Cellular Automata and Powers of \(p/q\) *

Jarkko Kari and Johan Kopra

Department of Mathematics and Statistics, FI-20014 University of Turku, Finland
jkari@utu.fi, jtjkop@utu.fi

Abstract

We consider one-dimensional cellular automata \(F_{p,q}\) which multiply numbers by \(p/q\) in base \(pq\) for relatively prime integers \(p\) and \(q\). By studying the structure of traces with respect to \(F_{p,q}\) we show that for \(p \geq 2q - 1\) (and then as a simple corollary for \(p > q > 1\)) there are arbitrarily small finite unions of intervals which contain the fractional parts of the sequence \(\xi(p/q)^n, (n = 0, 1, 2, \ldots)\) for some \(\xi > 0\). To the other direction, by studying the measure theoretical properties of \(F_{p,q}\), we show that for \(p > q > 1\) there are finite unions of intervals approximating the unit interval arbitrarily well which don’t contain the fractional parts of the whole sequence \(\xi(p/q)^n\) for any \(\xi > 0\).

Keywords: distribution modulo 1, Z-numbers, cellular automata, ergodicity, strongly mixing

Introduction

In [11] Weyl proved that for any \(\alpha > 1\) the sequence of numbers \(\{\xi \alpha^i\}, i \in \mathbb{N}\) is uniformly distributed in the interval \([0,1)\) for almost every choice of \(\xi > 0\), where \(\{x\} = x - \lfloor x \rfloor\) is the fractional part of \(x\). In particular, \(\{\xi \alpha^i\} | i \in \mathbb{N}\) is dense in \([0,1)\) for almost every \(\xi > 0\). However, this doesn’t hold for every \(\xi > 0\), and it would be interesting to know what other types of distribution the set \(\{\xi \alpha^i\} | i \in \mathbb{N}\) can exhibit for different choices of \(\xi\).

As a special case of this problem, in [8] Mahler posed the question of whether there exist so-called Z-numbers, i.e. real numbers \(\xi > 0\) such that

\[
\left\{ \xi \left(\frac{3}{2} \right)^i \right\} \in [0, 1/2)
\]

for every \(i \in \mathbb{N}\). We will work with the following generalization of the notion of Z-numbers: let \(p > q > 1\) be relatively prime integers and let \(S \subseteq [0,1)\) be a

*The work was partially supported by the Academy of Finland grant 296018 and by the Vilho, Yrjö and Kalle Väisälä Foundation.
Definition 1.1. Any $A \in w$ the collection of all cylinders over A sequence to be empty if the topology c_0 such that C_A is actually the collection of Borel sets of A probability space $(\Omega, \mathcal{F}, \mu)$, where \mathcal{F} is the sigma-algebra generated by C and $\mu : \Sigma(C) \to \mathbb{R}$ is a measure such that $\mu(Cyl(w, i)) = |A|^{-|w|}$ for every $Cyl(w, i) \in C$. Note that $T \subseteq \Sigma(C)$ because C is a countable basis of T, so $\Sigma(C)$ is actually the collection of Borel sets of A.

1 Preliminaries

For a finite set A (an alphabet) the set $A^\mathbb{Z}$ is called a configuration space and its elements are called configurations. An element $c \in A^\mathbb{Z}$ is a bi-infinite sequence and the element at position i in the sequence is denoted by $c(i)$. A factor of c is any finite sequence $c(i)c(i-1)\ldots c(j)$ where $i, j \in \mathbb{Z}$, and we interpret the sequence to be empty if $j < i$. Any finite sequence $a(1)a(2)\ldots a(n)$ (also the empty sequence, which is denoted by λ) where $a(i) \in A$ is a word over A. The set of all words over A is denoted by A^*, and the set of non-empty words is $A^+ = A^* \setminus \{\lambda\}$. The set of words of length n is denoted by A^n. For a word $w \in A^*$, $|w|$ denotes its length, i.e. $|w| = n$ if and only if $w \in A^n$.

Definition 1.1. Any $w \in A^+$ and $i \in \mathbb{Z}$ determine a cylinder

$$Cyl_A(w, i) = \{c \in A^\mathbb{Z} \mid c(i)c(i+1)\ldots c(i+|w|−1) = w\}.$$

The collection of all cylinders over A is

$$\mathcal{C}_A = \{Cyl_A(w, i) \mid w \in A^+, i \in \mathbb{Z}\}.$$

The subscript A is omitted when the used alphabet is clear from the context.

The configuration space $A^\mathbb{Z}$ becomes a topological space when endowed with the topology T generated by C. It can be shown that this topology is metrizable, and that a set $S \subseteq A^\mathbb{Z}$ is compact if and only if it is closed. $A^\mathbb{Z}$ can also be endowed with measure theoretical structure: it is known that there is a unique probability space $(A^\mathbb{Z}, \Sigma(C), \mu)$, where $\Sigma(C)$ is the sigma-algebra generated by C and $\mu : \Sigma(C) \to \mathbb{R}$ is a measure such that $\mu(Cyl(w, i)) = |A|^{-|w|}$ for every $Cyl(w, i) \in C$. Note that $T \subseteq \Sigma(C)$ because C is a countable basis of T, so $\Sigma(C)$ is actually the collection of Borel sets of $A^\mathbb{Z}$.
Definition 1.2. A one-dimensional cellular automaton (CA) is a 3-tuple \((A, N, f)\), where \(A\) is a finite state set, \(N = (n_1, \ldots, n_m) \in \mathbb{Z}^m\) is a neighborhood vector and \(f : A^n \to A\) is a local rule. A given CA \((A, N, f)\) is customarily identified with a corresponding CA function \(F : A^Z \to A^Z\) defined by

\[F(c)(i) = f(c(i + n_1), \ldots, c(i + n_m))\]

for every \(c \in A^Z\) and \(i \in \mathbb{Z}\).

