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We derive how directional and disruptive selection operate on scalar traits in a heterogeneous group-
structured population for a general class of models. In particular, we assume that each group in the
population can be in one of a finite number of states, where states can affect group size and/or other envi-
ronmental variables, at a given time. Using up to second-order perturbation expansions of the invasion
fitness of a mutant allele, we derive expressions for the directional and disruptive selection coefficients,
which are sufficient to classify the singular strategies of adaptive dynamics. These expressions include
first- and second-order perturbations of individual fitness (expected number of settled offspring pro-
duced by an individual, possibly including self through survival); the first-order perturbation of the sta-
tionary distribution of mutants (derived here explicitly for the first time); the first-order perturbation of
pairwise relatedness; and reproductive values, pairwise and three-way relatedness, and stationary distri-
bution of mutants, each evaluated under neutrality. We introduce the concept of individual k-fitness (de-
fined as the expected number of settled offspring of an individual for which k� 1 randomly chosen
neighbors are lineage members) and show its usefulness for calculating relatedness and its perturbation.
We then demonstrate that the directional and disruptive selection coefficients can be expressed in terms
individual k-fitnesses with k ¼ 1;2;3 only. This representation has two important benefits. First, it allows
for a significant reduction in the dimensions of the system of equations describing the mutant dynamics
that needs to be solved to evaluate explicitly the two selection coefficients. Second, it leads to a biolog-
ically meaningful interpretation of their components. As an application of our methodology, we analyze
directional and disruptive selection in a lottery model with either hard or soft selection and show that
many previous results about selection in group-structured populations can be reproduced as special
cases of our model.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Many natural populations are both group-structured – with the
number of individuals interacting at the local scale being finite –
and heterogeneous – with different groups being subject to differ-
ent demographic and environmental conditions (e.g., varying group
size and temperature, respectively). Understanding how evolution,
and in particular natural selection, moulds phenotypic traits in
such systems is complicated as both local heterogeneity and demo-
graphic stochasticity need to be taken into account. In order to pre-
dict the outcome of evolution in heterogeneous populations,
evolutionists are generally left with the necessity to approximate
the evolutionary dynamics, as a full understanding of this process
is yet out of reach.

A standard approximation to predict evolutionary outcomes is
to assume that traits are quantitative, that the details of inheri-
tance do not matter (‘‘phenotypic gambit”, Grafen, 1991), and that
mutations have weak (small) phenotypic effects (e.g., Grafen, 1985;
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Taylor, 1989; Parker and Maynard Smith, 1990; Rousset, 2004).
Under these assumptions, directional trait evolution can be quan-
tified by a phenotypic selection gradient that captures first-order
effects of selection. Thus, phenotypic change occurs in an uphill
direction on the fitness landscape. This directional selection either
causes the trait value to change endlessly (for instance, due to
macro environmental changes or cycles in the evolutionary
dynamics), or the trait value eventually approaches a local equilib-
rium point, a so-called singular strategy, where directional selection
vanishes. Such a singular strategy may be locally uninvadable
(‘‘evolutionary stable”) and thus a local end-point of the evolution-
ary dynamics. However, when the fitness landscape is dynamic due
to selection being frequency-dependent, then it is also possible
that, as the population evolves uphill on the fitness landscape, this
landscape changes such that the population eventually finds itself
at a singular strategy that is located in a fitness valley. In this case,
directional selection turns into disruptive selection, which means
that a singular strategy that is an attractor of the evolutionary
dynamics (and thus convergence stable) is invadable by nearby
mutants and thus an evolutionary branching point (Metz et al.,
1996; Geritz et al., 1998). Further evolutionary dynamics can then
result in genetic polymorphism in the population, thus possibly
favoring the maintenance of adaptive diversity in the long term
(see Rueffler et al., 2006, for a review). Disruptive selection at a sin-
gular point is quantified by the disruptive selection coefficient
(called quadratic selection gradient in the older literature: Lande
and Arnold, 1983; Phillips and Arnold, 1989), which involves
second-order effects of selection.

A central question concerns the nature and interpretation of the
components of the selection gradient and the disruptive selection
coefficient on a quantitative trait in heterogeneous populations.
For the selection gradient, this question has been studied for a long
time and a general answer has been given under the assumption
that individuals can be in a finite number of states (summarized
in, Rousset, 2004). Then, regardless of the complexity of the spatial,
demographic, environmental, or physiological states individuals
can be in or experience (in the kin-selection literature commonly
referred to as class-structure, e.g., Taylor, 1990; Frank, 1998;
Rousset, 2004), the selection gradient on a quantitative trait
depends on three key components (Taylor, 1990; Frank, 1998;
Rousset, 2004). The first component are individual fitness differen-
tials, which capture the marginal gains and losses of producing off-
spring in particular states to parents in particular states. The
second component are (neutral) reproductive values weighting
these fitness differentials. These capture the fact that offspring set-
tling in different states contribute differently to the future gene
pool. The third component are (neutral) relatedness coefficients.
These also weight the fitness differentials, and capture the fact that
some pairs of individuals are more likely to carry the same pheno-
type (inherited from a common ancestor) than randomly sampled
individuals. This results in correlations between the trait values of
interacting individuals. Such correlations matter for selection (‘‘kin
selection”, e.g., Michod, 1982) and occur in populations subject to
limited genetic mixing and small local interaction groups. At the
risk of oversimplifying, reproductive values can be thought of as
capturing the effect of population heterogeneity on directional
selection, while relatedness captures the effect of demographic
stochasticity under limited genetic mixing.

The situation is different with respect to the coefficient of dis-
ruptive selection, i.e., the second-order effects of selection. The
components of the disruptive selection coefficient have not been
worked out in general and are studied only under the assumptions
of well-mixed or spatially structured populations, but with other-
wise homogeneous individuals. For the spatially structured case
the effects of selection on relatedness has been shown to matter,
as selection changes the number of individuals expressing similar
trait values in a certain group (Ajar, 2003; Wakano and Lehmann,
2014; Mullon et al., 2016), resulting in a reduced strength of dis-
ruptive selection under limited dispersal. For the general case that
individuals can be in different states one expects intuitively that
disruptive selection also depends on how selection affects the dis-
tribution of individuals over the different states. But this has not
been analyzed so far even though it is captured implicitly when
second-order derivatives of invasion fitness are computed as has
been done in several previous works investigating evolutionary
branching in some specific models of class-structured populations
(e.g., Massol et al., 2011; Rueffler et al., 2013; Massol and Débarre,
2015; Kisdi, 2016; Parvinen et al., 2018, 2020).

In the present paper, we develop an evolutionary model for a
heterogeneous group-structured population that covers a large
class of biological scenarios. For this model, we show that the dis-
ruptive selection coefficient can be expressed in terms of individ-
ual fitness differentials weighted by the neutral quantities
appearing in the selection gradient. This both significantly facili-
tates concrete calculations under complex scenarios and allows
for a biological interpretation of selection. Our results contain sev-
eral previous models as special cases.

The remainder of this paper is organized as follows. (1) We start
by describing a demographic model for a heterogeneous group-
structured population and present some background material
underlying the characterization of uninvadable (‘‘evolutionary
stable”) strategies by way of invasion fitness for this model. We
here also introduce a novel individual fitness concept – individual
k-fitness – defined as the expected number of settled offspring of
an individual for which k� 1 randomly chosen neighbors are rela-
tives (i.e., members of the same lineage). This fitness concept plays
a central role in our analysis. (2) Assuming quantitative scalar
traits, we present first- and second-order perturbations of invasion
fitness (i.e., the selection gradient and disruptive selection coeffi-
cient, respectively), discuss their components and the interpreta-
tions thereof, and finally express all quantities in terms of
individual k-fitness with k ¼ 1;2;3. (3) We present a generic lot-
tery model under spatial heterogeneity for both soft and hard
selection regimes and show that the selection gradient and the dis-
ruptive selection coefficient can be computed explicitly under any
scenario falling into this class of models. We then apply these
results to a concrete local adaptation scenario where we derive
conditions for evolutionary stability and convergence stability of
singular trait values, and show their dependence on migration rate
and group size. In doing so, we recover and extend previous results
from the literature and show how our model connects seemingly
different approaches.
2. Model

2.1. Biological assumptions

We consider a population of haploid individuals that is subdi-
vided into infinitely many groups that are connected to each other
by dispersal (i.e., the infinite island model). Dispersal between
groups may occur by individuals alone or by groups of individuals
as in propagule dispersal, but is always random with respect to the
destination group. We consider a discrete-time reproductive pro-
cess and thus discrete census steps. At each census, each group is
in a state s 2 S with S ¼ s1; s2; . . . ; sNf g where N denotes the num-
ber of possible states. The state s determines the number of indi-
viduals in a group and/or any environmental factor determining
the survival, reproduction, and dispersal of all individuals within
a group. For the sake of simplicity, we will consider only a finite
number of discrete states in this paper. The state s does not need
to be a fixed property of a group but can change in time and be
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affected by individual trait values and thus be determined endoge-
nously. However, we assume that such state changes are governed
by a time-homogeneous Markov chain, meaning that there are no
temporal trends in dynamics of the group states. We denote by ns

the finite number of adult individuals in a group in state s, which
can thus change over time if the group state changes. We assume
that group size is bounded as a result of density dependence acting
at the local scale (hence there is an upper bound on group size).
The described set-up includes a variety of classical models.

1. Purely spatially structured populations: The state s is identical
for all groups (N ¼ 1) and so there is only one group size. This
is essentially the island model as developed by Wright (1943),
which has been a long-term work horse for understanding the
effect of spatial structure on evolutionary dynamics (e.g.,
Eshel, 1972; Bulmer, 1986; Rousset, 2004).

2. Stochastic population dynamics at the group level: The state s
determines the number of individuals in a group, which can
potentially vary in time (e.g., Metz and Gyllenberg, 2001;
Rousset and Ronce, 2004). This case covers the situation in
which each group is embedded in a community consisting of
several interacting species and where the state s determines
the number of individuals for each of the other species (e.g.,
Chesson, 1981).

3. Environmental heterogeneity: The state s determines an aspect
of the within-group environment, which affects the survival
and/or reproduction of its group members. An example is
heterogeneity in patch quality or size (e.g., Wild et al., 2009;
Massol et al., 2011; Rodrigues and Gardner, 2012). We note that
in the limit of infinite group size this coincides with models of
temporal and spatial heterogeneity as reviewed in Svardal et al.
(2015).

4. Group splitting: This is a special case in which migration
between groups is in fact absent but groups can be connected
to each other if they originate through splitting of a parental
group. The state s again determines the number of adults in a
group. This model is inspired by compartmentalized replication
in prebiotic evolution (stochastic corrector model, Szathmary
and Demeter, 1987; Grey et al., 1995).

5. Purely physiologically structured population: In the special case
with only a single individual in a group, the state s can be taken
to represent the physiological state of an individual such as age
or size or combinations thereof (e.g., Ronce and Promislow,
2010). In the special case of complete and independent off-
spring dispersal (i.e., no group dispersal) but arbitrary group
size, the state s can be taken to represent the combination of
individual physiological states of all members in a group so that
the model covers within group heterogeneity.

Since we are mainly interested in natural selection driven by
recurrent invasions by possibly different mutants, we can focus
on the initial invasion of a mutant allele into a monomorphic res-
ident population. Hence, we assume that at any time at most two
alleles segregate in the population, a mutant allele whose carriers
express the trait value x and a resident allele whose carriers
express the trait value y. We furthermore assume that traits are
one-dimensional and real-valued (x; y 2 R). Suppose that initially
the population is monomorphic (i.e., fixed) for the resident allele
y and a single individual mutates to trait value x. How do we ascer-
tain the extinction or spread of the mutant?.
2.2. Multitype branching process and invasion fitness

Since any mutant is initially rare, we can focus on the initial
invasion of the mutant into the total population and approximate
its dynamics as a discrete-time multitype branching process
(Harris, 1963; Karlin and Taylor, 1975; Wild, 2011). In doing so,
we largely follow the model construction and notation used in
Lehmann et al. (2016) (see Section A in the Supplementary Mate-
rial for a mathematical description of the stochastic process under-
lying our model). In particular, in order to ascertain uninvadability
of mutants into a population of residents it is sufficient to focus on
the transition matrix A ¼ a s0; i0js; i� �� �

whose entry in position
s0; i0; s; i
� �

, denoted by a s0; i0 js; i� �
, is the expected number of groups

in state s0 with i0 P 1 mutant individuals that descend from a group
in state s with i P 1 mutant individuals over one time step in a
population that is otherwise monomorphic for y. In the following,
we refer to a group in state s with i mutants and ns � i residents as
an s; ið Þ-group for short. The transition matrix A is a square matrix
that is assumed to be primitive (we note that primitivity will
obtain under all models listed in Section 2.1 but may be induced
for different reasons). Thus, a positive integer ‘ (possibly depend-
ing on x and y) exists such that every entry of A‘ (‘th power of
A) is positive. The entries a s0; i0js; i� �

of the matrix A generally
depend on both x and y, but for ease of exposition we do not write
these arguments explicitly unless necessary. The same convention
applies to all other variables that can in principle depend on x and
y.

