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Abstract. The abelian critical exponent of an infinite word w is de-
fined as the maximum ratio between the exponent and the period of an
abelian power occurring in w. It was shown by Fici et al. that the set
of finite abelian critical exponents of Sturmian words coincides with the
Lagrange spectrum. This spectrum contains every large enough positive
real number. We construct words whose abelian critical exponents fill the
remaining gaps, that is, we prove that for each nonnegative real number
θ there exists an infinite word having abelian critical exponent θ. We
also extend this result to the k-abelian setting.
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1 Introduction

The study of powers and their avoidance has been one of the central themes
in combinatorics on words; see [2, Ch. 4]. The central notion here is that of the
critical exponent which measures the maximum exponent of a power occurring in
a given word. Recently it has been popular to generalize the notion of a power
using some equivalence relation in place of the usual equality of words. For
example, abelian equivalence (see the references of [6]), and its generalizations
k-abelian equivalence [9,3] and binomial equivalence [19,16] have been popular
options.

Two words u and v are abelian equivalent, written u ∼ v, if they are permu-
tations of each other. An abelian power of exponent e and period m is a word
of the form u0 · · ·ue−1 such that m = |u0| and u0, . . ., ue−1 are nonempty and
abelian equivalent. For example, 01 · 10 (a square) and abc · bca · cab (a cube)
are abelian powers. Now it is possible to define the abelian critical exponent
of an infinite word as the maximum exponent of an abelian power occurring in
it. However, this does not give any interesting information on abelian powers
occurring in Sturmian words or, more generally, in words with bounded abelian
complexity because such words contain abelian powers of arbitrarily high expo-
nent [18]. In order to capture more information on abelian powers of an infinite
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word to a single quantity, it was proposed in [6] to define the abelian critical
exponent Ac(w) of an infinite word w as the quantity

lim sup
m→∞

Aew(m)
m

,

where Aew(m) is the supremum of exponents of abelian powers of period m
occurring in w. This notion turns out to be much more interesting. For example,
Ac(f) =

√
5 for the Fibonacci word f , the fixed point of the substitution 0 7→ 01,

1 7→ 0 [6, Thm. 5.14]. Furthermore
√

5 is the minimum abelian critical exponent
among all Sturmian words [6, Thm. 5.14]. It follows that for each Sturmian word
s and each δ > 0, there exists an increasing sequence (mi) of integers such that s
contains an abelian power of periodmi and total length greater than (

√
5−δ)m2

i .
Notice that if w does not contain abelian powers with arbitrarily large exponent,
then Ac(w) = 0. Many examples of such words are known; see, e.g., [2, Ch. 4.6].
It is also possible that Ac(w) = ∞. Take for example the Thue-Morse word t,
the fixed point of the substitution 0 7→ 01, 1 7→ 10. Indeed, it is straightforward
to see that t can be factored as a product of abelian equivalent words of length
2n for all n ≥ 0. This shows that Ac(t) =∞.

Further study in [6] showed the surprising fact that the set of finite abelian
critical exponents of Sturmian words equals the Lagrange spectrum L. The La-
grange constant of an irrational α is the infimum of the real numbers λ such that
for every c > λ the inequality |α−n/m| < 1/cm2 has only finitely many rational
solutions n/m. The Lagrange spectrum is the set of finite Lagrange constants
of irrational numbers. The Lagrange spectrum has been extensively studied in
number theory since the works of Markov [12,13] in the 19th century. The famous
theorems of Markov show that the initial part of L inside the interval [

√
5, 3) is

discrete. Later in 1947 Hall proved that L contains a half-line [8]. After a series
of improvements by multiple authors, it was finally determined by Freiman in
1975 [7] that the largest half-line contained in the Lagrange spectrum is [cF ,∞),
where

cF = 2221564096 + 283748
√

462
491993569 = 4.5278295661 . . .

Good sources for information on the Lagrange spectrum are the monograph of
Cusick and Flahive [4] and Aigner’s book [1]. See also the recent book [17] of
Reutenauer for a more word-combinatorial flavor.

The connection between the Lagrange spectrum and abelian critical expo-
nents of Sturmian words shows that each real number larger than cF is the
abelian critical exponent of some infinite word. This raises the obvious question
of whether this can be extended to hold for all nonnegative numbers. In this
paper, we answer the question in the positive. The main result of this paper is
the following theorem.

