𝑓(𝑛 + ℎ𝑘), (1.9)

where 𝑓(𝑛) =
∑
𝑑∣𝑛,𝑑⩽𝑥𝛿 𝑏𝑑 is a Type I sum with explicit coefficients 𝑏𝑑. However, both of these

tasks are rather tedious as such; the first correlation (1.8) has secondary main terms of order

† It would probably be possible to execute steps (ii) and (iii) in the opposite order, but that would offer no noteworthy
simplifications, as we would still need to construct a majorant for 𝜆♭Siegel.
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𝑂( 1

log 𝑥
) times the main term (cf., [4]), and we would need a fully explicit asymptotic in terms of

ℎ, 𝑎, 𝑞; meanwhile, evaluating the second correlation (1.9) with the Goldston–Yıldırım approach
[7] leads to some tricky contour integrals.We therefore smoothenΛSiegel by inserting a smooth par-
tition of unity; the smoothness of the resulting functions makes handling error terms easier, just
as in the smoothed approach to Goldston–Yıldırım type correlations in [9, Appendix D]. We can
also avoid explicitly obtaining asymptotics for sums such as (1.8) by using the Dirichlet hyperbola
method, although themain ingredient for evaluating such correlations (namely Kloosterman sum
bounds) is still needed. Our use of smooth weights does still necessitate some lengthy yet stan-
dard Fourier-analytic computations, but the arithmetic input is easier than in a direct approach
involving an evaluation of (1.8) and (1.9).

2 NOTATION

2.1 Asymptotic notation

For the rest of the paper, we let 𝑘,𝓁, ℎ1, … , ℎ𝑘, ℎ′1, … , ℎ
′
𝓁 , 𝜀0, 𝛽, 𝜒, 𝑞𝜒, 𝜂, 𝑥 be as in Theorem 1.6,

save that we will not require the hypothesis 𝑘 ⩽ 2 except in Section 5, and that we do not impose
the restriction (1.5) on 𝑥 > 1 before Section 4. We use the asymptotic notation 𝑋 ≪ 𝑌, 𝑌 ≫ 𝑋, or
𝑋 = 𝑂(𝑌) to denote the bound |𝑋| ⩽ 𝐶𝑌 where 𝐶 is a constant which is allowed to depend on
the ‘fixed’ quantities 𝑘,𝓁, ℎ1, … , ℎ𝑘, ℎ′1, … , ℎ

′
𝓁 , 𝜀0; we permit the constants to be ineffective. Thus,

for instance, the singular series 𝔖 in Conjecture 1.3 obeys the bound 𝔖 = 𝑂(1). If we need the
constant 𝐶 to depend on additional parameters, we will indicate this by subscripts, for instance,
𝑋 ≪𝐴 𝑌 denotes the bound |𝑋| ⩽ 𝐶𝐴𝑌 where 𝐶𝐴 depends on the parameter𝐴 as well as the fixed
quantities. We write 𝑋 ≍ 𝑌 for 𝑋 ≪ 𝑌 ≪ 𝑋.
By shrinking 𝜀0 if necessary, we may assume that 𝜀0 is sufficiently small depending on 𝑘,𝓁. We

will also assume that 𝜂 is sufficiently large depending on the fixed quantities, since otherwise the
claim follows from standard upper bound sieves (such as Lemma 3.2). By (1.4), this also means
that 𝑞𝜒 (and hence 𝑥) is also sufficiently large depending on the fixed quantities.

2.2 Indicator and exponential functions

If 𝑆 is a sentence,we use 1𝑆 to denote its indicator, thus 1𝑆 = 1when 𝑆 is true and 1𝑆 = 0 otherwise.
If 𝐸 is a set, we use 1𝐸 to denote the indicator function 1𝐸(𝑛) ∶= 1𝑛∈𝐸 .
In addition to the notation 𝑒(𝜃) ∶= 𝑒2𝜋𝑖𝜃, we also write 𝑒𝑞(𝑎) ∶= 𝑒(𝑎∕𝑞) = 𝑒2𝜋𝑖𝑎∕𝑞 for natural

numbers 𝑞 and 𝑎 ∈ ℤ∕𝑞ℤ. We also write ‖𝜃‖ℝ∕ℤ for the distance of 𝜃 to the nearest integer.
2.3 Primes and prime factorization

Unless otherwise specified, all sums and products will be over the natural numbers ℕ = {1, 2, … },
with the exception of sums and products involving the variable 𝑝 (or 𝑝′, 𝑝1, etc.), which will be
over primes. We define an exceptional prime to be a prime 𝑝∗ such that 𝜒(𝑝∗) ≠ −1; sums over 𝑝∗
(or 𝑝∗

1
, etc.) will always be understood to be over exceptional primes.
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If 𝑛 is a natural number and 𝑝 is a prime, we let 𝑛(𝑝) denote the largest power of 𝑝 dividing 𝑛,
thus from the fundamental theorem of arithmetic

𝑛 =
∏
𝑝

𝑛(𝑝). (2.1)

For any threshold 𝑧 > 1, we may therefore factor a natural number 𝑛 as

𝑛 = 𝑛(⩽𝑧)𝑛(>𝑧), (2.2)

where the 𝑧-smooth and 𝑧-rough components 𝑛(⩽𝑧), 𝑛(>𝑧) of 𝑛 are defined as

𝑛(⩽𝑧) ∶=
∏
𝑝⩽𝑧

𝑛(𝑝)

𝑛(>𝑧) ∶=
∏
𝑝>𝑧

𝑛(𝑝).

For a prime 𝑝, we let

ℕ(𝑝) ∶= {𝑛(𝑝) ∶ 𝑛 ∈ ℕ} = {1, 𝑝, 𝑝2, … }

denote the multiplicative semigroup generated by 𝑝, and similarly for a threshold 𝑧 > 1wewrite

ℕ(⩽𝑧) ∶= {𝑛(⩽𝑧) ∶ 𝑛 ∈ ℕ}

ℕ(>𝑧) ∶= {𝑛(>𝑧) ∶ 𝑛 ∈ ℕ}

for the multiplicative semigroups of 𝑧-smooth and 𝑧-rough numbers, respectively.
If 𝑑1, … , 𝑑𝑚 are natural numbers, we use (𝑑1, … , 𝑑𝑚) and [𝑑1, … , 𝑑𝑚] to denote their greatest

common divisor and least common multiple, respectively. We use 𝑑 (𝑞) to denote the reduction
of 𝑑 to ℤ∕𝑞ℤ, and 𝑞|𝑑 to denote the assertion that 𝑞 divides 𝑑 (or equivalently 𝑑 = 0 (𝑞)).
A function g ∶ ℕ𝑚 → ℂ of𝑚 natural numbers 𝑑1, … , 𝑑𝑚 ismultiplicative if one has

g(𝑑1𝑑
′
1, … , 𝑑𝑚𝑑

′
𝑚) = g(𝑑1, … , 𝑑𝑚)g(𝑑

′
1, … , 𝑑

′
𝑚)

whenever (𝑑1⋯𝑑𝑚, 𝑑
′
1
⋯𝑑′𝑚) = 1. Observe the Euler product identity∑

𝑑1,…,𝑑𝑚

g(𝑑1, … , 𝑑𝑚) =
∏
𝑝

𝐸𝑝 (2.3)

whenever the left-hand side is absolutely convergent, where the Euler factors 𝐸𝑝 are defined as

𝐸𝑝 ∶=
∑

𝑑1,…,𝑑𝑚∈ℕ(𝑝)

g(𝑑1, … , 𝑑𝑚).

We observe the localized form ∑
𝑑1,…,𝑑𝑚∈ℕ(⩽𝑧)

g(𝑑1, … , 𝑑𝑚) =
∏
𝑝⩽𝑧

𝐸𝑝 (2.4)
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of the Euler product identity for any threshold 𝑧 > 0; in particular, if g is non-negative, then∑
𝑑1,…,𝑑𝑚⩽𝑧

g(𝑑1, … , 𝑑𝑚) ⩽
∏
𝑝⩽𝑧

𝐸𝑝. (2.5)

We will frequently rely on Dirichlet convolution

𝑓 ∗ g(𝑛) ∶=
∑
𝑑|𝑛 𝑓(𝑑)g

(
𝑛

𝑑

)
.

We let pointwise product take precedence over convolution, thus, for instance,

𝑓1𝑓2 ∗ 𝑓3𝑓4 = (𝑓1𝑓2) ∗ (𝑓3𝑓4).

From (2.2), we observe the identity

𝑓 = 𝑓(⩽𝑧) ∗ 𝑓(>𝑧) (2.6)

for any multiplicative function 𝑓 and any threshold 𝑧 > 1, where

𝑓(⩽𝑧) = 𝑓1ℕ(⩽𝑧)

𝑓(>𝑧) = 𝑓1ℕ(>𝑧)

are the restrictions of𝑓 to 𝑧-smooth and 𝑧-rough numbers, respectively. Thus, for instance, 1(⩽𝑧) =
1ℕ(⩽𝑧) . Observe that this splitting respects Dirichlet convolutions, in the sense that

(𝑓 ∗ g)(⩽𝑧) = 𝑓(⩽𝑧) ∗ g(⩽𝑧); (𝑓 ∗ g)(>𝑧) = 𝑓(>𝑧) ∗ g(>𝑧) (2.7)

for any 𝑓, g ∶ ℕ → ℂ.

2.4 Scales

We will make frequent use of the scales

𝑅 ∶= 𝑥1∕ log
1

5max(1,𝑘) 𝜂 (2.8)

and

𝐷 ∶= 𝑥
𝜀0

10(𝑘+𝓁) . (2.9)

We will also occasionally need the auxiliary scale

𝑅0 ∶= 𝑥1∕
√
log 𝜂. (2.10)
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The reader may wish to keep in mind the hierarchy of scales

1 < log 𝜂 ≪ log 𝑞𝜒 ≪ log 𝑥 < 𝑅0 < 𝑅 < 𝐷 < 𝑥.

which follows easily from (1.4). The conductor 𝑞𝜒 lies between log 𝑥 and 𝑥2 but can be either
smaller or larger than 𝑅0, 𝑅, or 𝐷.
We adopt the notation

log𝑧 𝑦 ∶=
log 𝑦

log 𝑧

for the logarithm of 𝑦 to base 𝑧 for any 𝑦, 𝑧 > 0, and use the notation 𝑋 ≈ 𝑌 as an abbreviation
for

𝑋 = 𝑌 + 𝑂
⎛⎜⎜⎝ 1

log
1

10max(1,𝑘) 𝜂

⎞⎟⎟⎠. (2.11)

Thus, for instance, the estimate (1.6) can be abbreviated to

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁) ≈ 𝔖.

The scales 𝑅0, 𝑅, 𝐷 have been chosen so that certain combinations of these scales with 𝑥, 𝜂, 𝑞𝜒
that will arise in our calculations are negligible with respect to the relation ≈. More precisely, we
observe for future reference that due to (1.5), (2.8), (2.9), (2.10), (1.4), we have relations

log𝐷 𝑥 ≍ log𝑥 𝐷 ≍ 1 (2.12)

log𝐷 𝑅 ≍ log𝑥 𝑅 = log
− 1
5max(1,𝑘) 𝜂 ≈ 0 (2.13)

(log𝑘𝑅 𝑥) log𝑅 𝑅0 = log
𝑘

5max(1,𝑘)
− 1
2 𝜂 ≈ 0 (2.14)

log𝑘𝑅 𝑥

log𝑘 𝜂
= log

𝑘
5max(1,𝑘)

−𝑘
𝜂 ≈ 0 (2.15)

𝑅2𝑘𝐷2(𝑘+𝓁)𝑞
4𝑘+1∕2
𝜒 𝑥𝜀0

𝑥
⩽ 𝑥

2𝑘

log1∕(5max(1,𝑘)) 𝜂
+
2(𝑘+𝓁)𝜀0
10(𝑘+𝓁)

+
4𝑘+1∕2

10𝑘+ 12 +𝜀0
+𝜀0−1

≈ 0 (2.16)

(log𝑂(1)
𝑅

𝑥) exp(−
√
log 𝜂∕2) = (log𝑂(1) 𝜂) exp(−

√
log 𝜂∕2) ≈ 0 (2.17)

𝑞
−
𝜀0
4

𝜒 log𝑂(1) 𝑥 ⩽ 𝑥
−

𝜀0

4(10𝑘+ 12 +𝜀0) log𝑂(1) 𝑥 ≈ 0 (2.18)

as well as the estimate

exp
(
−
1

8
log𝑅 𝐷

)
= exp

(
−
𝜀0 log

1∕5max(1,𝑘) 𝜂

80(𝑘 + 𝓁)

)
≪𝐴 log

−𝐴 𝜂 (2.19)
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for all 𝐴 > 0. Also, for 𝑘 = 1, 2, we note for future reference that

(
√
𝑥𝑅2)

3
2
(𝑘−1)𝐷2(𝑘+𝓁)𝑞

9∕2
𝜒

𝑥1−2𝜀0
≪ 𝑥

3
4
(𝑘−1)+ 9

2
1
10𝑘

+3𝜀0−1

≪ 𝑥−𝜀0

≈ 0

(2.20)

since 3

4
(𝑘 − 1) + 9

2

1

10𝑘
⩽ 1 − 1

40
< 1 for 𝑘 = 1, 2.

2.5 The Selberg sieve

We fix a smooth function 𝜓∶ ℝ → ℝ supported on [−1, 1] that equals to 1 on [−1∕2, 1∕2], and
define the smooth cutoffs

𝜓⩽𝑧(𝑛) ∶= 𝜓(log𝑧 𝑛) (2.21)

and

𝜓>𝑧(𝑛) ∶= 1 − 𝜓(log𝑧 𝑛) (2.22)

for any 𝑧 > 1. We then define the Selberg sieve†

𝜈(𝑛) ∶=

(∑
𝑑|𝑛 𝜇(𝑑)𝜓⩽𝑅(𝑑)

)2

. (2.23)

Note that 𝜈 is an upper bound sieve for 1(>𝑅), thus

1(>𝑅)(𝑛) ⩽ 𝜈(𝑛) (2.24)

for all natural numbers 𝑛.

3 TOOLS

In this section,we collect some (mostly standard) estimates on various arithmetic functionswhich
will be used in our main argument.

†Here we use the Selberg sieve with smoothed coefficients, which was implicitly introduced by Goldston and Yıldırım;
see, for instance, [9, Appendix D] for further discussion. Other sieve approximants to 1(>𝑧) could be used as a substitute
for this sieve if desired; for instance, the beta sieve was used in place of a Selberg sieve in the recent work [17], which
appeared subsequently to the initial release of this paper.
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3.1 Multiplicative number theory bounds

We recall the crude divisor bound

𝜏(𝑛) ≪𝜀 𝑛
𝜀 (3.1)

for any 𝑛 ⩾ 1 and 𝜀 > 0; see, for example, [20, (2.20)].
From the Euler product formula,

𝜁(𝑠) =
∏
𝑝

(
1 −

1

𝑝𝑠

)−1

and the fact that 𝜁 has a simple pole at 𝑠 = 1 with residue 1 and no zeroes in {𝑠 ∶ |𝑠 − 1| ⩽ 1

2
}, we

see that ∏
𝑝

(
1 −

1

𝑝𝑠

)
= (1 + 𝑂(|𝑠 − 1|))(𝑠 − 1) (3.2)

whenever 𝑠 is a complex number with Re𝑠 > 1 and |𝑠 − 1| < 1

2
.

From Mertens’ theorem, we easily verify that∑
𝑝⩽𝑧

min(𝜎 log𝑅 𝑝, 1)

𝑝
≪ log(1 + 𝜎 log𝑅 𝑧) (3.3)

for any 𝜎 > 0 and 𝑅, 𝑧 ⩾ 1, as can be seen by verifying the cases 𝜎 log𝑅 𝑧 < 1 and 𝜎 log𝑅 𝑧 ⩾ 1
separately; in exponential form, we thus have∏

𝑝⩽𝑧

(
1 + 𝑂

(
min(𝜎 log𝑅 𝑝, 1)

𝑝

))
⩽ (1 + 𝜎 log𝑅 𝑧)

𝑂(1). (3.4)

Mertens’ theorem also gives (by dyadic decomposition) the bounds

∑
𝑝⩾𝑦

1

𝑝1+1∕ log 𝑧
=

∑
𝑝⩾𝑦

exp(− log𝑧 𝑝)

𝑝
≍
exp(− log𝑧 𝑦)

log𝑧 𝑦
(3.5)

and ∏
𝑝⩽𝑧

(
1 −

𝑚

𝑝

)
≍𝑚 log−𝑚 𝑧 (3.6)

for any 𝑦 ⩾ 𝑧 ⩾ 2 and𝑚 ⩾ 1. In particular,∏
𝑝

(
1 + 𝑂

(
1

𝑝1+1∕ log 𝑧

))
≪ log𝑂(1) 𝑧. (3.7)

We recall an elementary inequality of Landreau [14] that allows one to upper bound the divisor
function 𝜏 by a Type I sum:

Lemma 3.1 (Landreau’s inequality).
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(i) If 𝑛 is a natural number and 𝑦 > 𝑧 > 1, then we can factor

𝑛 = 𝑛(>𝑧)𝑛1⋯𝑛𝑚, (3.8)

where 𝑛1, … , 𝑛𝑚 ⩽ 𝑦 lie in ℕ(⩽𝑧) and 0 ⩽ 𝑚 ⩽ 1 + log𝑦∕𝑧 𝑛. Also, 𝑛(>𝑧) is the product of at most
log𝑧 𝑛 primes.

(ii) If 𝜀 > 0, then

𝜏(𝑛) ≪𝜀

∑
𝑑|𝑛∶𝑑⩽𝑛𝜀 𝜏(𝑑)

𝑂𝜀(1) (3.9)

for all 𝑛 ⩾ 1. In particular, by (2.9), one has

𝜏(𝑛) ≪
∑

𝑑|𝑛∶𝑑⩽𝐷 𝜏(𝑑)
𝑂(1) (3.10)

for 𝑛 ≪ 𝑥.

Proof. Observe from the greedy algorithm that any number in ℕ(⩽𝑧) is either greater than 𝑦, or
contains a factor between 𝑦∕𝑧 and 𝑦. Iterating this fact, we can factor 𝑛(⩽𝑧) = 𝑛1⋯𝑛𝑚 where
𝑛1, … , 𝑛𝑚 ⩽ 𝑦 and all but at most one of the 𝑛1, … , 𝑛𝑚 are greater than or equal to 𝑦∕𝑧. This gives
the bound𝑚 ⩽ 1 + log𝑦∕𝑧 𝑛. Since 𝑛(>𝑧) is the product of primes greater than 𝑧, the total number
of primes is at most log𝑧 𝑛. This gives (i).
For (ii), we apply (i) with 𝑦 = 𝑛𝜀 and 𝑧 = 𝑛𝜀∕2 and use (2.12) to obtain the factorization (3.8)

with 𝑛(>𝑛𝜀∕2) the product of 𝑂𝜀(1) primes, 𝑚 = 𝑂𝜀(1), and 𝑛1, … , 𝑛𝑚 ⩽ 𝑛𝜀. Using the elementary
inequality 𝜏(𝑎𝑏) ⩽ 𝜏(𝑎)𝜏(𝑏), we conclude that

𝜏(𝑛) ≪ 𝜏(𝑛1)⋯ 𝜏(𝑛𝑚)

and hence by the pigeonhole principle

𝜏(𝑛) ≪ 𝜏(𝑑)𝑚

for 𝑑 equal to one of the 𝑛1, … , 𝑛𝑚. The claim (ii) follows. □

We also record a standard sieve upper bound, which can easily be deduced from the
fundamental lemma of sieve theory (or the large sieve):

Lemma 3.2 (Sieve upper bound). Suppose that for every prime 𝑝 ⩽ 𝑥 there is a natural number
0 ⩽ 𝜔(𝑝) ≪ 1, and let 𝐸 be a subset of {𝑛 ∶ 𝑛 ⩽ 𝑥}which avoids at least 𝜔(𝑝) residue classes modulo
𝑝 for each 𝑝 ⩽ 𝑥. Then we have

𝔼𝑛⩽𝑥1𝐸(𝑛) ≪
∏
𝑝⩽𝑥

(
1 −

𝜔(𝑝)

𝑝

)
.

Proof. Wemay assume that 𝜔(𝑝) < 𝑝 for all 𝑝, since otherwise 𝐸 is empty and the claim is trivial
(of course, this assumption is only non-trivial for the very small primes 𝑝 = 𝑂(1)). By Mertens’
theorem, the contribution of the primes 𝑥1∕100 < 𝑝 ⩽ 𝑥 to the right-hand is≍ 1, so wemay replace
the product

∏
𝑝⩽𝑥 here with

∏
𝑝⩽𝑥1∕100 .
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Let g be the multiplicative function g(𝑑) ∶=
∏

𝑝|𝑑∶𝑝⩽𝑥1∕100 𝜔(𝑝)𝑝 . By the fundamental lemma of

sieve theory (see [12, Lemma 6.3]), we can find weights 𝜆+
𝑑
∈ [−1, 1] for all 𝑑 ⩽

√
𝑥 such that

1𝑛=1 ⩽
∑
𝑑|𝑛 𝜆

+
𝑑

(3.11)

for all natural numbers 𝑛, and ∑
𝑑⩽𝑥1∕2

𝜆+
𝑑
g(𝑑) ≪

∏
𝑝⩽𝑥1∕100

(1 − g(𝑝)). (3.12)

For each 𝑑 ⩽ 𝑥1∕2, let 𝐸𝑑 be the set formed by removing the 𝜔(𝑝) residue classes modulo 𝑝
from {𝑛 ∶ 𝑛 ⩽ 𝑥} for all 𝑝|𝑑. Then from (3.11) (with 𝑛 replaced by

∏
𝑝⩽𝑥1∕100∶𝑛∉𝐸𝑝

𝑝), we have the
pointwise bound

1𝐸 ⩽
∑

𝑑⩽𝑥1∕2

𝜆+
𝑑
1𝐸𝑑

and thus

𝔼𝑛⩽𝑥1𝐸(𝑛) ⩽
∑

𝑑⩽𝑥1∕2

𝜆+
𝑑
𝔼𝑛⩽𝑥1𝐸𝑑 (𝑛).

From the Chinese remainder theorem, we have

𝔼𝑛⩽𝑥1𝐸𝑑 (𝑛) = g(𝑑) + 𝑂
(
1

𝑥

)
and thus by (3.12)

𝔼𝑛⩽𝑥1𝐸𝑑 (𝑛) ≪
∏

𝑝⩽𝑥1∕100

(
1 −

𝜔(𝑝)

𝑝

)
+

1

𝑥1∕2
.

By Mertens’ theorem (3.6), the second term on the right-hand side is certainly dominated by the
former, and the claim follows. □

We also record the following easy consequence of the Chinese remainder theorem.

Lemma 3.3 (Chinese remainder theorem). Let 𝑑1, … , 𝑑𝑘′ be natural numbers for some 2 ⩽ 𝑘′ ⩽
𝑘 + 𝓁, and set 𝑑 ∶= [𝑑1, … , 𝑑𝑘′ ].