To every configuration space \(A^Z\) is associated a (left) shift CA \((A, (1), \iota)\), where \(\iota : A \to A\) is the identity function. Put in terms of the CA-function determined by this 3-tuple, the left shift is \(\sigma_A : A^Z \to A^Z\) defined by \(\sigma_A(c)(i) = c(i + 1)\) for every \(c \in A^Z\) and \(i \in \mathbb{Z}\).

For a given CA \(F : A^Z \to A^Z\) and a configuration \(c \in A^Z\) it is often helpful to consider a space-time diagram of \(c\) with respect to \(F\). A space-time diagram is a picture which depicts elements of the sequence \((F^i(c))_{i \in \mathbb{N}}\) (or possibly \((F^i(c))_{i \in \mathbb{Z}}\) in the case when \(F\) is reversible) in such a way that \(F^{i+1}(c)\) is drawn below \(F^i(c)\) for every \(i\). As an example, Figure 1 contains a space-time diagram of \(c = \cdots 01101001 \cdots\) with respect to the left shift on \(A = \{0, 1\}\).

All CA-functions are continuous with respect to \(T\) and commute with the shift.

\[
\begin{array}{cccccccccc}
c & \cdots & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & \cdots \\
\sigma_A(c) & \cdots & 1 & 1 & 0 & 1 & 0 & 0 & 1 & \cdots \\
\sigma^2_A(c) & \cdots & 1 & 0 & 1 & 0 & 0 & 1 & \cdots \\
\end{array}
\]

Figure 1: An example of a space-time diagram.

2 The cellular automata \(G_{p,q}\) and \(F_{p,q}\)

In this section we define auxiliary CA \(G_{p,q}\) for relatively prime \(p, q \geq 2\) and show that they multiply numbers by \(p\) in base \(pq\). Then we use \(G_{p,q}\) in constructing the CA \(F_{p,q}\) which multiply numbers by \(p/q\) in base \(pq\), and cover some basic properties of \(F_{p,q}\).

Let us denote by \(A_n\) the set of digits \(\{0, 1, 2, \ldots, n-1\}\) for \(n \in \mathbb{N}, n > 1\). To perform multiplication using a CA we need be able to represent a nonnegative real number as a configuration in \(A_n^Z\). If \(\xi \geq 0\) is a real number and \(\xi = \sum_{i=-\infty}^{\infty} \xi_i n^i\) is the unique base \(n\) expansion of \(\xi\) such that \(\xi_i \neq n - 1\) for infinitely many \(i < 0\), we define \(\text{config}_n(\xi) \in A_n^Z\) by

\[
\text{config}_n(\xi)(i) = \xi_{-i}
\]

for all \(i \in \mathbb{Z}\). In reverse, whenever \(c \in A_n^Z\) is such that \(c(i) = 0\) for all sufficiently small \(i\), we define

\[
\text{real}_n(c) = \sum_{i=-\infty}^{\infty} c(-i)n^i.
\]
For words $w = w(1)w(2)\ldots w(k) \in A_n^k$ we define analogously

$$\text{real}_n(w) = \sum_{i=1}^{k} w(i) n^{-i}.$$

Clearly $\text{real}_n(\text{config}_n(\xi)) = \xi$ and $\text{config}_n(\text{real}_n(c)) = c$ for every $\xi \geq 0$ and every $c \in A_n^\infty$ such that $c(i) = 0$ for all sufficiently small i and $c(i) \neq n-1$ for infinitely many $i > 0$.

For relatively prime integers $p, q \geq 2$ let $g_{p,q} : A_{pq} \times A_{pq} \rightarrow A_{pq}$ be defined as follows. Digits $x, y \in A_{pq}$ are represented as $x = x_1q + x_0$ and $y = y_1q + y_0$, where $x_0, y_0 \in A_q$ and $x_1, y_1 \in A_p$; such representations always exist and they are unique. Then

$$g_{p,q}(x, y) = g_{p,q}(x_1q + x_0, y_1q + y_0) = x_0p + y_1.$$

An example in the particular case $(p, q) = (3, 2)$ is given in Figure 2.

<table>
<thead>
<tr>
<th>$x \backslash y$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 2: The values of $g_{p,q}(x, y)$ in the case $(p, q) = (3, 2)$.

The CA function $G_{p,q} : A_{pq}^\infty \rightarrow A_{pq}^\infty$, $G_{p,q}(c)(i) = g_{p,q}(c(i), c(i+1))$ determined by $(A_{pq}, (0, 1), g_{p,q})$ implements multiplication by p in base pq in the sense of the following lemma.

Lemma 2.1. $\text{real}_{pq}(G_{p,q}(\text{config}_{pq}(\xi))) = p\xi$ for all $\xi \geq 0$.

Proof. Let $c = \text{config}_{pq}(\xi)$. For every $i \in \mathbb{Z}$, denote by $c(i)_0$ and $c(i)_1$ the natural numbers such that $0 \leq c(i)_0 < q$, $0 \leq c(i)_1 < p$ and $c(i) = c(i)_1q + c(i)_0$. Then

$$\text{real}_{pq}(G_{p,q}(\text{config}_{pq}(\xi))) = \text{real}_{pq}(G_{p,q}(c)) = \sum_{i=-\infty}^{\infty} G_{p,q}(c)(-i)(pq)^i$$

$$= \sum_{i=-\infty}^{\infty} g_{p,q}(c(-i), c(-i+1))(pq)^i = \sum_{i=-\infty}^{\infty} (c(-i)_0p + c(-i + 1)_1)(pq)^i$$

$$= \sum_{i=-\infty}^{\infty} (c(-i)_0p(pq)^i + c(-i + 1)pq(pq)^{i-1})$$

$$= \sum_{i=-\infty}^{\infty} (c(-i)_1q + c(-i)_0)(pq)^i = p \text{real}_{pq}(c) = p \text{real}_{pq}(\text{config}_{pq}(\xi)) = p\xi.$$