Theorem 1. Let θ be a nonnegative real number. Then there exists an infinite
word w such that Ac(w) = θ. The word w can be taken over an alphabet of at
most three letters.
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This result should be compared with a result of Krieger and Shallit stating
that every real number θ > 1 is a critical exponent (in the usual sense) of some
infinite word [10]. Notice that here the number of letters required tends to infinity
when θ tends to 1 [10], but in our setting we need at most three letters.

We prove an analogue of Theorem 1 for k-abelian critical exponents; see
Section 3 for the extension and the necessary definitions.

Our proof method is to exploit the properties of the Lagrange spectrum, that
is, the fact that Theorem 1 is already known to be true for all reals greater than
cF . The idea is to find a suitable N -uniform substitution σ such that each abelian
power in σ(w) can be decoded to an abelian power in w with the same exponent.
This means, in essence, that the abelian powers in σ(w) are the abelian powers
of w blown up by a factor of N . Roughly speaking, the ratio of exponents and
periods corresponding to Ac(w) gets divided by N , that is, Ac(σ(w)) = Ac(w)/N .
The conclusion is that Theorem 1 is true for each real in the interval [cF /N,∞),
where [cF ,∞) is the largest half-line contained in the Lagrange spectrum. We
may choose N to be arbitrarily large, so Theorem 1 follows. The extension of
Theorem 1 to the k-abelian setting is proved using the same ideas.

We use the usual notions and notation from combinatorics on words. If the
reader encounters anything undefined, we refer him or her to [11]. Even though
we mention Sturmian words several times in this paper, we do not need any
properties of these binary words. For their definition, we refer the reader to [11,
Ch. 2] and [14, Ch. 4].

2 Proof of Theorem 1

Let θ be a nonnegative real number. If θ = 0, then θ is the abelian critical
exponent of any infinite word that avoids abelian powers with large enough
exponent. Such words exist by [5] (abelian fourth powers are avoidable over two
letters); see also [2, Ch. 4.6].

Assume then that θ > 0, and let N be an integer such that Nθ ∈ [cF ,∞).
Let w be an infinite binary word. Our aim is to find an N -uniform substitution
f defined on a two-letter alphabet with the following properties:

(i) If an abelian power u0 · · ·ue−1 occurs in w, then f(u0) · · · f(ue−1) is an
abelian power occurring in f(w).

(ii) If an abelian power u0 · · ·ue−1, e ≥ N , occurs in f(w), then w contains an
abelian power v0 · · · ve−1 with |v0| = |u0|/N .

Let us show how to prove Theorem 1 under the assumption that such f exists.
Let s be a Sturmian word having Ac(s) = Nθ. In fact, any binary word s

with Ac(s) = Nθ will do, we just know that such a Sturmian word exists by the
results of [6]. We claim that Ac(f(s)) = θ. This proves Theorem 1 when θ > 0
(assuming that f(w) has at most three letters).

By Property (i), we have Aef(s)(tN) ≥ Aes(t) for all positive integers t. Since
Ac(s) > 0, the word s contains abelian powers of arbitrarily high exponent,
and thus by Property (i) the word f(s) contains abelian powers of arbitrarily
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high exponent and period divisible by N . If Aef(s)(tN) ≥ N , then Aef(s)(tN) ≤
Aes(t) by Property (ii). Therefore there exists a sequence (ti) such that Aes(ti) =
Aef(s)(tiN) for all i. Hence

lim sup
i→∞

Aef(s)(tiN)
tiN

= lim sup
i→∞

Aes(ti)
tiN

= 1
N

lim sup
i→∞

Aes(ti)
ti

= 1
N

Ac(s) = θ,

so Ac(f(s)) ≥ θ. If Ac(f(s)) > θ, then there exists an increasing sequence (`i)
such that

Aef(s)(`i)
`i

> θ > 0

for all i. By the preceding, only finitely many of the numbers in the sequence
(`i) are divisible by N . By Property (ii), we thus have Aef(s)(`i) ≥ N only for
finitely many i meaning that

Aef(s)(`i)
`i

<
N

`i

for i large enough. This is impossible as N/`i → 0 as i→∞. The conclusion is
that Ac(f(s)) = θ. This concludes the proof of Theorem 1.