(i) If (𝑑𝑖, 𝑑𝑗) does not divide ℎ𝑖 − ℎ𝑗 for some 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘′, then
∏𝑘′

𝑗=1 1𝑑𝑗|𝑛+ℎ𝑗 vanishes for all 𝑛.
(ii) If instead (𝑑𝑖, 𝑑𝑗) divides ℎ𝑖 − ℎ𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘′, then there is a unique residue class

𝑎 (𝑑) such that
∏𝑘′

𝑗=1 1𝑑𝑗|𝑛+ℎ𝑗 = 1𝑛=𝑎 (𝑑). Furthermore, 𝑎 = −ℎ𝑗 (𝑑𝑗) for all 𝑗 = 1,… , 𝑘′, and
𝑑 ≍ 𝑑1⋯𝑑𝑘′ .

Proof. All the claims are immediate except for the existence of the residue class 𝑎 in part (ii) (the
final part of (ii) following from the general relation 𝑑1⋯𝑑𝑘′

[𝑑1,…,𝑑𝑘′ ]
|∏1⩽𝑖<𝑗⩽𝑘′ (𝑑𝑖, 𝑑𝑗)). By the Chinese

remainder theorem, we may assume that the 𝑑𝑖 are all powers of a single prime 𝑝. Then we have
𝑑 = 𝑑𝑖 for some 1 ⩽ 𝑖 ⩽ 𝑘′, and the claim follows by setting 𝑎 ∶= −ℎ𝑖 . □
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3.2 Some fourier analysis

Recall the Fourier inversion formula: if g ∶ ℝ → ℂ is a Schwartz function, then one has

g(𝑢) = ∫ℝ 𝑒
−𝑖𝑡𝑢𝑓(𝑡) 𝑑𝑡 (3.13)

for all 𝑢 ∈ ℝ, where the Fourier transform 𝑓∶ ℝ → ℂ of g is another Schwartz function defined
by the formula

𝑓(𝑡) ∶=
1

2𝜋 ∫ℝ 𝑒
𝑖𝑡𝑢g(𝑢) 𝑑𝑢.

As a special case of this, if 𝜑∶ ℝ → ℂ is a function such that 𝑢 ↦ 𝑒𝑢𝜑(𝑢) is Schwartz, then

𝑒𝑢𝜑(𝑢) = ∫ℝ 𝑒
−𝑖𝑡𝑢𝑓(𝑡) 𝑑𝑡

for all 𝑢 ∈ ℝ, where

𝑓(𝑡) ∶=
1

2𝜋 ∫ℝ 𝑒
(1+𝑖𝑡)𝑢𝜑(𝑢) 𝑑𝑢.

In particular, for any real 𝑛, 𝑧 > 0, we have

𝜑(log𝑧 𝑛) = ∫ℝ
1

𝑛
1+𝑖𝑡
log 𝑧

𝑓(𝑡) 𝑑𝑡. (3.14)

Evaluating this formula at 𝑛 = 1, we conclude that

𝜑(0) = ∫ℝ 𝑓(𝑡) 𝑑𝑡 (3.15)

and if one differentiates at 𝑛 = 1 instead one obtains the variant identity

−𝜑′(0) = ∫ℝ(1 + 𝑖𝑡)𝑓(𝑡) 𝑑𝑡. (3.16)

As an application of these Fourier representations, we give an analogue of Lemma 3.2 for the
Selberg sieve 𝜈 (cf., [22, Lemma 3], [24, Proposition 14]):

Lemma 3.4 (Selberg sieve concentrates on almost primes). Let 0 ⩽ 𝓁′ ⩽ 𝓁, and let 1 ⩽
𝑑1, … , 𝑑𝑘, 𝑑

′
1
, … , 𝑑′

𝓁′
⩽ 𝑥 be integers. Then

𝔼𝑛⩽𝑥

𝑘∏
𝑗=1

𝜈(𝑛 + ℎ𝑗)1𝑑𝑗|𝑛+ℎ𝑗
𝓁′∏
𝑗′=1

1𝑑′
𝑗′
|𝑛+ℎ′

𝑗′

≪𝐴

𝜏(𝑑1⋯𝑑𝑘𝑑
′
1
⋯𝑑′

𝓁′
)𝑂(1)

𝑑1⋯𝑑𝑘𝑑
′
1
⋯𝑑′

𝓁′
log𝑘 𝑅 ∫

∞

1

( ∏
𝑝|𝑑1⋯𝑑𝑘

min(𝜎 log𝑅 𝑝, 1)

)
𝑑𝜎

𝜎𝐴
+
𝑅2𝑘

𝑥

(3.17)

for any 𝐴 > 0.
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The 𝑅2𝑘

𝑥
error term is negligible in practice. The 𝜎 variable of integration is technical and as

a first approximation the reader is invited to replace 𝜎 with 1 (and delete the integral). The key
feature of this estimate are the factors ofmin(𝜎 log𝑅 𝑝, 1), which make the left-hand side of (3.17)
small when 𝑑1, … , 𝑑𝑘 have one or more small prime factors. With further effort, one could obtain
a more precise asymptotic for the left-hand side of (3.17) (in the spirit of [9, Theorem D.3]) but we
will not need to do so here.

Proof. It is convenient to relabel by writing 𝑘′ ∶= 𝑘 + 𝓁′ and ℎ𝑘+𝑗 ∶= ℎ′
𝑗
, 𝑑𝑘+𝑗 ∶= 𝑑′

𝑗
for 𝑗 =

1,… ,𝓁′. By Lemma 3.3, we may assume that (𝑑𝑖, 𝑑𝑗)|ℎ𝑖 − ℎ𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘′. In particular, if
we set 𝑑 ∶= [𝑑1, … , 𝑑𝑘] and 𝑑′ ∶= [𝑑1, … , 𝑑𝑘′ ], then 𝑑 ≍ 𝑑1⋯𝑑𝑘 and 𝑑′ ≍ 𝑑1⋯𝑑𝑘′ .
By (2.23), the left-hand side of (3.17) may be expanded as

∑
𝑑′
1
,𝑑′′
1
,…,𝑑′

𝑘
,𝑑′′
𝑘

𝔼𝑛⩽𝑥

𝑘∏
𝑗=1

𝜇𝜓⩽𝑅(𝑑
′
𝑗)𝜇𝜓⩽𝑅(𝑑

′′
𝑗 )

𝑘′∏
𝑗=1

1𝑑∗
𝑗
|𝑛+ℎ𝑗 ,

where 𝑑∗
𝑗
∶= [𝑑𝑗, 𝑑

′
𝑗
, 𝑑′′

𝑗
] for 𝑗 = 1,… , 𝑘 and 𝑑∗

𝑗
∶= 𝑑𝑗 for 𝑗 = 𝑘 + 1,… , 𝑘′. From Lemma 3.3, we

see that the average 𝔼𝑛⩽𝑥
∏𝑘′

𝑗=1 1𝑑∗𝑗 |𝑛+ℎ𝑗 vanishes unless (𝑑∗𝑖 , 𝑑∗𝑗 )|ℎ𝑖 − ℎ𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘′, in

which case it is equal to 1

[𝑑∗
1
,…,𝑑∗

𝑘′
]
+ 𝑂( 1

𝑥
). The contribution of the error 𝑂( 1

𝑥
) is of size 𝑂(𝑅

2𝑘

𝑥
), so

it suffices to show that

∑
𝑑′
1
,𝑑′′
1
,…,𝑑′

𝑘
,𝑑′′
𝑘

∏𝑘
𝑗=1 𝜇𝜓⩽𝑅(𝑑

′
𝑗
)𝜇𝜓⩽𝑅(𝑑

′
𝑗
)
∏

1⩽𝑖<𝑗⩽𝑘′ 1(𝑑∗𝑖 ,𝑑
∗
𝑗
)|ℎ𝑖−ℎ𝑗

[𝑑∗
1
, … , 𝑑∗

𝑘′
]

≪𝐴 ∫
∞

1

𝜏(𝑑′′)𝑂(1)

𝑑′ log𝑘 𝑅

∏
𝑝|𝑑 min(𝜎 log𝑅 𝑝, 1)

𝑑𝜎

𝜎𝐴
.

We can expand the left-hand side using (3.14) and Fubini’s theorem as

∫ℝ2𝑘
∑

𝑑′
1
,𝑑′′
1
,…,𝑑′

𝑘
,𝑑′′
𝑘

∏𝑘
𝑗=1 𝜇(𝑑

′
𝑗
)𝜇(𝑑′′

𝑗
)
∏

1⩽𝑖<𝑗⩽𝑘′ 1(𝑑∗𝑖 ,𝑑
∗
𝑗
)|ℎ𝑖−ℎ𝑗

[𝑑∗
1
, … , 𝑑∗

𝑘′
]
∏𝑘

𝑗=1(𝑑
′
𝑗
)

1+𝑖𝑡′
𝑗

log 𝑅 (𝑑′′
𝑗
)

1+𝑖𝑡′′
𝑗

log 𝑅

𝑘∏
𝑗=1

𝑓(𝑡′𝑗)𝑓(𝑡
′′
𝑗 ) 𝑑𝑡

′
𝑗𝑑𝑡

′′
𝑗

for some Schwartz function 𝑓. Changing variables using the substitution 𝜎 ∶= 1 +
∑𝑘
𝑗=1 |𝑡′𝑗| +|𝑡′′

𝑗
|, and using the rapid decay of 𝑓 and the triangle inequality, it will suffice to establish the

pointwise bound

∑
𝑑′
1
,𝑑′′
1
,…,𝑑′

𝑘
,𝑑′′
𝑘

∏𝑘
𝑗=1 𝜇(𝑑

′
𝑗
)𝜇(𝑑′′

𝑗
)
∏

1⩽𝑖<𝑗⩽𝑘′ 1(𝑑∗𝑖 ,𝑑
∗
𝑗
)|ℎ𝑖−ℎ𝑗

[𝑑∗
1
, … , 𝑑∗

𝑘′
]
∏𝑘

𝑗=1(𝑑
′
𝑗
)

1+𝑖𝑡′
𝑗

log 𝑅 (𝑑′′
𝑗
)

1+𝑖𝑡′′
𝑗

log 𝑅

≪ 𝜎𝑂(1)
𝜏(𝑑′)𝑂(1)

𝑑′ log𝑘 𝑅

∏
𝑝|𝑑 min(𝜎 log𝑅 𝑝, 1)

for all 𝑡′
1
, … , 𝑡′′

𝑘
∈ ℝ.
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By (2.3) and the fact that 𝜇 is supported on square-free numbers, the left-hand side factors as
an Euler product

∏
𝑝 𝐸𝑝 where

𝐸𝑝 ∶= 𝐹𝑝

(
1 + 𝑖𝑡′

1

log 𝑅
,
1 + 𝑖𝑡′′

1

log 𝑅
,… ,

1 + 𝑖𝑡′
𝑘

log 𝑅
,
1 + 𝑖𝑡′′

𝑘

log 𝑅

)
and

𝐹𝑝(𝑧
′
1, 𝑧

′′
1 , … , 𝑧

′
𝑘
, 𝑧′′
𝑘
) ∶=

∑
𝑑′
1
,𝑑′′
1
,…,𝑑′

𝑘
,𝑑′′
𝑘
∈{1,𝑝}

∏𝑘
𝑗=1 𝜇(𝑑

′
𝑗
)𝜇(𝑑′′

𝑗
)
∏

1⩽𝑖<𝑗⩽𝑘′ 1((𝑑∗𝑖 )(𝑝),(𝑑
∗
𝑗
)(𝑝))|ℎ𝑖−ℎ𝑗

[𝑑∗
1
, … , 𝑑∗

𝑘′
](𝑝)

∏𝑘
𝑗=1(𝑑

′
𝑗
)
𝑧′
𝑗 (𝑑′′

𝑗
)
𝑧′′
𝑗

.

From the triangle inequality, we have

𝐸𝑝 = 1 + 𝑂
⎛⎜⎜⎝ 1

𝑝
1+ 1

log 𝑅

⎞⎟⎟⎠ (3.18)

when 𝑑′
(𝑝)

= 1 and

𝐸𝑝 ≪
1

𝑑′
(𝑝)

(3.19)

when 𝑑′
(𝑝)

> 1, hence by (3.5) we have∏
𝑝>𝑅

𝐸𝑝𝑑
′
(𝑝)

≪ 𝜏(𝑑′)𝑂(1).

Now let 𝑝 ⩽ 𝑅 and 𝑑′
(𝑝)

> 1. Then from the triangle inequality, we have

𝐹𝑝(𝑧
′
1, 𝑧

′′
1 , … , 𝑧

′
𝑘
, 𝑧′′
𝑘
) ≪

1

𝑑′
(𝑝)

whenever 𝑧′
1
, 𝑧′′
1
, … , 𝑧′

𝑘
, 𝑧′′
𝑘
are complex numbers of size 𝑂( 1

log 𝑝
), while from the cancellation in

the Möbius coefficients 𝜇(𝑑′
𝑗
), 𝜇(𝑑′′

𝑗
) and the hypothesis (𝑑𝑖, 𝑑𝑗)|ℎ𝑖 − ℎ𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘′, we

see that

𝐹𝑝(0, … , 0) = 0.

From the Cauchy integral formula (in the case 𝜎 log𝑅 𝑝 ⩽ 1) or (3.19) (otherwise), we have

𝐸𝑝𝑑
′
(𝑝)

≪ min(𝜎 log𝑅 𝑝, 1).

Finally, suppose that 𝑝 ⩽ 𝑅 and 𝑑′
(𝑝)

= 1. Then from the triangle inequality, we have

𝐹𝑝(𝑧
′
1, 𝑧

′′
1 , … , 𝑧

′
𝑘
, 𝑧′′
𝑘
) = 1 + 𝑂

(
1

𝑝

)
whenever 𝑧′

1
, 𝑧′′
1
, … , 𝑧′

𝑘
, 𝑧′′
𝑘
are complex numbers of size 𝑂( 1

log 𝑝
), while from noting that the con-

ditions ((𝑑∗
𝑖
)(𝑝), (𝑑

∗
𝑗
)(𝑝))|ℎ𝑖 − ℎ𝑗 permit 𝑑′𝑗, 𝑑′′𝑗 to equal 𝑝 for ℎ𝑗 in at most one residue class 𝑎 (𝑝),
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we have

𝐹𝑝(0, … , 0) = 1 +
∑

𝑎∈ℤ∕𝑝ℤ

∑
𝑑′
𝑗
,𝑑′′
𝑗
∈{1,𝑝} when ℎ𝑗=𝑎 (𝑝)

∏
ℎ𝑗=𝑎 (𝑝)

𝜇(𝑑′
𝑗
)𝜇(𝑑′′

𝑗
) − 1

𝑝

= 1 +
∑

𝑎∈ℤ∕𝑝ℤ

(1 − 1)2#{𝑗=1,…,𝑘∶ℎ𝑗=𝑎 (𝑝)} − 1

𝑝

= 1 −
#{ℎ𝑗 (𝑝) ∶ 𝑗 = 1,… , 𝑘}

𝑝

= 𝛽𝑝

(
1 −

1

𝑝

)𝑘

due to (1.2). From the Cauchy integral formula (in the case 𝜎 log 𝑝 ⩽ log 𝑅) or (3.18) (otherwise),
we thus have

𝐸𝑝 = 𝐸𝑝𝑑
′
(𝑝)

= 𝛽𝑝

(
1 −

1

𝑝

)𝑘

+ 𝑂

(
min(𝜎 log𝑅 𝑝, 1)

𝑝

)
,

and hence by (1.3)

𝐸𝑝𝑑
′
(𝑝)

≪

(
1 −

𝑘

𝑝

)(
1 + 𝑂

(
min(𝜎 log𝑅 𝑝, 1)

𝑝

)
+ 𝑂

(
1

𝑝2

))
.

FromMertens’ theorem (3.4), we have

∏
𝑝⩽𝑅

(
1 + 𝑂

(
min(𝜎 log𝑅 𝑝, 1)

𝑝

)
+ 𝑂

(
1

𝑝2

))
≪ 𝜎𝑂(1).

Putting all this together, we see that

∏
𝑝

𝐸𝑝𝑑
′
(𝑝)

≪ 𝜎𝑂(1)𝜏(𝑑′)𝑂(1)
∏

𝑝⩽𝑅∶𝑝∤𝑑′

(
1 −

𝑘

𝑝

) ∏
𝑝⩽𝑅∶𝑝|𝑑min(𝜎 log𝑅 𝑝, 1)

and hence by Mertens’ theorem (3.6)

∏
𝑝

𝐸𝑝𝑑
′
(𝑝)

≪
𝜎𝑂(1)𝜏(𝑑′′)𝑂(1)

log𝑘 𝑅

∏
𝑝⩽𝑅∶𝑝|𝑑min(𝜎 log𝑅 𝑝, 1).

From (2.1), we have ∏
𝑝

𝑑′′(𝑝) = 𝑑′ ≍ 𝑑1⋯𝑑𝑘′ ,

and the claim follows. □
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3.3 Elementary consequences of a Siegel zero

Recall fromSection 2 thatwe use𝑝∗ to denote primes that are exceptional in the sense that𝜒(𝑝∗) ≠
−1. It is a well-known phenomenon that exceptional primes become rare at scales comparable in
log-scale to 𝑞𝜒 . For instance, in [11, Lemma 3], it was shown that†∑

𝑝∗⩽𝑞500𝜒

log 𝑝∗

𝑝∗
≪

log 𝑞𝜒√
log 𝜂

(3.20)

while in [6] it was shown more generally that∑
𝑝∗⩽𝑥

log 𝑝∗

𝑝∗
≪ exp

(
log𝑞𝜒 𝑥

) log 𝑞𝜒√
log 𝜂

(3.21)

for 𝑞10𝜒 ⩽ 𝑥 ⩽ 𝑞
log log 𝜂∕3
𝜒 . In fact, we can do better:

Proposition 3.5. Let 𝜀 > 0. Then for any 𝑥 ⩾ 𝑞
1+𝜀
2

𝜒 , one has

∑
𝑞
1+𝜀
2

𝜒 <𝑝∗⩽𝑥

1

𝑝∗
≪𝜀

log𝑞𝜒 𝑥

𝜂
(3.22)

and for any natural number𝑚 ⩾ 2, we have∑
𝑞
1+𝜀
2𝑚
𝜒 <𝑝∗⩽𝑞

1+𝜀
2(𝑚−1)
𝜒

1

𝑝∗
≪𝜀

𝑚

𝜂1∕𝑚
. (3.23)

The first bound is non-trivial for 𝑥 as large as 𝑞𝜂
1−𝜀0

𝜒 , while the second bound is non-trivial for

primes 𝑝∗ as small as 𝑞1∕ log
1−𝜀0 𝜂

𝜒 . It is not difficult to recover (3.21) (and hence (3.20)) from the
above proposition by taking a suitable linear combination of (3.22) and (3.23) for𝑚 ⩽

√
log 𝜂, and

using Mertens’ theorem to control the contribution of exceptional primes 𝑝∗ ⩽ 𝑞10∕
√
log 𝜂

𝜒 (say);
we leave the details to the interested reader.

Proof. For any 𝑥 ⩾ 𝑞
1+𝜀
2

𝜒 , we have from [20, Exercise 11.2.3(g)] that

∑
𝑛⩽𝑥

1 ∗ 𝜒(𝑛)

𝑛
= (log 𝑥 + 𝛾)𝐿(1, 𝜒) + 𝐿′(1, 𝜒) + 𝑂𝜀(𝑞

−𝜀∕10
𝜒 ).

From Siegel’s theorem, we have 𝐿(1, 𝜒) ≫𝜀 𝑞
−𝜀∕10
𝜒 , and hence

∑
𝑛⩽𝑥

1 ∗ 𝜒(𝑛)

𝑛
= 𝐿(1, 𝜒)

(
log 𝑥 +

𝐿′

𝐿
(1, 𝜒) + 𝑂𝜀(1)

)
. (3.24)

† Strictly speaking, these results only claim to control the set where 𝜒(𝑝∗) = 1, ignoring the relatively small number of
primes where 𝜒(𝑝∗) = 0, but it is not difficult to modify the arguments to also include the latter set.
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From [20, Theorem 11.4], we also have 𝐿′

𝐿
(1, 𝜒) ≍ 𝜂 log 𝑞𝜒 . Thus, (3.24) gives

∑
𝑛⩽𝑞

1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛
≫ 𝐿(1, 𝜒)𝜂 log 𝑞𝜒, (3.25)

while applying (3.24) with 𝑥 replaced by 𝑞
1+𝜀
2

𝜒 , 𝑥𝑞
1+𝜀
2

𝜒 and subtracting we obtain

∑
𝑞
1+𝜀
2

𝜒 <𝑛⩽𝑥𝑞
1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛
= 𝐿(1, 𝜒)(log 𝑥 + 𝑂𝜀(1)). (3.26)

On the other hand, from the non-negativity and multiplicativity of 1 ∗ 𝜒, we have

∑
𝑞
1+𝜀
2

𝜒 <𝑛⩽𝑥𝑞
1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛
⩾

⎛⎜⎜⎜⎜⎝
∑

𝑛⩽𝑞
1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

∑
𝑞
1+𝜀
2

𝜒 <𝑝⩽𝑥

1 ∗ 𝜒(𝑝)

𝑝

⎞⎟⎟⎟⎟⎠
.

Since 1 ∗ 𝜒(𝑝) is non-negative and is at least onewhen𝑝 is exceptional, the first claim (3.22) fol-
lows.
In a similar vein, since any 𝑛 ⩽ 𝑞10𝜒 has ⩽

(20𝑚
𝑚

)
representations in the form 𝑛′𝑝1⋯𝑝𝑚 with

𝑞
(1+𝜀)∕2
𝜒 < 𝑝1 < 𝑝2 <⋯ < 𝑝𝑚, we have for any natural number𝑚 ⩾ 2 that

∑
𝑞
1+𝜀
2

𝜒 <𝑛⩽𝑞10𝜒

1 ∗ 𝜒(𝑛)

𝑛

⩾

(
20𝑚

𝑚

)−1 ∑
𝑛<𝑞

1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛

∑
𝑞
1+𝜀
2𝑚
𝜒 <𝑝1<⋯<𝑝𝑚⩽𝑞

1+𝜀
2(𝑚−1)
𝜒 ∶𝑝1,…,𝑝𝑚∤𝑛

1 ∗ 𝜒(𝑝1)

𝑝1
⋯
1 ∗ 𝜒(𝑝𝑚)

𝑝𝑚

⩾

(
20𝑚

𝑚

)−1 ∑
𝑛<𝑞

1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛

∑
𝑞
1+𝜀
2𝑚
𝜒 <𝑝∗

1
<⋯<𝑝∗𝑚⩽𝑞

1+𝜀
2(𝑚−1)
𝜒 ∶𝑝∗

1
,…,𝑝∗𝑚∤𝑛

1

𝑝∗
1
⋯𝑝∗𝑚

=

(
20𝑚

𝑚

)−1 ∑
𝑛<𝑞

1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛

∑
𝑞
1+𝜀
2𝑚
𝜒 <𝑝∗

1
,…,𝑝∗𝑚⩽𝑞

1+𝜀
2(𝑚−1)
𝜒 ∶𝑝∗

1
,…,𝑝∗𝑚∤𝑛, distinct

1

𝑝∗
1
⋯𝑝∗𝑚

𝑚!
.