□
we also define $G_{p,q}(w)$ for words $w = w(1)w(2)\ldots w(|w|)$ such that $|w| \geq 2$:

$$G_{p,q}(w) = u = u(1)\ldots u(|w| - 1) \in A_{pq}^{[w]-1},$$

where $u(i) = g_{p,q}(w(i), w(i + 1))$ for $1 \leq i \leq |w| - 1$. Inductively it is possible to define $G_{p,q}(w)$ for every $t > 0$ and word w such that $|w| \geq t + 1$:

$$G^t_{p,q}(w) = G_{p,q}(G^{t-1}_{p,q}(w)) \in A_{pq}^{[w]-t}.$$

Clearly the shift CA $\sigma_{A_{pq}}$ multiplies by pq in base pq and its inverse divides by pq. This combined with Lemma 2.1 shows that the composition $F_{p,q} = \sigma_{A_{pq}} \circ G_{p,q} \circ G_{p,q}$ implements multiplication by p/q in base pq. The value of $F_{p,q}(c)(i)$ is given by the local rule $f_{p,q}$ defined as follows:

$$F_{p,q}(c)(i) = f_{p,q}(c(i - 1), c(i), c(i + 1)) = g_{p,q}(g_{p,q}(c(i - 1), c(i)), g_{p,q}(c(i), c(i + 1))).$$

The CA function $F_{p,q}$ is reversible: if $c \in A_{pq}^Z$ is a configuration with a finite number of non-zero coordinates, then

$$F_{p,q}(F_{q,p}(c)) = F_{q,p}(F_{p,q}(\text{config}_{pq}(\text{real}_{pq}(c)))) \\ \text{L}^{=1} \text{config}_{pq}((p/q)(q/p) \text{real}_{pq}(c)) = c.$$

Since $F_{p,q} \circ F_{q,p}$ is continuous and agrees with the identity function on a dense set, it follows that $F_{p,q}(F_{q,p}(c)) = c$ for all configurations $c \in A_{pq}^Z$. We will denote the inverse of $F_{p,q}$ interchangeably by $F_{q,p}$ and $F_{p,q}^{-1}$.

As for $G_{p,q}$, we define $F_{p,q}(w)$ for words $w = w(1)w(2)\ldots w(|w|)$ such that $|w| \geq 3$:

$$F_{p,q}(w) = u = u(1)\ldots u(|w| - 2) \in A_{pq}^{[w]-2},$$

where $u(i) = f_{p,q}(w(i), w(i + 1), w(i + 2))$ for $1 \leq i \leq |w| - 2$, and $F^t_{p,q}(w)$ for every $t > 0$ and word w such that $|w| \geq 2t + 1$:

$$F^t_{p,q}(w) = F_{p,q}(F^{t-1}_{p,q}(w)) \in A_{pq}^{[w]-2t}$$

(see an example in Figure 3).

By the definition of $F_{p,q}$, for every $c \in A_{pq}^Z$ and every $i \in \mathbb{Z}$ the value of $F_{p,q}(c)(i)$ is uniquely determined by $c(i - 1), c(i)$ and $c(i + 1)$, the three nearest digits above in the space-time diagram. Proposition 2.5 gives similarly that each digit in the space-time diagram is determined by the three nearest digits to the right (see Figure 4). Its proof is broken down into the following sequence of lemmas.

Figure 3: Iterated application of $F_{p,q}$ on w for $(p, q) = (3, 2)$ and $w = 3434205$.

<table>
<thead>
<tr>
<th>w</th>
<th>$F^3_{3,2}(w)$</th>
<th>$F^2_{3,2}(w)$</th>
<th>$F^1_{3,2}(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 4 3 4 2 0 5</td>
<td>3 5 3 3 1</td>
<td>5 2 1</td>
<td>0</td>
</tr>
</tbody>
</table>
Proof. For every x, a, y, w and $\sigma^i_{A_{pq}}(c)$ (mod q).

Lemma 2.3. If $g_{p,q}(x, a) \equiv g_{p,q}(y, a) \pmod{q}$, then $x \equiv y \pmod{q}$.

Proof. Let $x = x_1 q + x_0$, $y = y_1 q + y_0$, $a = a_1 q + a_0$. Then
$$g_{p,q}(x, a) \equiv g_{p,q}(y, a) \pmod{q} \iff x_0 p + a_1 \equiv y_0 p + a_1 \pmod{q} \iff x_0 = y_0 \iff x \equiv y \pmod{q}.$$

Lemma 2.4. If $f_{p,q}(x, a, y) = f_{p,q}(z, a, w)$, then $x \equiv z \pmod{q}$.

Proof.
$$f_{p,q}(x, a, y) = f_{p,q}(z, a, w) \implies g_{p,q}(g_{p,q}(x, a), g_{p,q}(y, a)) = g_{p,q}(g_{p,q}(z, a), g_{p,q}(a, w)) \overset{L2}{\implies} g_{p,q}(x, a) \equiv g_{p,q}(z, a) \pmod{q} \overset{L2}{\implies} x \equiv z \pmod{q}.$$

Proposition 2.5. For every $c \in A_{pq}^Z$ and for all $k, i \in \mathbb{Z}$, the value of $F_{p,q}^k(c)(i)$ is uniquely determined by the values of $F_{p,q}^{k-1}(c)(i + 1)$, $F_{p,q}^k(c)(i + 1)$ and $F_{p,q}^{k+1}(c)(i + 1)$.

Proof. Denote $e = \sigma^i_{A_{pq}}(F_{p,q}^k(c))$. It suffices to show that $e(0)$ is uniquely determined by $F_{q,p}(e)(1)$, $e(1)$ and $F_{p,q}(e)(1)$. Since $F_{p,q}(e)(1) = f_{p,q}(e(0), e(1), e(2))$, by Lemma 2.4 $e(1)$ and $F_{p,q}(e)(1)$ determine the value of $e(0)$ modulo q (see Figure 2.5, left). Similarly, because $F_{q,p}(e)(1) = f_{q,p}(e(0), e(1), e(2))$, by the same lemma $e(1)$ and $F_{q,p}(e)(1)$ determine the value of $e(0)$ modulo p (Fig. 2.5, middle). In total, $F_{q,p}(e)(1)$, $e(1)$ and $F_{p,q}(e)(1)$ determine the value of $e(0)$ both modulo q and modulo p (Fig. 2.5, right). Because $e(0) \in A_{pq}$, the value of $e(0)$ is uniquely determined.
Figure 5: The proof of Proposition 2.5 (here \((p, q) = (3, 2)\)).