From standard results on multitype branching processes
(Harris, 1963; Karlin and Taylor, 1975) it follows that a mutant x
arising as a single copy in an arbitrary group of the population,
i.e., in any s;1ð Þ-group, goes extinct with probability one if and only
if the largest eigenvalue of A, denoted by q, is less than or equal to
one,

q 6 1; ð1Þ
where q satisfies

Au ¼ qu ð2Þ
and where u is the leading right eigenvector of A. We refer to q as
the invasion fitness of the mutant. If Eq. (1) holds, then we say that y
is uninvadable by x. To better understand what determines invasion
fitness, we introduce the concept of the mutant lineage, which we
define as the collection of descendants of the initial mutant: its
direct descendants (possibly including self through survival), the
descendants of its immediate descendants, and so on. Invasion fit-
ness then gives the expected number of mutant copies produced
over one time step by a randomly sampled mutant from its lineage
in an otherwise monomorphic resident population that has reached
demographic stationarity (Mullon et al., 2016; Lehmann et al.,
2016). The mutant stationary distribution is given by the vector u
with entries u s; ið Þ describing, after normalization, the asymptotic
probability that a randomly sampled group containing at least
one mutant is in state s and contains i P 1 mutants. In other words,
invasion fitness is the expected number of mutant copies produced
by a lineage member randomly sampled from the distribution u
(see Eq. (C8) in the Supplementary Material and the explanation
thereafter).
2.3. Statistical description of the mutant lineage

We use the matrix A ¼ a s0; i0js; i� �� �
and its leading right eigen-

vector u to derive several quantities allowing us to obtain an expli-
cit representation of invasion fitness, which will be the core of our
sensitivity analysis.
2.3.1. Asymptotic probabilities and relatedness of k-individuals
We start by noting that the asymptotic probability for a mutant

to find itself in an s; ið Þ-group is given by
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q s; ið Þ � iu s; ið ÞP
s02S
Pns0

i0¼1i
0u s0; i0
� � : ð3Þ

From this, we can compute two state probabilities. First, the
asymptotic probability that a randomly sampled mutant finds
itself in a group in state s is given by

q sð Þ �
Xns
i¼1

q s; ið Þ: ð4Þ

Second, the asymptotic probability that, conditional on being
sampled in a group in state s, a randomly sampled mutant finds
itself in a group with i mutants is given by

q ijsð Þ � q s; ið Þ
q sð Þ : ð5Þ

Let us further define

/k s; ið Þ �

1 k ¼ 1ð ÞYk�1

j¼1

i�j
ns�j 2 6 k 6 ið Þ

0 iþ 1 6 k 6 nsð Þ;

8>>>><
>>>>:

ð6Þ

which, for k > 1, can be interpreted as the probability that, given a
mutant is sampled from an s; ið Þ-group, k� 1 randomly sampled
group neighbors without replacement are all mutants. This allows
us to define the relatedness between k individuals in a group in
state s as

rk sð Þ �
Xns
i¼1

/k s; ið Þq ijsð Þ: ð7Þ

This is the probability that k� 1 randomly sampled neighbors
without replacement of a randomly sampled mutant in state s
are also mutants (i.e., they all descend from the lineage founder).
For example,

r2 sð Þ ¼
Xns
i¼1

i� 1
ns � 1

q ijsð Þ ð8Þ

is the asymptotic probability of sampling a mutant among the
neighbors of a random mutant individual from a group in state s
and thus provides a measure of pairwise relatedness among group
members. Likewise,

r3 sð Þ ¼
Xns
i¼1

i� 1ð Þ i� 2ð Þ
ns � 1ð Þ ns � 2ð Þ q ijsð Þ ð9Þ

is the asymptotic probability that, conditional on being sampled in a
group in state s, two random neighbors of a randommutant individ-
ual are also mutants.
1 It is important to note that the conditioning in w s0 js; ið Þ is only on the state of the
parental generation (as emphasized by the notation) and that w s0 js; ið Þ depends on
group transition probabilities in models in which the state s of a group can change in
each generation. See Eqs. (E.1–E.2) in Lehmann et al. (2016) as well as Section G.2 in
the Supplementary Material for more details.
2.3.2. Individual fitness and individual k-fitness
Consider a mutant in an s; ið Þ-group and define

w s0js; ið Þ � 1
i

Xns0
i0¼1

i0a s0; i0js; i� �
: ð10Þ

The sum on the right-hand side of Eq. (10) counts the expected
total number of mutants in groups in state s0 produced by an s; ið Þ-
group, and the share from a single mutant in this s; ið Þ-group is cal-
culated by dividing this lineage productivity by i. Hence, w s0 js; ið Þ is
the expected number of offspring of a mutant individual (possibly
including self through survival), which settle in a group in state s0,
given that the mutant resided in an s; ið Þ-group in the previous time
period. Thus w s0js; ið Þ is an individual fitness.1

We now extend the concept of individual fitness to consider a
collection of offspring descending from a mutant individual. More
formally, for any integer k 1 6 k 6 ns0ð Þ we let

wk s0js; ið Þ � 1
i

Xns0
i0¼1

/k s0; i0
� �

i0a s0; i0js; i� � ð11Þ

be the expected number of offspring produced by a single mutant
individual in an s; ið Þ-group (possibly including self through sur-
vival) that settle in a group in state s0 and have k� 1 randomly sam-
pled group neighbors (without replacement) that are also mutants.
We refer to wk s0js; ið Þ as ‘‘individual k-fitness” regardless of the
states s0 and s; ið Þ (see Fig. 1 for an illustrative example).

Note that individual 1-fitness equals w s0 js; ið Þ as defined in Eq.
(10). Hence, individual k-fitness wk s0js; ið Þ is a generalization of this
fitness concept. The difference between Eqs. (10) and (11) is the
term /k s0; i0

� �
, which shows that k-fitness counts an individual’s

number of offspring (possibly including self through survival) that
experience a certain identity-by-descent genetic state in their
group. Under our assumption of infinitely many groups, more than
one dispersing offspring can settle in the same group only with
propagule dispersal. Thus, without propagule dispersal dispersing
offspring do not contribute to k-fitness for k > 1.

2.3.3. Notation for perturbation analysis
Since our goal is to perform a sensitivity analysis of q to evalu-

ate the selection gradient and disruptive selection coefficient, we
assume that the mutant and resident trait values are close to each
other and write

x ¼ yþ d ð12Þ
with d sufficiently small (i.e., jdj � 1). Thus, q can be Taylor-
expanded with respect to d.

For invasion fitness q, or more generally, for any smooth func-
tion F that depends on d, we will use the following notation
throughout this paper. The Taylor-expansion of F with respect to
d is written as

F dð Þ ¼ F 0ð Þ þ dF 1ð Þ þ d2F 2ð Þ þ � � � ; ð13aÞ

where F ‘ð Þ is given by

F ‘ð Þ ¼ 1
‘!

d‘F dð Þ
dd‘

�����
d¼0

: ð13bÞ
2.3.4. Properties of the monomorphic resident population
The zeroth-order coefficient in Eq. (13) corresponds to the situ-

ation where the function F is evaluated under the supposition that
individuals labelled as ‘‘mutant” and ‘‘resident” are the same. In
that case, individuals in groups with the same state are assumed
to be exchangeable in the sense that they have the same reproduc-
tive characteristics (the same distribution of fitnesses, i.e., the same
mean fitness, the same variance in fitness, and so on). This results
in a neutral evolutionary process, i.e., a monomorphic population.

We now characterize the mutant lineage dynamics under a
neutral process as this plays a crucial role in our analysis. From



Fig. 1. A schematic example for the calculation of individual k-fitness. Symbols M
and R represent mutants and resident individuals, respectively. In this example, an
s;2ð Þ-group ‘‘produced” one s0;3ð Þ-group and one s0;1ð Þ-group. Individual 1-fitness
of each mutant in the parental generation is the total number of mutants in the
following generation (3þ 1 ¼ 4) divided by the number of mutants in the s;2ð Þ-
group (¼ 2). Thus w1 s0 js;2ð Þ ¼ 4=2 ¼ 2. For individual 2-fitness we calculate the
weighted number of mutants in the following generation, where the weights are
the probabilities that a random neighbor of a mutant is also a mutant, and then
divide it by the number of mutants in the s;2ð Þ-group (¼ 2). These probabilities are
2=4 for the s0;3ð Þ-group and 0=4 for the s0;1ð Þ-group. Thus, the weighted number of
mutants is 3 � 2=4ð Þ þ 1 � 0=4ð Þ ¼ 3=2, and the individual 2-fitness is
w2 s0 js;2ð Þ ¼ 3=2ð Þ=2 ¼ 3=4. Similarly, w3 s0 js;2ð Þ ¼ 3 � 1=6ð Þ þ 1 � 0=6ð Þf g=2 ¼ 1=4
and w4 s0 js;2ð Þ ¼ w5 s0 js;2ð Þ ¼ 0.
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Eq. (10), the individual 1-fitness in an s; ið Þ-group, written under
neutrality, equals

w 0ð Þ
1 s0js; ið Þ ¼ 1

i

Xns0
i0¼1

i0a 0ð Þ s0; i0js; i� �
; ð14Þ

where each a 0ð Þ s0; i0js; i� �
is an entry of the matrix A under neutrality.

By our exchangeability assumption, Eq. (14) does not depend on i,
the number of the individuals labeled as ‘‘mutants” in this group
(see Section A.2 (iv) in the Supplementary Material). If this would
not be the case, mutants in an s; i1ð Þ-group and in an s; i2ð Þ-group
with i1 – i2 would have different reproductive outputs and mutants
and residents would not be exchangeable. Therefore, from now on

we write w 0ð Þ
1 s0js; ið Þ simply as w 0ð Þ

1 s0jsð Þ. We collect these neutral fit-

nesses in the N � N matrix W 0ð Þ ¼ w 0ð Þ
1 s0jsð Þ

n o
. Its entry s0; sð Þ gives

the expected number of descendants (possibly including self
through survival) settling in groups of state s0 that descend from
an individual residing in an s-group (mutant or resident since they
are phenotypically indistinguishable).

The assumptions that each group is density regulated (see Sec-
tion 2.1) and that the resident population has reached stationarity
guarantee that the largest eigenvalue of W 0ð Þ equals 1 (see Sec-
tion A.2 (v) in the Supplementary Material). This is the unique lar-
gest eigenvalue because W 0ð Þ is primitive due to the assumption
that A is primitive. Thus, there is no demographic change in popu-
lations in which all individuals carry the same trait y and that have
reached stationarity.

The fact that under neutrality w 0ð Þ
1 s0js; ið Þ is independent of i and

W 0ð Þ has the unique largest eigenvalue of 1 imposes constraints on

the matrix A 0ð Þ ¼ a 0ð Þ s0; i0js; i� �� �
that describes the growth of a

mutant lineage under neutrality. Let us denote the left eigenvector
ofW 0ð Þ corresponding to the eigenvalue 1 by v 0ð Þ ¼ v 0ð Þ sð Þ� �

, which
is a strictly positive row vector of length N. Each entry v 0ð Þ sð Þ gives
the reproductive value of an individual in state s, which is the
asymptotic contribution of that individual to the gene pool. Note
that v 0ð Þ sð Þ does not depend on d because it is defined from W 0ð Þ,
which is independent of d. We now construct a row vector
v̂ 0ð Þ ¼ v̂ 0ð Þ s; ið Þ� �

of length n �Ps2Sns by setting
v̂ 0ð Þ s; ið Þ ¼ v 0ð Þ sð Þi. It has been shown that v̂ 0ð Þ is a positive left

eigenvector of the matrix A 0ð Þ ¼ a 0ð Þ s0; i0js; i� �� �
corresponding to

the eigenvalue 1, and therefore – since v̂ 0ð Þ is strictly positive –
the Perron–Frobenius theorem implies that the largest eigenvalue

of A 0ð Þ is q 0ð Þ ¼ 1 (see Appendix A in Lehmann et al., 2016, for a
proof and more details). We also show that the column vector
q 0ð Þ sð Þ� �

of length N, denoting the stable asymptotic distribution
given by Eq. (4) under neutrality, is the right eigenvector of the
matrixW 0ð Þ corresponding to the eigenvalue of 1 (see Section C.2.1
in the Supplementary Material). There is freedom of choice for how
to normalize the left eigenvector v 0ð Þ and here we employ the con-
vention that

P
s2Sv 0ð Þ sð Þq 0ð Þ sð Þ ¼ 1. This means that the reproduc-

tive value of a randomly sampled mutant individual from its
lineage is unity.