Observe that once 𝑛 < 𝑞
(1+𝜀)∕2
𝜒 and some of the exceptional primes 𝑝∗

1
, … , 𝑝∗

𝑗
, 𝑗 < 𝑚 have been

chosen, the restrictions that the exceptional prime 𝑝∗
𝑗+1

be distinct from 𝑝∗
1
, … , 𝑝∗

𝑗
and not divide

𝑛 only excludes at most 2𝑚 primes 𝑝∗
𝑗+1

from the range 𝑞
1+𝜀
2𝑚
𝜒 < 𝑝∗

𝑗+1
⩽ 𝑞

1+𝜀
2(𝑚−1)
𝜒 , since 𝑛 has at most
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𝑚 factors in this range. Thus we have

∑
𝑞
1+𝜀
2

𝜒 <𝑛⩽𝑞10𝜒

1 ∗ 𝜒(𝑛)

𝑛
⩾

(
20𝑚

𝑚

)−1
⎛⎜⎜⎜⎜⎝

∑
𝑛<𝑞

1+𝜀
2

𝜒

1 ∗ 𝜒(𝑛)

𝑛

⎞⎟⎟⎟⎟⎠

(∑
∗

𝑞
1+𝜀
2𝑚
𝜒 <𝑝∗⩽𝑞

1+𝜀
2(𝑚−1)
𝜒

1

𝑝∗

)𝑚

𝑚!
,

where the asterisk in the sum means that we are allowed to delete the 2𝑚 largest terms from the
sum (or delete the sum entirely, that is, replace it by zero, if there are fewer than 2𝑚 terms in all).
The estimates (3.25) and (3.26) then give

∑
∗

𝑞
1+𝜀
2𝑚
𝜒 <𝑝∗⩽𝑞

1+𝜀
2(𝑚−1)
𝜒

1

𝑝∗
≪𝜀

((20𝑚
𝑚

)
𝑚!𝐿(1, 𝜒) log 𝑞𝜒

𝐿(1, 𝜒)𝜂 log 𝑞𝜒

)1∕𝑚

≪
𝑚

𝜂1∕𝑚
.

One can reinstate the top 2𝑚 terms from the sum on the left-hand side, since their contribution
is≪ 𝑚∕𝑞

1∕(2𝑚)
𝜒 ≪ 𝑚𝜂−1∕𝑚 by the Siegel bound (1.4). The claim (3.23) follows. □

Corollary 3.6. Let 𝑞(1+𝜀)∕2𝜒 ⩽ 𝑥 ⩽ 𝑞
𝜂1∕2

𝜒 . We have

∑
𝑅0⩽𝑝

∗⩽𝑥

1

𝑝∗
≪ exp(−

√
log 𝜂∕2)

and

∑
𝑝∗

min(log0.1 𝜂 log𝑅 𝑝
∗, 1)

(𝑝∗)
1+ 1

log 𝑥

≪
1

log0.3 𝜂
.

This bound will be used in steps (i) and (ii) of the main argument.

Proof. From (3.22) (with 𝜀 = 1) and (1.5), we have

∑
𝑞𝜒<𝑝

∗⩽𝑥

1

𝑝∗
≪

√
𝜂

𝜂
≪ exp(−

√
log 𝜂∕2)

and from (3.23), we similarly have

∑
𝑞
1
𝑚
𝜒 <𝑝∗⩽𝑞

1
𝑚−1
𝜒

1

𝑝∗
≪

𝑚

𝜂1∕𝑚

for all𝑚 ⩾ 2. Summing over 2 ⩽ 𝑚 ⩽
√
log 𝜂 + 1, we obtain the first claim.

Now we prove the second claim. The contribution of those 𝑝∗ with 𝑝∗ ⩾ 𝑥log0.1 𝜂 is acceptable
by (3.5), while the contribution of those 𝑝∗ with 𝑝∗ ⩽ 𝑅1∕ log0.4 𝜂 is also acceptable by (3.3). Thus
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it remains to show that ∑
𝑅1∕ log

0.4 𝜂<𝑝∗<𝑥log
0.1 𝜂

1

𝑝∗
≪

1

log0.3 𝜂
.

The contribution of those 𝑝∗ with 𝑞𝜒 < 𝑝∗ < 𝑥log
0.1 𝜂 is acceptable by (3.22) (for 𝜀 = 1), (1.5), while

the contribution of those 𝑝∗ with 𝑅1∕ log0.4 𝜂 < 𝑝∗ ⩽ 𝑞𝜒 is acceptable by (3.23) (for 𝜀 = 1 and 2 ⩽
𝑚 ≪ log0.5 𝜂, say) and (2.8). □

3.4 Consequences of the Weil bound for character sums

Let 𝑓∶ ℤ → ℤ be a polynomial of degree𝑂(1). If 𝑝 is a prime, we have the standardWeil bounds∑
𝑛∈ℤ∕𝑝ℤ

𝜒𝑝(𝑓(𝑛))𝑒𝑝(𝑎𝑛) ≪ 𝑝1∕2

uniformly for all integers 𝑎 whenever 𝑓 is not a constant multiple of perfect square modulo 𝑝,
where 𝜒𝑝 is the quadratic character modulo 𝑝; see [30] (or [21]). When 𝑓 is a constant multiple of
a perfect square, we can of course use the trivial bound of𝑂(𝑝). Since the exceptional modulus 𝑞𝜒
is a fundamental discriminant, it is of the form 2𝑗𝑝1⋯𝑝𝑚 for some 𝑗 ⩽ 3 and distinct odd primes
𝑝1, … , 𝑝𝑚, and so from the Chinese remainder theorem, we obtain the bounds∑

𝑛∈ℤ∕𝑞𝜒ℤ

𝜒(𝑓(𝑛))𝑒𝑞𝜒 (𝑎𝑛) ≪ 𝜏(𝑞𝜒)
𝑂(1)𝑞

1∕2
𝜒 𝑑1∕2

uniformly in 𝑎, where 𝑑 is the largest factor of 𝑞𝜒 for which 𝑓 is a constant multiple of a perfect
squaremodulo 𝑑. Applying (3.1) and completion of sums (see [12, Lemma 12.1]), we conclude that∑

𝑛∈𝐼

𝜒(𝑓(𝑛)) ≪𝜀 𝑞
1∕2+𝜀
𝜒 𝑑1∕2

for any interval 𝐼 of length at most 𝑞𝜒 and any 𝜀 > 0; by subdividing longer intervals into intervals
of length 𝑞𝜒 , plus a remainder, we conclude that∑

𝑛∈𝐼

𝜒(𝑓(𝑛)) ≪𝜀 𝑞
1∕2+𝜀
𝜒 𝑑1∕2

(|𝐼|
𝑞𝜒

+ 1

)
(3.27)

for any interval 𝐼 and any 𝜀 > 0.
This gives us the following bounds:

Lemma 3.7. Let 𝑑1, … , 𝑑𝑘+𝓁 be natural numbers. Let 𝐼 be an interval in [1, 𝑥]. Let 𝐽 be a non-empty
subset of {1, … , 𝑘 + 𝓁}, and for each 𝑗 ∈ 𝐽, let 𝑑′

𝑗
be a factor of 𝑑𝑗 . Then

𝔼𝑛⩽𝑥1𝐼(𝑛)

(
𝑘+𝓁∏
𝑗=1

1𝑑𝑗|𝑛+ℎ𝑗
)∏

𝑗∈𝐽

𝜒

(
𝑛 + ℎ𝑗

𝑑′
𝑗

)
≪𝜀 𝑞

1∕2+𝜀
𝜒 (𝑑1⋯𝑑𝑘+𝓁 , 𝑞𝜒)

1∕2

(
1

𝑞𝜒𝑑1⋯𝑑𝑘+𝓁
+
1

𝑥

)
for any 𝜀 > 0, where we use the notation ℎ𝑘+𝑗 ∶= ℎ′

𝑗
for 𝑗 = 1,… ,𝓁.
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This bound will be used in step (v) of the main argument, to dispose of any ‘Type I sum’
contributions that are twisted by one or more factors of the exceptional character 𝜒.

Proof. By Lemma 3.3, we may assume that (𝑑𝑖, 𝑑𝑗)|ℎ𝑖 − ℎ𝑗 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘 + 𝓁 and replace
the conditions 𝑑𝑗|𝑛 + ℎ𝑗 with 𝑛 = 𝑎 (𝑑) where

𝑑 ∶= [𝑑1, … , 𝑑𝑘+𝓁] ≍ 𝑑1⋯𝑑𝑘+𝓁

and

𝑎 = −ℎ𝑗 (𝑑𝑗)

for 𝑗 = 1,… , 𝑘 + 𝓁. Our task is now equivalent to showing that

∑
𝑛∶𝑑𝑛+𝑎∈𝐼

∏
𝑗∈𝐽

𝜒

(
𝑑𝑛 + 𝑎 + ℎ𝑗

𝑑′
𝑗

)
≪𝜀 𝑞

1∕2+𝜀
𝜒 (𝑑, 𝑞𝜒)

1∕2

(
𝑥

𝑞𝜒𝑑
+ 1

)
.

We can write the left-hand side as ∑
𝑛∶𝑑𝑛+𝑎∈𝐼

𝜒(𝑓(𝑛))

where

𝑓(𝑛) ∶=
∏
𝑗∈𝐽

𝑑𝑛 + 𝑎 + ℎ𝑗

𝑑′
𝑗

.

Suppose that there is a prime𝑝 not dividing𝑑 such that𝑓 is a constantmultiple of a squaremodulo
𝑝. Then the roots −

𝑎+ℎ𝑗

𝑑
(𝑝) of 𝑓 must experience a repetition, and hence 𝑝 divides ℎ𝑖 − ℎ𝑗 for

some 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑘 + 𝓁. Since the ℎ1, … , ℎ𝑘+𝓁 are fixed, this forces 𝑝 = 𝑂(1). From the Chinese
remainder theorem (and the fact that 𝑞𝜒 is a fundamental discriminant), we conclude that the
largest factor 𝑑′ of 𝑞𝜒 for which 𝑓 is a constant multiple of a square modulo 𝑑′ is 𝑂((𝑑, 𝑞𝜒)). The
claim now follows from (3.27). □

3.5 Consequences of Kloosterman sum bounds

We recall† Estermann’s form [5]||||||
∑

𝑥∈ℤ∕𝑞ℤ∶(𝑥,𝑞)=1

𝑒𝑞(𝑢1𝑥 + 𝑢2𝑥
∗)

|||||| ⩽ 𝜏(𝑞)𝑞1∕2(𝑢1, 𝑢2, 𝑞)1∕2
of the Weil bound for Kloosterman sums, where 𝑥∗ is the inverse of 𝑥 in ℤ∕𝑞ℤ and 𝑢1, 𝑢2 are
arbitrary integers. From this and a simple change of variables, we see that

|𝔼𝑛1,𝑛2∈ℤ1𝑤𝑛1𝑛2=𝑎 (𝑞)𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2)| ⩽ 𝜏(𝑞)𝑞−3∕2(𝑢1, 𝑢2, 𝑞)1∕2 (3.28)

† For the applications in this paper, one could also proceed using the weaker but more elementary bounds of Kloosterman
[13], as the important thing is thatwe gain a power savings over the trivial bound of 𝑞, at the cost of degrading the numerical
exponent 10𝑘 in (1.5) somewhat. We leave the details of this variant of the argument to the interested reader.
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for any natural number 𝑞 and integers 𝑤, 𝑎, 𝑢1, 𝑢2 with (𝑤, 𝑞) = (𝑎, 𝑞) = 1, where we use the
averaging notation

𝔼𝑛1,𝑛2∈ℤ𝑓(𝑛1, 𝑛2) ∶=
1

𝐿2

𝐿∑
𝑛1=1

𝐿∑
𝑛2=1

𝑓(𝑛1, 𝑛2)

whenever 𝑓∶ ℤ2 → ℂ is a periodic function with some period 𝐿 (thus, 𝑓(𝑛1 + 𝐿𝑚1, 𝑛2 + 𝐿𝑚2) =

𝑓(𝑛1, 𝑛2) for all integers 𝑛1, 𝑛2,𝑚1,𝑚2).
We will need to extend the bound (3.28) to the case where 𝑎 shares a common factor with 𝑞,

and where we also insert a periodic weight:

Lemma 3.8 (Fourier coefficients on a hyperbola). Let 𝑞 be a natural number, and let 𝑎, 𝑢1, 𝑢2 be
integers. Let 𝑞0 be a factor of 𝑞 such that (𝑎, 𝑞)|𝑞0. Let 𝑓∶ ℤ2 → ℂ be a 1-bounded† function with
period 𝑞0. Then

|𝔼𝑛1,𝑛2∈ℤ𝑓(𝑛1, 𝑛2)1𝑛1𝑛2=𝑎 (𝑞)𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2)| ⩽ 𝜏(𝑞0)2𝑞3∕20
𝜏(𝑞)𝑞−3∕2(𝑢1, 𝑢2, 𝑞)

1∕2.

The factor 𝜏(𝑞0)2𝑞
3∕2
0

can be improved somewhat, but we will not attempt to optimize it here.
This bound will be needed in step (iv) of the main argument, in order to dispose of the non-Type
I portion Λ♭Siegel to the Siegel approximant ΛSiegel.

Proof. If 𝑛1𝑛2 = 𝑎 (𝑞), then from considering the prime factorizations of 𝑛1, 𝑛2, 𝑎, 𝑞 we see that
(𝑛1, 𝑞0), (𝑛2, 𝑞0) must be factors of (𝑎, 𝑞) and hence of 𝑞0; also, we have ((𝑛1, 𝑞0)(𝑛2, 𝑞0), 𝑞) =
(𝑎, 𝑞0) = (𝑎, 𝑞). Thus there are at most 𝜏(𝑞0)2 possible choices for (𝑛1, 𝑞), (𝑛2, 𝑞), and by the
triangle inequality it suffices to show that

|𝔼𝑛1,𝑛2∈ℤ𝑓(𝑛1, 𝑛2)1𝑛1𝑛2=𝑎 (𝑞)𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2)| ⩽ 𝑞3∕20
𝜏(𝑞)𝑞−3∕2(𝑢1, 𝑢2, 𝑞)

1∕2. (3.29)

under the additional hypothesis that𝑓 is supported in the regionwhere (𝑛1, 𝑞0) = 𝑞1, (𝑛2, 𝑞0) = 𝑞2
for some factors 𝑞1, 𝑞2 of 𝑞0 with

(𝑞1𝑞2, 𝑞) = (𝑎, 𝑞). (3.30)

In particular, if we write 𝑞′ ∶= 𝑞

(𝑎,𝑞)
, then the quantity 𝑤 =

𝑞1𝑞2
(𝑎,𝑞)

is a primitive element of ℤ∕𝑞′ℤ.
Making the change of variables 𝑛1 = 𝑞1𝑛

′
1
, 𝑛2 = 𝑞2𝑛

′
2
, we can now rewrite the left-hand side

of (3.29) as

1

𝑞1𝑞2
|𝔼𝑛′

1
,𝑛′
2
∈ℤ𝑓(𝑞1𝑛

′
1, 𝑞2𝑛

′
2)1𝑤𝑛′1𝑛

′
2
= 𝑎
(𝑎,𝑞)

(𝑞′)𝑒𝑞(𝑢1𝑞1𝑛1 + 𝑢2𝑞2𝑛2)|.
By Fourier inversion and the Plancherel formula, we have

𝑓(𝑞1𝑛
′
1, 𝑞2𝑛

′
2) =

∑
𝑘1∈ℤ∕(𝑞0∕𝑞1)ℤ

∑
𝑘2∈ℤ∕(𝑞0∕𝑞2)ℤ

𝑐𝑘1,𝑘2𝑒𝑞0(𝑘1𝑞1𝑛
′
1 + 𝑘2𝑞2𝑛

′
2),

†A function 𝑓 is 1-bounded if |𝑓(𝑥)| ⩽ 1 for all 𝑥 in the domain of 𝑓.
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where the coefficients 𝑐𝑘1,𝑘2 obey the bound∑
𝑘1∈ℤ∕(𝑞0∕𝑞1)ℤ

∑
𝑘2∈ℤ∕(𝑞0∕𝑞2)ℤ

|𝑐𝑘1,𝑘2 |2 ⩽ 1,
and hence by Cauchy–Schwarz∑

𝑘1∈ℤ∕(𝑞0∕𝑞1)ℤ

∑
𝑘2∈ℤ∕(𝑞0∕𝑞2)ℤ

|𝑐𝑘1,𝑘2 | ⩽ 𝑞0

𝑞
1∕2
1
𝑞
1∕2
2

.

Thus by the triangle inequality and pigeonhole principle, we can bound the left-hand side of (3.29)
by

𝑞0

𝑞
3∕2
1
𝑞
3∕2
2

|||||𝔼𝑛′1,𝑛′2∈ℤ1𝑤𝑛′1𝑛′2= 𝑎
(𝑎,𝑞)

(𝑞′)𝑒𝑞

((
𝑢1 + 𝑘1

𝑞

𝑞0

)
𝑞1𝑛1 +

(
𝑢2 + 𝑘2

𝑞

𝑞0

)
𝑞2𝑛2

)|||||
for some integers 𝑘1, 𝑘2. Since 1𝑤𝑛′

1
𝑛′
2
= 𝑎
(𝑎,𝑞)

(𝑞′) is a 𝑞′-periodic function of 𝑛′1, 𝑛
′
2
, this expression

vanishes unless the integers (𝑢1 + 𝑘1
𝑞

𝑞0
)𝑞1, (𝑢2 + 𝑘2

𝑞

𝑞0
)𝑞2 are divisible by 𝑞∕𝑞′ = (𝑎, 𝑞). Since 𝑤

and 𝑎

(𝑎,𝑞)
are both primitive in ℤ∕𝑞′ℤ, we may then apply (3.28) and bound the left-hand side

of (3.29) by

𝑞0

𝑞
3∕2
1
𝑞
3∕2
2

(𝑞′)−3∕2
((

𝑢1 + 𝑘1
𝑞

𝑞0

)
𝑞1

(𝑎, 𝑞)
,

(
𝑢2 + 𝑘2

𝑞

𝑞0

)
𝑞2

(𝑎, 𝑞)
, 𝑞′

)1∕2

,

which we can rewrite as
𝑞0

𝑞
3∕2
1
𝑞
3∕2
2

(𝑎, 𝑞)𝑞−3∕2𝑑1∕2,

where

𝑑 ∶=

((
𝑢1 + 𝑘1

𝑞

𝑞0

)
𝑞1,

(
𝑢2 + 𝑘2

𝑞

𝑞0

)
𝑞2, 𝑞

)
.

By construction, we have(
𝑢1 + 𝑘1

𝑞

𝑞0

)
𝑞1 =

(
𝑢2 + 𝑘2

𝑞

𝑞0

)
𝑞2 = 𝑞 = 0 (𝑑)

and hence by taking suitable linear combinations

𝑢1𝑞0𝑞1𝑞2 = 𝑢2𝑞0𝑞1𝑞2 = 𝑞𝑞0𝑞1𝑞2 = 0 (𝑑).

We conclude in particular that 𝑑|𝑞0𝑞1𝑞2(𝑢1, 𝑢2, 𝑞), and the claim follows (noting from (3.30) that
(𝑎, 𝑞) ⩽ 𝑞1𝑞2). □

From Lemma 3.8 and the Fourier inversion formula, one can express the periodic function
𝑓(𝑛1, 𝑛2)1𝑛1𝑛2=𝑎 (𝑞) as a linear combination of Fourier phases 𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2) with good bounds
on the Fourier coefficients. However, the contribution of those terms in which one of 𝑢1, 𝑢2 is
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divisible by 𝑞 (or by a very large factor of 𝑞) will be inconvenient to handle. We therefore perform
the following substitute expansion:

Lemma 3.9 (Modified Fourier expansion). Let 𝑞 be a natural number, and let 𝑎 be an integer. Let
𝑞0 be a factor of 𝑞 such that (𝑎, 𝑞)|𝑞0. Let 𝑓∶ ℤ2 → ℂ be a 1-bounded function with period 𝑞0. Define
𝑞′
0
∶= (𝑞0(𝑎, 𝑞), 𝑞). Then we have

𝑓(𝑛1, 𝑛2)1𝑛1𝑛2=𝑎 (𝑞) =
𝛼𝑞′

0

𝑞
𝑓(𝑛1, 𝑛2)1𝑛1𝑛2=𝑎 (𝑞′0)

1(𝑛1𝑛2,𝑞)=(𝑎,𝑞)

+
∑

𝑢1,𝑢2∈ℤ∕𝑞ℤ∶
𝑞
𝑞0
∤𝑢1,𝑢2

𝑐𝑢1,𝑢2𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2),

where 𝛼 is the quantity

𝛼 ∶=
∏

𝑝| 𝑞
𝑞′
0

;𝑝∤
𝑞′
0

(𝑎,𝑞)

𝑝

𝑝 − 1

and the coefficients 𝑐𝑢1,𝑢2 obey the bounds

|𝑐𝑢1,𝑢2 | ⩽ 2𝜏(𝑞0)2𝑞3∕20
𝜏(𝑞)𝑞−3∕2(𝑢1, 𝑢2, 𝑞)

1∕2.