3 Traces of configurations

For \(\xi \geq 0\) we are interested in the values of \(\{\xi(p/q)^i\}\) as \(i\) ranges over \(\mathbb{N}\). In terms of the configuration \(\text{config}_{pq}(\xi)\) these correspond to the tails of the configurations \(F^i_{p,q}(\text{config}_{pq}(\xi))\), i.e. to the digits \(F^i_{p,q}(\text{config}_{pq}(\xi))(j)\) for \(j > 0\). Partial information on the tails is preserved in the traces of a configuration. In this section we study traces with respect to \(F_{p,q}\) to prove in the case \(p \geq 2q - 1\) the existence of small sets \(S\) such that \(Z_{p/q}(S)\) is non-empty, and then as a corollary for all \(p > q > 1\).

Definition 3.1. For any \(k \in \mathbb{Z}\), the \(k\)-trace of a configuration \(c \in A^\infty_{pq}\) (with respect to \(F_{p,q}\)) is the sequence

\[
\text{Tr}_{p,q}^k(c) = (F^k_{p,q}(c)(n))_{n \in \mathbb{Z}}.
\]

In the special case \(k = 1\), we denote \(\text{Tr}_{p,q}(c) = \text{Tr}_{p,q}(c)\).

A \(k\)-trace of \(c\) is simply the sequence of digits in the \(k\)-th column of the space-time diagram of \(c\) with respect to \(F_{p,q}\) (see Figure 6).

<table>
<thead>
<tr>
<th>(F_{3,2}^{-2}(c))</th>
<th>5</th>
<th>4</th>
<th>0</th>
<th>1</th>
<th>5</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{3,2}^{-1}(c))</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(c)</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>(F_{3,2}(c))</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>(F_{3,2}^2(c))</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>

Figure 6: A trace of a configuration.

Definition 3.2. The set of allowed words of \(\text{Tr}_{p,q}\) is

\[
L(p, q) = \{w \in A^\infty_{pq} | w \text{ is a factor of } \text{Tr}_{p,q}(c) \text{ for some } c \in A^\infty_{pq}\},
\]

i.e. the set of words that can appear in the columns of space-time diagrams with respect to \(F_{p,q}\).

The following is a reformulation of Proposition 2.5 in terms of traces (see Figure 7).
The proof is by induction. The case $k=1$ follows from the fact that $\text{Tr}_{p,q}(c,1)(0) = c(1)$. Next assume that the claim holds for some $k > 0$ and consider the values of $\text{Tr}_{p,q}(c,k+1)(i)$ for $-k \leq i \leq k$. By Proposition 2.5 these determine $\text{Tr}_{p,q}(c,k)(i)$ for $-(k-1) \leq i \leq (k-1)$, which in turn determine $c(j)$ for $1 \leq j \leq k$ by the induction hypothesis. The value of $c(k+1)$ is determined by $\text{Tr}_{p,q}(c,k+1)(0) = c(k+1)$. \qed

Next we prove an important restriction on the words in the set $L(q, p)$ when $p \geq 2q - 1$. Note that the words in $L(q, p)$ are mirror images of the words in $L(p, q)$ (traces with respect to $F_{p,q}$ are read "from bottom to top").

Lemma 3.4. Let $p > q \geq 2$ be relatively prime such that $p \geq 2q - 1$, and for every $d \in A_q$ let $k_d \in A_p$ and $j_d \in A_q$ be the unique elements such that $k_dq \equiv d \pmod{p}$ and $k_dq = j_dp + d$. If $wab \in L(q, p)$ for some $w \in A_{pq}^*$, $a, b \in A_{pq}$ and $a \equiv k_d \pmod{p}$, then $b \equiv j_d \pmod{q}$.

Proof. From $wab \in L(q, p)$ it follows that $b = f_{q,p}(x, a, y)$ for some $x, y \in A_{pq}$. Let us write $a = a_1 p + a_0$, $y = y_1 p + y_0$, $g_{q,p}(x, a) = z = z_1 p + z_0$ and $g_{q,p}(a, y) = w = w_1 p + w_0$, where $a_0, y_0, z_0, w_0 \in A_p$ and $a_1, y_1, z_1, w_1 \in A_q$. Here $a_0 = k_d$ because $a \equiv k_d \pmod{p}$ and $w_1 = j_d$ because $g_{q,p}(a, y) = k_d q + y_1 = j_dp + (d + y_1)$ and $d + y_1 \leq (q - 1) + (q - 1) < p$. Now

$$f_{q,p}(x, a, y) = g_{q,p}(g_{q,p}(x, a), g_{q,p}(a, y)) = g_{q,p}(z, w) = z_0 q + j_d,$$

and thus $b \equiv j_d \pmod{q}$. \qed

Based on the previous lemma, we define a special set of digits

$$D_{p,q} = \{ a \in A_{pq} \mid a \equiv k_d \pmod{p} \text{ for some } d \in A_q \},$$

where the digits k_d are as above.

Example 3.5. Consider the case $p = 3$ and $q = 2$. Then $A_q = \{0, 1\}$ and $D_{3,2} = \{0, 2, 3, 5\}$ consists of the elements of A_q which are congruent to either $k_0 = 0$ or $k_1 = 2 \pmod{3}$.

\begin{table}[h]
\centering
\begin{tabular}{c|c c c}
c & 2 & 3 & 5 & 1 \\
\hline
$F_{3,2}(c)$ & 1 & & & \\
$F_{3,2}^2(c)$ & & 0 & 2 & \\
$F_{3,2}^3(c)$ & & 4 & 3 & 3 \\

\end{tabular}
\caption{A trace determining part of the configuration.}
\end{table}
Lemma 3.6. If \(p \geq 2q - 1 \), then \(|L(p,q) \cap D_{p,q}^n| \leq q^{n+1} \) for every \(n > 0 \).