To summarize, under neutrality, the stable asymptotic distribu-
tion of mutants and the reproductive value of individuals satisfy

q 0ð Þ s0ð Þ ¼
X
s2S

w 0ð Þ
1 s0jsð Þq 0ð Þ sð Þ q 0ð Þ ¼ W 0ð Þq 0ð Þ

� �
; ð15aÞ

v 0ð Þ sð Þ ¼
X
s02S

v 0ð Þ s0ð Þw 0ð Þ
1 s0jsð Þ v 0ð Þ ¼ v 0ð ÞW 0ð Þ

� �
; ð15bÞ

1 ¼
X
s2S
v 0ð Þ sð Þq 0ð Þ sð Þ 1 ¼ v 0ð Þq 0ð Þ� �

; ð15cÞ

where v 0ð Þ is a row-vector with entries v 0ð Þ sð Þ and q 0ð Þ is a column-
vector with entries q 0ð Þ sð Þ.

2.4. Invasion fitness as reproductive-value-weighted fitness

Eq. (2) for the leading eigenvalue and eigenvector of the matrix
A can be left-multiplied on both sides by any non-zero vector of
weights. This allows to express q in terms of this vector of weights
and A and u. If one chooses for the vector of weights the vector of
neutral reproductive values v̂ 0ð Þ discussed above, then invasion fit-
ness can be expressed as

q ¼ 1
V

X
s02S

X
s2S

Xns
i¼1

v 0ð Þ s0ð Þw1 s0js; ið Þq ijsð Þq sð Þ; ð16aÞ

where

V �
X
s2S
v 0ð Þ sð Þq sð Þ ð16bÞ

(see Lehmann et al., 2016, Appendix C, Eq. (C.5), for the proof). This
representation of q is useful to do concrete calculations. The intu-
ition behind it is as follows. The inner sum, taken over i, represents
the reproductive-value-weighted average number of offspring in
states s0 given a parental mutant resides in an s-group, where the
average is taken over all possible mutant numbers experienced by
the parental mutant in an s-group. The middle sum takes the aver-
age over all states s in which mutants can reside in the parental gen-
eration, and the outer sum takes the average over all possible states
s0 in which mutant offspring can reside (possibly including parents
through survival).

Hence, the numerator in Eq. (16a) is the reproductive-value-
weighted average individual 1-fitness of a mutant individual ran-
domly sampled from the mutant lineage, while the denominator
V can be interpreted (in force of Eq. (15b)) as the reproductive-
value-weighted average of the neutral 1-fitness of an individual
sampled from the asymptotic state distribution of the mutant lin-
eage. Hence, q is the ratio of the reproductive-value-weighted
average fitness of a mutant individual and that of a mutant
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individual under neutrality where both individuals are sampled
from the same distribution. Note that in Eq. (16a) the quantities
w1 s0js; ið Þ; q sð Þ and q ijsð Þ depend on d while v 0ð Þ s0ð Þ does not.

Our goal is to compute from Eq. (16a) the selection gradient and
disruptive selection coefficients,

q 1ð Þ yð Þ � @q
@d

����
d¼0

and q 2ð Þ yð Þ � 1
2
@2q
@d2

�����
d¼0

: ð17Þ

These coefficients are all we need to classify singular strategies
(Metz et al., 1996; Geritz et al., 1998). Indeed, a singular strategy y�

satisfies

q 1ð Þ y�ð Þ ¼ 0: ð18Þ
This strategy is locally convergence stable (i.e., a local attractor

point of the evolutionary dynamics) when

c y�ð Þ � dq 1ð Þ yð Þ
dy

����
y¼y�

< 0: ð19Þ

Note that convergence stability hinges on mutants with small
phenotypic deviation d invading and substituting residents (‘‘inva-
sion implies substitution”), which holds true when jdj � 1 under
the demographic assumptions of our model (Rousset, 2004, pp.
196 and 206). Furthermore, the singular point is locally uninvad-
able if

q 2ð Þ y�ð Þ < 0: ð20Þ
A singular strategy can then be classified by determining the

combination of signs of the disruptive selection coefficient
q 2ð Þ y�ð Þ and the convergence stability coefficient c y�ð Þ at y� (Metz
et al., 1996; Geritz et al., 1998).

3. Sensitivity analysis

3.1. Eigenvalue perturbations

Using Eq. (16a), as well as the normalization of reproductive
values given in Eq. (15c), we show in Section B in the Supplemen-
tary Material that the first-order perturbation of qwith respect to d
is given by

q 1ð Þ ¼
X
s02S

X
s2S

Xns
i¼1

v 0ð Þ s0ð Þw 1ð Þ
1 s0js; ið Þq 0ð Þ ijsð Þq 0ð Þ sð Þ: ð21Þ

Thus, q 1ð Þ is simply a weighted perturbation of individual 1-
fitnesses w1. For the second-order perturbation of q with respect
to d, given that q 1ð Þ ¼ 0, we find that

q 2ð Þ ¼ q 2wð Þ þ q 2qð Þ þ q 2rð Þ ð22aÞ
where

q 2wð Þ ¼
X
s02S

X
s2S

Xns
i¼1

v 0ð Þ s0ð Þw 2ð Þ
1 s0js; ið Þq 0ð Þ ijsð Þq 0ð Þ sð Þ ð22bÞ

q 2qð Þ ¼
X
s02S

X
s2S

Xns
i¼1

v 0ð Þ s0ð Þw 1ð Þ
1 s0js; ið Þq 0ð Þ ijsð Þq 1ð Þ sð Þ ð22cÞ

q 2rð Þ ¼
X
s02S

X
s2S

Xns
i¼1

v 0ð Þ s0ð Þw 1ð Þ
1 s0js; ið Þq 1ð Þ ijsð Þq 0ð Þ sð Þ ð22dÞ

(Section B in the Supplementary Material). The first term, labelled
q 2wð Þ, comes from the second-order perturbation of individual 1-
fitnesses. The second term, labelled q 2qð Þ, comes from the first-
order perturbation of the stationary distribution of mutants in the
different states, and the third term, labelled q 2rð Þ, comes from the
first-order perturbation of the stationary distribution of the number
of mutants in any given state.
While Eqs. (21) and (22) give some insights into how selection
acts on mutants, in particular, they emphasize the role of selection
on the distributions q sð Þ and q ijsð Þ, these expressions remain com-
plicated as they involve weighted averages of fitness derivatives

w ‘ð Þ
1 s0js; ið Þ ‘ ¼ 1;2ð Þ over the neutral and perturbed mutant distri-

butions q 1ð Þ ijsð Þ and q 1ð Þ sð Þ. To obtain more insightful expressions
for these sensitivities, we express in the next section wk s0js; ið Þ for
k ¼ 1;2;3 in terms of trait values. This will allow us to carry out
rearrangements and simplifications of q 1ð Þ and q 2ð Þ.

3.2. Individual fitness functions

3.2.1. Individual 1-fitness
Consider a focal individual in a focal group in state s and denote

by z1 the trait value of that individual. Suppose that the other
ns � 1 neighbors adopt the trait values z2; . . . ; zns and almost all
individuals outside this focal group adopt the trait value z. Let then

w1;s0 js z1; z2; . . . ; zns ; zð Þ s0; s 2 S; z1; . . . ; zns ; z 2 Rð Þ ð23aÞ
be the expected number of offspring in state s0 that descend from a
focal in state s. Eq. (23a) expresses individual 1-fitness in terms of
the phenotypes of all interacting individuals and will be referred
to as an individual fitness function. It is a common building block
of phenotypic models (see Frank, 1998; Rousset, 2004, for textbook
treatments) and is the fitness that has to be considered if an exact
description of a population is required, for instance, in an
individual-based stochastic model, where each individual may have
a different phenotype.

Because the only heterogeneity we consider are the different
group states (we have no heterogeneity in individual states within
groups), the individual 1-fitness function w1;s0 js is invariant under
permutations of z2; . . . ; zns . With this, we can rewrite Eq. (23a) as

w1;s0 js z1; z 2;...;nsf g; z
� �

or w1;s0 js z1; z� 1f g; z
� �

; ð23bÞ
where the set-subscripted vector z 2;...;nsf g represents a vector of
length ns � 1 in which each of z2; . . . ; zns appears in an arbitrary
order but exactly once. The subscript � 1f g is used as a shorthand
notation of the set difference 1;2; . . . ; nsf g n 1f g ¼ 2; . . . ;nsf g and
used when the baseline set 1;2; . . . ;nsf g is clear from the context.
Therefore, z� 1f g is the same as z 2;...;nsf g. Similarly, in the following
the subscript � 1;2f g represents the set difference
1;2; . . . ;nsf g n 1;2f g ¼ 3; . . . ;nsf g, and so forth. For example,
z� 1;2f g ¼ z 3;...;nsf g represents a vector of length ns � 2 in which each
of z3; . . . ; zns appears in an arbitrary order but exactly once.

For our two allele model zi; z 2 x; yf g, we can write a mutant’s
individual 1-fitness as

w1 s0js; ið Þ ¼ w1;s0 js x; x; . . . ; x|fflfflfflffl{zfflfflfflffl}
i�1

; y; . . . ; y|fflfflfflffl{zfflfflfflffl}
ns�i

; y

0
B@

1
CA: ð24Þ

By using the chain rule and permutation invariance, the zeroth,
first, and second order perturbations of w1 s0js; ið Þ with respect to d
are

w 0ð Þ
1 s0js; ið Þ ¼ w1;s0 js; ð25aÞ

w 1ð Þ
1 s0js; ið Þ ¼ @w1;s0 js

@z1
þ i� 1ð Þ @w1;s0 js

@z2
; ð25bÞ

w 2ð Þ
1 s0js; ið Þ ¼ 1

2
@2w1;s0 js
@z21

þ i� 1
2

@2w1;s0 js
@z22

þ i� 1ð Þ @
2w1;s0 js
@z1@z2

þ i� 1ð Þ i� 2ð Þ
2

@2w1;s0 js
@z2@z3

: ð25cÞ

Here, all functions and derivatives that appear without argu-
ments are evaluated at the resident population, y; . . . ; yð Þ, a con-
vention we adopt throughout. Note that some derivatives



Fig. 2. A schematic example of how we calculate the individual 2-fitnesses wI
2 and

wII
2 . Gray arrows represent reproduction (or survival). We label by ‘‘1” the focal

individual with trait value z1 in the parental generation and its offspring (possibly
including self through survival) in the following generation. Similarly, we label by
‘‘2” the target individual with trait value z2 in the parental generation and its
offspring (possibly including self through survival) in the offspring generation.
Because each of the two descendants of the focal individual in the bottom-left
group (those with label ‘‘1”) finds with probability 1=4 a random neighbor whose
label is ‘‘1”, whereas the one descendant of the focal individual in the bottom-right
group in the offspring generation finds no neighbors whose label is ‘‘1”, the same-
parent individual 2-fitness of the focal is calculated as
wI

2;s0js z1; z� 1f g; z
� � ¼ 2 � 1=4ð Þ þ 1 � 0=4ð Þ ¼ 1=2. Similarly, because each of the two

descendants of the focal individual in the bottom-left group finds a random
neighbor whose label is ‘‘2” with probability 1=4, and because the one descendant
of the focal in the bottom-right group finds a random neighbor whose label is ‘‘2”
with probability 1=4, the different-parent individual 2-fitness of the focal is
wII

2;s0 js z1; z2; z� 1;2f g; z
� � ¼ 2 � 1=4ð Þ þ 1 � 1=4ð Þ ¼ 3=4.
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appearing in Eqs. (25) are ill-defined for ns ¼ 1 and ns ¼ 2, but they
are always nullified by the factors i� 1ð Þ and i� 1ð Þ i� 2ð Þ. Thus, by
simply neglecting these ill-defined terms, Eq. (25) is valid for any
1 6 i 6 ns.

3.2.2. Individual 2- and 3-fitness
Consider again a focal individual with trait value z1 in a group in

state s in which the ns � 1 group neighbors have the trait values
z� 1f g ¼ z 2;...;nsf g in a population that is otherwise monomorphic for
z.

For this setting, we define two types of individual 2-fitness
functions. First, let

wI
2;s0 js z1; z� 1f g; z
� �

s0; s 2 S; z1; . . . ; zns ; z 2 Rð Þ ð26Þ
be the expected number of offspring in state s0 that descend from
the focal individual and that have a random neighbor that also des-
cends from the focal individual (see Fig. 2). Intuitively speaking,
wI

2;s0 js measures the number of sibling pairs produced by a focal indi-
vidual. Hence, when one considers the reproductive process back-
ward in time, wI

2;s0 js > 0 means that coalescence events do occur.