Let us then show how to choose a suitable substitution f . Let N be a fixed
positive and even integer, and define the N -uniform substitution σ : {0, 1}∗ →
{0, 1,#}∗ by

0 7→ #0N−1,

1 7→ #1N−1.

Lemma 2. The substitution σ satisfies Property (i).

Proof. Property (i) trivially holds for any nonerasing substitution.

Before showing that the substitution σ satisfies Property (ii), we show that
the period of an abelian power with large enough exponent is divisible by N ,
the length of the substitution σ.

Lemma 3. Let w be an infinite binary word. If an abelian power u0 · · ·ue−1,
with e ≥ N , occurs in σ(w), then N divides |u0|.

Proof. Let m = |u0|, and write m = tN + r for some t ≥ 0 and 0 ≤ r < N . The
claim is thus that r = 0. Assume, for a contradiction, that r > 0. Observe that
for σ(w) = a0a1 · · · , where an ∈ {0, 1,#} for each n ≥ 0, we have an = # if
and only if n ≡ 0 (mod N). Let us denote the position of the occurrence of uj

in σ(w) by ij , that is,
uj = aijaij+1 · · · aij+m−1.

Observe that ij = i0 + jm, and ij ≡ i0 + jr (mod N) for each j = 0,. . .,e − 1.
Notice also that the number of occurrences of the letter # in uj equals the
number of indices k in the set {ij , ij + 1, . . . , ij + m − 1} for which k ≡ 0
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(mod N). Let nj = ij mod N . If nj = 0, then we may compute the value |uj |#
as follows:

|uj |# =
⌈m
N

⌉
=
⌈
tN + r

N

⌉
= t+

⌈ r
N

⌉
= t+ 1

since 0 < r < N by assumption. If nj > 0, then none of the first N − nj letters
of uj equals #. The value |uj |# is thus computed as follows:

|uj |# =
⌈
m− (N − nj)

N

⌉
=
⌈
tN + r − (N − nj)

N

⌉
= t− 1 +

⌈
r + nj

N

⌉
.

We conclude that |uj |# = t+1 if and only if nj = 0 or nj > N−r, and otherwise
|uj |# = t.

We exhibit two words uj1 and uj2 from the abelian power for which the
number of occurrences of the letter # differ. This contradiction proves our claim.
Since e ≥ N , we see that the numbers nj , nj ≡ n0 +jr (mod N), j = 0,. . .,e−1,
form the coset n0 + 〈r〉 of the subgroup 〈r〉 of Z/NZ. Let now d = gcd(r,N),
so that 〈r〉 = {0, d, 2d, . . . , (N/d − 1)d}. For example, if gcd(r,N) = 1, then
〈r〉 = Z/NZ. There thus exists an index j1 such that the letter # occurs among
the first d letters of uj1 . This means that either nj1 = 0 or

nj1 > N − d ≥ N − r.

Thus |uj1 |# = t+ 1 as was concluded previously. Similarly, there exists an index
j2 such that the letter # occurs among the d letters immediately preceding uj2 .
This means that

0 < nj2 ≤ d.

In this case
nj2 + r ≤ d+ r ≤ d+N − d = N

since r ≤ N − gcd(r,N) = N − d. We thus have nj2 ≤ N − r implying that
|uj2 |# = t as was concluded previously. This concludes the proof.

Remark 4. The above result may be slightly generalized. Indeed, notice that the
only structural properties of σ used in the above proof are that σ is uniform, the
images of the letters begin with #, and the images of the letters contain no other
occurrences of #. In fact, the property that both images of letters begin with
# is not important, it is only required that # occurs at the same position in
both σ(0) and σ(1). We are thus led to the following generalization of Lemma 3.
Let ϕ : {0, 1}∗ → {0, 1,#}∗ be a uniform substitution defined by ϕ(0) = u#v,
ϕ(1) = u′#v′, where u, u′, v, v′ ∈ {0, 1}∗, |u| = |u′|, and |v| = |v′|. Let w be a
binary word. If an abelian power u0 · · ·ue−1, e ≥ |u#v|, occurs in ϕ(w), then
|u#v| divides |u0|. We shall need this generalization later in Section 3.

Lemma 5. The substitution σ satisfies Property (ii).