Proof. We may assume without loss of generality that 1 ⩽ 𝑎 ⩽ 𝑞. Let  denote the collection
of those 1 ⩽ 𝑎′ ⩽ 𝑞 such that 𝑎′ = 𝑎 (𝑞′

0
) and (𝑎′, 𝑞) = (𝑎, 𝑞). From Lemma 3.8, we see that the

Fourier coefficient

𝔼𝑛1,𝑛2∈ℤ𝑓(𝑛1, 𝑛2)(1𝑛1𝑛2=𝑎 (𝑞) − 1𝑛1𝑛2=𝑎′ (𝑞))𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2) (3.31)

for 𝑢1, 𝑢2 ∈ ℤ∕𝑞ℤ is bounded in magnitude by 2𝜏(𝑞0)2𝑞
3∕2
0
𝜏(𝑞)𝑞−3∕2(𝑢1, 𝑢2, 𝑞)

1∕2 for any 𝑎′ ∈ .
We claim furthermore that this Fourier coefficient vanishes whenever one of 𝑢1, 𝑢2 is divisible by
𝑞∕𝑞0. Indeed, suppose, for instance, that 𝑢2 is divisible by 𝑞∕𝑞0, so that 𝑛2 ↦ 𝑓(𝑛1𝑛2)𝑒𝑞(𝑢1𝑛1 +

𝑢2𝑛2) is 𝑞0-periodic for any 𝑛1. To obtain the vanishing of (3.31), it suffices to show that∑
𝑛2∈ℤ∕𝑞ℤ∶𝑛2=𝑎2 (𝑞0)

1𝑛1𝑛2=𝑎 (𝑞) =
∑

𝑛2∈ℤ∕𝑞ℤ∶𝑛2=𝑎2 (𝑞0)

1𝑛1𝑛2=𝑎′ (𝑞) (3.32)

for any integers 𝑛1, 𝑎2. But since (𝑎′, 𝑞) = (𝑎, 𝑞), we can write 𝑎′ = 𝑤𝑎 (𝑞) for some primitive𝑤 ∈

ℤ∕𝑞ℤ; since 𝑎′ = 𝑎 ((𝑞0(𝑎, 𝑞), 𝑞))we have𝑤 = 1 ((𝑞0, 𝑞∕(𝑎, 𝑞))); as we have the freedom to adjust
𝑤 by an arbitrary multiple of 𝑞∕(𝑎, 𝑞), we may in fact assume that 𝑤 = 1 (𝑞0). The claim (3.32)
then follows after applying the change of variables 𝑛2 ↦ 𝑤𝑛2 on the right-hand side. We argue
similarly if 𝑢1 is divisible by 𝑞∕𝑞0 instead of 𝑢2.
Averaging in 𝑎′, we conclude that the Fourier coefficient

𝔼𝑛1,𝑛2∈ℤ𝑓(𝑛1, 𝑛2)(1𝑛1𝑛2=𝑎 (𝑞) − 𝔼𝑎′∈1𝑛1𝑛2=𝑎′ (𝑞))𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2)

is bounded in magnitude by 2𝜏(𝑞0)2𝑞
3∕2
0
𝜏(𝑞)𝑞−3∕2(𝑢1, 𝑢2, 𝑞)

1∕2, and vanishes whenever 𝑢1 or 𝑢2
vanish in ℤ∕𝑞ℤ. To establish the claim, it now suffices by the Fourier inversion formula to obtain
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the identity

𝔼𝑎′∈1𝑛=𝑎′ (𝑞) =
𝛼𝑞′

0

𝑞
1𝑛=𝑎 (𝑞′

0
)1(𝑛,𝑞)=(𝑎,𝑞)

for any integer 𝑛. By the Chinese remainder theorem, it suffices to establish this identity at each
prime 𝑝, that is to say it suffices to show that

𝔼𝑎′=𝑎 (𝑝𝑗0 )∶(𝑎′,𝑝𝑗)=(𝑎,𝑝𝑗)1𝑛=𝑎′ (𝑝𝑗) =
𝛼𝑝𝑝

𝑗0

𝑝𝑗
1𝑛=𝑎 (𝑝𝑗0 )1(𝑛,𝑝𝑗)=(𝑎,𝑝𝑗)

whenever 𝑝 is a prime, 0 ⩽ 𝑗0 ⩽ 𝑗, and 𝑎 is an integer with (𝑎, 𝑝𝑗)|𝑝𝑗0 , where 𝛼𝑝 ∶= 𝑝

𝑝−1
if 𝑗 > 𝑗0

and (𝑎, 𝑝𝑗) = 𝑝𝑗0 , and 𝛼𝑝 = 1 otherwise. But this follows by a direct case analysis.

∙ If 𝑗 = 𝑗0, then the conditions (𝑎′, 𝑝𝑗) = (𝑎, 𝑝𝑗) and (𝑛, 𝑝𝑗) = (𝑎, 𝑝𝑗) are redundant, 𝛼𝑝 = 1, 𝑎′
is restricted to a single residue class mod 𝑝𝑗, and both sides are equal to 1𝑛=𝑎 (𝑝𝑗0 ).

∙ If 𝑗 < 𝑗0 and (𝑎, 𝑝𝑗) < 𝑝𝑗0 , then the conditions (𝑎′, 𝑝𝑗) = (𝑎, 𝑝𝑗) and (𝑛, 𝑝𝑗) = (𝑎, 𝑝𝑗) are redun-
dant, 𝛼𝑝 = 1, 𝑎′ is restricted to 𝑝𝑗−𝑗0 residue classes mod 𝑝𝑗 , and both sides are equal to
1

𝑝𝑗−𝑗0
1𝑛=𝑎 (𝑝𝑗0 ).

∙ If 𝑗 < 𝑗0 and (𝑎, 𝑝𝑗) = 𝑝𝑗0 , then 𝛼𝑝 =
𝑝

𝑝−1
, 𝑎′ is restricted to 𝑝−1

𝑝
𝑝𝑗−𝑗0 residue classes mod 𝑝𝑗 ,

and both sides are equal to 𝑝

𝑝−1

1

𝑝𝑗−𝑗0
1𝑛=𝑎 (𝑝𝑗0 ). □

4 FIRST STEP: REPLACING THE LIOUVILLE FUNCTIONWITH A
SIEGELMODEL

We now execute step (i) of the strategy outlined in the introduction. From (2.6), we have the
splitting

𝜆 = 𝜆(⩽𝑅) ∗ 𝜆(>𝑅).

In viewofCorollary 3.6, we expect 𝜆 to resemble the exceptional character𝜒 on the roughnumbers
ℕ(>𝑅). It is therefore natural to introduce the Siegel approximant

𝜆Siegel ∶= 𝜆(⩽𝑅) ∗ 𝜒(>𝑅), (4.1)

thus 𝜆Siegel is the completelymultiplicative function that agreeswith 𝜆 for primes𝑝 ⩽ 𝑅 and agrees
with 𝜒 for primes 𝑝 > 𝑅. Similar approximants were also introduced in [2, 6]. Clearly 𝜆, 𝜆Siegel are
both bounded by 1:

|𝜆(𝑛)|, |𝜆Siegel(𝑛)| ⩽ 1. (4.2)

The error between 𝜆 and 𝜆Siegel can be controlled by exceptional primes and by rough numbers:

Lemma 4.1 (Error bound between 𝜆 and 𝜆Siegel). For any natural number 𝑛 ⩽ 2𝑥, one has

𝜆(𝑛) − 𝜆Siegel(𝑛) ≪
∑

𝑝∗|𝑛,𝑅<𝑝∗⩽𝑥∕𝑅 1 +
∑

𝑑⩽2𝑅∶𝑑|𝑛 1(⩾𝑥∕𝑅)(𝑛∕𝑑). (4.3)
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Proof. If 𝑛 is not divisible by any exceptional prime 𝑝∗ > 𝑅, then we have 𝜆(𝑛) = 𝜆Siegel(𝑛) since
𝜆, 𝜆Siegel agree on every prime dividing 𝑛. Clearly (4.3) holds in this case. If 𝑛 is divisible by an
exceptional 𝑅 < 𝑝∗ ⩽ 𝑥∕𝑅, then the first term on the right-hand side of (4.3) is at least one, and
the claim (4.3) then follows from (4.2).
The only remaining case is if 𝑛 is divisible by an exceptional prime 𝑝∗ ⩾ 𝑥∕𝑅, so 𝑛 = 𝑝∗𝑑 for

some 𝑑 ⩽ 2𝑅. Since 𝑛∕𝑑 = 𝑝∗ ⩾ 𝑥∕𝑅 is prime, the second term on the right-hand side of (4.3) is
at least one, and the claim (4.3) again follows from (4.2). □

In this section, we establish

Proposition 4.2 (Replacing 𝜆 with a Siegel model).We have

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆(𝑛 + ℎ
′
1)⋯ 𝜆(𝑛 + ℎ′𝓁)

≈ 𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁).

From (4.2) and the triangle inequality, it suffices to show that

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)|𝜆(𝑛 + ℎ′𝑗′ ) − 𝜆Siegel(𝑛 + ℎ′𝑗′ )| ≈ 0

for each 1 ⩽ 𝑗′ ⩽ 𝓁. Applying Lemma 4.1, it suffices to show the bounds∑
𝑅<𝑝∗⩽𝑥∕𝑅

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)1𝑝∗|𝑛+ℎ′
𝑗′
≈ 0 (4.4)

and

∑
𝑑⩽2𝑅

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)1𝑑|𝑛+ℎ′
𝑗′
1(⩾𝑥∕𝑅)

(
𝑛 + ℎ′

𝑗′

𝑑

)
≈ 0. (4.5)

We begin with (4.4). For 𝑛 ⩽ 𝑥 and 1 ⩽ 𝑗 ⩽ 𝑘, the quantity Λ(𝑛 + ℎ𝑗) is bounded by
log(2𝑥)1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑗) unless we are in the exceptional case where 𝑛 + ℎ𝑗 is of the form 𝑝𝑖 for

some prime 𝑝 <
√
2𝑥 (cf. the sieve of Eratosthenes). The contribution of such exceptional cases

can easily be shown to be ≈ 0, so it suffices to show that

(log𝑘 𝑥)
∑

𝑅<𝑝∗⩽𝑥∕𝑅

𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑝∗|𝑛+ℎ′

𝑗′
≈ 0.

Let 𝑝∗ be as in the above sum. Changing variables, we have

𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑝∗|𝑛+ℎ′

𝑗′

≪
1

𝑝∗
𝔼𝑛⩽2𝑥∕𝑝∗1(⩾

√
2𝑥)
(𝑝∗𝑛 + ℎ1 − ℎ

′
𝑗′
)⋯ 1

(⩾
√
2𝑥)
(𝑝∗𝑛 + ℎ𝑘 − ℎ

′
𝑗′
).

Let 𝐶0 be a sufficiently large constant depending on ℎ1, … , ℎ𝑘, ℎ′𝑗′ . Then for any prime 𝐶0 < 𝑝 ⩽√
2𝑥 other than𝑝∗, the support set of 1

(⩾
√
2𝑥)
(𝑝∗𝑛 + ℎ1 − ℎ

′
𝑗′
)⋯ 1

(⩾
√
2𝑥)
(𝑝∗𝑛 + ℎ𝑘 − ℎ

′
𝑗′
) excludes
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𝑘 residue classes modulo 𝑝. Thus by† Lemma 3.2, we have

𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑝|𝑛+ℎ′

𝑗′
≪

1

𝑝∗

∏
𝐶0<𝑝⩽min(2𝑥∕𝑝

∗,
√
2𝑥)∶𝑝≠𝑝∗

(
1 −

𝑘

𝑝

)

and hence by Mertens’ theorem (3.6) and the bound 𝑝∗ ⩽ 𝑥∕𝑅

(log𝑘 𝑥)𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑝∗|𝑛+ℎ′

𝑗′
≪

log𝑘𝑅 𝑥

𝑝∗
.

The claim (4.4) now follows from Corollary 3.6 and (2.17).
Now we prove (4.5). Arguing as in the proof of (4.4), it suffices to show that

(log𝑘 𝑥)
∑
𝑑⩽2𝑅

𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑑|𝑛+ℎ′

𝑗′
1(⩾𝑥∕𝑅)

(
𝑛 + ℎ′

𝑗′

𝑑

)
≈ 0. (4.6)

For 𝑑 ⩽ 2𝑅, we have after change of variables that

𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑑|𝑛+ℎ′

𝑗′
1(⩾𝑥∕𝑅)

(
𝑛 + ℎ′

𝑗′

𝑑

)

≪
1

𝑑
𝔼𝑛⩽2𝑥∕𝑑1(⩾

√
2𝑥)
(𝑑𝑛 + ℎ1 − ℎ

′
𝑗′
)⋯ 1

(⩾
√
2𝑥)
(𝑑𝑛 + ℎ𝑘 − ℎ

′
𝑗′
)1(⩾𝑥∕𝑅)(𝑛).

With 𝐶0 as before, we see that for any prime 𝐶0 ⩽ 𝑝 <
√
2𝑥 not dividing 𝑑, we are excluding 𝑘 + 1

residue classes modulo 𝑝 (since ℎ′
𝑗′
is distinct from ℎ1, … , ℎ𝑘), hence by Lemma 3.2

𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑑|𝑛+ℎ′

𝑗′
1(⩾𝑥∕𝑅)

(
𝑛 + ℎ′

𝑗′

𝑑

)
≪
1

𝑑

∏
𝐶0⩽𝑝<

√
2𝑥∶𝑝∤𝑑

(
1 −

𝑘 + 1

𝑝

)

and hence by Mertens’ theorem (3.6)

(log𝑘 𝑥)𝔼𝑛⩽𝑥1(⩾
√
2𝑥)
(𝑛 + ℎ1)⋯ 1

(⩾
√
2𝑥)
(𝑛 + ℎ𝑘)1𝑑|𝑛+ℎ′

𝑗′
1(⩾𝑥∕𝑅)

(
𝑛 + ℎ′

𝑗′

𝑑

)

≪
1

𝑑 log 𝑥

∏
𝑝|𝑑

(
1 + 𝑂

(
1

𝑝

))
.

By (2.5), we may therefore bound the left-hand side of (4.6) by

1

log 𝑥

∏
𝑝⩽2𝑅

(
1 +

1

𝑝
+ 𝑂

(
1

𝑝2

))
.

By (3.6). this latter quantity is 𝑂(log𝑥 𝑅), and the claim follows from (2.13).

†One could also use Lemma 3.4 here instead if desired to give a comparable estimate.
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5 SECOND STEP: REPLACING THE VONMANGOLDT FUNCTION
WITH A SIEGELMODEL

We now execute step (ii) of the strategy outlined in the introduction. In order to (mostly) restrict
to rough numbers, we will insert the Selberg sieve 𝜈 defined in (2.23). Namely, observe that

Λ − Λ𝜈

is supported on prime powers 𝑝𝑗 with 𝑝 ⩽ 𝑅 and can be crudely bounded by 𝑂(log2 𝑥) on such
powers. Since the number of such powers of size𝑂(𝑥) is crudely bounded by𝑂(𝑅 log 𝑥), one easily
sees from the triangle inequality that

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁)

≈ 𝔼𝑛⩽𝑥Λ𝜈(𝑛 + ℎ1)⋯Λ𝜈(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁)

(5.1)

(with plenty of room to spare in the error term). Next, we expand

Λ𝜈 = (𝜇 ∗ log)𝜈.

Since 𝜇 is expected to be close to 𝜒 on rough numbers, and the Selberg sieve 𝜈 is mostly restricted
to such numbers, it is then natural to introduce the Siegel approximant

ΛSiegel ∶= (𝜒 ∗ log)𝜈.

From the triangle inequality, we have the crude bounds

Λ𝜈(𝑛), ΛSiegel(𝑛) ≪ 𝜏𝜈(𝑛) log 𝑥. (5.2)

We also have the following bound for the error between Λ𝜈 and ΛSiegel:

Lemma 5.1. For 𝑛 ⩽ 2𝑥, we have the bounds

Λ𝜈(𝑛) − ΛSiegel(𝑛) ≪ 𝐸(𝑛) + 𝐹(𝑛) + 𝐺(𝑛), (5.3)

where

𝐸(𝑛) ∶=
⎛⎜⎜⎝

∑
𝑅0<𝑝

∗⩽
√
2𝑥

1𝑝∗|𝑛 + ∑
𝑅0<𝑝⩽

√
2𝑥

1𝑝2|𝑛⎞⎟⎟⎠𝜏𝜈(𝑛) (5.4)

log 𝑥.𝐹(𝑛) ∶=

( ∑
1<𝑑⩽𝐷∶𝑑|𝑛 𝜏(⩽𝑅0)(𝑑)

𝑂(1)

)
𝜈(𝑛) log 𝑥. (5.5)

𝐺(𝑛) ∶=
∑

√
2𝑥<𝑝∗⩽2𝑥∕𝑅1∕2

1𝑝∗|𝑛Λ𝜈(𝑛∕𝑝∗). (5.6)

Proof. If 𝑛 is divisible by an exceptional 𝑅0 < 𝑝∗ ⩽
√
2𝑥, then 𝐸 ≫ 𝜏(𝑛)𝜈(𝑛) log 𝑥, and (5.3) then

follows from (5.2) and (5.4). Similarly if 𝑛 is divisible by the square of a prime 𝑝 > 𝑅0 (whichmust
then necessarily be at most

√
2𝑥).
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Next, suppose that 𝑛 is not divisible by any exceptional prime 𝑝∗ > 𝑅0, nor by any square 𝑝2 of
a prime 𝑝 > 𝑅0. We write

𝜒 ∗ log = (1 ∗ 𝜒) ∗ 𝜇 ∗ log = (1 ∗ 𝜒) ∗ Λ.

Note that 1 ∗ 𝜒(𝑑) is only non-zero when 𝑑 is the product of exceptional primes times a perfect
square, so if 𝑑|𝑛 and 𝑛 is as above, then 𝑑 must be the product of some primes less than or equal
to 𝑅0. Also

∑
𝑑|𝑛 Λ(𝑑) = log 𝑛. Thus, for 𝑛 as above, we have

𝜒 ∗ log(𝑛) ⩽ 𝜏(𝑛(⩽𝑅0)) log 𝑛,

where we recall that 𝑛(⩽𝑅0) is the largest factor of 𝑛 that is the product of primes less than or equal
to 𝑅0. Applying (3.10) (with 𝑛 replaced by 𝑛(⩽𝑅0)), we have

𝜏(𝑛(⩽𝑅0)) ≪
∑

1<𝑑⩽𝐷∶𝑑|𝑛 𝜏(⩽𝑅0)(𝑑)
𝑂(1)

and the claim (5.3) now follows in this case from (5.5).
We are left with the case where 𝑛 is divisible by an exceptional prime 𝑝∗ >

√
2𝑥. Then 𝑛 = 𝑑𝑝∗

for some 𝑑 <
√
2𝑥. The only factors of 𝑛 that are less than or equal to 𝑅 are factors of 𝑑 as well,

thus 𝜈(𝑛) = 𝜈(𝑑). Since

𝜒 ∗ log(𝑛) = 𝜒 ∗ 1 ∗ 𝜇 ∗ log(𝑛) = 𝜒 ∗ 1 ∗ Λ(𝑛)

and 𝜒 ∗ 1 vanishes at all factors of 𝑛 except for 1 and 𝑝∗, we have

𝜒 ∗ log(𝑛) = Λ(𝑛) + (1 + 𝜒(𝑝∗))Λ(𝑑)

and thus

Λ(𝑛) − ΛSiegel(𝑛) ≪ Λ𝜈(𝑑).

If 𝑝∗ > 2𝑥∕𝑅1∕2, then 𝑑 ⩽ 𝑅1∕2, and hence 𝜈(𝑑) vanishes by (2.23). The claim (5.3) now follows in
this case from (5.6). □

Now we can prove

Proposition 5.2 (Replacing Λ with a Siegel model).We have

𝔼𝑛⩽𝑥Λ(𝑛 + ℎ1)⋯Λ(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁)

≈ 𝔼𝑛⩽𝑥ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁).

In view of (5.1), it suffices to show that

𝔼𝑛⩽𝑥Λ𝜈(𝑛 + ℎ1)⋯Λ𝜈(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁)

≈ 𝔼𝑛⩽𝑥ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁).
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By (4.2) and the triangle inequality, it suffices to show that

𝔼𝑛⩽𝑥|Λ𝜈(𝑛 + ℎ1)⋯Λ𝜈(𝑛 + ℎ𝑘) − ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)| ≈ 0.

From (5.3), we have

ΛSiegel(𝑛 + ℎ𝑗) = Λ𝜈(𝑛 + ℎ𝑗) + 𝑂(𝐸(𝑛 + ℎ𝑗) + 𝐹(𝑛 + ℎ𝑗) + 𝐺(𝑛 + ℎ𝑗))

for 𝑗 = 1,… , 𝑘. Multiplying these estimates together, we conclude that

ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘) = Λ𝜈(𝑛 + ℎ1)⋯Λ𝜈(𝑛 + ℎ𝑘)

+ 𝑂

(
𝑘∑
𝑗=1

𝐸(𝑛 + ℎ𝑗)
∏

1⩽𝑗′⩽𝑘∶𝑗′≠𝑗
(Λ𝜈 + 𝐸 + 𝐹 + 𝐺)(𝑛 + ℎ𝑗′)

)

+ 𝑂

(
𝑘∑
𝑗=1

𝐹(𝑛 + ℎ𝑗)
∏

1⩽𝑗′⩽𝑘∶𝑗′≠𝑗
(Λ𝜈 + 𝐹 + 𝐺)(𝑛 + ℎ𝑗′)

)

+ 𝑂

(
𝑘∑
𝑗=1

𝐺(𝑛 + ℎ𝑗)
∏

1⩽𝑗′⩽𝑘∶𝑗′≠𝑗
(Λ𝜈 + 𝐺)(𝑛 + ℎ𝑗′)

)
.

By the triangle inequality and relabeling, it thus suffices to establish the bounds

𝔼𝑛⩽𝑥𝐸(𝑛 + ℎ1)

𝑘∏
𝑗=2

(Λ𝜈 + 𝐸 + 𝐹 + 𝐺)(𝑛 + ℎ𝑗) ≈ 0 (5.7)

and

𝔼𝑛⩽𝑥𝐹(𝑛 + ℎ1)

𝑘∏
𝑗=2

(Λ𝜈 + 𝐹 + 𝐺)(𝑛 + ℎ𝑗) ≈ 0 (5.8)

and

𝔼𝑛⩽𝑥𝐺(𝑛 + ℎ1)

𝑘∏
𝑗=2

(Λ𝜈 + 𝐺)(𝑛 + ℎ𝑗) ≈ 0. (5.9)

We begin with (5.9), which is a variant of (4.5). We can bound (Λ𝜈 + 𝐺)(𝑛 + ℎ𝑗) by
𝑂(log(2𝑥)1(⩾𝑅1∕4)(𝑛 + ℎ𝑗)), and we also have the bound

𝐺(𝑛 + ℎ1) ≪ log(2𝑥)
∑

√
2𝑥<𝑝∗⩽2𝑥∕𝑅1∕2

1𝑝∗|𝑛+ℎ11(⩾𝑅1∕4)(𝑛 + ℎ1)

unless 𝑛 + ℎ𝑗 is of the form 𝑝𝑚 for some 𝑝 < 𝑅1∕4 and𝑚 ⩾ 1, or 𝑝′𝑝𝑚 for some 𝑝 < 𝑅1∕4,𝑚 ⩾ 2,
and

√
2𝑥 ⩽ 𝑝′ ⩽ 2𝑥∕𝑅1∕2.
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There are only𝑂(𝑥 log 𝑥∕𝑅1∕4) such exceptional values of 𝑛 and their contribution is easily seen
to be negligible using (3.1). Thus it will suffice to show that

(log𝑘 𝑥)
∑

√
2𝑥<𝑝∗⩽2𝑥∕𝑅1∕2

𝔼𝑛⩽𝑥1𝑝∗|𝑛+ℎ1
𝑘∏
𝑗=1

1(⩾𝑅1∕4)(𝑛 + ℎ𝑗) ≈ 0. (5.10)

Making the change of variables 𝑛 = 𝑝∗𝑛′ − ℎ1 and using Lemma 3.2 and Mertens’ theorem (3.6),
we see that

𝔼𝑛⩽𝑥1𝑝∗|𝑛+ℎ1
𝑘∏
𝑗=1

1(⩾𝑅1∕4)(𝑛 + ℎ𝑗) ≪
1

𝑝∗ log𝑘 𝑅
.