Proof. The proof is by induction. The case \(n = 1 \) is clear because \(|D_{p,q}| = q^2 \). Next assume that the claim holds for some \(n > 0 \). It is sufficient to compute an upper bound for \(|L(q,p) \cap D_{p,q}^{n+1}| \), because the words in \(L(q,p) \) are mirror images of the words in \(L(q,p) \). If \(v \in L(q,p) \cap D_{p,q}^{n+1} \), by the previous lemma it can be written in the form \(v = wab \), where \(a \equiv k_d \) (mod \(p \)) and \(b \equiv j_d \) (mod \(q \)) for some \(d \in A_q \). Because \(wa \in L(q,p) \cap D_{p,q}^n \), by the induction hypothesis there are at most \(q^{n+1} \) different choices for the word \(wa \). Let us fix \(wa \) and \(d \in A_q \) such that \(a \equiv k_d \) (mod \(p \)). To prove the claim, it is enough to show that there are at most \(q \) choices for the digit \(b \).

Let us assume to the contrary that there are distinct digits \(b_1, b_2, \ldots, b_{q+1} \in D_{p,q} \) such that \(wab_i \in L(q,p) \cap D_{p,q}^{n+1} \) whenever \(1 \leq i \leq q + 1 \). For every \(i \) the congruence \(b_i \equiv k_d \) (mod \(p \)) holds for some \(d_i \in A_q \). By pigeonhole principle we may assume that \(d_1 = d_2 \) and therefore \(b_1 \equiv d_1 \equiv b_2 \) (mod \(p \)). Because \(wab_1, wab_2 \in L(q,p) \cap D_{p,q}^{n+1} \), we also have \(b_1 \equiv d_2 \equiv b_2 \) (mod \(q \)). Because \(b_1, b_2 \in A_{pq} \) are congruent both modulo \(p \) and modulo \(q \), they are equal, contradicting the distinctness of \(b_1, b_2, \ldots, b_{q+1} \).

As in the introduction, for relatively prime \(p > q > 1 \) and any \(S \subseteq [0,1) \) we denote

\[
Z_{p/q}(S) = \left\{ \xi > 0 \mid \left(\xi \left(\frac{p}{q} \right)^i \right) \in S \text{ for every } i \in \mathbb{N} \right\}.
\]

In [1] it was proved that if \(p, q > 1 \) are relatively prime integers such that \(p > q^2 \), then for every \(\epsilon > 0 \) there exists a finite union of intervals \(J_{p,q,\epsilon} \) of total length at most \(\epsilon \) such that \(Z_{p/q}(J_{p,q,\epsilon}) \neq \emptyset \). We extend this result to the case \(p > q > 1 \), which in particular covers \(p/q = 3/2 \). The following theorem by Akiyama, Frougny and Sakarovitch is needed.

Theorem 3.7 (Akiyama, Frougny, Sakarovitch [2]). If \(p \geq 2q - 1 \), then \(Z_{p/q}(Y_{p,q}) \neq \emptyset \), where

\[
Y_{p,q} = \bigcup_{d \in A_q} \left[\frac{1}{p} k_d, \frac{1}{p} (k_d + 1) \right]
\]

and \(k_d \in A_p \) are as in Lemma 3.4.

Corollary 3.8. If \(p \geq 2q - 1 \), then \(Z_{p/q}(X_{p,q}) \neq \emptyset \), where

\[
X_{p,q} = \bigcup_{a \in D_{p,q}} \left[\frac{1}{pq} a, \frac{1}{pq} (a + 1) \right].
\]

Proof. If \(\xi \in Z_{p/q}(Y_{p,q}) \), then \(\xi/q \in Z_{p/q}(X_{p,q}) \).

Theorem 3.9. If \(p \geq 2q - 1 \) and \(k > 0 \), then there exists a finite union of intervals \(I_{p,q,k} \) of total length at most \((q/p)^k \) such that \(Z_{p/q}(I_{p,q,k}) \neq \emptyset \).

Proof. Let \(k > 0 \) be fixed and choose any \(\xi' \in Z_{p/q}(X_{p,q}) \), where \(X_{p,q} \) is the set in the previous corollary. Let \(\xi = \xi'(pq)^{-k-1}(p/q)^{k-1} \) and denote \(c = \text{config}_{pq}(\xi) \). Based on \(c \) we define a collection of words

\[
W = \{ w = e(1)e(2)\ldots e(k) \mid e = F_{p,q}^n(c) \text{ for some } n \in \mathbb{N} \}.
\]
The set W determines a finite union of intervals

$$I_{p,q,k} = \bigcup_{w \in W} \left[\text{real}_{pq}(w), \text{real}_{pq}(w) + (pq)^{-k} \right]$$

and $\xi \in Z_{p/q}(I_{p,q,k})$ by the definition of W. Each interval in $I_{p,q,k}$ has length $(pq)^{-k}$, so to prove that the total length of $I_{p,q,k}$ is at most $(q/p)^k$ it is sufficient to show that $|W| \leq q^{2k}$.