Proof. Let u0 · · ·ue−1, e ≥ N , be an abelian power occurring in σ(w). It follows
by Lemma 3 that N divides the length of u0. Our aim is to show that the abelian
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power u0 · · ·ue−1 can be shifted (to the left or the right) to obtain another abelian
power u′0 · · ·u′e−1 with |u′0| = |u0| such that each u′i begins with the letter #.
Before doing so, let us show how the main claim follows from this. Because σ
is injective, as is readily verified, there exist unique factors v0, . . ., ve−1 of w of
length |u0|/N such that σ(vi) = u′i for i = 0, . . ., e− 1. Notice that v0 · · · ve−1 is
a factor of w. Clearly the words vi are abelian equivalent as |vi|0 = |u′i|0/(N−1)
and |u′i|0 = |u′j |0 for all j. We conclude that the word v0 · · · ve−1 is an abelian
power in w.

Let us again write σ(w) = a0a1 · · · with an ∈ {0, 1,#} for each n ≥ 0. Let
u0 have the position i in σ(w), and let n = i mod N . If n = 0 then we are done
since we may choose u′i = ui in the above (recall that N divides |u0|). Also, if
n = 1, each word uj , j = 0, . . ., e − 1, is immediately preceded by # in σ(w)
and, moreover, each of the words ends with #. By setting u′j = #uj#−1, we see
that #u0 · · ·ue−1 = u′0 · · ·u′e−1# occurs in σ(w), and clearly u′j ∼ u0 for each
j = 0,. . .,e−1. Thus u′0 · · ·u′e−1 is an abelian power of the claimed form. Assume
now that n > 1. Without loss of generality, we assume that u0 begins with 0 so,
in fact, u0 begins with 0N−n#. By the form of the substitution, u0 is preceded
by #0n−1 in σ(w). We claim that each of the words uj , j = 0, . . ., e− 1, begins
with 0N−n# and ends with #0n−1. Let us first show that u1 begins with 0N−n#
(and thus that u0 ends with #0n−1). Assume for a contradiction that u1 begins
with 1N−n# (whence u0 ends with #1n−1), and say that u1 ends with #cn−1

where c ∈ {0, 1}. Now the word #0n−1u0(#1n−1)−1 is the image of a factor x of
w. Similarly, the word #1n−1u1(#cn−1)−1 is the image of a factor y of w with
|x| = |y|. We may write

|u0|1 = |x|1(N − 1) + n− 1

and
|u1|1 = |y|1(N − 1)− (n− 1) + δc=1 · (n− 1),

where δc=1 = 1 if c = 1, and otherwise δc=1 = 0. Since u0 ∼ u1, by rearranging
the terms, we obtain

(|y|1 − |x|1)(N − 1) = (2− δc=1)(n− 1).

Notice here that 1 ≤ 2−δc=1 ≤ 2 and that n > 1. The right side of the inequality
is positive, so |y|1−|x|1 ≥ 1. Since N > n, it must be that |y|1−|x|1 < 2−δc=1 ≤
2. We conclude that |y|1 − |x|1 = 1 and, furthermore, δc=1 = 0. We now have

N − 1 = 2(n− 1),

which is impossible since N was chosen to be even. This contradiction shows
that u1 begins with 0N−n# as well. A symmetric argument shows that u1 ends
with #0n−1. We may repeat the above argument to show that each of the words
uj , j = 0,. . .,e− 1, begins with 0N−n# and ends with #0n−1.

To finish off the proof, we choose u′j = #0n−1uj(#0n−1)−1 for each j =
0,. . .,e− 1. Observe that #0n−1u0 · · ·ue−1 = u′0 · · ·u′e−1#0n−1 and that u′0 ∼ u′j
for each j = 0,. . .,e− 1. We have thus exhibited an abelian power of the claimed
form thus concluding the proof.
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Since the substitution σ satisfies Properties (i)-(ii) and σ(w) has at most
three letters, Theorem 1 is proved.

3 Extension to the k-abelian Setting

In this section, we consider a generalization of abelian equivalence. Let k be a
positive integer. Two words u and v are k-abelian equivalent, written u ∼k v,
if |u|w = |v|w for all nonempty words w of length at most k [9]. For words of
length at least k − 1, we can equivalently say that u ∼k v if and only if u and
v share a common prefix and a common suffix of length k − 1 and |u|w = |v|w
for each word w of length k [9, Lemma 2.4]. The k-abelian equivalence relation
is a congruence relation. Notice that 1-abelian equivalence is simply abelian
equivalence. Moreover, if u ∼k+1 v, then u ∼k v.