The claim (5.10) now follows from Corollary 3.6 and (2.8).
Now we turn to (5.7). Observe using (3.10) that

(Λ𝜈 + 𝐸 + 𝐹 + 𝐺)(𝑛 + ℎ𝑗) ≪
⎛⎜⎜⎝

∑
𝑑𝑗⩽𝐷∶𝑑𝑗|𝑛+ℎ𝑗 𝜏(𝑑𝑗)

𝑂(1)
⎞⎟⎟⎠𝜈(𝑛 + ℎ𝑗) log 𝑥

and so we can bound the left-hand side of (5.7) by

≪ (log𝑘 𝑥)
⎛⎜⎜⎝

∑
𝑅0<𝑝

∗⩽
√
2𝑥

𝑎𝑝∗ +
∑

𝑅0<𝑝0⩽
√
2𝑥

𝑎𝑝2
0

⎞⎟⎟⎠ (5.11)

where

𝑎𝑑 ∶=
∑

𝑑1,…,𝑑𝑘⩽𝐷

𝜏(𝑑1⋯𝑑𝑘)
𝑂(1)𝔼𝑛⩽𝑥1𝑑|𝑛+ℎ1

𝑘∏
𝑗=1

1𝑑𝑗|𝑛+ℎ𝑗𝜈(𝑛 + ℎ𝑗).
Let 𝑑 be equal to 𝑝0 or 𝑝20 for some prime 𝑝0 ⩽

√
2𝑥. If 𝑑 >

√
2𝑥, then 𝑑 = 𝑝2

0
for some 𝑝0 ≫ 𝑥1∕4.

From (3.1), one has the crude bound 𝑎𝑑 ≪𝜀
𝑥𝜀

𝑑
= 𝑥𝜀

𝑝2
0

in this case, which certainly gives a negligible

contribution. Hence we may assume that 𝑑 ⩽
√
2𝑥.

Applying Lemma 3.4 and (3.1), we have

𝑎𝑑 ≪𝐴
1

log𝑘 𝑅 ∫
∞

1
𝑓(𝜎)

𝑑𝜎

𝜎𝐴
+
𝐷𝑘+1𝑅2𝑘

𝑥

for any 𝐴 > 0, where

𝑓(𝜎) ∶=
∑

𝑑1,…,𝑑𝑘⩽
√
2𝑥

𝜏([𝑑, 𝑑1]𝑑2⋯𝑑𝑘)
𝑂(1)

[𝑑, 𝑑1]𝑑2⋯𝑑𝑘

( ∏
𝑝|𝑑𝑑1⋯𝑑𝑘

min(𝜎 log𝑅 𝑝, 1)

)
.

Using Euler products (2.5), we can bound

𝑓(𝜎) ⩽
∏

𝑝⩽
√
2𝑥

𝐸𝑝(𝜎),
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where

𝐸𝑝(𝜎) ∶=
∑

𝑑1,…,𝑑𝑘∈ℕ(𝑝)

𝜏([𝑑(𝑝), 𝑑1]𝑑2⋯𝑑𝑘)
𝑂(1)

[𝑑(𝑝), 𝑑1]𝑑2⋯𝑑𝑘
min(𝜎 log𝑅 𝑝, 1)

1𝑝|𝑑𝑑1⋯𝑑𝑘 .

If 𝑝 ≠ 𝑝0, then 𝑑(𝑝) = 1, and we can calculate

𝐸𝑝(𝜎) ⩽ 1 + 𝑂

(
min(𝜎 log𝑅 𝑝, 1)

𝑝

)
.

From (3.4), we then have∏
𝑝⩽

√
2𝑥

𝐸𝑝(𝜎) ≪ (1 + 𝜎 log𝑅
√
2𝑥)𝑂(1)𝐸𝑝0(𝜎) ≪ (log𝑂(1)

𝑅
𝑥)𝜎𝑂(1)𝐸𝑝0(𝜎).

Also, we have the crude bound

𝐸𝑝0(𝜎) ≪
𝜏(𝑑)𝑂(1)

𝑑
.

Putting all these estimates together, and choosing 𝐴 large enough, we conclude that

𝑎𝑑 ≪ 𝜏(𝑑)𝑂(1)
log𝑂(1)

𝑅
𝑥

𝑑 log𝑘 𝑅
+
𝐷𝑘+1𝑅2𝑘

𝑥
.

Inserting this into (5.11) and using Corollary 3.6, (2.17), (2.16), we obtain the claim (5.7).
Finally, we establish (5.8). Observe from (5.5) and (5.6) that

(Λ𝜈 + 𝐹 + 𝐺)(𝑛 + ℎ𝑗′) ≪
⎛⎜⎜⎝

∑
𝑑𝑗⩽𝐷∶𝑑𝑗|𝑛+ℎ𝑗 𝜏(⩽𝑅0)(𝑑𝑗)

𝑂(1)
⎞⎟⎟⎠𝜈(𝑛 + ℎ𝑗) log 𝑥

and so it suffices to show that

(log𝑘 𝑥)
∑

𝑑1,…,𝑑𝑘⩽𝐷∶𝑑1>1

(
𝑘∏
𝑗=1

𝜏(⩽𝑅0)(𝑑𝑗)
𝑂(1)

)
𝔼𝑛⩽𝑥

𝑘∏
𝑗=1

1𝑑𝑗|𝑛+ℎ𝑗𝜈(𝑛 + ℎ𝑗) ≈ 0.

Applying Lemma 3.4 and (3.1), we may estimate the left-hand side as

≪𝐴 (log
𝑘
𝑅 𝑥)

∑
𝑑1,…,𝑑𝑘⩽𝐷∶𝑑1>1

∏𝑘
𝑗=1 𝜏(⩽𝑅0)(𝑑𝑗)

𝑂(1)

𝑑1⋯𝑑𝑘 ∫
∞

1

∏
𝑝|𝑑1⋯𝑑𝑘

min(𝜎 log𝑅 𝑝, 1)
𝑑𝜎

𝜎𝐴

+
𝑅2𝑘𝐷𝑘+1(log𝑘 𝑥)

𝑥

for any 𝐴 > 0. The second term is ≈ 0 by (2.16). Replacing the condition 𝑑1 > 1 by (𝑑1, … , 𝑑𝑘) ≠
(1, … , 1), removing the constraints 𝑑1, … , 𝑑𝑘 ⩽ 𝐷, and factoring the Euler product using (2.5), the
first term can be bounded by

(log𝑘𝑅 𝑥)∫
∞

1

(∏
𝑝⩽𝑅0

�̃�𝑝(𝜎) − 1

)
𝑑𝜎

𝜎𝐴
, (5.12)
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where

�̃�𝑝(𝜎) ∶=
∑

𝑑1,…,𝑑𝑘∈ℕ(𝑝)⟩
∏𝑘

𝑗=1 𝜏(𝑑𝑗)
𝑂(1)

𝑑1⋯𝑑𝑘
min(𝜎 log𝑅 𝑝, 1)

1𝑝|𝑑1⋯𝑑𝑘 .

Direct calculation gives

�̃�𝑝(𝜎) = 1 + 𝑂

(
min(𝜎 log𝑅 𝑝, 1)

𝑝

)
.

From (3.4), we have ∏
𝑝⩽𝑅0

�̃�𝑝(𝜎) ⩽ (1 + 𝜎 log𝑅 𝑅0)
𝑂(1)

and hence (∏
𝑝⩽𝑅0

�̃�𝑝(𝜎)

)
− 1 ≪ 𝜎𝑂(1) log𝑅 𝑅0.

We can thus bound (5.12) for 𝐴 large enough by

≪ (log𝑘𝑅 𝑥) log𝑅 𝑅0,

which is ≈ 0 by (2.14). This concludes the proof of (5.9) and hence of Proposition 5.2.

6 THIRD STEP: REPLACING THE LIOUVILLE SIEGELMODEL
WITH A TYPE I APPROXIMANT

We now execute step (iii) of the strategy outlined in the introduction. From (4.1), (2.7), (2.6) and
Möbius inversion, we have

𝜆Siegel = 𝜆(⩽𝑅) ∗ (𝜇𝜒)(⩽𝑅) ∗ 𝜒(⩽𝑅) ∗ 𝜒(>𝑅)

= (𝜆 ∗ 𝜇𝜒)(⩽𝑅) ∗ 𝜒.

We now split

𝜆Siegel = 𝜆♯Siegel + 𝜆
♭
Siegel, (6.1)

where 𝜆♯Siegel is the Type I approximant

𝜆♯Siegel ∶= (𝜆 ∗ 𝜇𝜒)(⩽𝑅)𝜓⩽𝐷 ∗ 𝜒 (6.2)

and 𝜆♭Siegel is the error

𝜆♭Siegel ∶= (𝜆 ∗ 𝜇𝜒)(⩽𝑅)𝜓>𝐷 ∗ 𝜒. (6.3)
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Here 𝜓⩽𝐷, 𝜓>𝐷 are the smooth cutoffs defined in (2.21) and (2.22). In particular, we see that
𝜆Siegel(𝑛) = 𝜆♯Siegel(𝑛) whenever 𝑛(⩽𝑅) ⩽

√
𝐷. Since

√
𝐷 is significantly larger than 𝑅, and 𝑅-

smooth numbers become extremely sparse at scales much larger than 𝑅, we thus see that 𝜆Siegel,
𝜆♯Siegel agree with each other for ‘typical’ 𝑛, and would thus be heuristically expected to be close

to each other; in other words, 𝜆♭Siegel would be expected to be small on average.

Unfortunately, 𝜆♯Siegel, 𝜆
♭
Siegel are not bounded. However, we can still obtain a reasonable bound

on the latter quantity:

Lemma 6.1. For any 𝑛 ⩽ 2𝑥, we have

𝜆♭Siegel(𝑛) ≪ 𝐻(𝑛), (6.4)

where

𝐻(𝑛) ∶=
∑

𝑑⩽𝐷∶𝑑|𝑛 𝛼(𝑑) (6.5)

and 𝛼(𝑑) are non-negative quantities obeying the bounds∑
𝑑⩽𝐷

𝜏(𝑑)𝐴
𝛼(𝑑)

𝑑
≪𝐴 exp

(
−
1

8
log𝑅 𝐷

)
(6.6)

for any 𝐴 ⩾ 1.

Remark 6.2. Note that by (2.19), we have

exp(−
1

8
log𝑅 𝐷) ≪𝐴 log

−𝐴 𝜂 (6.7)

for any 𝐴 ⩾ 1. We shall need (6.7) later, but we stated Lemma 6.1 in a stronger form to emphasize
that it does not use any information on exceptional characters.

Proof. From (6.3) and the triangle inequality, we have

𝜆♭Siegel(𝑛) = 𝛽 ∗ 𝜒(>𝑅)(𝑛) ≪ |𝛽| ∗ 1(>𝑅)(𝑛), (6.8)

where

𝛽 ∶= (𝜆 ∗ 𝜇𝜒)(⩽𝑅)𝜓>𝐷 ∗ 𝜒(⩽𝑅). (6.9)

To control 𝛽, we perform a Fourier expansion on 𝜓>𝐷 , which is the only term on the right-hand
side of (6.9) which is not multiplicative. Applying Fourier inversion (3.13) to the function g(𝑢) ∶=
𝑒−𝑢(1 − 𝜓((log𝐷 𝑅)𝑢) and setting 𝑢 ∶= log𝑅 𝑛, we conclude the identity

𝜓>𝐷(𝑛) = ∫ℝ 𝑛
1+𝑖𝑡
log 𝑅 𝑓(𝑡) 𝑑𝑡, (6.10)

where

𝑓(𝑡) ∶=
1

2𝜋 ∫
∞

0
𝑒−(1+𝑖𝑡)𝑥(1 − 𝜓((log𝐷 𝑅)𝑥)) 𝑑𝑥.
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From the triangle inequality, we have

𝑓(𝑡) ≪ exp(−
1

4
log𝑅 𝐷) ≪𝐴 log

−𝐴 𝜂

for any 𝐴 > 0, while from repeated integration by parts, we have

𝑓(𝑡) ≪𝐴
1|𝑡|𝐴

for any positive integer 𝐴. Combining the two bounds, we conclude that

𝑓(𝑡) ≪𝐴

exp(−1

8
log𝑅 𝐷)

(1 + |𝑡|)𝐴 (6.11)

for any 𝐴 > 0.
From (6.9) and (6.10), we have

𝛽(𝑛) = ∫ℝ 𝛽𝑡(𝑛)𝑓(𝑡) 𝑑𝑡,

where

𝛽𝑡 ∶= (𝜆 ∗ 𝜇𝜒)(⩽𝑅)(⋅)
1+𝑖𝑡
log 𝑅 ∗ 𝜒(⩽𝑅). (6.12)

From (6.8) and the triangle inequality, we then have

𝜆♭Siegel(𝑛) ⩽ ∫ℝ |𝛽𝑡| ∗ 1(>𝑅)(𝑛)|𝑓(𝑡)| 𝑑𝑡.
The function |𝛽𝑡| is multiplicative and supported on ℕ(⩽𝑅), thus

|𝛽𝑡| ∗ 1(>𝑅)(𝑛) ≪ ∏
𝑝⩽𝑅

|𝛽𝑡(𝑛(𝑝))|.
From (6.12), we see that

|𝛽𝑡(𝑝𝑗)| = 1

when 𝑝 ⩽ 𝑅 and 𝜒(𝑝) = −1 (because 𝜆 ∗ 𝜇𝜒 agrees with 𝜆 ∗ 𝜇𝜆 = 1{1} on ℕ(𝑝)), and

|𝛽𝑡(𝑝𝑗)| = 𝑝
𝑗

log 𝑅 = exp(𝑗 log𝑅 𝑝)

when 𝑝 ⩽ 𝑅 and 𝜒(𝑝) = 0. For 𝜒(𝑝) = +1, the situation is more complicated: direct calculation
gives

𝛽𝑡(𝑝
𝑗) = 𝑃𝑗(𝑝

1+𝑖𝑡
log 𝑅 ),

where 𝑃𝑗 is the polynomial

𝑃𝑗(𝑧) ∶= 1 − 2𝑧 + 2𝑧2 −⋯ + (−1)𝑗2𝑧𝑗.
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Note that |𝑃𝑗(1)| ⩽ 1 and 𝑃′𝑗(𝑧) ≪ 𝑗𝑂(1)(1 + |𝑧|𝑗−1) for any 𝑧, hence by the fundamental theorem
of calculus

|𝑃𝑗(𝑧)| ⩽ 1 + 𝑂(|𝑧 − 1|𝑗𝑂(1))
whenever |𝑧| ⩽ 1 + 1

𝑗
. Also from the triangle inequality, we have |𝑃𝑗(𝑧)|≪ 𝑗|𝑧|𝑗 for |𝑧| ⩾ 1. We

thus have

|𝑃𝑗(𝑧)| ⩽ min(1 + 𝑗𝑂(1)|𝑧 − 1|, exp(𝑂(𝑗 log |𝑧| + 1 + log 𝑗)))
for |𝑧| ⩾ 1. Thus regardless of the value of 𝜒(𝑝), we have the upper bound

|𝛽𝑡(𝑝𝑗)| ⩽ exp(𝑂(𝑎𝑡,𝑝𝑗 ))
for 𝑝 ⩽ 𝑅, where 𝑎𝑡,𝑝𝑗 is the quantity

𝑎𝑡,𝑝𝑗 ∶= min(𝑗𝐶(1 + |𝑡|) log𝑅 𝑝, 𝑗 log𝑅 𝑝 + 1 + log 𝑗)
for some large constant 𝐶 ⩾ 1 and for all 𝑗 ⩾ 1, with the convention 𝑎𝑡,1 = 0. We conclude that

|𝛽𝑡| ∗ 1(>𝑅)(𝑛) ≪ exp

(
𝑂

(∑
𝑝⩽𝑅

𝑎𝑡,𝑛(𝑝)

))
.

To convert the right-hand side into Type I sums, we apply Lemma 3.1(i) to split

𝑛 = 𝑛(>𝑅)𝑛1⋯𝑛𝑚,

where𝑚 = 𝑂(1) and 𝑛1, … , 𝑛𝑚 ⩽ 𝐷 lie in ℕ(⩽𝑅). We then have

𝑛(𝑝) = (𝑛1)(𝑝)⋯ (𝑛𝑚)(𝑝)

for all 𝑝 ⩽ 𝑅, and hence

𝑎𝑡,𝑛(𝑝) ≪

𝑚∑
𝑖=1

𝑎𝑡,(𝑛𝑖)(𝑝) .

Using the definition of 𝑎𝑡,𝑝𝑗 and the inequality (𝑗1 + 𝑗2)𝐶 ≪𝐶 𝑗
𝐶
1
+ 𝑗𝐶

2
, we conclude that

|𝛽𝑡| ∗ 1(>𝑅)(𝑛) ≪ exp

(
𝑂

(
𝑚∑
𝑖=1

∑
𝑝⩽𝑅

𝑎𝑡,(𝑛𝑖)(𝑝)

))

and hence (since𝑚 = 𝑂(1)), we have

|𝛽𝑡| ∗ 1(>𝑅)(𝑛) ≪ exp

(
𝑂

(∑
𝑝⩽𝑅

𝑎𝑡,(𝑛𝑖)(𝑝)

))

=
∏
𝑝⩽𝑅

(
1 + (exp(𝑂(𝑎𝑡,(𝑛𝑖)(𝑝) )) − 1)

)
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for some 𝑖 = 1, … ,𝑚. In particular, we see that

|𝛽𝑡| ∗ 1(>𝑅)(𝑛) ≪ ∑
𝑑⩽𝐷∶𝑑|𝑛 1(⩽𝑅)(𝑑)

∏
𝑝⩽𝑅

(
exp(𝑂(𝑎𝑡,𝑑(𝑝) )) − 1

)
.

We therefore obtain the bound (6.4) with

𝛼(𝑑) ∶= 1(⩽𝑅)(𝑑)∫ℝ
∏
𝑝⩽𝑅

(
exp(𝑂(𝑎𝑡,𝑑(𝑝) )) − 1

)|𝑓(𝑡)| 𝑑𝑡.
It remains to establish the bound (6.6).We use Fubini’s theorem andEuler product expansion (2.5)
to bound

∑
𝑑⩽𝐷

𝜏(𝑑)𝐴
𝛼(𝑑)

𝑑
≪ ∫ℝ

∏
𝑝⩽𝑅

(
1 +

∞∑
𝑗=1

(1 + 𝑗)𝐴(exp(𝑂(𝑎𝑡,𝑝𝑗 )) − 1)

𝑝𝑗

)|𝑓(𝑡)| 𝑑𝑡.
For 𝑗 ⩾ 2, we use the crude bound

exp(𝑂(𝑎𝑡,𝑝𝑗 )) ≪ 𝑗𝑂(1)𝑝𝑂(𝑗∕ log 𝑅) ≪ 𝑒𝑂(𝑗)

for 𝑝 ⩽ 𝑅 to conclude that

∞∑
𝑗=2

(1 + 𝑗)𝐴(exp(𝑂(𝑎𝑡,𝑝𝑗 )) − 1)

𝑝𝑗
≪𝐴

1

𝑝2

for any 𝑝 ⩽ 𝑅. For 𝑗 = 1, we have

exp(𝑂(𝑎𝑡,𝑝𝑗 )) ⩽ 1 + 𝑂(min((1 + |𝑡|) log𝑅 𝑝, 1)),
and thus using 1 + 𝑥 ⩽ 𝑒𝑥, we obtain

1 +

∞∑
𝑗=1

(1 + 𝑗)𝐴(exp(𝑂(𝑎𝑡,𝑝𝑗 )) − 1)

𝑝𝑗
⩽ 1 +

𝑂𝐴(min((1 + |𝑡|) log𝑅 𝑝, 1))
𝑝

+ 𝑂𝐴

(
1

𝑝2

)

⩽ exp

(
𝑂𝐴

(
min((1 + |𝑡|) log𝑅 𝑝, 1)

𝑝
+

1

𝑝2

))
.

FromMertens’ theorem (3.3), we have

∏
𝑝⩽𝑅

exp

(
𝑂𝐴(

min((1 + |𝑡|) log𝑅 𝑝, 1))
𝑝

+
1

𝑝2

)
= exp

(
𝑂𝐴

(∑
𝑝⩽𝑅

(
min((1 + |𝑡|) log𝑅 𝑝, 1)

𝑝
+

1

𝑝2

)))
≪ (2 + |𝑡|)𝑂𝐴(1),

and hence ∑
𝑑⩽𝐷

𝜏(𝑑)𝐴
𝛼(𝑑)

𝑑
≪𝐴 ∫ℝ(2 + |𝑡|)𝑂𝐴(1)|𝑓(𝑡)| 𝑑𝑡.

Using (6.11), we obtain (6.6) as required. □
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Now we can prove

Proposition 6.3 (Replacing 𝜆Siegel with a Type I approximant).We have

𝔼𝑛⩽𝑥ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)𝜆Siegel(𝑛 + ℎ
′
1)⋯ 𝜆Siegel(𝑛 + ℎ

′
𝓁)

≈ 𝔼𝑛⩽𝑥ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)𝜆
♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁).

From Lemma 6.1, we have

𝜆♯Siegel(𝑛 + ℎ
′
𝑗) = 𝜆Siegel(𝑛 + ℎ

′
𝑗) + 𝑂(𝐻(𝑛 + ℎ

′
𝑗))

for 𝑗 = 1,… ,𝓁. Multiplying these estimates using (4.2) and the triangle inequality, and relabeling,
we reduce to showing that

𝔼𝑛⩽𝑥|ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)|𝐻(𝑛 + ℎ′1)⋯𝐻(𝑛 + ℎ′𝓁′ ) ≈ 0

for any 1 ⩽ 𝓁′ ⩽ 𝓁. By (5.2), it suffices to show that

(log𝑘 𝑥)𝔼𝑛⩽𝑥𝜏𝜈(𝑛 + ℎ1)⋯ 𝜏𝜈(𝑛 + ℎ𝑘)𝐻(𝑛 + ℎ
′
1)⋯𝐻(𝑛 + ℎ′𝓁′ ) ≈ 0. (6.13)

Expanding out (6.5), the left-hand side is∑
𝑑′
1
,…,𝑑′

𝓁′
⩽𝐷

𝛼(𝑑′1)⋯𝛼(𝑑′𝓁′ )(log
𝑘 𝑥)𝔼𝑛⩽𝑥𝜏𝜈(𝑛 + ℎ1)⋯ 𝜏𝜈(𝑛 + ℎ𝑘)1𝑑′

1
|𝑛+ℎ′

1
,…,𝑑′

𝓁′
|𝑛+ℎ′

𝓁′
;

using (3.10), one can bound this further by

≪
∑

𝑑1,…,𝑑𝑘′⩽𝐷

𝜏(𝑑1)
𝑂(1)⋯ 𝜏(𝑑𝑘)

𝑂(1)𝛼(𝑑𝑘+1)⋯𝛼(𝑑𝑘′)(log
𝑘 𝑥)𝔼𝑛⩽𝑥

𝑘∏
𝑗=1

𝜈(𝑛 + ℎ𝑗)

𝑘′∏
𝑗=1

1𝑑𝑖|𝑛+ℎ𝑖
where we use the notations 𝑘′ ∶= 𝑘 + 𝓁′, ℎ𝑘+𝑗 ∶= ℎ′

𝑗
, and 𝑑𝑘+𝑗 ∶= 𝑑′

𝑗
for 𝑗 = 1,… ,𝓁′. Applying

Lemma 3.4, we can bound this by

≪𝐴 (log
𝑘
𝑅 𝑥)∫

∞

1

∑
𝑑1,…,𝑑𝑘′′⩽𝐷

𝜏(𝑑1)
𝑂(1)⋯ 𝜏(𝑑𝑘′)

𝑂(1)𝛼(𝑑𝑘+1)⋯𝛼(𝑑𝑘′)

𝑑1⋯𝑑𝑘′( ∏
𝑝|𝑑1⋯𝑑𝑘

min(𝜎 log𝑅 𝑝, 1)

)
𝑑𝜎

𝜎𝐴
+
𝐷𝑘

′
𝑅2𝑘

𝑥

for any 𝐴 > 0. The contribution of the latter term 𝐷𝑘
′
𝑅2𝑘

𝑥
is ≈ 0 due to (2.16). By (6.6), the former

term can be bounded by

≪𝐴

log𝑘𝑅 𝑥

log𝐴 𝜂 ∫
∞

1

∑
𝑑1,…,𝑑𝑘⩽𝐷

𝜏(𝑑1)
𝑂(1)⋯ 𝜏(𝑑𝑘)

𝑂(1)

𝑑1⋯𝑑𝑘

( ∏
𝑝|𝑑1⋯𝑑𝑘

min(𝜎 log𝑅 𝑝, 1)

)
𝑑𝜎

𝜎𝐴
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for any 𝐴 > 0, which by (2.5) can be bounded by

≪𝐴

log𝑘𝑅 𝑥

log𝐴 𝜂 ∫
∞

1

∏
𝑝⩽𝐷

𝐸𝑝(𝜎)
𝑑𝜎

𝜎𝐴

where

𝐸𝑝(𝜎) ∶=
∑

𝑑1,…,𝑑𝑘∈ℕ(𝑝)

𝜏(𝑑1)
𝑂(1)⋯ 𝜏(𝑑𝑘)

𝑂(1)

𝑑1⋯𝑑𝑘
min(𝜎 log𝑅 𝑝, 1)

1𝑝|𝑑1⋯𝑑𝑘 .