By the definition of $X_{p,q}$, $\text{Tr}_{p,q}(\text{config}_{pq}(\xi'))(i) \in D_{p,q}$ for every $i \geq 0$. For the k-trace of c

$$\text{Tr}_{p,q}(c,k)(i) = \text{Tr}_{p,q}(\text{config}_{pq}(\xi'(pq)^{(k-1)}(p/q)^{k-1}), k)(i)$$

$$= \text{Tr}_{p,q}(\text{config}_{pq}(\xi'))(i) = \text{Tr}_{p,q}(\text{config}_{pq}(\xi'))(i + (k-1))$$

for every $i \in \mathbb{N}$, from which it follows that $\text{Tr}_{p,q}(c,k)(i) \in D_{p,q}$ for every $i \geq -(k-1)$. Thus, the words in the set

$$V = \{ \text{Tr}_{p,q}(F^n_{p,q}(c), k)(-(k-1)) \ldots \text{Tr}_{p,q}(F^n_{p,q}(c), k)(k-1) \mid n \in \mathbb{N} \}$$

also belong to $L(p,q) \cap D_{p,q}^{2k-1}$, and by Corollary 3.3 and Lemma 3.6

$$|W| \leq |V| \leq |L(p,q) \cap D_{p,q}^{2k-1}| \leq q^{2k}.$$

\[\square\]

Remark 3.10. The set $I_{p,q,k}$ constructed in the proof of the previous theorem is a union of q^{2k} intervals, each of which is of length $(pq)^{-k}$.

Corollary 3.11. If $p > q > 1$ and $\epsilon > 0$, then there exists a finite union of intervals $J_{p,q,\epsilon}$ of total length at most ϵ such that $Z_{p/q}(J_{p,q,\epsilon}) \neq \emptyset$.

Proof. Choose some $n > 0$ such that $p^n \geq 2q^n - 1$. Then by the previous theorem there exists a finite union of intervals I_0 of total length at most $\eta = \epsilon(p-1)/(p^n-1)$ such that $Z_{p^n/q^n}(I_0) \neq \emptyset$. For $0 < i < n$ define inductively

$$I_i = \left\{ \left\{ \frac{p^i}{q} \right\} \in [0,1) \ \big| \ \xi \geq 0 \text{ and } \{\xi\} \in I_{i-1} \right\},$$

each of which is a finite union of intervals of total length at most $p^i\eta$. Then $J_{p,q,\epsilon} = \bigcup_{i=0}^{n-1} I_i$ is a finite union of intervals of total length at most

$$\sum_{i=0}^{n-1} (p^i)\eta = \frac{p^n - 1}{p - 1}\eta = \epsilon$$

and $Z_{p/q}(J_{p,q,\epsilon}) \supseteq Z_{p^n/q^n}(I_0) \neq \emptyset$. \[\square\]

4 Ergodicity of $F_{p,q}$

In this section we study the measure theoretical properties of $F_{p,q}$ to prove the existence of large sets S such that $Z_{p/q}(S)$ is empty.
Definition 4.1. A CA function $F : \mathbb{A}^\mathbb{Z} \to \mathbb{A}^\mathbb{Z}$ is measure preserving if
\[\mu(F^{-1}(S)) = \mu(S) \] for every $S \in \Sigma(C)$.

Definition 4.2. A measure preserving CA function $F : \mathbb{A}^\mathbb{Z} \to \mathbb{A}^\mathbb{Z}$ is ergodic if for every $S \in \Sigma(C)$ with $F^{-1}(S) = S$ either $\mu(S) = 0$ or $\mu(S) = 1$.

The next lemma is a special case of a well known measure theoretical result (see e.g. Theorem 2.18 in [9]):

Lemma 4.3. For every $S \in \Sigma(C)$ and $\epsilon > 0$ there is an open set $U \subseteq \mathbb{A}^\mathbb{Z}$ such that $S \subseteq U$ and $\mu(U \setminus S) < \epsilon$.

Lemma 4.4. If $F : \mathbb{A}^\mathbb{Z} \to \mathbb{A}^\mathbb{Z}$ is an ergodic CA, then for every $\epsilon > 0$ there is a finite collection of cylinders $\{U_i\}_{i \in I}$ such that $\mu(\bigcup_{i \in I} U_i) < \epsilon$ and
\[
\left\{ c \in \mathbb{A}^\mathbb{Z} \mid F^t(c) \in \bigcup_{i \in I} U_i \text{ for some } t \in \mathbb{N} \right\} = \mathbb{A}^\mathbb{Z}.
\]

Proof. Let $C \in C$ be such that $0 < \mu(C) < \epsilon/2$. By continuity of F, $B = \bigcup_{t \in \mathbb{N}} F^{-t}(C)$ is open and $\mu(B) = 1$ by ergodicity of F (see Theorem 1.5 in [10]). Equivalently, $B' = \mathbb{A}^\mathbb{Z} \setminus B$ is closed (and compact) and $\mu(B') = 0$. Let V be an open set such that $B' \subseteq V$ and $\mu(V) < \epsilon/2$: such a set exists by Lemma 4.3. Because \mathcal{C} is a basis of \mathcal{T}, there is a collection of cylinders $\{V_i\}_{i \in I}$ such that $V = \bigcup_{i \in I} V_i$. By compactness of B' there is a finite set $I' \subseteq I$ such that $B' \subseteq \bigcup_{i \in I'} V_i$. Now $\{U_i\}_{i \in I} = \{C\} \cup \{V_i\}_{i \in I'}$ is a finite collection of cylinders such that $\mu(\bigcup_{i \in I} U_i) < \epsilon$ and
\[
\left\{ c \in \mathbb{A}^\mathbb{Z} \mid F^t(c) \in \bigcup_{i \in I} U_i \text{ for some } t \in \mathbb{N} \right\} \supseteq B \cup \bigcup_{i \in I'} V_i \supseteq B \cup B' = \mathbb{A}^\mathbb{Z}.
\]

To apply this lemma in our setup, we need to show that $F_{p,q}$ is ergodic for $p > q > 1$. In fact, it turns out that a stronger result holds.

Definition 4.5. A measure preserving CA function $F : \mathbb{A}^\mathbb{Z} \to \mathbb{A}^\mathbb{Z}$ is strongly mixing if
\[
\lim_{t \to \infty} \mu(F^{-t}(U) \cap V) = \mu(U)\mu(V)
\]
for every $U, V \in \Sigma(C)$.