A nonempty word u0 · · ·ue−1 is a k-abelian power of exponent e and period
m if |u0| = m and u0 ∼k · · · ∼k ue−1. It was proved in [9, Thm. 5.4] using
Szemerédi’s theorem that every infinite word having bounded k-abelian com-
plexity contains k-abelian powers of arbitrarily high exponent. Sturmian words
are particular examples of such words, so each Sturmian word contains k-abelian
powers of arbitrarily high exponent; an alternative proof of this fact is given in
[15, Lemma 3.10]

Let w be an infinite word. Then we set Aek,w(m) to be the supremum of
the exponents of k-abelian powers of period m occurring in w. We define the
k-abelian critical exponent of w to be the quantity

lim sup
m→∞

Aek,w(m)
m

,

and we denote it by Ack(w). This generalization of the abelian critical exponent
is considered in the preprint [15], where the authors of this paper study the set
of finite k-abelian critical exponents of Sturmian words. This set, dubbed as the
k-Lagrange spectrum, is similarly complicated as the Lagrange spectrum. When
k > 1, the least accumulation point of the k-Lagrange spectrum is

√
5/(2k− 1),

and the spectrum is dense in the interval (
√

5/(2k − 1),∞).
Next we prove the following analogue of Theorem 1.

Theorem 6. Let θ be a nonnegative real number. Then there exists an infinite
word w such that Ack(w) = θ. The word w can be taken over an alphabet of at
most three letters.

Similar to Section 2, we wish to find a substitution f defined on a two-letter
alphabet with the following properties:

(i’) If an abelian power u0 · · ·ue−1 occurs in w, then f(u0) · · · f(ue−1) is a
k-abelian power occurring in f(w).

(ii’) If a k-abelian power u0 · · ·ue−1, e ≥ N , occurs in f(w), then w contains
an abelian power v0 · · · ve−1 with |v0| = |u0|/N .
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Given such a substitution f , Theorem 6 is proved exactly as Theorem 1 was
proved in Section 2. The case k = 1 is handled by Theorem 1, so we may assume
that k > 1.

Let N ≥ 2k − 1 be a fixed integer, and define the N -uniform substitution
τ : {0, 1}∗ → {0, 1,#}∗ by

0 7→ #0k−20N−2k+20k−1,

1 7→ #0k−21N−2k+20k−1.

Let u and v be two words of length greater than 2k − 2. Suppose that
prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v), that is, assume that they
share a common prefix of length k− 1 and a common suffix of length k− 1. One
easily checks that then uv ∼k vu. Remark then that it follows that xuvy ∼k xvuy
for all words x and y because ∼k is a congruence.

Lemma 7. The substitution τ satisfies Property (i’).

Proof. By the form of the substitution τ , we have prefk−1(τ(0)) = prefk−1(τ(1))
and suffk−1(τ(0)) = suffk−1(τ(1)). Therefore τ(0)τ(1) ∼k τ(1)τ(0), and hence
τ(ui) ∼k τ(0)|ui|0τ(1)|ui|1 for i = 0, . . ., e − 1. Let u0 · · ·ue−1 be an abelian
power in w. Since the words u0, . . ., ue−1 are abelian equivalent, we have

τ(u0), . . . , τ(ue−1) ∼k τ(0)|u0|0τ(1)|u0|1 ,

so τ(u0) ∼k · · · ∼k τ(ue−1).

Lemma 8. If u0 · · ·ue−1, e ≥ N , is a k-abelian power occurring in τ(w), then
N divides |u0|.

Proof. Since u0 · · ·ue−1 is a k-abelian power, it is an abelian power. Observe
now that the substitution τ is as in Remark 4. Thus N divides |u0|.

Lemma 9. The substitution τ satisfies Property (ii’).