We can bound

𝐸𝑝(𝜎) ⩽ 1 + 𝑂

(
min(𝜎 log𝑅 𝑝, 1)

𝑝

)
so by (3.4), (2.15) and setting 𝐴 large enough we conclude (6.13). This completes the proof of
Proposition 6.3.

7 FOURTH STEP: REPLACING THE VONMANGOLDT SIEGEL
MODELWITH A TYPE I APPROXIMANT

We now execute step (iv) of the strategy outlined in the introduction. In this step, we will achieve
power savings inmany of our error terms, and as a consequence we can often afford to lose factors
such as 𝑥𝑂(𝜀), in contrast to other sections where even a loss of log 𝑥 is often unacceptable.
It is convenient to perform a smooth dyadic decomposition of the convolution 𝜒 ∗ log in order

to run a smoothed version of the Dirichlet hyperbola method. Let 𝜙∶ ℝ → ℝ be a smooth even
function supported on [−1, 1] of total mass one. For any 𝑡 > 0, define the function

Φ𝑡(𝑛) ∶= 𝜙
(
log

𝑛

𝑡

)
,

which is a smooth cutoff to the interval [𝑡∕𝑒, 𝑒𝑡]. Then for any natural number 𝑛, one has the
identity

∫
∞

0
Φ𝑡(𝑛) log 𝑡

𝑑𝑡

𝑡
= ∫

∞

0
𝜙
(
log

𝑛

𝑡

)
log 𝑡

𝑑𝑡

𝑡

= ∫ℝ 𝜙(𝑢)(log 𝑛 − 𝑢) 𝑑𝑢
= log 𝑛,

(7.1)

where we made the change of variables 𝑢 ∶= log 𝑛 − log 𝑡. We conclude that

𝜒 ∗ log(𝑛) = ∫
∞

0
𝜒 ∗ Φ𝑡(𝑛) log 𝑡

𝑑𝑡

𝑡
. (7.2)

As it turns out, the Dirichlet convolution 𝜒 ∗ Φ𝑡 is of an adequate ‘Type I’ form when 𝑡 ⩽ 𝐷𝑞2𝜒
or 𝑥∕𝑡 ⩽ (𝐷𝑞2𝜒)

2. Accordingly, we split

𝜒 ∗ log = (𝜒 ∗ log)♯ + (𝜒 ∗ log)♭,
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where (𝜒 ∗ log)♯ is the Type I approximant

(𝜒 ∗ log)♯(𝑛) = ∫
𝐷𝑞2𝜒

0
𝜒 ∗ Φ𝑡(𝑛) log 𝑡

𝑑𝑡

𝑡

+ ∫
∞

𝐷𝑞2𝜒

𝜓⩽(𝐷𝑞2𝜒)2
(𝑥∕𝑡)𝜒 ∗ Φ𝑡(𝑛) log 𝑡

𝑑𝑡

𝑡

+ ∫
∞

𝐷𝑞2𝜒

𝜓>(𝐷𝑞2𝜒)2
(𝑥∕𝑡)𝜒 ∗ Φ𝐷𝑞2𝜒

(𝑛) log 𝑡
𝑑𝑡

𝑡
,

(7.3)

and (𝜒 ∗ log)♭ is the error

(𝜒 ∗ log)♭(𝑛) ∶= ∫
∞

𝐷𝑞2𝜒

𝜓>(𝐷𝑞2𝜒)2
(𝑥∕𝑡)𝜒 ∗ (Φ𝑡 − Φ𝐷𝑞2𝜒

) log 𝑡
𝑑𝑡

𝑡
. (7.4)

Thus, (𝜒 ∗ log)♯ is the modification of 𝜒 ∗ log formed by replacing the cutoff Φ𝑡 with Φ𝐷𝑞2𝜒 in
the intermediate range 𝐷𝑞2𝜒 ⩽ 𝑡 ⩽

𝑥

(𝐷𝑞2𝜒)
2 of 𝑡 (using a smoothed version of the upper cutoff 𝑡 ⩽

𝑥

(𝐷𝑞2𝜒)
2 in order to facilitate some technical computations in the next section). As it turns out,

it will be the second term in the right-hand side of (7.3) (in which the Φ𝑡 term is supported in
values≫ 𝑥∕(𝐷𝑞2𝜒)

2, so that the 𝜒 term is supported in values≪ (𝐷𝑞2𝜒)
2) that will give the main

contributions, being a more complicated version of the (untwisted) Type I sum (𝜒𝜓⩽(𝐷𝑞2𝜒)2
) ∗ log.

We then have a similar spliting

ΛSiegel = Λ♯Siegel + Λ
♭
Siegel,

where

Λ♯Siegel ∶= (𝜒 ∗ log)♯𝜈

and

Λ♭Siegel ∶= (𝜒 ∗ log)♭𝜈.

We have good bounds on the distribution of (𝜒 ∗ log)♭ or Λ♭Siegel in residue classes 𝑎 (𝑞) with 𝑞
almost as large as 𝑥2∕3, as long as (𝑎, 𝑞) is not too large:

Proposition 7.1 (2∕3 level of distribution). Let 0 < 𝜀 < 1

2
, 1 ⩽ 𝑞 ⩽ 𝑥, and 𝑎 be an integer. Let 𝐼 be

a subinterval of [0, 2𝑥]. Let 𝑓∶ ℤ → [−1, 1] be a 𝑞𝜒-periodic function.

(i) We have

∑
𝑛∈𝐼∶𝑛=𝑎 (𝑞)

(𝜒 ∗ log)♭(𝑛)𝑓

(
𝑛 − 𝑎

𝑞

)
≪𝜀

𝑥

𝑞

⎛⎜⎜⎝
(𝑎, 𝑞)3∕2𝑞

9∕2
𝜒 𝑞3∕2

𝑥1−𝑂(𝜀)
+
𝑥𝑂(𝜀)(𝑎, 𝑞)2

𝐷1∕2
+

1

𝑥𝜀

⎞⎟⎟⎠.
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(ii) If 𝜀 is sufficiently small depending on 𝑘,𝓁, 𝜀0, then we have

∑
𝑛∈𝐼∶𝑛=𝑎 (𝑞)

Λ♭Siegel(𝑛)𝑓

(
𝑛 − 𝑎

𝑞

)
≪𝜀 (𝑎, 𝑞)

𝑂(1) 𝑥

𝑞

⎛⎜⎜⎝
𝑞
9∕2
𝜒 𝑞3∕2

𝑥1−𝜀0
+

1

𝑥𝜀

⎞⎟⎟⎠.
The powers of (𝑎, 𝑞) and 𝑞𝜒 are of minor importance and these terms can be neglected on

a first reading. The key point here is that we can have a power savings over the trivial bound of
𝑂𝜀(𝑥

1+𝜀∕𝑞) evenwhen 𝑞 is somewhat above𝑥1∕2 (indeed, the above bounds can remainnon-trivial
as 𝑞 approaches 𝑥2∕3).

Proof. We first prove (i). Note that 0 ⩽ (𝜒 ∗ log)♭(𝑛) ⩽ 𝜒 ∗ log(𝑛). From (3.1), we may bound the
left-hand side of the claim by 𝑂𝜀(𝑥𝑂(𝜀)(1 + 𝑥∕𝑞)). From this, we see that we may assume without
loss of generality that wemay take 𝜀 is sufficiently small depending on 𝑘′, andwemay also assume
that 𝑞 ⩽ 𝑥2∕3, since otherwise the above crude bound is already dominated by 𝑥𝑂(𝜀)𝑞1∕2 and hence

by 𝑥

𝑞

(𝑎,𝑞)3∕2𝑞
9∕2
𝜒 𝑞3∕2

𝑥1−𝑂(𝜀)
. By shrinking 𝐼 slightly (and using (3.1) to treat the error), we may assume that

𝐼 ⊂ [𝑥1−𝜀, 2𝑥].
The integrand in (7.4) is only non-zero in the range 𝐷𝑞2𝜒 ⩽ 𝑡 ⩽ 𝑥∕(𝐷𝑞

2
𝜒)
2. By the fundamental

theorem of calculus, one has

Φ𝑡(𝑛) − Φ𝐷𝑞2𝜒
(𝑛) = −∫

𝑡

𝐷𝑞2𝜒

Φ̃𝑡′ (𝑛)
𝑑𝑡′

𝑡′
,

where

Φ̃𝑡(𝑛) ∶= 𝜙′
(
log

𝑛

𝑡

)
so by the triangle inequality (and increasing 𝜀 slightly), it will suffice to show that

∑
𝑛=𝑎 (𝑞)

𝑓

(
𝑛 − 𝑎

𝑞

)
1𝐼(𝑛)𝜒 ∗ Φ̃𝑡(𝑛) ≪𝜀 𝑥

𝑂(𝜀)(𝑎, 𝑞)3∕2𝑞
9∕2
𝜒 𝑞1∕2 +

𝑥1+𝑂(𝜀)(𝑎, 𝑞)2

𝐷1∕2𝑞
+
𝑥1−𝜀

𝑞

for all 𝐷𝑞2𝜒 ⩽ 𝑡 ⩽ 𝑥∕(𝐷𝑞
2
𝜒)
2.

We can approximate 1𝐼 by a cutoff 𝜓𝐼 ∶ ℝ → ℝ supported on 𝐼 obeying 𝜓𝐼(𝑦) = 1 whenever
dist(𝑦, 𝐼) ⩾ 𝑥1−2𝜀, and additionally obeying the derivative estimates

𝜓
(𝑗)
𝐼
(𝑦) ≪𝑗 𝑥

−(1−2𝜀)𝑗 (7.5)

for all 𝑗 ⩾ 0 and 𝑦 ∈ ℝ, with the error being acceptable by (3.1). It thus remains to establish the
bound ∑

𝑛=𝑎 (𝑞)

𝑓

(
𝑛 − 𝑎

𝑞

)
𝜓𝐼(𝑛)𝜒 ∗ Φ̃𝑡(𝑛) ≪𝜀 𝑥

𝑂(𝜀)(𝑎, 𝑞)3∕2𝑞
9∕2
𝜒 𝑞1∕2 +

𝑥1+𝑂(𝜀)(𝑎, 𝑞)2

𝐷1∕2𝑞
.

The left-hand side can be rewritten as∑
𝑛1,𝑛2

𝜒(𝑛1)Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)1𝑛1𝑛2=𝑎 (𝑞)𝑓

(
𝑛1𝑛2 − 𝑎

𝑞

)
.
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By the triangle inequality, it suffices to show that

∑
𝑛1,𝑛2

𝜒(𝑛1)Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)1𝑛1𝑛2=𝑎′ (𝑞𝑞𝜒) ≪𝜀 𝑥
𝑂(𝜀)(𝑎, 𝑞)3∕2𝑞

7∕2
𝜒 𝑞1∕2 +

𝑥1+𝑂(𝜀)(𝑎, 𝑞)2

𝐷1∕2𝑞𝑞𝜒
,

for any 𝑎′ ∈ ℤ∕(𝑞𝑞𝜒ℤ)with 𝑎′ = 𝑎 (𝑞). If we set 𝑞0 ∶= (𝑎, 𝑞)𝑞𝜒 , then (𝑎′, 𝑞𝑞𝜒) divides 𝑞0. Writing

𝑞′0 ∶= ((𝑎′, 𝑞𝑞𝜒)𝑞0, 𝑞𝑞𝜒)

and using Lemma 3.9 and the triangle inequality and (3.1), we obtain the bound

∑
𝑛1,𝑛2

𝜒(𝑛1)Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)1𝑛1𝑛2=𝑎′ (𝑞𝑞𝜒) ≪𝜀 𝑥
𝜀

(
𝑞′
0

𝑞𝑞𝜒
𝑋 + 𝑞

3∕2
0
𝑞−3∕2𝑌

)
, (7.6)

where

𝑋 ∶=

||||||
∑
𝑛1,𝑛2

𝜒(𝑛1)Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)1𝑛1𝑛2=𝑎′ (𝑞′0)
1(𝑛1𝑛2,𝑞𝑞𝜒)=(𝑎′,𝑞𝑞𝜒)

||||||
and

𝑌 ∶=
∑

𝑢1,𝑢2∈ℤ∕(𝑞𝑞𝜒ℤ)∶𝑞𝑞𝜒∕𝑞0∤𝑢1,𝑢2

(𝑢1, 𝑢2, 𝑞𝑞𝜒)
1∕2

||||||
∑
𝑛1,𝑛2

Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)𝑒𝑞𝑞𝜒 (𝑢1𝑛1 + 𝑢2𝑛2)

||||||.
We first estimate the quantity 𝑌. From repeated summation by parts, we have∑

𝑛1,𝑛2

Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)𝑒𝑞(𝑢1𝑛1 + 𝑢2𝑛2) ≪𝜀 𝑥
−1+𝑂(𝜀) 𝑥∕𝑡‖𝑢1∕(𝑞𝑞𝜒)‖ℝ∕ℤ 𝑡‖𝑢2∕(𝑞𝑞𝜒)‖ℝ∕ℤ

=
𝑥𝑂(𝜀)‖𝑢1∕𝑞𝑞𝜒‖ℝ∕ℤ‖𝑢2∕𝑞𝑞𝜒‖ℝ∕ℤ .

Writing 𝑢1 = 𝑑𝑢′
1
, 𝑢2 = 𝑑𝑢′

2
with 𝑑 = (𝑢1, 𝑢2, 𝑞𝑞𝜒)

1∕2, we then have

𝑌 ≪𝜀

∑
𝑑|𝑞𝑞𝜒 𝑑

1∕2
∑

1⩽𝑢′
1
,𝑢′
2
<
𝑞𝑞𝜒
𝑑

𝑥𝑂(𝜀)‖𝑢′
1
∕(𝑞𝑞𝜒∕𝑑)‖ℝ∕ℤ‖𝑢′2∕(𝑞𝑞𝜒∕𝑑)‖ℝ∕ℤ

≪𝜀 𝑥
𝑂(𝜀)

∑
𝑑|𝑞𝑞𝜒 𝑑

1∕2

(
𝑞𝑞𝜒

𝑑
log

(
2 +

𝑞𝑞𝜒

𝑑

))2

≪𝜀 𝑥
𝑂(𝜀)𝑞2𝑞2𝜒.

Thuswe see that the contribution of𝑌 is acceptable. Nowwe consider the contribution of𝑋. From
Möbius inversion, we have

1(𝑛1𝑛2,𝑞𝑞𝜒)=(𝑎′,𝑞𝑞𝜒) =
∑

𝑑∶(𝑎′,𝑞𝑞𝜒)|𝑑|𝑞𝑞𝜒 𝜇
(

𝑑

(𝑎′, 𝑞𝑞𝜒)

)
1𝑑|𝑛1𝑛2 .
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By (3.1) and the triangle inequality, one thus has

𝑋 ≪𝜀 𝑥
𝑂(𝜀)

∑
𝑛1,𝑛2

𝜒(𝑛1)Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)1𝑛1𝑛2=𝑎′ (𝑞′0)
1𝑑|𝑛1𝑛2

for some 𝑑 with (𝑎′, 𝑞𝑞𝜒)|𝑑|𝑞𝑞𝜒 . On the one hand, we see from (3.1) (noting that the constraints
𝑛1𝑛2 = 𝑎′ (𝑞′

0
), 𝑑|𝑛1𝑛2 constrain 𝑛1𝑛2 to at most one residue class modulo [𝑑, 𝑞′0]) that

𝑋 ≪𝜀 𝑥
𝑂(𝜀) 𝑥

[𝑑, 𝑞′
0
]
. (7.7)

On the other hand, we can write

𝑋 ≪𝜀 𝑥
𝑂(𝜀)

||||||
∑
𝑛1,𝑛2

𝐹(𝑛1, 𝑛2)𝜙
′
(
log

𝑛2
𝑡

)
𝜓𝐼(𝑛1𝑛2)

||||||,
where 𝐹 is the [𝑑, 𝑞′

0
]-periodic function

𝐹(𝑛1, 𝑛2) ∶= 𝜒(𝑛1)1𝑛1𝑛2=𝑎′ (𝑞′0)
1𝑑|𝑛1𝑛2 .

By Fourier expansion and Poisson summation, we can then write

𝑋 ≪𝜀 𝑥
𝑂(𝜀)

|||||||||
∑

𝜉1,𝜉2∈
ℤ

𝑑𝑞′
0

�̂�(𝜉1, 𝜉2)Ψ(𝜉1, 𝜉2)

|||||||||
,

where

�̂�(𝜉1, 𝜉2) ∶= 𝔼𝑛1,𝑛2𝐹(𝑛1, 𝑛2)𝑒(−𝑛1𝜉1 − 𝑛2𝜉2),

and

Ψ(𝜉1, 𝜉2) ∶= ∫
∞

0 ∫
∞

0
Φ̃𝑡(𝑥2)𝜓𝐼(𝑥1𝑥2)𝑒(𝑥1𝜉1 + 𝑥2𝜉2) 𝑑𝑥1𝑑𝑥2.

From the area-preserving change of variables (𝑢1, 𝑢2) ∶= (log
𝑥2
𝑡
, 𝑥1𝑥2) and the fundamental

theorem of calculus, we have

Ψ(0, 0) = ∫ℝ ∫
∞

0
𝜙′(𝑢1)𝜓𝐼(𝑢2) 𝑑𝑢1𝑑𝑢2 = 0,

and from integration by parts, one has the bounds

Ψ(𝜉1, 𝜉2) ≪𝑚
𝑥1+𝑂𝑚(𝜀)

(1 + 𝑡|𝜉1|)𝑚(1 + 𝑥

𝑡
|𝜉2|)𝑚

for any𝑚 ⩾ 0. Meanwhile, using the trivial bound |�̂�(𝜉1, 𝜉2)| ⩽ 1 and 𝑡, 𝑥𝑡 ⩾ 𝐷𝑞2𝜒 , we have
𝑋 ≪𝑚,𝜀 𝑥

𝑂𝑚(𝜀)
∑

𝜉∈( ℤ

[𝑑,𝑞′
0
]
)2∖{(0,0)}

(1 + 𝐷𝑞2𝜒|𝜉|)−𝑚
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for any𝑚 > 0, and thus

𝑋 ≪𝑚,𝜀 𝑥
𝑂𝑚(𝜀)

(
𝐷𝑞𝜒

[𝑑, 𝑞′
0
]

)−𝑚

for any𝑚 > 0. In particular, if [𝑑, 𝑞′
0
] ⩽ 𝐷1∕2𝑞2𝜒 , we have𝑋 ≪𝜀 1 (say) by choosing𝑚 large enough.

Comparing this with (7.7), we conclude that

𝑋 ≪𝜀 𝑥
𝑂(𝜀) 𝑥

𝐷1∕2𝑞2𝜒

in all cases. Inserting these bounds back into (7.6) and writing 𝑞0 = (𝑎, 𝑞)𝑞𝜒 and bounding

𝑞′0 ⩽ (𝑎
′, 𝑞𝑞𝜒)𝑞0 ⩽ 𝑞

2
0 = (𝑎, 𝑞)2𝑞2𝜒,

we conclude that

∑
𝑛1,𝑛2

𝜒(𝑛1)Φ̃𝑡(𝑛2)𝜓𝐼(𝑛1𝑛2)1𝑛1𝑛2=𝑎′ (𝑞𝑞𝜒) ≪𝜀 𝑥
𝑂(𝜀)

(
𝑥(𝑎, 𝑞)2

𝐷1∕2𝑞𝑞𝜒
+ (𝑎, 𝑞)3∕2𝑞

7∕2
𝜒 𝑞1∕2

)
,

and the claim (i) follows.
Now we prove (ii). Expanding out the Selberg sieve 𝜈 as

𝜈(𝑛) =
∑
𝑑⩽𝑅2

𝑎𝑑1𝑑|𝑛 (7.8)

for some sieve weights 𝑎𝑑 that can be crudely bounded using (3.1) as

𝑎𝑑 ≪ 𝜏(𝑑) ≪𝜀 𝑥
𝜀, (7.9)

we see from the triangle inequality and pigeonhole principle (noting that
∑
𝑑⩽𝑅2

1

𝑑
≪𝜀 𝑥

𝜀) that

∑
𝑛∈𝐼∶𝑛=𝑎 (𝑞)

Λ♭Siegel(𝑛)𝑓

(
𝑛 − 𝑎

𝑞

)
≪𝜀 𝑥

2𝜀
||||||𝑑

∑
𝑛∈𝐼∶𝑛=𝑎 (𝑞);𝑑|𝑛(𝜒 ∗ log)

♭(𝑛)𝑓

(
𝑛 − 𝑎

𝑞

)||||||
for some 𝑑 ⩽ 𝑅2. We can restrict attention to those 𝑑 with (𝑑, 𝑞)|(𝑎, 𝑞), since otherwise the sum
is empty. The conditions 𝑛 = 𝑎 (𝑞), 𝑑|𝑛 can then be combined into a single congruence class 𝑛 =
𝑎′ ([𝑞, 𝑑]), with (𝑎′, [𝑞, 𝑑]) ⩽ 𝑑(𝑎, 𝑞); on this class, the quantity 𝑓(𝑛−𝑎

𝑞
) can be viewed as a 𝑞𝜒-

periodic function of 𝑛−𝑎
′

[𝑞,𝑑]
. Applying (i) (with 𝜀 replaced by 3𝜀), we have

𝑑
∑

𝑛∈𝐼∶𝑛=𝑎 (𝑞);𝑑|𝑛(𝜒 ∗ log)
♭(𝑛)𝑓

(
𝑛 − 𝑎

𝑞

)

≪
𝑑𝑥

[𝑞, 𝑑]

⎛⎜⎜⎝
𝑑3∕2(𝑎, 𝑞)3∕2𝑞

9∕2
𝜒 [𝑞, 𝑑]3∕2

𝑥1−𝑂(𝜀)
+
𝑥𝑂(𝜀)𝑑3∕2(𝑎, 𝑞)2

𝐷1∕2
+

1

𝑥3𝜀

⎞⎟⎟⎠.
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Writing 𝑑

[𝑞,𝑑]
=

(𝑑,𝑞)

𝑞
⩽

(𝑎,𝑞)

𝑞
and then bounding [𝑞, 𝑑] ⩽ 𝑞𝑑 and 𝑑 ⩽ 𝑅2, we conclude

∑
𝑛∈𝐼∶𝑛=𝑎 (𝑞)

Λ♭Siegel(𝑛)𝑓

(
𝑛 − 𝑎

𝑞

)
≪𝜀

𝑥

𝑞

⎛⎜⎜⎝
𝑅6(𝑎, 𝑞)5∕2𝑞

9∕2
𝜒 𝑞3∕2

𝑥1−𝑂(𝜀)
+
𝑥𝑂(𝜀)𝑅3(𝑎, 𝑞)3

𝐷1∕2
+
(𝑎, 𝑞)

𝑥𝜀

⎞⎟⎟⎠.
Using (2.10) and (2.9), we obtain the claim for 𝜀 small enough. □

Now we can prove

Proposition 7.2 (Replacing ΛSiegel with a Type I approximant). Assume 𝑘 ⩽ 2. Then we have

𝔼𝑛⩽𝑥ΛSiegel(𝑛 + ℎ1)⋯ΛSiegel(𝑛 + ℎ𝑘)𝜆
♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁)

≈ 𝔼𝑛⩽𝑥Λ
♯
Siegel(𝑛 + ℎ1)⋯Λ♯Siegel(𝑛 + ℎ𝑘)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁).