We call wI
2;s0 js the ‘‘same-parent individual 2-fitness”, because the

offspring involved in it descend from the same individual.
Second, for ns P 2 consider a neighbor of the focal individual

with trait value z2, called the target individual, in a group in which
the remaining ns � 2 neighbors have the trait profile
z� 1;2f g ¼ z 3;...;nsf g. Let

wII
2;s0 js z1; z2; z� 1;2f g; z
� �

s0; s 2 S; z1; . . . ; zns ; z 2 Rð Þ ð27Þ
be the expected number of offspring in state s0 that descend from
the focal individual with trait value z1 and that have a random
neighbor that descends from the target individual with trait value
z2 (see Fig. 2). We call wII

2;s0 js z1; z2; z� 1;2f g; z
� �

the ‘‘different-parent
individual 2-fitness”, because the offspring involved in it descend
from two different pre-selected individuals, which can thus collec-
tively be thought of as the focal set of individuals under considera-
tion. We note that this fitness function is invariant under the
permutation of the trait values z1 and z2 of individuals from the
focal set2 and it is also invariant under the permutation of the trait
values in z� 1;2f g. But since wII

2;s0 js z1; z2; z� 1;2f g; z
� �

counts the offspring
number (of a certain type) per individual with trait
z1;wII

2;s0 js z1; z2; z� 1;2f g; z
� �

is a type of individual fitness.
Using the notation of mutant and resident phenotypes we have

for 2 6 i 6 ns that

w2 s0js; ið Þ ¼ wI
2;s0 js x; x; . . . ; x|fflfflfflffl{zfflfflfflffl}

i�1

; y; . . . ; y|fflfflfflffl{zfflfflfflffl}
ns�i

; y

0
B@

1
CA

þ i� 1ð ÞwII
2;s0 js x; x; x; . . . ; x|fflfflfflffl{zfflfflfflffl}

i�2

; y; . . . ; y|fflfflfflffl{zfflfflfflffl}
ns�i

; y

0
B@

1
CA; ð28Þ
2 This can be seen by noting that when the focal and target individual from the
focal set leave a realized number of A1 and A2 offspring, respectively, in the same
group of size ns , then this group contributes to the focal’s 2-fitness wII

2 with A1 (the
number of focal’s offspring) times A2= ns � 1ð Þ (the probability that a random neighbor
of focal’s offspring is the target’s offspring), which equals to A1A2= ns � 1ð Þ. Since
A1A2= ns � 1ð Þ is symmetric with respect to A1 and A2, changing the roles of the focal
and target individual does not alter the realized fitness count. The same logic applies
when the focal and target individuals leave offspring to different groups, because in
this case the counts per group are simply summed over all groups. A single
individual’s wII

2 is the expectation of such counts over all realizations of offspring
number in the same and different groups (where the expectation is taken over all
single generation stochastic events affecting reproduction and survival), and the
invariance holds because it holds for each realization.
because a mutant neighbor of an offspring of a focal mutant either
descends from the focal itself or is an offspring of one of the i� 1
mutant neighbors of the focal. The zeroth and first order perturba-
tions of w2 s0js; ið Þ with respect to d are given by

w 0ð Þ
2 s0js; ið Þ ¼ wI

2;s0 js þ i� 1ð ÞwII
2;s0 js; ð29aÞ

w 1ð Þ
2 s0js; ið Þ ¼ @wI

2;s0 js
@z1

þ i� 1ð Þ @w
I
2;s0 js

@z2
þ 2 i� 1ð Þ @w

II
2;s0 js

@z1

þ i� 1ð Þ i� 2ð Þ @w
II
2;s0 js

@z3
; ð29bÞ

where the derivatives @wII
2;s0 js=@z1 and @wII

2;s0 js=@z2 (the latter is equal

to @wII
2;s0 js=@z1 due to the permutation invariance, and hence the

coefficient ‘‘2” appears in Eq. (29b)) involve the trait values of the
individuals of the focal set and @wII

2;s0 js=@z3 involves the trait values
of a third individual. Note that some derivatives in Eq. (29) are ill-
defined for ns ¼ 1;2 but they are always nullified by the factor
i� 1ð Þ or i� 1ð Þ i� 2ð Þ. Thus, by simply neglecting these ill-defined
terms Eq. (29) is valid for any 1 6 i 6 ns.

Following the same line of reasoning as for individual 1- and 2-
fitness, we similarly define three different types of individual 3-
fitness. See Section D in the Supplementary Material for more
detailed explanations. Specifically, wI

3;s0 js z1; z� 1f g; z
� �

is defined as
the expected number of offspring in state s0 that descend from a
focal individual in state s with trait value z1 and that have two ran-
dom neighbors sampled without replacement both descending
from the focal individual. Furthermore, wII

3;s0 js z1; z2; z� 1;2f g; z
� �

is
defined as the expected number of offspring in state s0 that descend
from the focal individual in state s with trait value z1 and with two
random neighbors sampled without replacement both descending
from a target individual with trait value z2. Finally,
wIII

3;s0 js z1; z2; z3; z� 1;2;3f g; z
� �

is defined as the expected number of off-
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spring in state s0 that descend from the focal individual in state s
with trait value z1 with two random neighbors sampled without
replacement, one of which descends from a first target individual
with trait value z2 and the other descends from a second target
individual with trait value z3. With these definitions, we show in
Section D in the Supplementary Material that the zeroth-order per-
turbation of 3-fitness w3 s0js; ið Þ with respect to d is given by

w 0ð Þ
3 s0js; ið Þ ¼ wI

3;s0 js þ 3 i� 1ð ÞwII
3;s0 js þ

i� 1ð Þ i� 2ð Þ
2

wIII
3;s0 js; ð30Þ

where wI
3;s0 js;w

II
3;s0 js;w

III
3;s0 js are those three different individual 3-

fitness functions evaluated in a resident monomorphic population,
y; . . . ; yð Þ.

3.3. Sensitivity results

We now write q 1ð Þ and q 2ð Þ from Section 3.1 in terms of the just
defined derivatives of the individual fitness functions.

3.3.1. Selection gradient
By substituting Eq. (25b) into Eq. (21) we obtain

q 1ð Þ ¼
X
s02S

X
s2S
v 0ð Þ s0ð Þ @w1;s0 js

@z1
þ
Xns
i¼1

i� 1ð Þ @w1;s0 js
@z2

q 0ð Þ ijsð Þ
" #

q 0ð Þ sð Þ;

ð31Þ
and by applying Eq. (8) to the second term in square brackets we
obtain

q 1ð Þ ¼
X
s02S

X
s2S
v 0ð Þ s0ð Þ @w1;s0 js

@z1
þ ns � 1ð Þ @w1;s0 js

@z2
r 0ð Þ
2 sð Þ


 �
q 0ð Þ sð Þ: ð32Þ

Thus, in order to be able to evaluate q 1ð Þ it is sufficient to com-

pute the neutral pairwise relatedness r 0ð Þ
2 sð Þwhile the explicit eval-

uation of the q 0ð Þ ijsð Þ distribution is not needed. It is indeed a well-
known result that the selection gradient q 1ð Þ can be expressed in
terms of reproductive values and relatedness-weighted fitness
derivatives (see Frank, 1998; Rousset, 2004, for textbook treat-
ments) and where q 0ð Þ sð Þ and v 0ð Þ sð Þ are given by Eq. (15) with

w1;s0 js ¼ w 0ð Þ
1 s0 jsð Þ.

Eq. (32) can be interpreted as the expected first-order effect of
all members of a lineage changing to expressing the mutant allele
on the fitness of a focal individual that is a random member of this
lineage. The recipient is sampled from state s with probability
q 0ð Þ sð Þ and the derivative in the first term in the square brackets
of q 1ð Þ is the effect of the focal changing its own trait value on its
individual fitness. The derivative in the second term in the square
brackets describes the effect of the group neighbors of the focal
changing their trait value on the focal’s individual fitness. This
term is weighted by pairwise neutral relatedness since this is the
likelihood that any such neighbor carries the same allele as the
focal in the neutral process. Eq. (32) is the inclusive fitness effect
of mutating from the resident to the mutant allele for a demo-
graphically and/or environmentally structured population and
the term in brackets can be thought of as the state-s-specific inclu-
sive fitness effect on offspring in state s0. Eq. (32) has previously
been derived by (Lehmann et al. (2016), Box 2) and is in agreement
with Eqs. (26) and (27) of Rousset and Ronce (2004), who derived
the first-order perturbation q 1ð Þ in terms of other quantities under
the assumptions of fluctuating group size.

We show in Section E in the Supplementary Material that by
substituting Eq. (29a) into Eq. (C15), pairwise relatedness
(Eq. (8)) under neutrality satisfies the recursion

r 0ð Þ
2 s0ð Þ ¼ 1

q 0ð Þ s0ð Þ
X
s2S

wI
2;s0 js þ ns � 1ð ÞwII

2;s0 jsr
0ð Þ
2 sð Þ

h i
q 0ð Þ sð Þ: ð33Þ
This expression for r 0ð Þ
2 sð Þ, formulated in terms of individual 2-

fitnesses, is novel but is in full agreement with previous results.
In particular, Eq. (29) of Rousset and Ronce (2004) can be shown
to reduce to Eq. (33) (see Section G.2 in the Supplementary Mate-
rial for a proof of this connection).

In summary, consistent with well established results, we pre-
sent a biologically meaningful representation of q 1ð Þ. The ingredi-
ents in this representation can be obtained from the three
systems of linear equations defined by Eqs. (15a), (15b) and (33).
This system of equations is fully determined once the individual
k-fitnesses functions for k ¼ 1;2, namely, w1;s0 js;wI

2;s0 js, and wII
2;s0 js

are specified for a resident population, and the k-fitness functions
can usually be evaluated once a life-cycle has been specified. The
dimension of this combined equation system has maximally three
times the number of states N. This is significantly lower than the
dimension of the matrix A we began with, especially, if group size
> 10. In the next section, we extend these results to the disruptive
selection coefficient.

3.3.2. Disruptive selection coefficient
Assuming that q 1ð Þ ¼ 0 and substituting Eq. (25) into Eq. (22),

rearrangements given in Section E in the Supplementary Material
show that

q 2wð Þ ¼ 1
2

X
s02S

X
s2S
v 0ð Þ s0ð Þ @2w1;s0 js

@z21
þ ns � 1ð Þ @

2w1;s0 js
@z22

r 0ð Þ
2 sð Þ

"

þ2 ns � 1ð Þ @
2w1;s0 js
@z1@z2

r 0ð Þ
2 sð Þ þ ns � 1ð Þ ns � 2ð Þ @

2w1;s0 js
@z2@z3

r 0ð Þ
3 sð Þ

#
q 0ð Þ sð Þ ð34aÞ

q 2qð Þ ¼
X
s02S

X
s2S
v 0ð Þ s0ð Þ @w1;s0 js

@z1
þ ns � 1ð Þ @w1;s0 js

@z2
r 0ð Þ
2 sð Þ


 �
q 1ð Þ sð Þ ð34bÞ

q 2rð Þ ¼
X
s02S

X
s2S
v 0ð Þ s0ð Þ ns � 1ð Þ @w1;s0 js

@z2
r 1ð Þ
2 sð Þ


 �
q 0ð Þ sð Þ: ð34cÞ

Eq. (34a) depends on four different types of qualitative effects
on the fitness of a focal individual: (i) The second-order effect on
own fitness of the focal changing its trait value, which is positive,
and then contributes to disruptive selection, if fitness is convex
in own phenotype. (ii) The second-order effect resulting from the
neighbors of the focal changing their trait values, which is positive
if the focal’s fitness is convex in phenotype of group neighbors. This
contributes to disruptive selection proportionally to pairwise relat-

edness r 0ð Þ
2 sð Þ, since this is the likelihood that a random neighbor

carries the same allele as the focal individual. (iii) The joint effect
of the focal individual and any of its neighbors changing their trait
value, which is positive if the effect of increased trait values of own
and others complement each other. This again contributes to dis-
ruptive selection in proportion to the likelihood that any neighbor
is a mutant. (iv) The joint effect of pairs of neighbors of the focal
changing their trait values, which is positive if the effect of
increased trait values in neighbors complement each other. This

contributes to disruptive selection with the probability r 0ð Þ
3 sð Þ that

a pair of neighbors carry the same allele as the focal individual.
Eq. (34b) depends, for each state, on the product of the state

specific inclusive fitness effect (recall the term in brackets in Eq.
(32)) multiplied with the perturbation q 1ð Þ sð Þ of the group state
probability. A contribution to disruptive selection occurs if the
mutant allele increases its probability to be in a given state while
simultaneously increasing the individual fitness of its carriers in
that state. Similarly, Eq. (34c) depends, for each state, on the pro-
duct of the state specific indirect effect of others on own fitness
(recall the second term in brackets in Eq. (32)) and the relatedness

perturbation r 1ð Þ
2 sð Þ. This contributes to disruptive selection if the

mutant allele increases the probability that a focal has mutant
neighbors while simultaneously increasing the individual fitness
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of those neighbors. Finally, we note that in the presence of a single
state (i.e., no state heterogeneity among groups) q 2qð Þ ¼ 0. This is
the case in all previously published expressions for the disruptive
selection coefficient (Day, 2001; Ajar, 2003; Wakano and
Lehmann, 2014; Mullon et al., 2016), which therefore reduce to
q 2wð Þ þ q 2rð Þ as defined by Eqs.(34a) and (34c).