Proof. Suppose that a k-abelian power u0 · · ·ue−1 with e ≥ N occurs in τ(s). By
Lemma 8, N divides |u0|. Similar to the proof of Lemma 5, we want to show that
the k-abelian power u0 · · ·ue−1 can be shifted (to the left or the right) to obtain
another k-abelian power u′0 · · ·u′e−1, |u′0| = |u0|, such that each u′i begins with
#. Then a slight modification of the argument presented in the first paragraph of
the proof of Lemma 5 proves the claim. Indeed, given the preimages v0, . . ., ve−1
of u′0, . . ., u′e−1, we see that |vi|0 = |u′i|#0k−1 for all i. Since u′0 ∼k · · · ∼k u

′
e−1,

we have |u′i|#0k−1 = |u′j |#0k−1 for all i and j, and it follows that v0 ∼ · · · ∼ ve−1.
Let p be the common prefix of length k − 1 of the words u0, . . ., ue−1 and

similarly q be the common suffix of length k − 1 of these words. Suppose first
that # occurs in p, that is, p = 0r#0s with r+ s = k− 2. As each occurrence of
# is preceded by 0k−1 and N divides |ui|, the word ue−1 is followed by 0r. Thus
we may set u′i = (0r)−1ui0r for i = 0, . . ., e − 1. The same r factors 0r#0s+1,
0r−1#0s+2, . . ., 0#0s+r of length k were removed from each ui and the same
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r factors of length k were added to each u′i (the final k − 1 factors of q0r of
length k) during the shift. Thus u′0 ∼k · · · ∼k u

′
e−1. If # occurs in q, that is, say

q = 0r#0s with r + s = k − 2 then, like above, we may set u′i = #0sui(#0s)−1

for i = 0, . . ., e − 1. Suppose then that some word ui begins with 0k−1#. It is
straightforward to see that then all of the words u0, . . ., ue−1 begin with 0k−1#
and, furthermore, that ue−1 is followed by 0k−1#. Setting u′i = (0k−1)−1ui0k−1

for i = 0, . . ., e− 1 gives the claim as above.
By the preceding paragraph, we may assume that the occurrence of p as

the prefix of ui is a proper factor of τ(ci) for a letter ci, that is, we may write
τ(ci) = xipyi, with xi and yi nonempty, for this occurrence of p. Moreover, the
preceding paragraph tells that we may assume that q is a proper suffix of xi

(otherwise # occurs in q). Since p has length k − 1, it is clear from the form of
the substitution τ that the letter ci is uniquely determined by p. Since N divides
|ui|, it follows that c0 = . . . = ce−1. This means that each ui is preceded by x0.
We still need to know that ue−1 ends with x0; the words u0, . . ., ue−2 must end
with x0. Since N divides |ui|, the suffix q of ue−1 occurs in τ(d), d ∈ {0, 1},
in the same position as the occurrence of q preceding py0 in τ(c0). Now q has
length k − 1, so its occurrence preceding pyi in τ(ci) uniquely determines ci,
and hence its occurrence in τ(d) in the same position uniquely determines d.
Therefore d = c0 and ue−1 ends with x0. We may now set u′i = x0uix

−1
0 for

i = 0, . . ., e − 1. The suffix x0 of ui is preceded by 0k−1 and ui has prefix p of
length k− 1, so exactly the same factors of length k− 1 are added and removed
when shifting each ui to u′i. Thus u′0 ∼k · · · ∼k u

′
e−1.

Since τ satisfies Properties (i’) and (ii’), Theorem 6 follows.

4 Concluding Remarks

Theorem 1 raises the following question.

Question 10. Given a nonnegative real number θ, does there exist an infinite
binary word having k-abelian critical exponent θ?

We conjecture that the question has a positive answer. To use the presented
method, the marker letter # needs to be replaced by a suitable binary word
ensuring that Properties (ii) and (ii’) hold. There seems to be no obvious choice,
at least no obvious choice leading to reasonable proofs. Perhaps another method
is required. It would certainly be very interesting if the answer to the above
question turned out to be negative. Nevertheless, we leave the question open.

The k-abelian equivalence is a refinement of abelian equivalence that “tends”
to the usual equality of words as k → ∞. As mentioned in the introduction, it
is typical to consider the maximum exponent supm≥1 exp(m) for the equality
relation, not the superior limit of the ratio between the maximum exponent
exp(m) and period m as is done here for abelian equivalence and k-abelian
equivalence. What then happens if we consider the unorthodox notion? Does an
analogue to Theorem 1 hold? The answer is yes. The following result is proved
by the authors in the preprint [15].
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Proposition 11. [15, Prop. 3.17] Given an infinite word w, let E(w) be the
quantity

lim sup
m→∞

exp(m)
m

,

where exp(m) is the supremum of (integral) exponents of powers of period m
occurring in w. For each nonnegative θ, there exists a Sturmian word s such
that E(s) = θ.
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