Proof. The claim is trivial for 𝑘 = 0, so we may assume that 𝑘 ∈ {1, 2}. By the triangle inequality
and relabeling it suffices to show the bounds

𝔼𝑛⩽𝑥Λ
♭
Siegel(𝑛 + ℎ1)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁) ≈ 0 (7.10)

when 𝑘 = 1, and the bounds

𝔼𝑛⩽𝑥Λ
♭
Siegel(𝑛 + ℎ1)ΛSiegel(𝑛 + ℎ2)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁) ≈ 0 (7.11)

and

𝔼𝑛⩽𝑥Λ
♭
Siegel(𝑛 + ℎ1)Λ

♯
Siegel(𝑛 + ℎ2)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁) ≈ 0 (7.12)

when 𝑘 = 2.
We begin with (7.10). Let 𝜀 > 0 be a sufficiently small quantity. From (6.2) and (3.1), we have

𝜆♯Siegel(𝑛) =
∑
𝑑⩽𝐷

𝑏𝑑1𝑑|𝑛𝜒(𝑛∕𝑑) (7.13)

for some weights 𝑏𝑑 of size

𝑏𝑑 ≪ 𝜏(𝑑) log𝑂(1) 𝑥 ≪𝜀 𝑥
𝜀. (7.14)

Since ∑
𝑑′
1
,…,𝑑′

𝓁
⩽𝐷

1

[𝑑′
1
, … , 𝑑′𝓁]

⩽
∑

𝑑⩽𝐷𝑘′−1

𝜏(𝑑)𝑘
′−1

𝑑
≪𝜀 𝑥

𝜀

(due to (3.1)), we thus see from the pigeonhole principle that the left-hand side of (7.10) is bounded
by

≪𝜀 𝑥
𝑂(𝜀)[𝑑′1, … , 𝑑

′
𝓁]

||||||𝔼𝑛⩽𝑥Λ♭Siegel(𝑛 + ℎ1)
𝓁∏
𝑗=1

1𝑑′
𝑗
|𝑛+ℎ′

𝑗
𝜒

(
𝑛 + ℎ′

𝑗

𝑑′
𝑗

)||||||
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for some 𝑑′
1
, … , 𝑑′𝓁 ⩽ 𝐷. By translating (and removing negligible errors), wemay assume that ℎ1 =

0. Setting 𝑑 ∶= [𝑑′
1
, … , 𝑑′𝓁], we see that the constraints 𝑑

′
𝑗
|𝑛 + ℎ′

𝑗
are either inconsistent, or restrict

𝑛 to a single residue class 𝑎 (𝑑) with (𝑎, 𝑑) ≪ 1, and then
∏𝓁

𝑗=1 𝜒(
𝑛+ℎ′

𝑗

𝑑′
𝑗

) is a 𝑞𝜒-periodic function

of 𝑛−𝑎
𝑑
. Applying Proposition 7.1(ii) (with a suitable multiple of 𝜀), we bound the left-hand side

of (7.10) by

≪𝜀

𝑥𝑂(𝜀)𝑞
9∕2
𝜒 𝑑3∕2

𝑥1−𝜀0
+

1

𝑥𝜀
. (7.15)

Bounding 𝑑 ⩽ 𝐷𝑘′−1 and using (2.20), we see that the right-hand side is ≈ 0 for 𝜀 a sufficiently
small constant, giving the claim.
Nowwe consider (7.11) and (7.12). Again let 𝜀 > 0 be sufficiently small. From (7.2), (7.3) and the

pigeonhole principle, we can bound both left-hand sides (up to negligible errors) by

≪𝜀 𝑥
𝑂(𝜀)

|||||𝔼𝑛⩽𝑥Λ♭Siegel(𝑛 + ℎ1)
( ∑
𝑑2|𝑛+ℎ2 𝜒(𝑑2)Φ𝑡

(
𝑛 + ℎ2
𝑑2

))
𝜈(𝑛 + ℎ2)

𝜆♯Siegel(𝑛 + ℎ
′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁)
|||||

(7.16)

for some 1 ≪ 𝑡 ≪ 𝑥 (note that the summation vanishes for 𝑡 outside this range).
We now use a version of the Dirichlet hyperbola method. First suppose that 𝑡 ⩾

√
𝑥, then the

summand vanishes unless 𝑑2 ≪
√
𝑥. Expanding out using (7.13), (7.8) much as before and now

using ∑
𝑑2≪

√
𝑥;𝑑2⩽𝑅

2;𝑑′
1
,…,𝑑′

𝓁
⩽𝐷

1

[𝑑2, 𝑑2, 𝑑
′
1
, … , 𝑑′𝓁]

≪𝜀 𝑥
𝜀,

we can bound the contribution of the 𝑑2 ⩽
√
𝑥 case by

≪𝜀 𝑥
𝑂(𝜀)[𝑑2, 𝑑2, 𝑑

′
1, … , 𝑑

′
𝓁]

||||||𝔼𝑛⩽𝑥Λ♭Siegel(𝑛 + ℎ1)1𝑑2,𝑑2|𝑛+ℎ2Φ𝑡
(
𝑛 + ℎ2
𝑑2

) 𝓁∏
𝑗=1

1𝑑′
𝑗
|𝑛+ℎ′

𝑗
𝜒

(
𝑛 + ℎ′

𝑗

𝑑′
𝑗

)||||||
for some 𝑑2 ⩽

√
𝑥, 𝑑2 ⩽ 𝑅2, and 𝑑′1, … , 𝑑

′
𝓁 ⩽ 𝐷. Writing 𝑑 ∶= [𝑑2, 𝑑2, 𝑑

′
1
, … , 𝑑′𝓁] and arguing as

before, using summation by parts to deal with the slowly varying function Φ𝑡(
𝑛+ℎ2
𝑑2

), we can

again bound this expression by (7.15). Bounding 𝑑 ≪
√
𝑥𝑅2𝐷𝑘

′−2 and using (2.20), we see that
the right-hand side is ≈ 0 for 𝜀 small enough, giving the claim.
Finally, suppose that 𝑡 <

√
𝑥. Now we make the change of variables 𝑑∗

2
∶=

𝑛+ℎ2
𝑑2

and rewrite
the bound as

≪𝜀 𝑥
𝑂(𝜀)

|||||𝔼𝑛⩽𝑥Λ♭Siegel(𝑛 + ℎ1)
⎛⎜⎜⎝

∑
𝑑∗
2
|𝑛+ℎ2 Φ𝑡(𝑑

∗
2)𝜒(

𝑛 + ℎ2
𝑑∗
2

)
⎞⎟⎟⎠𝜈(𝑛 + ℎ2)

𝜆♯Siegel(𝑛 + ℎ
′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁)
|||||.
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Observe that the summand vanishes unless 𝑑∗
2
≪

√
𝑥. Nowwe can repeat the previous arguments

(using 𝑑∗
2
in place of 𝑑2, and the 𝑞𝜒-periodic function𝜒 in place ofΦ𝑡, noting that (2.20) can handle

several additional losses of 𝑞𝜒) to conclude. □

8 FIFTH STEP: COMPUTING THE TYPE I CORRELATIONS

We now execute step (v) of the strategy outlined in the introduction by establishing

Proposition 8.1 (Evaluating the Type I correlation).We have

𝔼𝑛⩽𝑥Λ
♯
Siegel(𝑛 + ℎ1)⋯Λ♯Siegel(𝑛 + ℎ𝑘)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁) ≈ 𝔖, (8.1)

where𝔖 is the quantity in Conjecture 1.3.

Clearly Theorem 1.6 follows immediately from concatenating together Propositions 4.2, 5.2, 6.3,
7.2, 8.1 using (1.7).
We first dispose of the easy case 𝓁 > 0, in which 𝔖 vanishes. For 1 ⩽ 𝑗 ⩽ 𝑘, we see from (7.3)

and replacing 𝑑 by 𝑛∕𝑑 in the first and third factors, and truncating the very small or very large
values of 𝑡 (where the summand vanishes) that

(𝜒 ∗ log)♯(𝑛) = ∫
𝐷𝑞2𝜒

1∕100

∑
𝑑|𝑛 Φ𝑡(𝑑)𝜒(𝑛∕𝑑) log 𝑡

𝑑𝑡

𝑡

+ ∫
100𝑥

𝐷𝑞2𝜒

𝜓⩽(𝐷𝑞2𝜒)2
(𝑥∕𝑡)

∑
𝑑∣𝑛

Φ𝑡(𝑛∕𝑑)𝜒(𝑑) log 𝑡
𝑑𝑡

𝑡

+ ∫
100𝑥

𝐷𝑞2𝜒

𝜓>(𝐷𝑞2𝜒)2
(𝑥∕𝑡)

∑
𝑑∣𝑛

Φ𝐷𝑞2𝜒
(𝑑)𝜒(𝑛∕𝑑) log 𝑡

𝑑𝑡

𝑡
.

(8.2)

In all of these terms, the summands vanish unless 𝑑 ≪ (𝐷𝑞2𝜒)
2. One can then write

(𝜒 ∗ log)♯(𝑛) =
∑

𝑑≪(𝐷𝑞2𝜒)
2∶𝑑|𝑛(Ψ(𝑛∕𝑑)𝜒(𝑑) + 𝑐𝑑𝜒(

𝑛

𝑑
)),

where Ψ∶ ℝ+ → ℝ is the smooth function

Ψ(𝑦) ∶= ∫
100𝑥

𝐷𝑞2𝜒

𝜓⩽(𝐷𝑞2𝜒)2
(𝑥∕𝑡)Φ𝑡(𝑦) log 𝑡

𝑑𝑡

𝑡
(8.3)

and 𝑐𝑑 is the coefficient

𝑐𝑑 ∶= ∫
𝐷𝑞2𝜒

1∕100
Φ𝑡(𝑑) log 𝑡

𝑑𝑡

𝑡

+ ∫
100𝑥

𝐷𝑞2𝜒

𝜓>(𝐷𝑞2𝜒)2
(𝑥∕𝑡)Φ𝐷𝑞2𝜒

(𝑑) log 𝑡
𝑑𝑡

𝑡
.
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For the current analysis, we will need the crude bound

‖Ψ‖TV ≪ log𝑂(1) 𝑥, 𝑐𝑑 ≪ log𝑂(1) 𝑥,

where we use the total variation norm

‖𝑓‖TV ∶= sup
𝑦>0

|𝑓(𝑦)| + ∫ℝ |𝑓′(𝑦)| 𝑑𝑦.
Combining this with the expansion (7.8), we see that

Λ♯(𝑛) =
∑

𝑑≪𝑅2(𝐷𝑞2𝜒)
2∶𝑑|𝑛 Ψ𝑑(𝑛) +

∑
𝑑≪𝑅2(𝐷𝑞2𝜒)

2∶𝑑′|𝑑|𝑛 g𝑑,𝑑′𝜒(
𝑛

𝑑′
), (8.4)

where Ψ𝑑 ∶ ℝ+ → ℝ is a smooth function and g𝑑,𝑑′ is a coefficient obeying the bounds

‖Ψ𝑑‖TV ≪ 𝜏(𝑑)𝑂(1), g𝑑,𝑑′ ≪ 𝜏(𝑑)𝑂(1) log𝑂(1) 𝑥. (8.5)

Using the decomposition (7.13) to expand 𝜆♯Siegel(𝑛 + ℎ
′
𝑗
), we can thus write Λ♯Siegel(𝑛 +

ℎ1)⋯Λ♯Siegel(𝑛 + ℎ𝑘)𝜆
♯
Siegel(𝑛 + ℎ

′
1
)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁) as∑

𝐽⊂{1,…,𝑘}

∑
𝑑1,…,𝑑𝑘≪𝑅

2(𝐷𝑞2𝜒)
2;𝑑𝑘+1,…,𝑑𝑘+𝓁⩽𝐷;𝑑

′
𝑗
|𝑑𝑗∀𝑗∈𝐽 ℎ𝑑1,…,𝑑𝑘+𝓁 ,𝑑

′
1
,…,𝑑′

𝑘
(𝑛)

(
𝑘+𝓁∏
𝑗=1

1𝑑|𝑛+ℎ𝑗
) ∏

𝑗∈𝐽∪{𝑘+1,…,𝑘+𝓁}

𝜒

(
𝑛 + ℎ𝑗

𝑑′
𝑗

)

for some smooth functions ℎ𝑑1,…,𝑑𝑘+𝓁 ,𝑑′1,…,𝑑′𝑘 ∶ ℝ → ℝ with

‖ℎ𝑑1,…,𝑑𝑘+𝓁 ,𝑑′1,…,𝑑′𝑘‖TV ≪ 𝜏(𝑑1)
𝑂(1)⋯ 𝜏(𝑑𝑘)

𝑂(1) log𝑂(1) 𝑥,

and with the convention that ℎ𝑘+𝑗 = ℎ′
𝑗
and 𝑑′

𝑘+𝑗
= 𝑑𝑘+𝑗 for 𝑗 = 1,… ,𝓁. From Lemma 3.7(ii) and

summation by parts to dealwith theℎ𝑑1,…,𝑑𝑘+𝓁 ,𝑑′1,…,𝑑′𝑘 coefficients,wemay thus bound the left-hand
side of (8.1) by

≪𝜀 𝑞
1∕2+𝜀
𝜒 log𝑂(1) 𝑥

∑
𝐽⊂{1,…,𝑘}

∑
𝑑1,…,𝑑𝑘≪𝑅

2(𝐷𝑞2𝜒)
2;𝑑𝑘+1,…,𝑑𝑘+𝓁⩽𝐷;𝑑

′
𝑗
|𝑑𝑗∀𝑗∈𝐽

(𝑑1⋯𝑑𝑘, 𝑞𝜒)
1∕2𝜏(𝑑1)

𝑂(1)⋯ 𝜏(𝑑𝑘)
𝑂(1)

(
1

𝑞𝜒𝑑1⋯𝑑𝑘
+
1

𝑥

)
which on evaluating the 𝑑′

𝑗
sums, and then writing 𝑑 ∶= 𝑑1⋯𝑑𝑘, can be bounded by

≪𝜀 𝑞
1∕2+𝜀
𝜒 log𝑂(1) 𝑥

∑
𝑑≪𝐷2(𝑘+𝓁)(𝑅𝑞2𝜒)

2𝑘

(𝑑, 𝑞𝜒)
1∕2𝜏(𝑑)𝑂(1)

(
1

𝑞𝜒𝑑
+
1

𝑥

)
. (8.6)
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From (2.16), we see that

𝑑 ≪ 𝐷2𝑘(𝑘+𝓁)(𝑅𝑞2𝜒)
2𝑘 ≪

𝑥

𝑞
1∕2+𝜀0∕2
𝜒

so that

1

𝑞𝜒𝑑
+
1

𝑥
≪

1

𝑞
1∕2+𝜀0∕2
𝜒 𝑑

,

and then by (2.5), we can bound (8.6) by

≪𝜀 𝑞
−
𝜀0
2
+𝜀

𝜒 log𝑂(1) 𝑥
∏
𝑝⩽𝑥

∑
𝑑∈ℕ(𝑝)

(𝑑, 𝑞𝜒)
1∕2𝜏(𝑑)𝑂(1)

𝑑
. (8.7)

One can calculate

∑
𝑑∈ℕ(𝑝)

(𝑑, 𝑞𝜒)
1∕2𝜏(𝑑)𝑂(1)

𝑑
⩽ 1 + 𝑂(

1

𝑝
)

when 𝑝 ∤ 𝑞𝜒 and

∑
𝑑∈ℕ(𝑝)

(𝑑, 𝑞𝜒)
1∕2𝜏(𝑑)𝑂(1)

𝑑
≪ 1

otherwise, thus by (3.7) the preceding expression (8.7) is

≪𝜀 𝑞
−
𝜀0
2
+𝜀

𝜒 𝜏(𝑞𝜒)
𝑂(1) log𝑂(1) 𝑥

which by (3.1) is

≪𝜀 𝑞
−
𝜀0
4

𝜒 log𝑂(1) 𝑥

if 𝜀 is small enough. Applying (2.18), we conclude that

𝔼𝑛⩽𝑥Λ
♯
Siegel(𝑛 + ℎ1)⋯Λ♯Siegel(𝑛 + ℎ𝑘)𝜆

♯
Siegel(𝑛 + ℎ

′
1)⋯ 𝜆♯Siegel(𝑛 + ℎ

′
𝓁) ≈ 0.

This concludes the treatment of the 𝓁 > 0 case.
Now suppose that 𝓁 = 0. The above arguments allow us to dispose of the g𝑑,𝑑′ contributions

in (8.4), leaving us with the task of showing that

𝔼𝑛⩽𝑥

𝑘∏
𝑗=1

∑
𝑑𝑗≪𝑅

2(𝐷𝑞2𝜒)
2∶𝑑𝑗|𝑛+ℎ𝑗 Ψ𝑑𝑗 (𝑛 + ℎ𝑗) ≈ 𝔖.

This is a correlation of Goldston–Yıldırım type and can be calculated by a lengthy but straightfor-
ward calculation, basically a more careful variant of Lemma 3.4. We follow the Fourier-analytic
method laid out in [9, Appendix D], as follows. Using Lemma 3.3, (8.5), and summation by parts,
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we can write the left-hand side here as

∑
𝑑1,…,𝑑𝑘≪𝑅

2(𝐷𝑞2𝜒)
2

(∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖 ,𝑑𝑗)|ℎ𝑖−ℎ𝑗
[𝑑1, … , 𝑑𝑘]

1

𝑥 ∫
𝑥

0

𝑘∏
𝑗=1

Ψ𝑑𝑗 (𝑦 + ℎ𝑗) 𝑑𝑦

+𝑂

(
𝜏(𝑑1)

𝑂(1)⋯ 𝜏(𝑑𝑘)
𝑂(1) log𝑂(1) 𝑥

𝑥

))
.

Using (3.1), the contribution of the error term is at most

≪𝜀

(𝑅𝐷𝑞2𝜒)
2𝑘𝑥𝜀

𝑥

for any 𝜀 > 0, which is ≈ 0 for 𝜀 small enough due to (2.16). Thus it remains to show that

∑
𝑑1,…,𝑑𝑘≪(𝑅𝐷𝑞

2
𝜒)
2𝑘

∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖,𝑑𝑗)|ℎ𝑖−ℎ𝑗
[𝑑1, … , 𝑑𝑘]

1

𝑥 ∫
𝑥

0

𝑘∏
𝑗=1

Ψ𝑑𝑗 (𝑦 + ℎ𝑗) 𝑑𝑦 ≈ 𝔖.

The contribution of those 𝑦 with 𝑦 ⩽ 𝑥1−𝜀
2
0 is bounded by

𝑥−𝜀
2
0 log𝑂(1) 𝑥

∑
𝑑1,…,𝑑𝑘≪𝑅

2(𝐷𝑞2𝜒)
2

∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖,𝑑𝑗)|ℎ𝑖−ℎ𝑗
[𝑑1, … , 𝑑𝑘]

𝜏(𝑑1)
𝑂(1)⋯ 𝜏(𝑑𝑘)

𝑂(1).

Bounding 1(𝑑𝑖,𝑑𝑗)|ℎ𝑖−ℎ𝑗 [𝑑1, … , 𝑑𝑘] ≪ 1

𝑑1⋯𝑑𝑘
and using (3.1), we see that this contribution is ≈ 0.