In order to compute q 2ð Þ we need, in addition to Eqs. (15a), (15b)

and (33), expressions for q 1ð Þ sð Þ; r 0ð Þ
3 sð Þ, and r 1ð Þ

2 sð Þ. In Section E in the
Supplementary Material, we derive the corresponding recursions
for q 1ð Þ ¼ 0. In particular, we show that q 1ð Þ sð Þ satisfies

q 1ð Þ s0ð Þ ¼
X
s2S

@w1;s0 js
@z1

þ ns � 1ð Þ @w1;s0 js
@z2

r 0ð Þ
2 sð Þ


 �
q 0ð Þ sð Þ

þ
X
s2S

w1;s0 jsq 1ð Þ sð Þ ð35Þ

and that r 0ð Þ
3 sð Þ satisfies

r 0ð Þ
3 s0ð Þ ¼ 1

q 0ð Þ s0ð Þ
X
s2S

wI
3;s0 js þ 3 ns � 1ð ÞwII

3;s0 jsr
0ð Þ
2 sð Þ

h

þ ns � 1ð Þ ns � 2ð Þ
2

wIII
3;s0 jsr

0ð Þ
3 sð Þ

�
q 0ð Þ sð Þ: ð36Þ

Finally, we show that r 1ð Þ
2 sð Þ satisfies the recursion

r 1ð Þ
2 s0ð Þ ¼ 1

q 0ð Þ s0ð Þ
X
s2S

@wI
2;s0 js

@z1
þ ns � 1ð Þ @w

I
2;s0 js

@z2
r 0ð Þ
2 sð Þ

"

þ2 ns � 1ð Þ @w
II
2;s0 js

@z1
r 0ð Þ
2 sð Þ þ ns � 1ð Þ ns � 2ð Þ @w

II
2;s0 js

@z3
r 0ð Þ
3 sð Þ

#
q 0ð Þ sð Þ

þ 1
q 0ð Þ s0ð Þ

X
s2S

ns � 1ð ÞwII
2;s0 jsr

1ð Þ
2 sð Þ

h i
q 0ð Þ sð Þ

þ 1
q 0ð Þ s0ð Þ

X
s2S

wI
2;s0 js þ ns � 1ð ÞwII

2;s0 jsr
0ð Þ
2 sð Þ

h i
q 1ð Þ sð Þ � r 0ð Þ

2 s0ð Þ q
1ð Þ s0ð Þ

q 0ð Þ s0ð Þ :

ð37Þ

Eq. (35) shows that q 1ð Þ sð Þ depends on the state-specific inclu-
sive fitness effect (compare the first summand in Eq. (35) to the
term in brackets in Eq. (32)). Thus, the probability that a mutant
is in a certain state s increases with its state-specific inclusive fit-
ness effect. Eq. (36) for the three-way relatedness coefficient
depends on wI

3;s0 js;w
II
3;s0 js and wIII

3;s0 js and it is a generalization of the
pairwise relatedness coefficient given by Eq. (33). Finally, Eq. (37)

shows that r 1ð Þ
2 sð Þ depends on direct and indirect effects on wI

2;s0 js
and wII

2;s0 js. Note, that Eq. (37) together with Eqs. (15a), (15b),
(33), (35), and (36) form a linear system of equations with a dimen-
sion equal to six times the number of states N. Its solution allows
us to determine the disruptive selection coefficient q 2ð Þ. This sys-
tem of equations in turn is fully determined once the k-fitnesses
for k ¼ 1;2;3 are specified for a resident population, namely,
w1;s0 js;wI

2;s0 js;w
II
2;s0 js;w

I
3;s0 js;w

II
3;s0 js, and wIII

3;s0 js.
In general, if the state space S is large, solving this system of

equations (and those needed for q 1ð Þ) may be complicated. Simi-
larly, the 2- and 3-fitnesses may be complicated. We here give
two directions for approximating q 1ð Þ and q 2ð Þ. First, individual fit-
ness generally depends on vital rates like fecundity and survival
(see Eqs. (45)–(46) for a concrete example) and variation of these
vital rates may have small effects on fitness, which induces weak
selection regardless of the magnitude of the phenotypic deviation
d (called ‘‘x-weak selection” by Wild and Traulsen, 2007, and
‘‘weak payoff” by Van Cleve, 2015). For ‘‘weak payoffs” (or x-
weak selection), q 2ð Þ � q 2wð Þ because one can neglect q 2qð Þ and
q 2rð Þ. Indeed, both these terms involve products of marginal
changes in fitness, which implies that these products are of
second-order effect under weak payoffs and first-order effects will
thus dominate. Since q 2wð Þ only involves first-order effects it dom-
inates the disruptive selection coefficient. See Van Cleve (2015) for
an applications of this approximation to q 1ð Þ and Wakano and
Lehmann (2014) and Mullon et al. (2016) to q 2ð Þ. Second, variation
of vital rates and fitness across states may be small under certain
biological scenarios in which case one may apply a so-called small
noise approximation (e.g., Tuljapurkar, 1990; Caswell, 2001) to q 1ð Þ

and q 2ð Þ, whereby the magnitude of variation are taken to be small.
This simplification has been used to approximate q 1ð Þ in a multi-
species meta-population model that is covered by our general
model (Mullon and Lehmann, 2018), but has not yet been applied
to q 2ð Þ, which would be interesting in future work.

Finally, for some specific life-cycles the 2- and 3-fitness func-
tions can be expressed in terms of components of the 1-fitness
functions. This greatly simplifies the calculations because all recur-
sions can then be solved explicitly. We will now provide an appli-
cation of our model along this latter line, which still covers a large
class of models.

4. Application to a lottery model with spatial heterogeneity

We now study a lottery model with overlapping generations
and spatial heterogeneity. Such a model can be formulated for a
variety of life-cycles and we here take a hierarchical approach in
which we make increasingly more specific assumptions. Accord-
ingly, this section is divided in three parts. Section 4.1 provides
general results about the components of the selection coefficients
based on the assumption of fixed group states s. In Section 4.2
we introduce two forms of population regulation resulting in hard
and soft selection, respectively. Finally, in Section 4.3 we specify an
explicit fitness function which allows us to present a fully worked
example for the effect of group size and spatial heterogeneity on
disruptive selection.

4.1. Spatial lottery model

4.1.1. Decomposition into philopatric and dispersal components
We start by making the following three assumptions. (i) Group

states s describe environmental variables that do not change in
time. Thus, group states are fixed and we here refer to them as
habitats. By ps we denote the relative proportion of groups in habi-
tat s, hence

P
s2Sps ¼ 1. (ii) Individuals survive independently of

each other with probability cs < 1 to the next time step in a group
in habitat s. Note that cs ¼ 0 corresponds to the Wright-Fisher
update where all adults die simultaneously, and that cs 	 1 corre-
sponds to the Moran update where at most one individual dies in a
group. (iii) Dispersal occurs individually and independently to a
random destination (no propagule dispersal). (iv) The evolving trait
does not affect survival. With these assumptions we can decom-
pose the 1-fitness of a focal individual into a philopatric and dis-
persal component as

w1;s0 js z1; z� 1f g; z
� �

¼

wp
1;sjs z1; z� 1f g; z
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
philopatric

þ wd
1;sjs z1; z� 1f g; z
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dispersal

s0 ¼ sð Þ

wd
1;s0 js z1; z� 1f g; z
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dispersal

s0 – sð Þ:

8>>>><
>>>>:

ð38aÞ

Offspring that have left from their natal group and successfully
settled elsewhere are counted in the dispersal component
wd

1;s0 js z1; z� 1f g; z
� �

. The philopatric component wp
1;sjs z1; z� 1f g; z
� �

counts the number of non-dispersing offspring, possibly including
self trough survival. Thus, we further decompose the philopatric
part into a survival part and a reproduction part as
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wp
1;sjs z1; z� 1f g; z
� � ¼ cs|{z}

philopatric survival

þ 1� csð Þwpr
1;sjs z1; z� 1f g; z
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
philopatric reproduction

:

ð38bÞ
Similarly, for the dispersal part we write

wd
1;s0 js z1; z� 1f g; z
� � ¼ 1� cs0ð Þwdr

1;s0 js z1; z� 1f g; z
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersal reproduction

: ð38cÞ
4.1.2. General results for spatial lottery model
For this model, we explicitly compute the components of the

selection gradient and disruptive selection coefficient in Sections
F.1 and F.2 of the Supplementary Material. In particular, we show
that the probability that a random lineage member is sampled
from a group in state s under neutrality equals the weighted
frequency

q 0ð Þ sð Þ ¼ psnsP
s02Sps0ns0

; ð39Þ

where the weights are the number of individuals in the group state.
For the reproductive value, it is instructive to provide a formula

for v 0ð Þ s0ð Þq 0ð Þ sð Þ, because the reproductive value always appears as
a product with q 0ð Þ sð Þ in q 1ð Þ (Eq. (32)) and q 2ð Þ (Eq. (34)) (the only
exception is Eq. (34b), but see the discussion below Eq. (43)). This
product is given by

v 0ð Þ s0ð Þq 0ð Þ sð Þ ¼ wdr
1;sjs0

1� cs0ð Þ 1�wpr
1;s0 js0

� �
1�wpr

1;sjs

� �,

X
s002S

wdr
1;s00 js00

1� cs00ð Þ 1�wpr
1;s00 js00

� �2
0
B@

1
CA ð40Þ

(Section F.1 in the Supplementary Material). Furthermore, the neu-
tral pairwise relatedness coefficient equals

r 0ð Þ
2 sð Þ ¼

2csw
pr
1;sjs þ 1� csð Þ wpr

1;sjs

� �2
ns 1þ csð Þ � 2 ns � 1ð Þcswpr

1;sjs � ns � 1ð Þ 1� csð Þ wpr
1;sjs

� �2
ð41Þ

(Section F.2 in the Supplementary Material). The general solution

for r 0ð Þ
3 sð Þ remains complicated (see Eq. (F32) for the full expression),

but for special cases it is

r 0ð Þ
3 sð Þ ¼

wpr
1;sjs

� �3

nsþ2 ns�1ð Þ wpr
1;sjs

� �2

 �

ns� ns�1ð Þ wpr
1;sjs

� �2

 �

n2s� ns�1ð Þ ns�2ð Þ wpr
1;sjs

� �3

 �

Wright� Fisher process; cs ¼ 0ð Þ;

2 wpr
1;sjs

� �2

ns� ns�1ð Þwpr
1;sjs

h i
ns� ns�2ð Þwpr

1;sjs

h i
Moran process; cs 	 1ð Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð42Þ

If the resident trait value is equal to the singular strategy where
q 1ð Þ ¼ 0, then the first-order perturbation of the stationary mutant
distribution is

q 1ð Þ sð Þ¼ 1
1�wpr

1;sjs

@wpr
1;sjs

@z1
þ ns�1ð Þ@w

pr
1;sjs

@z2
r 0ð Þ
2 sð Þ

" #(

�
X
s02S

1
1�wpr

1;s0 js0

@wpr
1;s0 js0

@z1
þ ns0 �1ð Þ@w

pr
1;s0 js0

@z2
r 0ð Þ
2 s0ð Þ

" #
q 0ð Þ s0ð Þ

)
q 0ð Þ sð Þ

ð43Þ
(Section F.1 in the Supplementary Material). Note that we can
obtain the fraction q 1ð Þ sð Þ=q 0ð Þ sð Þ by dividing both sides of Eq. (43)
by q 0ð Þ sð Þ, which, when combined with Eq. (40), allows to directly
obtain the product v 0ð Þ s0ð Þq 1ð Þ sð Þ. This quantity is required to com-
pute Eq. (34b). Finally, for q 1ð Þ ¼ 0 we have

r 1ð Þ
2 sð Þ ¼ 2r 0ð Þ

2 sð Þ cs þ 1� csð Þwpr
1;sjs

2csw
pr
1;sjs þ 1� csð Þ wpr

1;sjs

� �2

� 1þ ns � 1ð Þr 0ð Þ
2 sð Þ

h i @wpr
1;sjs

@z1
þ ns � 1ð Þ

(

� 2r 0ð Þ
2 sð Þ þ ns � 2ð Þr 0ð Þ

3 sð Þ
h i @wpr

1;sjs
@z2

)
ð44Þ

(see Section F.2 in the Supplementary Material where we also make
the connection to previous works).