We will prove that $F_{p,q}$ is strongly mixing. For the statement of the following lemmas, we define a function $\text{int} : A^k_{pq} \to \mathbb{N}$ by
\[
\text{int}(w(1)w(2)\ldots w(k)) = \sum_{i=0}^{k-1} w(k-i)(pq)^i,
\]
i.e. $\text{int}(w)$ is the integer having w as a base pq representation.

Lemma 4.6. Let $w_1, w_2 \in A^k_{pq}$ for some $k \geq 2$ and let $t > 0$ be a natural number. Then
1. $\text{int}(w_1) < q^t \implies \text{int}(G_{p,q}(w_1)) < q^{t-1}$ and
2. \(\text{int}(w_2) \equiv \text{int}(w_1) + q^t \pmod{(pq)^k} \implies \text{int}(G_{p,q}(w_2)) \equiv \text{int}(G_{p,q}(w_1)) + q^{t-1} \pmod{(pq)^{k-1}}. \)

Proof. Let \(c_i \in A_{pq}^k \) \((i = 1, 2)\) be such that \(c_i(-(k-1))c_i(-(k-1)+1) \ldots c_i(0) = w_i \) and \(c_i(j) = 0 \) for \(j < -(k-1) \) and \(j > 0 \). From this definition of \(c_i \) it follows that \(\text{int}(w_i) = \text{real}_{pq}(c_i) \). Denote \(c_i = G_{p,q}(c_i) \). We have

\[
\sum_{j=-(k-1)}^{\infty} e_i(-j)(pq)^j = \text{real}_{pq}(c_i) = p \text{real}_{pq}(c_i) = p \text{int}(w_i)
\]

and

\[
\text{int}(G_{p,q}(w_i)) = \text{int}(e_i(-(k-1)) \ldots e_i(-1))
\]

\[
= \sum_{j=1}^{k-1} e_i(-(j))(pq)^{j-1} \equiv \lfloor \text{int}(w_i)/q \rfloor \pmod{(pq)^{k-1}}.
\]

Also note that \(\text{int}(G_{p,q}(w_i)) < (pq)^{k-1} \).

For the proof of the first part, assume that \(\text{int}(w_1) < q^t \). Combining this with the observations above yields \(\text{int}(G_{p,q}(w_1)) \leq \lfloor \text{int}(w_1)/q \rfloor < q^{t-1} \).

For the proof of the second part, assume that \(\text{int}(w_2) \equiv \text{int}(w_1) + q^t \pmod{(pq)^k} \). Then there exists \(n \in \mathbb{Z} \) such that \(\text{int}(w_2) = \text{int}(w_1) + q^t + n(pq)^k \) and

\[
\text{int}(G_{p,q}(w_2)) \equiv \lfloor \text{int}(w_2)/q \rfloor \equiv \lfloor \text{int}(w_1)/q \rfloor + q^{t-1} + np(pq)^k \equiv \lfloor \text{int}(w_1)/q \rfloor + q^{t-1} \equiv \text{int}(G_{p,q}(w_1)) + q^{t-1} \pmod{(pq)^{k-1}}.
\]

\[\square\]

Lemma 4.7. Let \(t > 0 \) and \(w_1, w_2 \in A_{pq}^k \) for some \(k \geq 2t + 1 \). Then

1. \(\text{int}(w_1) < q^{2t} \implies \text{int}(F^t_{p,q}(w_1)) = 0 \) and

2. \(\text{int}(w_2) \equiv \text{int}(w_1) + q^{2t} \pmod{(pq)^k} \implies \text{int}(F^t_{p,q}(w_2)) \equiv \text{int}(F^t_{p,q}(w_1)) + 1 \pmod{(pq)^{k-2t}}. \)

Proof. First note that \(F_{p,q}(w) = G_{p,q}^2(w) \) for every \(w \in A_{pq}^\ast \) such that \(|w| \geq 3 \), because \(F_{p,q} = \sigma_{A_{pq}}^{-1} \circ G_{p,q} \circ G_{p,q} \). Then both claims follow by repeated application of the previous lemma.

\[\square\]

The content of Lemma 4.7 is as follows. Assume that \(\{w_i\}_{i=0}^{(pq)^k-1} \) is the enumeration of all the words in \(A_{pq}^k \) in the lexicographical order, meaning that \(w_0 = 00 \ldots 00, w_1 = 00 \ldots 01, w_2 = 00 \ldots 02 \) and so on. Then let \(i \) run through all the integers between 0 and \((pq)^k - 1 \). For the first \(q^{2t} \) values of \(i \) we have \(F_{p,q}^t(w_i) = 00 \ldots 00 \), for the next \(q^{2t} \) values of \(i \) we have \(F_{p,q}^t(w_i) = 00 \ldots 01 \), and for the following \(q^{2t} \) values of \(i \) we have \(F_{p,q}^t(w_i) = 00 \ldots 02 \). Eventually, as \(i \) is incremented from \(q^{2t}(pq)^{k-2t} - 1 \) to \(q^{2t}(pq)^{k-2t} \), the word \(F_{p,q}^t(w_i) \) loops from \((pq - 1)(pq - 1) \ldots (pq - 1) \) back to \(00 \ldots 00 \).

Theorem 4.8. If \(p > q > 1 \), then \(F_{p,q} \) is strongly mixing.
Proof. Firstly, because $F_{p,q}$ is surjective, the fact that $F_{p,q}$ is measure preserving follows from Theorem 5.4 in [5]. Then, by Theorem 1.17 in [10] it is sufficient to verify the condition
\[
\lim_{t \to \infty} \mu(F_{p,q}^{-t}(C_1) \cap C_2) = \mu(C_1) \mu(C_2)
\]
for every $C_1, C_2 \in \mathcal{C}$. Without loss of generality we may consider cylinders $C_1 = \text{Cyl}(v_1,0)$ and $C_2 = \text{Cyl}(v_2,i)$. Denote $l_1 = |v_1|$, $l_2 = |v_2|$ and let $t \geq i + l_2$ be a natural number.