Thus it will suffice to establish the pointwise bound

∑
𝑑1,…,𝑑𝑘≪𝑅

2(𝐷𝑞2𝜒)
2

∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖,𝑑𝑗)|ℎ𝑖−ℎ𝑗
[𝑑1, … , 𝑑𝑘]

𝑘∏
𝑗=1

Ψ𝑑𝑗 (𝑦 + ℎ𝑗) ≈ 𝔖 (8.8)

for all 𝑥1−𝜀
2
0 ⩽ 𝑦 ⩽ 𝑥. Note that the restrictions on 𝑑1, … , 𝑑𝑘 can be dropped due to the support of

the Ψ𝑑𝑗 .
By construction, we have

Ψ𝑑(𝑦 + ℎ𝑗) =
∑

𝑑0,𝑑1,𝑑2∶[𝑑,𝑑1,𝑑2]=𝑑

𝜒(𝑑0)𝜇(𝑑1)𝜇(𝑑2)Φ

(
𝑦 + ℎ𝑗

𝑑0

)
𝜓⩽𝑅(𝑑1)𝜓⩽𝑅(𝑑2) (8.9)

This function is not multiplicative in 𝑑, but it can be Fourier expanded as a linear combination of
multiplicative functions:

Lemma 8.2 (Fourier expansion).We have

𝜓⩽𝑅(𝑑) = ∫ℝ
1

𝑑
1+𝑖𝑡
log 𝑅

𝑓(𝑡) 𝑑𝑡, (8.10)
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and

Φ

(
𝑦 + ℎ𝑗

𝑑

)
= log 𝑥 ∫ℝ

1

𝑑
1+𝑖𝑡
log 𝑥

𝐹𝑗(𝑡) 𝑑𝑡 (8.11)

for all real 𝑑 ⩾ 1, and some measurable functions 𝑓, 𝐹𝑗 ∶ ℝ → ℂ obeying the decay estimates

𝑓(𝑡) ≪𝑚 (1 + |𝑡|)−𝑚 (8.12)

and

𝐹𝑗(𝑡) ≪𝑚 (1 + |𝑡|)−𝑚 (8.13)

for all 𝑡 ∈ ℝ and𝑚 ⩾ 0, as well as the identities

∫ℝ 𝑓(𝑡) 𝑑𝑡 = 1 (8.14)

and

∫ℝ 𝐹𝑗(𝑡)(1 + 𝑖𝑡) 𝑑𝑡 = 1. (8.15)

Proof. From (2.21) and (3.14), we obtain (8.10) with

𝑓(𝑡) ∶=
1

2𝜋 ∫ℝ 𝑒
(1+𝑖𝑡)𝑢𝜓(𝑢) 𝑑𝑢

the Fourier transform of 𝑢 ↦ 𝑒𝑢𝜓(𝑢). From repeated integration by parts, we have the rapid
decrease (8.12), while from (3.15) we have

∫ℝ 𝑓(𝑡) 𝑑𝑡 = 𝑒0𝜓(0) = 1

giving (8.14).
Next, from (8.3), we have

Φ

(
𝑦 + ℎ𝑗

𝑑

)
= ∫

∞

0
𝜓

(
log(𝑥∕𝑡)

2 log(𝐷𝑞2𝜒)

)
Φ𝑑𝑡(𝑦 + ℎ𝑗) log 𝑡

𝑑𝑡

𝑡
,

for any natural number 𝑑. Writing 𝑠 = log(𝑥∕𝑡)

log 𝑥
, we can rewrite this as

Φ

(
𝑦 + ℎ𝑗

𝑑

)
= log2 𝑥 ∫ℝ 𝜓

(
log 𝑥

2 log(𝐷𝑞2𝜒)
𝑠

)
𝜙

(
log

𝑦 + ℎ𝑗

𝑥
+ 𝑠 log 𝑥 − log 𝑑

)
(1 − 𝑠) 𝑑𝑠.

By Fourier inversion (3.14), we then have (8.11) where

𝐹𝑗(𝑡) ∶=
log 𝑥

2𝜋 ∫ℝ 𝑒
(1+𝑖𝑡)𝑢 ∫ℝ 𝜓

(
log 𝑥

2 log(𝐷𝑞2𝜒)
𝑠

)
𝜙

(
log

𝑦 + ℎ𝑗

𝑥
+ (𝑠 − 𝑢) log 𝑥

)
(1 − 𝑠) 𝑑𝑠𝑑𝑢,
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which on making the change of variables 𝑣 ∶= 𝑢 − 𝑠 factors as

𝐹𝑗(𝑡) =
log 𝑥

2𝜋

(
∫ℝ 𝑒

(1+𝑖𝑡)𝑣𝜙

(
log

𝑦 + ℎ𝑗

𝑥
− 𝑣 log 𝑥

)
𝑑𝑣

)(
∫ℝ 𝑒

(1+𝑖𝑡)𝑠𝜓

(
log 𝑥

2 log(𝐷𝑞2𝜒)
𝑠

)
(1 − 𝑠) 𝑑𝑠

)
.

From the triangle inequality, one has

∫ℝ 𝑒
(1+𝑖𝑡)𝑣𝜙

(
log

𝑦 + ℎ𝑗

𝑥
− 𝑣 log 𝑥

)
𝑑𝑣 ≪

1

log 𝑥

while from integration by parts (and (2.9)), one has

∫ℝ 𝑒
(1+𝑖𝑡)𝑠𝜓

(
log 𝑥

2 log(𝐷𝑞2𝜒)
𝑠

)
(1 − 𝑠) 𝑑𝑠 ≪𝑚 (1 + |𝑡|)−𝑚

for any𝑚 ⩾ 0, thus yielding (8.13). Also, from (3.16), and integration by parts one has

∫ℝ 𝐹𝑗(𝑡)(1 + 𝑖𝑡) 𝑑𝑡 = −
𝑑

𝑑𝑥
Φ

(
𝑦 + ℎ𝑗

𝑥

)|𝑥=0
= (𝑦 + ℎ𝑗)Φ

′(𝑦 + ℎ𝑗)

= ∫
∞

0
𝜓

(
log(𝑥∕𝑡)

2 log(𝐷𝑞2𝜒)

)
𝜙′
(
log

𝑦 + ℎ𝑗

𝑡

)
log 𝑡

𝑑𝑡

𝑡

= ∫
∞

0
𝜙′
(
log

𝑦 + ℎ𝑗

𝑡

)
log 𝑡

𝑑𝑡

𝑡

= ∫ℝ 𝜙
′(𝑢)(log(𝑦 + ℎ𝑗) − 𝑢) 𝑑𝑢

= ∫ℝ 𝜙(𝑢) 𝑑𝑢
= 1

where we have used the observation that 𝜓( log(𝑥∕𝑡)

2 log(𝐷𝑞2𝜒)
) equals to 1 on the support of 𝜙′(log 𝑦+ℎ𝑗

𝑡
)

(since one then has 𝑥∕𝑡 ≍ 𝑥∕𝑦 ≪ 𝑥𝜀
2
0 ). This gives (8.15). □

Inserting the expansions (8.10), (8.11) back into (8.9), we see that

Ψ𝑑(𝑦 + ℎ𝑗) = log𝑘 𝑥 ∫ℝ ∫ℝ ∫ℝ
∑

𝑑0,𝑑1,𝑑2∶[𝑑,𝑑1,𝑑2]=𝑑

𝜒(𝑑0)𝜇(𝑑1)𝜇(𝑑2)

𝑑

1+𝑖𝑡0
log 𝑥

0
𝑑

1+𝑖𝑡1
log 𝑅

1
𝑑

1+𝑖𝑡2
log 𝑅

2

𝐹𝑗(𝑡0)𝑓(𝑡1)𝑓(𝑡2)𝑑𝑡0𝑑𝑡1𝑑𝑡2.

Inserting this back into the left-hand side of (8.8) and factoring the Euler product using (2.3), we
can thus write that left-hand side as

log𝑘 𝑥 ∫ℝ3𝑘
∏
𝑝

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘

𝑘∏
𝑗=1

𝐹𝑗(𝑡0,𝑗)𝑓(𝑡1,𝑗)𝑓(𝑡2,𝑗)𝑑𝑡0,𝑗𝑑𝑡1,𝑗𝑑𝑡2,𝑗, (8.16)
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where

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 ∶=
∑

𝑑1,…,𝑑𝑘∈ℕ(𝑝)

∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖,𝑑𝑗)|ℎ𝑖−ℎ𝑗
[𝑑1, … , 𝑑𝑘]

𝑘∏
𝑗=1

𝑐𝑑𝑗,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 , (8.17)

and

𝑐𝑑,𝑡0,𝑡1,𝑡2 ∶=
∑

𝑑0,𝑑1,𝑑2∶[𝑑0,𝑑1,𝑑2]=𝑑

𝜒(𝑑0)𝜇(𝑑1)𝜇(𝑑2)

𝑑

1+𝑖𝑡0
log 𝑥

0
𝑑

1+𝑖𝑡1
log 𝑅

1
𝑑

1+𝑖𝑡2
log 𝑅

2

. (8.18)

From the triangle inequality, one has the crude bound

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 1 + 𝑂

(
1

𝑝1+1∕ log 𝑅

)
(8.19)

and thus by Mertens’ theorem (3.7)∏
𝑝

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 ≪ log𝑂(1) 𝑅.

Using (8.12) and (8.13), we see that the contribution of the integral in which the quantity

|𝑡| ∶= sup
0⩽𝑖⩽2;1⩽𝑗⩽𝑘

|𝑡𝑖,𝑗|
exceeds (say) log1∕10 𝑅 is negligible. Thus we may restrict attention to the regime

|𝑡| ⩽ log1∕10 𝑅.
We can improve the above analysis to restrict the region of 𝑡 further. From Taylor expansion, one
has the more precise bound

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 1 −
𝑘

𝑝
+ 𝑂

(
(1 + |𝑡|)3 log𝑅 𝑝

𝑝

)
+ 𝑂(

1

𝑝2
)

when 𝑝 ⩽ 𝑅. Using this bound in place of (8.19) when log 𝑝 ⩽ (1 + |𝑡|)−3 log 𝑅 and usingMertens’
theorem (3.3) and (3.6), we obtain the refined estimate∏

𝑝⩾𝐶

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 ≪𝐶 (1 + |𝑡|)𝑂(1) log−𝑘 𝑅 (8.20)

for any 𝐶 ⩾ 1. Using (8.12) and (8.13), we see that the contribution of the integral in which |𝑡| ⩾
log1∕(100𝑘) 𝜂 (say) is negligible. Thus we may restrict attention to the regime

|𝑡| ⩽ log1∕(100𝑘) 𝜂. (8.21)

We now perform an even more precise analysis of the Euler factors 𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 . Let us first sup-
pose that 𝑝 is larger than 𝐶0 for some sufficiently large 𝐶0 (depending on ℎ1, … , ℎ𝑘, 𝑘). Then 𝑝
does not divide

∏
1⩽𝑖<𝑗⩽𝑘(ℎ𝑖 − ℎ𝑗). Thus in order for the sum in (8.17) to be non-zero, at most one
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of the 𝑑𝑗 can be greater than 1, and hence

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 1 +

𝑘∑
𝑗=1

∞∑
𝑙=1

𝑐𝑝𝑙,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

𝑝𝑙
.

We expand 𝑐𝑝𝑙,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 using (8.18). For 𝑙 > 1, the sum in (8.18) only consists of those terms with
𝑑0 = 𝑝𝑙, and thus

𝑐𝑝𝑙,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 =
𝜒(𝑝𝑙)

𝑝
𝑙(1+

1+𝑖𝑡0,𝑗
log 𝑥

)

⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡1,𝑗
log 𝑅

⎞⎟⎟⎠
⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡2,𝑗
log 𝑅

⎞⎟⎟⎠.
In particular, from Taylor expansion, we have

𝑐𝑝𝑙,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 ≪ min ((1 + |𝑡|) log𝑅 𝑝, 1)2). (8.22)

For 𝑙 = 1, the sum in (8.18) consists of those terms with 𝑑0, 𝑑1, 𝑑2 ∈ {1, 𝑝}, excluding the triple
𝑑0 = 𝑑1 = 𝑑2 = 0, thus

𝑐𝑝,𝑡0,𝑡1,𝑡2 =
⎛⎜⎜⎝1 +

𝜒(𝑝)

𝑝
1+𝑖𝑡0
log 𝑥

⎞⎟⎟⎠
⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡1
log 𝑅

⎞⎟⎟⎠
⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡2
log 𝑅

⎞⎟⎟⎠ − 1.
We thus have

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 1 +

𝑘∑
𝑗=1

𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

𝑝

⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡1,𝑗
log 𝑅

⎞⎟⎟⎠
⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡2,𝑗
log 𝑅

⎞⎟⎟⎠ − 1

𝑝

+ 𝑂(
min((1 + |𝑡|) log𝑅 𝑝, 1)2

𝑝2
).

For 𝑝 ⩾ 𝐶0, we may use the trivial bound 𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 ≪ 1 to factor

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 =

(
1 +

𝑘∑
𝑗=1

𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

𝑝

)
exp

(
𝑂

(
min((1 + |𝑡|) log𝑅 𝑝, 1)2

𝑝2

))
.

Since

∑
𝑝

min((1 + |𝑡|) log𝑅 𝑝, 1)2
𝑝2

≪
(1 + |𝑡|)2
log2 𝑅

∑
𝑝

1

𝑝3∕2
≪

1

log 𝑅
,

we thus have

∏
𝑝⩾𝐶0

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = exp

(
𝑂

(
1

log 𝑅

)) ∏
𝑝⩾𝐶0

(
1 +

𝑘∑
𝑗=1

𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

𝑝

)
.
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Let us compare 𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 against the quantity

𝑐′𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗
∶=

⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠
⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡1,𝑗
log 𝑅

⎞⎟⎟⎠
⎛⎜⎜⎝1 − 1

𝑝
1+𝑖𝑡2,𝑗
log 𝑅

⎞⎟⎟⎠ − 1.
The two quantities agree unless 𝑝 is exceptional. From the triangle inequality, we have the crude
bound

𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 − 𝑐
′
𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

≪
1

𝑝
1

log 𝑥

,

and when 𝑝 ⩽ 𝑥 we can use Taylor expansion and (8.21) to also obtain the bound

𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 − 𝑐
′
𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

≪ (log1∕(100𝑘) 𝜂 log𝑅 𝑝)
2.

Thus in all cases one has the bound

𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 − 𝑐
′
𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

≪ 1𝑝 exceptional
(log1∕(100𝑘) 𝜂 log𝑅 𝑝)

2

𝑝
1

log 𝑥

. (8.23)

Applying Corollary 3.6, we conclude that

∏
𝑝⩾𝐶0

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = exp

(
𝑂

(
1

log1∕(7𝑘) 𝜂

)) ∏
𝑝⩾𝐶0

(
1 +

𝑘∑
𝑗=1

∑
𝑝⩾𝐶0

𝑐′𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

𝑝

)
.

Bounding 1

𝑝

1+𝑖𝑡1,𝑗
log 𝑅

, 1

𝑝

1+𝑖𝑡2,𝑗
log 𝑅

= 𝑂(exp(− log𝑅 𝑝)), we have

𝑐′𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗
= −

1

𝑝
1+𝑖𝑡0,𝑗
log 𝑥

+ 𝑂(exp(−2 log𝑅 𝑝)),

while from Taylor expansion we see for 𝑝 ⩽ 𝑥 that

𝑐′𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗
= −1 + 𝑂((1 + |𝑡|) log𝑥 𝑝)
= −

1

𝑝
1+𝑖𝑡0,𝑗
log 𝑥

+ 𝑂((1 + |𝑡|) log𝑥 𝑝)
= −

1

𝑝
1+𝑖𝑡0,𝑗
log 𝑥

+ 𝑂

(
1

log1∕(6𝑘) 𝜂
log𝑅 𝑝

) (8.24)

due to (8.21), (2.8). Combining the bounds, we see that

𝑐′𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗
= −

1

𝑝
1+𝑖𝑡0,𝑗
log 𝑥

+ 𝑂

(
min

(
log𝑅 𝑝

log1∕(6𝑘) 𝜂
, exp(−2 log𝑅 𝑝)

))
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for all 𝑝 ⩾ 𝐶0. From Mertens’ theorem ((3.3) for log𝑅 𝑝 ⩽ log1∕(100𝑘) 𝜂 and (3.5) for log𝑅 𝑝 >
log1∕(100𝑘) 𝜂), we have

∑
𝑝

min
(

1

log1∕(6𝑘) 𝜂
log𝑅 𝑝, exp(−2 log𝑅 𝑝)

)
𝑝

≪
1

log1∕(7𝑘) 𝜂

(say). We conclude that

∏
𝑝⩾𝐶0

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = exp

(
𝑂

(
1

log1∕(7𝑘) 𝜂

)) ∏
𝑝⩾𝐶0

⎛⎜⎜⎝1 −
𝑘∑
𝑗=1

1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠.
The function

∏
𝑝⩾𝐶0

1 −
∑𝑘
𝑗=1

1

𝑝
𝑠𝑗∏𝑘

𝑗=1(1 −
1

𝑝
𝑠𝑗
)

converges to a holomorphic function of 𝑠1, … , 𝑠𝑘 in the polydisk
∏𝑘

𝑗=1{𝑠𝑗 ∶ |𝑠𝑗 − 1| ⩽ 1∕2}which is
bounded in magnitude by 𝑂(1) (since each factor here is 1 + 𝑂(1∕𝑝2)). From the Cauchy integral
formula, we conclude that

∏
𝑝⩾𝐶0

1 −
∑𝑘
𝑗=1

1

𝑝
𝑠𝑗∏𝑘

𝑗=1(1 −
1

𝑝
𝑠𝑗
)
=

∏
𝑝⩾𝐶0

1 −
∑𝑘
𝑗=1

1

𝑝∏𝑘
𝑗=1(1 −

1

𝑝
)
(1 + max(|𝑠1 − 1|, … , |𝑠𝑘 − 1|))

when |𝑠1 − 1|, … , |𝑠𝑘 − 1| ⩽ 1

4
. Observing from (1.2) that

1 −
∑𝑘
𝑗=1

1

𝑝∏𝑘
𝑗=1(1 −

1

𝑝
)
= 𝛽𝑝

for 𝑝 ⩾ 𝐶0, we conclude (using (8.21)) that

∏
𝑝⩾𝐶0

1 −
∑𝑘
𝑗=1

1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

∏𝑘
𝑗=1

⎛⎜⎜⎝1 − 1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠
= exp

(
𝑂

(
1 + |𝑡|
log 𝑥

)) ∏
𝑝⩾𝐶0

𝛽𝑝

and thus (by (8.21), (2.8))

∏
𝑝⩾𝐶0

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = exp

(
𝑂

(
1

log1∕(7𝑘) 𝜂

)) ∏
𝑝⩾𝐶0

𝛽𝑝

𝑘∏
𝑗=1

⎛⎜⎜⎝1 − 1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠. (8.25)
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Now we turn attention to the small primes 𝑝 < 𝐶0. Using (8.17) and (8.22), we have

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 =
∑

𝑑1,…,𝑑𝑘∈{1,𝑝}

∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖 ,𝑑𝑗)|ℎ𝑖−ℎ𝑗
[𝑑1, … , 𝑑𝑘]

𝑘∏
𝑗=1

𝑐𝑑𝑗,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 + 𝑂

((
(1 + |𝑡|) log 𝐶0

log 𝑅

)2
)

for 𝑝 ⩽ 𝐶0, which we rewrite as

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 1 +
∑

𝑑1,…,𝑑𝑘∈{1,𝑝}∶[𝑑1,…,𝑑𝑘]=𝑝

∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖,𝑑𝑗)|ℎ𝑖−ℎ𝑗

𝑝

𝑘∏
𝑗=1

𝑐𝑑𝑗,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗

+ 𝑂

((
(1 + |𝑡|) log 𝐶0

log 𝑅

)2
)

From (8.21) and (2.8), the error term is certainly 𝑂( 1

log1∕(7𝑘) 𝜂
). From (8.23), (8.24), (8.21) and (2.8),

we similarly have

𝑐𝑝,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 = −1 + 𝑂

(
1

log1∕(7𝑘) 𝜂

)
for 𝑝 ⩽ 𝐶0, and thus

𝑐𝑑𝑗,𝑡0,𝑗 ,𝑡1,𝑗 ,𝑡2,𝑗 = 𝜇(𝑑𝑗) + 𝑂

(
1

log1∕(7𝑘) 𝜂

)
for 𝑗 = 0,… , 𝑘. This gives

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 1 +
∑

𝑑1,…,𝑑𝑘∈{1,𝑝}∶[𝑑1,…,𝑑𝑘]=𝑝

𝜇(𝑑1)⋯𝜇(𝑑𝑘)

∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖 ,𝑑𝑗)|ℎ𝑖−ℎ𝑗

𝑝
+ 𝑂

(
1

log1∕(7𝑘) 𝜂

)
.

If the ℎ𝑖 occupy 𝑚 distinct residue classes 𝑏1, … , 𝑏𝑚 modulo 𝑝, then the constraint∏
1⩽𝑖<𝑗⩽𝑘 1(𝑑𝑖 ,𝑑𝑗)|ℎ𝑖−ℎ𝑗 constrains the index set {𝑖 ∶ 𝑑𝑖 = 𝑝} to be a subset of one of the sets {𝑖 ∶ ℎ𝑖 =

𝑏𝑗 (𝑝)} for 𝑗 = 1,… ,𝑚, which must be non-empty if [𝑑1, … , 𝑑𝑘] is to equal 𝑝. From the alternating
sign of the Möbius function, each 𝑗 has a net contribution of − 1

𝑝
to the above sum, thus

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 1 −
𝑚

𝑝
+ 𝑂

(
1

log1∕(7𝑘) 𝜂

)
.

From (1.2), we have

𝛽𝑝 =

(
1 −

𝑚

𝑝

)(
1 −

1

𝑝

)−𝑘

and thus

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 =

(
1 −

1

𝑝

)𝑘

𝛽𝑝 + 𝑂

(
1

log1∕(7𝑘) 𝜂

)
;
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by Taylor expansion and (8.21), we then have

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 𝛽𝑝

𝑘∏
𝑗=1

⎛⎜⎜⎝1 − 1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠ + 𝑂
(

1

log1∕(7𝑘) 𝜂

)

for 𝑝 < 𝐶0. If we now fix 𝐶0 so that all the previous estimates are justified, we have

∏
𝑝<𝐶0

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 =
∏
𝑝<𝐶0

𝛽𝑝

𝑘∏
𝑗=1

⎛⎜⎜⎝1 − 1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠ + 𝑂
(

1

log1∕(7𝑘) 𝜂

)

and hence by (8.25), (3.5) and (1.1)

∏
𝑝

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 𝔖
∏
𝑝

𝑘∏
𝑗=1

⎛⎜⎜⎝1 − 1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠ + 𝑂
⎛⎜⎜⎜⎝

1

log1∕(7𝑘) 𝜂

∏
𝑝

⎛⎜⎜⎝1 − 1

𝑝
1+ 1

log 𝑥

⎞⎟⎟⎠
𝑘⎞⎟⎟⎟⎠

= 𝔖
∏
𝑝

𝑘∏
𝑗=1

⎛⎜⎜⎝1 − 1

𝑝
1+

1+𝑖𝑡0,𝑗
log 𝑥

⎞⎟⎟⎠ + 𝑂
(

log−𝑘 𝑥

log1∕(7𝑘) 𝜂

)
.

From the Euler product formula (3.2) as well as (8.21), we conclude that

∏
𝑝

𝐸𝑝,𝑡0,1,…,𝑡2,𝑘 = 𝔖 log−𝑘 𝑥

𝑘∏
𝑗=1

(1 + 𝑡0,𝑗) + 𝑂

(
log−𝑘 𝑥

log1∕(7𝑘) 𝜂

)
.

Inserting this bound into (8.16), and using (8.12) and (8.13) to remove the restriction (8.21), we can
thus write the left-hand side of (8.8) as

≈ 𝔖∫ℝ3𝑘
𝑘∏
𝑗=1

(1 + 𝑡0,𝑗)𝐹𝑗(𝑡0,𝑗)𝑓(𝑡1,𝑗)𝑓(𝑡2,𝑗) 𝑑𝑡0,𝑗𝑑𝑡1,𝑗𝑑𝑡2,𝑗.

Applying (8.14) and (8.15), this is ≈ 𝔖, giving the claim. This (finally!) concludes the proof of
Theorem 1.6.
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