With Eqs. (40) and (41) we can compute the first-order pertur-
bation of invasion fitness, Eq. (32), explicitly given specific life-
cycle assumptions (since all recursions have been solved). Simi-
larly, under the assumption that q 1ð Þ ¼ 0, and with Eqs. (39)–(44)
in hand, we can explicitly compute the second-order perturbation
of invasion fitness, Eq. (34).
4.2. Fecundity selection under two different forms of density regulation

We further refine our assumptions in order to arrive at two life-
cycles with concrete expressions for wpr

1;sjs and wdr
1;s0 js. The first one is

as follows. (1) Each adult individual in a group in habitat s pro-
duces on average a very large number f s of offspring, and then
either survives with probability cs or dies with the complementary
probability. (2) Offspring disperse independently of each other to a
uniformly randomly chosen non-natal group with the non-zero
probability ms. An offspring survives dispersal with probability ps

when dispersing from a group in habitat s. (3) All offspring aspiring
to settle in a group in habitat s compete for the average number
1� csð Þns of breeding sites vacated by the death of adults and are
recruited until all ns breeding sites are occupied. (4) The evolving
trait does not affect dispersal.

In this life cycle, density-dependent population regulation
occurs after dispersal when offspring aspire to settle and we refer
to this regime as hard selection. We also consider a soft-selection
variant in which density regulation occurs in two steps (as in
Fig. 1 of Svardal et al., 2015). First, a local trait-dependent stage
of density-dependent regulation occurs immediately after repro-
duction (after stage (1) in the above life cycle) in which the off-
spring pool in each group is brought back to a size proportional
to the local group size ns, say size Kns, where K is a large number.
From here on dispersal and recruitment (second regulation step)
proceed as in the hard-selection life cycle.

For these two life cycles, the philopatric and dispersal fitness
components can be written as

wpr
1;sjs z1; z� 1f g; z
� �

¼

ns
1�msð Þf s z1; z� 1f g; z

� �
1�msð ÞPns

i¼1f s zi; z� if g; z
� �þ Ihard zð Þ hard selectionð Þ 45að Þ

ns
1�msð Þ

1�msð Þns þ Isoft|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
trait independent recruitment

� ns
f s z1; z� 1f g; z
� �Pns

i¼1f s zi; z� if g; z
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

trait dependent regulation

soft selectionð Þ; 45bð Þ

8>>>>>>><
>>>>>>>:

and
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wdr
1;s0 js z1; z� 1f g; z
� �

¼

ps0ns0
psmsf s z1 ;z� 1f g ;zð Þ

1�ms0ð ÞPns0
i¼1

f s0 z;z;zð ÞþIhard zð Þ hard selectionð Þ 46að Þ

ps0ns0
psms

1�ms0ð Þns0 þ Isoft|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
trait independent recruitment

� ns
f s z1; z� 1f g; z
� �Pns

i¼1f s zi; z� if g; z
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

trait dependent regulation

soft selectionð Þ; 46bð Þ

8>>>>>><
>>>>>>:

respectively, where f s zi; z� if g; z
� �

is the fecundity of individual i in a
group in habitat s and

Ihard zð Þ �
X
s2S

psnspsmsf s z; z; zð Þ ð47aÞ

Isoft �
X
s2S

psnspsms ð47bÞ

are the trait-dependent immigration terms for the hard-selection
model and trait-independent immigration term for the soft selec-
tion model, respectively.

Eqs. (45b) and (46b) can be understood as follows. During the
stage of trait-dependent regulation the local offspring pool in a
group in habitat s is brought back to a size proportional to ns,
namely Kns, whereby the proportion of individuals among the sur-
viving offspring descending from a focal individual is
f s z1; z� 1f g; z
� �

=
Pns

i¼1f s zi; z� if g; z
� �

. Each of these offspring either dis-
perses or stays local and then competes to be recruited. With prob-
ability 1�ms an offspring is philopatric, and this philopatric
offspring gets recruited with probability 1= K 1�msð Þns þ Isoftð Þ½ 

per open spot. Here K 1�msð Þns þ Isoftð Þ is the expected number
of local competitors, where the number of migrant offspring com-
peting in a given group for recruitment and coming from a group in
habitat s is proportional to psnspsms. Offspring dispersing to a
group in habitat s0 experience on average K 1�ms0ð Þns0 þ Isoftð Þ com-
petitors and the probability to compete in such a group is ps0 . The
likelihood to be recruited (either after dispersing or without dis-
persing) is then multiplied by the expected number of open breed-
ing sites, which equals ns 1� csð Þ in the natal group and ns0 1� cs0ð Þ
in non-natal groups in habitat s0, but the factors 1� csð Þ and
1� cs0ð Þ are already accounted for in Eqs. (38b) and (38c). Note that
the constant K does not appear in Eqs. (45b) and (46b) because it
appears both in the numerator and denominator of these equations
and thus cancels out.

Using Eqs. (45) and (46) along with Eqs. (39)–(44) allows to
compute q 1ð Þ and q 2ð Þ for a large class of models. In Sections G,
H.3 and I.3 in the Supplementary Material, we show that we
recover a number of previously published results belonging to this
class of models, some of which were derived with quite different
calculations (Pen, 2000; Ohtsuki, 2010; Lehmann and Rousset,
2010; Rodrigues and Gardner, 2012; Wakano and Lehmann,
2014; Svardal et al., 2015; Mullon et al., 2016; Parvinen et al.,
2018). This indirectly confirms the validity of our calculations.
For simplicity of notation we assumed that the evolving trait does
neither affect survival nor dispersal (it only affects fecundity), but
extensions to include effects on survival and dispersal are in prin-
ciple straightforward.
4.3. Selection analysis

In this section, we finally present explicit expressions for the
selection gradient q 1ð Þ and the coefficient of disruptive selection
q 2ð Þ for both the model of hard and soft selection. We then intro-
duce an explicit fecundity function, which, under some additional
symmetry assumptions, allows us to have a completely worked
example.
4.3.1. Hard selection
Inserting Eqs. (45a) and (46a) into Eqs. (38b) and (38c), respec-

tively, we show in Section H in the Supplementary Material that
the selection gradient for the hard selection lottery model is

q 1ð Þ /
X
s2S

psnspsmsf s
ds;hard

@f s
@z1

f s
þ r 0ð Þ

2 sð Þ ns � 1ð Þ
@f s
@z2

f s

(

� 1� ds;hard
� �2r 0ð Þ

2;R sð Þ
@f s
@z1

f s
þ ns � 1ð Þ

@f s
@z2

f s

 !)
; ð48Þ

where the proportionality constant is positive (and given by the
inverse of Eq. (H4)) and ds;hard is the backward migration rate from
groups in habitat s under neutrality defined as

ds;hard � Ihard
1�msð Þnsf s þ Ihard

: ð49Þ

This rate depends on y because Ihard and f s are evaluated at
y; . . . ; yð Þ. Eq. (48) further depends on

r 0ð Þ
2;R sð Þ � 1

ns
þ ns � 1

ns
r 0ð Þ
2 sð Þ; ð50Þ

which is the relatedness between two individuals sampled with
replacement in a group in habitat s and where

r 0ð Þ
2 sð Þ ¼ 2cs 1� ds;hard

� �þ 1� csð Þ 1� ds;hard
� �2

ns 1þ csð Þ � 2 ns � 1ð Þcs 1� ds;hard
� �� ns � 1ð Þ 1� csð Þ 1� ds;hard

� �2 :
ð51Þ

Eq. (48) can be understood as follows. The first term in the curly
brackets is the marginal fecundity effect by a focal individual on
itself, while the second term is the marginal fecundity effect con-
ferred by all group members to the focal individual weighted by
the coefficient of pairwise relatedness. Finally, the third term
reflects competition for the finite number of breeding spots in a
group. A change in the trait value of a focal individual that
increases its fecundity or that of its neighbors increases the
strength of local competition. This reduces the fitness of the focal
individual if the additional offspring remain philopatric and com-
pete with own offspring. Eq. (48) is a generalization of previous
results obtained for the island model (see Section H in the Supple-
mentary Material for the detail of these connections).

Similarly, inserting Eqs. (45a) and (46a) into Eqs. (38b) and
(38c), respectively, and using these in Eq. (34), we obtain a general
expression for the disruptive selection coefficient q 2ð Þ under hard
selection. The resulting expression, while useful for numerical cal-
culations, is too lengthy to be presented here and we refer to Sec-
tion H in the Supplementary Material for details. Therein, we show
that under a Wright-Fisher process (cs ¼ 0) the results of Parvinen
et al. (2018) are recovered, who obtained an expression of q 2ð Þ

expressed in terms of first- and second-order derivatives of f s.
To complement these results and to approach a fully worked

example, we assume a Moran process (i.e., cs 	 1) and that fecun-
dity of an adult individual depends only on its own phenotype (i.e.,
f s z1; z� 1f g; z
� � ¼ f s z1ð Þ). Under these assumptions, we show in Sec-

tion J.1 in the Supplementary Material that the selection gradient
is a weighted sum of df s=dz1 over different states s (see Eq. (J1)),
and that the disruptive selection coefficient is

q 2ð Þ /
X
s2S

psnspsmsf s
ds;hard

X1;s;hard

d2 f s
dz2

1

f s
þ X2;s;hard

df s
dz1

f s

 !2
8<
:

9=
;; ð52aÞ

where the positive proportionality constant is the same as in Eq.
(48), and
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X1;s;hard ¼ 1
2
ds;hard 1� ds;hard þ ns

� �
1þ ds;hard ns � 1ð Þ P 0ð Þ ð52bÞ

X2;s;hard ¼ ds;hard 1� ds;hard
� �

1� ds;hard þ ns
� �

ns

2þ ds;hard ns � 2ð Þ� �
1þ ds;hard ns � 1ð Þ� � P 0ð Þ ð52cÞ

For complete dispersal (i.e., ds;hard ¼ 1)3 we obtain that
X1;s;hard ¼ 1=2 and X2;s;hard ¼ 0. As the dispersal rate ds;hard decreases,
the ratio X2;s;hard=X1;s;hard increases monotonically. Hence, as dispersal
becomes more limited, relatively more weight is put on the squared

first-order derivative df s=dz1ð Þ2 compared to the second-order

derivative d2f s=dz21, indicating that limited dispersal facilitates dis-
ruptive selection (and, if the singular strategy y� is convergence
stable and remains so when varying dispersal, then evolutionary
branching is facilitated). On the other hand, for a fixed ds;hard < 1,
the ratio X2;s;hard=X1;s;hard monotonically decreases as group size
decreases. Hence, with decreasing group size less weight is put on

the squared first-order derivative df s=dz1ð Þ2, which acts to limit dis-
ruptive selection. We finally note that the functional form of Eq.
(52a) holds beyond the Moran process, provided all other assump-
tions are the same. While the weights will depend on the specifics
of the reproductive process, we conjecture that the weights will fea-
ture the same qualitative dependence on dispersal and group size.

We nowmake two further assumptions. First, we follow Svardal
et al. (2015) and assume that fecundity is under Gaussian stabilis-
ing selection with habitat specific optimum yop;s. Thus,

f s z1ð Þ ¼ fmax exp � z1 � yop;s
� �2

2r2
st

" #
; ð53Þ

where fmax is the maximal fecundity of an individual and r2
st is

inversely proportional to the strength of stabilising selection. Sec-
ond, we assume that group size, migration and juvenile survival
are identical for all habitats, i.e., ns ¼ n;ms ¼ m, and ps ¼ p for all
s. Hence, habitats only differ in the trait value yop;s that maximizes
fecundity.

Under these assumptions, the singular strategy y� is implicitly
given by

y� ¼
X
s2S

ws y�ð Þyop;s; ð54Þ

which is a weighted average of the habitat specific trait optima with
the weights ws being complicated functions of the model parame-
ters (see Section J.1 in the Supplementary Material). The condition
for the disruptive selection coefficient at the singular point y� (Eq.
(52a)) being positive can be expressed asX
s2S

Ws y�ð Þ yop;s � y�
� �2

> r2
st; ð55Þ

where the Ws’s are again complicated weights (Section J.1 in the
Supplementary Material).