Consider an arbitrary word $w \in A_{pq}^{2t+l_1}$ and its decomposition $w = w_1w_2w_3$, where $w_1 \in A_{pq}^{t+l_1}$, $w_2 \in A_{pq}^l$ and $w_3 \in A_{pq}^{t+l_1-i-l_2}$. The following conditions may or may not be satisfied by w (see Figure 8):

1. $F_{p,q}^t(w) = v_1$
2. $w_2 = v_2$.

![Figure 8: Relations between the words v_1, v_2 and $w_1w_2w_3$.](image)

Note that if w satisfies condition (1), then $F_{p,q}^t(\text{Cyl}(w,-t)) \subseteq C_1$, and otherwise $F_{p,q}^t(\text{Cyl}(w,-t)) \cap C_1 = \emptyset$. Also, if w satisfies condition (2), then $\text{Cyl}(w,-t) \subseteq C_2$, and otherwise $\text{Cyl}(w,-t) \cap C_2 = \emptyset$. Let $W_t \subseteq A_{pq}^{2t+l_1}$ be the collection of those words w that satisfy both conditions. It follows that

\[
\mu(F_{p,q}^{-t}(C_1) \cap C_2) = \mu \left(\bigcup_{w \in W_t} \text{Cyl}(w,-t) \right) = |W_t|(pq)^{-2t-l_1}.
\]

Next, we estimate the number of words $w = w_1w_2w_3$ in W_t. In any case, to satisfy condition (2), w_2 must equal v_2. Then, for any of the $(pq)^{i+l_1}$ choices of w_1, the number of choices for w_3 that satisfy condition (1) is between $(pq)^{i+l_1-i-l_2}/(pq)^{i} - q^{2t}$ and $(pq)^{i+l_1-i-l_2}/(pq)^{i} + q^{2t}$ by Lemma 4.7 (and the paragraph following it). Thus,

\[
((pq)^{i-l_2} - q^{2t}) (pq)^{i+i}(pq)^{-2t-l_1} \leq \mu(F_{p,q}^{-t}(C_1) \cap C_2) \leq ((pq)^{i-l_2} + q^{2t}) (pq)^{i+i}(pq)^{-2t-l_1},
\]

and as t tends to infinity,

\[
\lim_{t \to \infty} \mu(F_{p,q}^{-t}(C_1) \cap C_2) = (pq)^{-l_2} \mu(C_1) \mu(C_2).
\]

\[\square\]

13
Theorem 4.9. If $p > q > 1$ and $\epsilon > 0$, then there exists a finite union of intervals $K_{p,q,\epsilon}$ of total length at least $1 - \epsilon$ such that $Z_{p/q}(K_{p,q,\epsilon}) = \emptyset$.

Proof. The previous theorem implies that $F_{p,q}$ is ergodic: if $S \in \Sigma(C)$ is such that $F_{p,q}^{-t}(S) = S$, then

$$\mu(S) = \lim_{t \to \infty} \mu(F_{p,q}^{-t}(S) \cap S) = \mu(S)\mu(S),$$

which means that $\mu(S) = 0$ or $\mu(S) = 1$.

Since $F_{p,q}$ is ergodic, by Lemma 4.4 there is a finite collection of cylinders $\{U_i\}_{i \in I}$ such that $\mu(\bigcup_{i \in I} U_i) < \epsilon$ and

$$\left\{ c \in \mathbb{A}_{pq}^{\mathbb{Z}} \mid F_{p,q}^t(c) \in \bigcup_{i \in I} U_i \text{ for some } t \in \mathbb{N} \right\} = \mathbb{A}_{pq}^{\mathbb{Z}}.$$

Without loss of generality we may assume that for every $i \in I$, $U_i = \text{Cyl}(w_i, 1)$ and $w_i \in \mathbb{A}_{pq}^k$ for a fixed $k > 0$. Consider the collection of words $W = \mathbb{A}_{pq}^k \setminus \{w_i\}_{i \in I}$ and define

$$K_{p,q,\epsilon} = \bigcup_{v \in W} \left[\text{real}_{pq}(v), \text{real}_{pq}(v) + (pq)^{-k} \right].$$

The set $K_{p,q,\epsilon}$ has total length

$$\frac{|W|}{(pq)^k} = 1 - \frac{|I|}{(pq)^k} = 1 - \mu\left(\bigcup_{i \in I} U_i \right) \geq 1 - \epsilon.$$

Now let $\xi > 0$ be arbitrary and denote $c = \text{config}_{pq}(\xi)$. There exists a $t \in \mathbb{N}$ such that $F_{p,q}(c) \in \bigcup_{i \in I} U_i$, and equivalently, $F_{p,q}^t(c) \notin \bigcup_{v \in W}(\text{Cyl}(v, 1))$. This means that $\{\xi(p/q)^t\} \notin K_{p,q,\epsilon}$, and therefore $Z_{p/q}(K_{p,q,\epsilon}) = \emptyset$. \hfill \square

5 Conclusions

We have shown in Theorem 3.9 and Corollary 3.11 that for $p > q > 1$ and $\epsilon > 0$ there exists a finite union of intervals $J_{p,q,\epsilon}$ of total length at most ϵ such that $Z_{p/q}(J_{p,q,\epsilon}) \neq \emptyset$. Moreover, by following the proof of this result, it is possible (at least in principle) to explicitly construct the set $J_{p,q,\epsilon}$ for any given ϵ. We have also shown in Theorem 4.9 that for $p > q > 1$ and $\epsilon > 0$ there exists a finite union of intervals $K_{p,q,\epsilon}$ of total length at least $1 - \epsilon$ such that $Z_{p/q}(K_{p,q,\epsilon}) = \emptyset$. The proof of this theorem is non-constructive.

Problem 5.1. Assume that $p > q > 1$. Is it possible to construct explicitly for every $\epsilon > 0$ a finite union of intervals S such that the total length of S is at least $1 - \epsilon$ and $Z_{p/q}(S) = \emptyset$?

References