These expressions greatly simplify when we consider only two
habitats with equal proportions, i.e. S ¼ 1;2f g with p1 ¼ p2 ¼ 1=2,
no mortality in dispersal, p ¼ 1, and symmetric optima in the sense
that yop;2 ¼ �yop;1. Due to this symmetry, y� ¼ 0 is a solution of Eq.
(54) and therefore a singular strategy. Furthermore, in Section J.1
in the Supplementary Material, we find that under the aforemen-
tioned assumptions

Ws y�ð Þ ¼ 1
2

2�m
m

� 4 1�mð Þ2
m 2þm n� 2ð Þð Þ

 !
: ð56Þ
3 For a homogeneous population with a single habitat s, a singular point is
characterized by df s=dz1 ¼ 0, and therefore Eq. (52) predicts that the sign of the
disruptive selection coefficient is solely determined by the sign of d2f s=dz21 no matter
whether dispersal is complete or locally limited. A similar result has been shown in
Parvinen et al. (2017) by assuming a Wright–Fisher process.
Then, by using the variance of the habitat optima defined by

r2
op ¼

X
s2S

ps yop;s � y�
� �2 ð57Þ

(in the current case, with p1 ¼ p2 ¼ 1=2), condition (55) can be
written as

2�m
m

� 4 1�mð Þ2
m 2þm n� 2ð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

!0 when n ! 1

0
BBB@

1
CCCAr2

op > r2
st: ð58Þ

The first term in the parenthesis is the effect of limited dispersal
on disruptive selection in the absence of kin selection (that is,
under infinite group size). This term increases with decreasing dis-
persal, which facilitates disruptive selection. Indeed, low dispersal
increases the probability that lineage members experience the
same group-specific state favoring local adaptation. The second
term in the parenthesis captures the effect of kin selection. The
absolute value of this negative term increases with both decreasing
dispersal and decreasing group size, which inhibits disruptive
selection. This effect can be understood as follows. All philopatric
offspring within a group compete with each other for the limited
number of spots to settle within a group. Relatedness among indi-
viduals within a group increases with decreasing group size. Thus,
in smaller groups competing individuals are more likely to be
related with each other and this diminishes the benefit of muta-
tions increasing adaptation to the group-specific state. This effect
becomes more pronounced with decreasing dispersal since this
increases relatedness within groups even more. We therefore
expect that the singular point y� is more likely to be uninvadable
for small groups and this is indeed what we observe in Fig. 3, espe-
cially evident in panel (f). It can be shown that the effect of
decreasing dispersal on the first term on the left-hand side of
(58) dominates the effect on the second term. Thus, decreasing m
indeed facilitates disruptive selection as illustrated in Fig. 3(b–f).

In the limit of m ¼ 0 and m ¼ 1 the condition for the disruptive
selection coefficient being positive (58) becomes

1þ nð Þr2
op > r2

st when m ! 0

r2
op > r2

st when m ¼ 1:

(
ð59Þ

Thus, at very low dispersal the singular point changes from
being uninvadable to invadable when group size exceeds

n ¼ r2
st � r2

op

� �
=r2

op (as can be seen in Fig. 3(f) where the boundary

between CSS and branching point for very low m occurs at n ¼ 4).
At complete dispersal, the singular point is uninvadable for
r2

op < r2
st and invadable otherwise. Finally, the singular strategy

is more likely to be under stabilizing selection the larger the ratio
r2

st=r2
op, as is clearly illustrated in Fig. 3(a–f).

A singular point at which selection is disruptive is an evolution-
ary branching point if it is also convergence stable. Substituting Eq.
(48) under all mentioned assumptions into Eq. (19) we obtain after
rearrangements that y� ¼ 0 is convergence stable if

2�m� 1�mð Þ2 1�mþ 1þmð Þnð Þ
1þm n� 1ð Þð Þ 1�mþ nð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

! 0 when n ! 1

0
BBB@

1
CCCAr2

op < r2
st ð60Þ

and repelling otherwise. From inspecting the left-hand side of this
condition, the coefficient of r2

op is a unimodal function of m and
takes the minimum value 1 at m ¼ 0;1 and the maximum at

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

p

nþ ffiffiffiffiffiffiffiffiffiffiffiffi
1þ n

p ð61Þ



Fig. 3. Bifurcation diagrams for the singular point y� ¼ 0 as a function of the migration rate m (x-axis) and group size n (y-axis) for six different values of the within group
selection parameter r2

st (see Eq. (53)). (a-f) Hard selection, (g-l) soft selection. Purple: evolutionary repellor, blue: evolutionary branching point, white: uninvadable and
convergence stable singular point, i.e., continuously stable strategy (CSS). Other parameter values: yop;1 ¼ 1 ¼ �yop;2 (implying r2

op ¼ 1).
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for any fixed n. Therefore, it is clear that r2
op < r2

st is a necessary but
not sufficient condition for convergence stability. More generally,
increasing r2

st relative to r2
op increases the space in the m;nð Þ-

plane for which the singular point is convergence stable (cf. Fig. 3
(a–f)). In Section J.1 in the Supplementary Material we show that
2r2

op < r2
st is a sufficient condition for convergence stability (cf.

Fig. 3(e–f)). Interestingly, from the unimodality above, the singular
point can be repelling for intermediate values of m as can be seen in
Fig. 3(b–d). For large group size, condition (60) becomes
2�mð Þr2

op < r2
st and therefore convergence stability changes at

m ¼ 2� r2
st=r2

op

� �
, which coincides very well with where the singu-
lar point turns from convergence stable to repelling at group size
n ¼ 100 in Fig. 3(b–d). For the effect of group size n on convergence
stability, the coefficient of r2

op in condition (60) is, for any fixed
0 < m < 1, an increasing function of n. Thus, smaller group sizes
are more favorable for convergence stability of the singular point
y� ¼ 0.

An immediate conclusion from these observations is that for
m ¼ 1 evolutionary branching does not occur under hard selection
(with fecundity given by Eq. (53)). This is so because for m ¼ 1
competition is global and does not occur between individuals
within a group. This removes any frequency-dependent selection
effect. Indeed, under our assumptions setting m ¼ 1 (and p ¼ 1)



14 H. Ohtsuki et al. / Journal of Theoretical Biology 507 (2020) 110449
in Eq. (45a) and Eq. (46a) results in wpr
1;sjs z1; z� 1f g; z
� � ¼ 0 and

wdr
1;s0 js z1; z� 1f g; z
� � ¼ ps0ns0 f s z1ð Þ=Ihard zð Þ for all s0 and s. Thus, there is

no longer any state specific frequency-dependence, since Ihard zð Þ
is common to all fitness functions. In this case, the singular point
is both convergence stable and uninvadable if r2

op < r2
st and both

repelling and invadable if r2
op > r2

st. This is in agreement with the
well-known finding that under hard selection and complete dis-
persal selection is frequency-independent and adaptive polymor-
phism cannot be maintained by spatial heterogeneity alone
(Dempster, 1955; Ravigné, 2004; Ravigné et al., 2009; Débarre
and Gandon, 2011).

4.3.2. Soft selection
Inserting Eqs. (45b) and (46b) into Eqs. (38b) and (38c), respec-

tively, we show in Section I in the Supplementary Material that the
selection gradient for the soft selection lottery model is

q 1ð Þ /
X
s2S

psnspsms

ds;soft

@f s
@z1

f s
þ r 0ð Þ

2 sð Þ ns � 1ð Þ
@f s
@z2

f s
� r 0ð Þ

2;R sð Þ
@f s
@z1

f s
þ ns � 1ð Þ

@f s
@z2

f s

 !( )
;

ð62Þ

where the positive proportionality constant is positive (and given
by the inverse of Eq. (I4) and

ds;soft � Isoft
1�msð ÞnsþIsoft

ð63Þ

is the backward migration rate from groups in habitat s under neu-
trality. In contrast to the case of hard selection, Eq. (63) is indepen-

dent of y. Pairwise relatedness under neutrality r 0ð Þ
2 sð Þ takes the

same form as in Eq. (51) where all ds;hard have to be replaced with
ds;soft. The key difference between Eq. (48) and Eq. (62) is that under
soft selection the competition term is larger than under hard selec-
tion because the weighting by the backward dispersal probability
has disappeared in the latter case. This reflects the fact that under
soft selection density regulation occurs before dispersal. Again, Eq.
(62) is a generalization of previous results as detailed in Section I
in the Supplementary Material.

Similarly, inserting Eqs. (45b) and (46b) into Eqs. (38b) and
(38c), respectively, and using these in Eq. (34), we obtain a general
expression for the disruptive selection coefficient q 2ð Þ under soft
selection. As was the case for hard selection, the resulting expres-
sion can be useful for numerical calculations, but is too lengthy to
be presented here and we refer to Section I in the Supplementary
Material for details.

Paralleling the analysis under hard selection, we assume a
Moran process (i.e., cs 	 1) and that the fecundity of adult individ-
uals depends only on their own phenotype (f s z1; z� 1f g; z

� � ¼ f s z1ð Þ).
Under these assumptions we show in Section J.2 in the Supplemen-
tary Material that

q 2ð Þ /
X
s2S

psnspsms

ds;soft
X1;s;soft

d2 f s
dz2

1

f s
þ X2;s;soft

df s
dz1

f s

 !2
8<
:

9=
;; ð64aÞ

where the positive proportionality constant is the same as in Eq.
(62), and
X1;s;soft ¼ 1
2

ds;soft ns � 1ð Þ
1þ ds;soft ns � 1ð Þ P 0ð Þ

X2;s;soft ¼
ds;soft ns � 1ð Þ ds;soft 1� ds;soft

� �
ns � 1ð Þ ns � 2ð Þ � 2ds;soft ns � 1ð Þ�

2þ ds;soft ns � 2ð Þ� �
1þ ds;soft ns � 1ð Þ� �2
The ratio of these weights, X2;s;soft=X1;s;soft, shows qualitatively
the same behavior as the corresponding expressions under hard
selection (Eqs. (52b) and (52c)) with respect to changes in ds;soft

and ns. However, a notable difference from the hard selection case
is that X2;s;soft (and hence the ratio, X2;s;soft=X1;s;soft) can be negative
for small ns and large ds;soft. We finally note that, as was the case
for Eq. (52a), the functional form of Eq. (64a) holds beyond the
Moran process, provided all other assumptions are the same.

Under the assumption of Gaussian fecundity selection (Eq. (53))
and ns ¼ n;ms ¼ m; ps ¼ p ¼ 1 for all states s, which entails
ds;soft ¼ m, we again obtain a fully worked example. The value y�

for the singular strategy is given by the average habitat optimum,

y� ¼
X
s2S

psyop;s ð65Þ

(Section J.2 in the Supplementary Material). Furthermore, the coef-
ficient of disruptive selection is positive if and only if

2�m
m

� 4þ 2m 2�mð Þ n� 2ð Þ
m 2þm n� 2ð Þð Þ 1þm n� 1ð Þð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

! 0 when n ! 1

0
BBB@

1
CCCAr2

op > r2
st; ð66Þ

where r2
op is the variance in the habitat optima defined by Eq. (57).

Note that condition (66) is valid only for n P 2 (because otherwise
Eqs. (64b) and (64c) evaluate to zero). The two terms in parenthesis
on the left-hand side of condition (66) have the same interpretation
as the corresponding terms in condition (58) for the case of hard
selection and they respond in the same direction with respect to
changes in dispersal probability m and group size n. In the limit
of infinitely large group size (n ! 1) the second term vanishes
and we recover Eq. (C.15) of Svardal et al. (2015).

In Section J.2 in the Supplementary Material, we show that y� as
given by Eq. (65) is convergence stable for any value of r2

st and r2
op

and independent of group size n and dispersal probability m. Thus,
the singular point is an evolutionary branching point when it is
invadable and an endpoint of the evolutionary dynamics (continu-
ously stable strategy, CSS) when uninvadable. For the special case
of only two habitats with yop;1 ¼ 1 ¼ �yop;2, Fig. 3 shows how n;m

and r2
st determine whether y� ¼ 0 is a branching point or a CSS. In

summary, stronger selection (smaller values of r2
st), lower migra-

tion and larger groups favor adaptive diversification at an evolu-
tionary branching point.

5. Discussion

The main result of this paper is an expression for the disruptive
selection coefficient q 2ð Þ in heterogeneous group-structured popu-
lations (Eq. (34)). We show that q 2ð Þ depends on three types of dif-
ferentials: (a) the first- and second-order perturbations of the
expected number of offspring in different states produced by an
individual in a given state, (b) the first-order perturbation of the
probability that an individual is in the different states, and (c)
the first-order perturbation of the probability that a randomly
sampled neighbor of an individual carries alleles identical by des-
cent (perturbation of relatedness). These differentials depend on
ð64bÞ

þ ns � 2ð Þ�
: ð64cÞ
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and are weighted by three quantities evaluated under neutrality:
(i) the reproductive values v 0ð Þ sð Þ of individuals in state s, (ii) the

pairwise and three-way relatedness coefficients r 0ð Þ
2 sð Þ and r 0ð Þ

3 sð Þ
in state s, and (iii) the probability q 0ð Þ sð Þ that a randomly sampled
individual resides in a group in state s.

At a conceptual level, our results about the components of q 2ð Þ

can be thought of as a direct extension of the result that the three
types of neutral weights – reproductive values, relatednesses, and
probabilities of occurrence in state s – are needed to evaluate the
selection gradient q 1ð Þ for quantitative traits in group-structured
populations (Taylor and Frank, 1996; Frank, 1998; Rousset,
2004). All the above mentioned differentials and their weights
can be obtained by solving systems of linear equations that are
at most of dimension N, i.e., the number of states groups can be
in. This represents a significant reduction compared to the dimen-
sion of the state space of the original evolutionary process, which is
equal to the dimension of the mutant transition matrix A.

A distinctive and novel feature of our analysis is the introduc-
tion of the concept of individual k-fitness, wk s0js; ið Þ, which
describes the expected number of descendants of a mutant in an
s; ið Þ-group (possibly including self through survival) that settle
in state-s0 groups and have k� 1 randomly sampled neighbors that
are also mutants (i.e., that descend from the same common ances-
tor). In the context of our perturbation analysis, we show that
wk s0js; ið Þ can be themselves expressed in terms of individual k-
fitness functions for k ¼ 1;2;3 where individuals are labelled as
focal, group neighbor and population member, and which are suf-
ficient to evaluate all aforementioned quantities and thus q 1ð Þ and
q 2ð Þ (see sections 3.2.1–3.3). These latter individual k-fitness func-
tions do not depend on the mutant type and provide for k ¼ 2;3
the generalizations of the fitness functions for k ¼ 1 already in
use in the direct fitness method (Taylor and Frank, 1996; Frank,
1998; Rousset, 2004). They are thus sufficient biological ingredi-
ents to determine whether or not disruptive selection occurs. In
a well-mixed populations in which individuals do not interact with
relatives only individual 1-fitness functions are required to evalu-
ate q 1ð Þ and q 2ð Þ. Individual 2- and 3-fitnesses describe the possibil-
ity that under limited dispersal the offspring of a given parent can
have neighbors (here one or two) that belong to the same lineage
and are thus more likely to have the same trait value than
randomly sampled individuals from the population. This causes
non-random mutant-mutant interactions, which is well known to
critically affect the nature of selection on traits affecting own and
others’ reproduction and survival (Hamilton, 1964; Michod,
1982; Frank, 1998; Rousset, 2004). Because the individual k-
fitnesses describe group configurations in which offspring have
neighbors that belong to the same lineage, the ancestral lineages
of the k interacting individuals must coalesce in a common ances-
tor, and this can occur only if there is a non-zero probability that at
least two individuals descend from the same parent over a gener-
ation (see Section G.2 in the Supplementary Material for the con-
nection to coalescence theory). Neutral relatedness in
evolutionary models is indeed usually computed by using coales-
cence arguments and thus use a ‘‘backward” perspective on allele
transmission (e.g., Taylor and Frank, 1996; Frank, 1998; Rousset,
2004). This may somewhat disconnect relatedness from the ‘‘for-
ward” perspective of allele transmission induced by reproduction.
Using individual 2-fitnesses to evaluate relatedness (see Eq. (33))
brings upfront the connection between relatedness and reproduc-
tion (note that the ‘‘backward” approachmay nevertheless be more
useful for concrete calculations of relatedness).

As an application of our results, we analyze a lottery model with
overlapping generations in heterogeneous habitats that allows for
both hard and soft selection regimes. For this scenario,we show that
q 1ð Þ andq 2ð Þ can in principle be solved explicitly (all systems of equa-
tion can be solved explicitly) but that generic expressions remain
complicated functions, since they apply to any kind of social interac-
tions (i.e., any ‘‘game”) and different ecologies. In doing these calcu-
lations, we recover a number of previous results concerning
relatedness, selection gradients anddisruptive selection coefficients
for lottery models (in particular those of Pen, 2000; Rousset and
Ronce, 2004; Ohtsuki, 2010; Lehmann and Rousset, 2010;
Rodrigues and Gardner, 2012; Wakano and Lehmann, 2014;
Svardal et al., 2015;Mullonet al., 2016; Parvinenet al., 2018, see Sec-
tionsG, H.3 and I.3 in the SupplementaryMaterial for details),which
confirms the validity of our approach. Finally, as a fully worked
example, we investigate the evolution of adaptive polymorphism
due to local adaption by extending the soft selection model of
Svardal et al. (2015) to finite group size and hard selection. We con-
firm that adaptive polymorphism is generally favored by limited
migration under soft selection and that small group size does not
change this result qualitatively but tends to inhibit disruptive selec-
tion. For hard selection, however, the situation is more complicated
as limited dispersal and finite group size favors not only disruptive
selection but also repelling generalist strategies so that it becomes
less likely that polymorphism can emerge from gradual evolution
(Fig. 3). With respect to limited migration this finding is also
described by Débarre and Gandon (2011).

While our model allows for many different types of interactions
between individuals within groups, it also has several limitations.
At the individual level, we consider only scalar traits, but multidi-
mensional (or functional-valued) traits can be taken into account
by replacing derivatives by directional derivatives, which will not
change the structure of our perturbation analysis. At the group
level, we do not consider heterogeneity within groups, but in nat-
ural populations individuals within groups are likely to differ in
their physiological state such as age, size and sex. To incorporate
physiological heterogeneity requires an extension of the state
space S and to take into account the distribution of mutants within
sub-groups of individuals belonging to the same physiological
state in a group. The structure of our perturbation analysis, how-
ever, will remain unchanged by adding within-group heterogene-
ity, and only additional reproductive values and relatednesses
will be needed. Likewise, in order to take isolation-by-distance into
account, one again needs to extend the state space S, while to
include diploidy one needs to extend the number of genetic states
and this should only impact the relatedness coefficients. While
such extensions remain to be done (and have all been done for
the selection gradient q 1ð Þ (e.g., Rousset, 2004)), they are unlikely
to change the required components of the disruptive selection
coefficient q 2ð Þ and how they are connected algebraically. We thus
conjecture that the representation of q 2ð Þ holds generally.

In conclusion, for a large class of models we describe the conse-
quences of limited dispersal and finite group size on evolutionary sta-
bility and diversification in heterogeneous populations, which we
hope will help to formulate and analyze concrete biological models.

CRediT authorship contribution statement

Hisashi Ohtsuki: Methodology, Project administration, Formal
analysis, Writing - original draft. Claus Rueffler: Formal analysis,
Visualization, Writing - original draft. Joe Yuichiro Wakano:
Writing - review & editing. Kalle Parvinen: Visualization, Writing
- review & editing. Laurent Lehmann: Methodology, Formal
analysis, Writing - original draft.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



16 H. Ohtsuki et al. / Journal of Theoretical Biology 507 (2020) 110449
Acknowledgments

HO and KP received support from the SOKENDAI Advanced
Sciences Synergy Program (SASSP). HO and JYW received support
from JSPS KAKENHI (No.16K07524). HO received support from JSPS
KAKENHI (No.20K06812). JYW received support from JSPS
KAKENHI (No.16K05283 and 16H06412). We are grateful to
Dr. Yu Uchiumi for discussions and to the anonymous reviewers
for their comments.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jtbi.2020.110449.
References

Ajar, E., 2003. Analysis of disruptive selection in subdivided populations. BMC
Evolutionary Biology 3, 22.

Bulmer, M.G., 1986. Sex ratio theory in geographically structured populations.
Heredity 56, 69–73.

Caswell, H., 2001. Matrix Population Models. Sinauer.
Chesson, P.L., 1981. Models for spatially distributed populations: the effect of

within-patch variability. Theoretical Population Biology 19, 288–325.
Day, T., 2001. Population structure inhibits evolutionary diversification under

competition for resources. Genetica 112–113, 71–86.
Débarre, F., Gandon, S., 2011. Evolution in heterogeneous environments: Between

soft and hard selection. The American Naturalist 177, E84–E97.
Dempster, E., 1955. Maintenance of genetic heterogeneity. Cold Spring Harbor

Symposia on Quantitative Biology 20, 25–32.
Eshel, I., 1972. On the neighbor effect and the evolution of altruistic traits.

Theoretical Population Biology 11, 258–277.
Frank, S.A., 1998. Foundations of Social Evolution. Princeton University Press,

Princeton, NJ.
Geritz, S.A.H., Kisdi, É., Meszéna, G., Metz, J.A.J., 1998. Evolutionarily singular

strategies and the adaptive growth and branching of the evolutionary tree.
Evolutionary Ecology 12, 35–57.

Grafen, A., 1985. A geometric view of relatedness. Oxford Surveys in Evolutionary
Biology 2, 28–89.

Grafen, A., 1991. Modeling in Behavioural Ecology. In: Krebs, J.R., Davies, N. (Eds.),
Behavioural Ecology. Blackwell Scientific Publications, Oxford, pp. 5–31.

Grey, D., Hutson, V., Szathmáry, E., 1995. A re-examination of the stochastic
corrector model. Proceedings of the Royal Society London B 262, 29–35.

Hamilton, W.D., 1964. The evolution of social behavior. Journal of Theoretical
Biology 7, 1–16.

Harris, T.E., 1963. The Theory of Branching Processes. Springer-Verlag, Berlin
Heidelberg.

Karlin, S., Taylor, H.M., 1975. A First Course in Stochastic Processes. Academic Press,
San Diego.

Kisdi, E., 2016. Dispersal polymorphism in stable habitats. Journal of Theoretical
Biology 392, 69–82.

Lande, R., Arnold, S.J., 1983. The measurement of selection on correlated characters.
Evolution 37, 1210–1226.

Lehmann, L., Rousset, F., 2010. How life-history and demography promote or inhibit
the evolution of helping behaviors. Philosophical Transactions of the Royal
Society B 365, 2599–2617.

Lehmann, L., Mullon, C., Akcay, E., Van Cleve, J., 2016. Invasion fitness, inclusive
fitness, and reproductive numbers in heterogeneous populations. Evolution 70,
1689–1702.

Massol, F., Débarre, F., 2015. Evolution of dispersal in spatially and temporally
variable environments: The importance of life cycles. Evolution 69, 1925–1937.

Massol, F., Duputiè, A., David, P., Jarne, P., 2011. Asymmetric patch size distribution
leads to disruptive selection on dispersal. Evolution 65, 490–500.

Metz, J.A.J., Gyllenberg M., 2001. How should we define fitness in structured
metapopulation models? including an application to the calculation of
evolutionary stable dispersal strategies. Proceedings of the Royal Society of
London, B 268, 499–508.
Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs F.J.A., Van Heerwaarden J.S., 1996.
Adaptive dynamics: A geometrical study of the consequences of nearly faithful
reproduction. Pages 183–231 in S. van Strien and S. Verduyn Lunel (Eds).
Stochastic and spatial structures of dynamical systems, Proceedings of the Royal
Dutch Academy of Science. North Holland, Dordrecht, Netherlands; available at
http://pure.iiasa.ac.at/id/eprint/4497/.

Michod, R.E., 1982. The theory of kin selection. Annual Review of Ecology and
Systematics 13, 23–55.

Mullon, C., Lehmann, L., 2018. Eco-evolutionary dynamics in metacommunities:
ecological inheritance, helping within species, and harming between species.
American Naturalist 192, 664–685.

Mullon, C., Keller, L., Lehmann, L., 2016. Evolutionary stability of jointly evolving
traits in subdivided populations. The American Naturalist 188, 175–195.

Ohtsuki, H., 2010. Evolutionary games in Wright’s island model: kin selection meets
evolutionary game theory. Evolution 64, 3344–3353.

Parker, G.A., Maynard Smith, J., 1990. Optimality theory in evolutionary biology.
Nature 348, 27–33.

Parvinen, K., Ohtsuki, H., Wakano, J.Y., 2017. The effect of fecundity derivatives on
the condition of evolutionary branching in spatial models. Journal of Theoretical
Biology 416, 129–143.

Parvinen, K., Ohtsuki, H., Wakano, J.Y., 2018. Spatial heterogeneity and evolution of
fecundity-affecting traits. Journal of Theoretical Biology 454, 190–204.

Parvinen, K., Ohtsuki, H., Wakano, J.Y., 2020. Evolution of dispersal in a spatially
heterogeneous population with finite patch sizes. Proceedings of the National
Academy of Sciences USA 117, 7290–7295.

Pen, I., 2000. Reproductive effort in viscous populations. Evolution 54, 293–297.
Phillips, P.A., Arnold, S.J., 1989. Visualizing multivariate selection. Evolution 43,

1209–1222.
Ravigné, 2004. Implications of habitat choice for protected polymorphisms.

Evolutionary Ecology Research 6, 125–145.
Ravigné, V., Dieckmann, U., Olivieri, I., 2009. Live where you thrive: Joint evolution

of habitat choice and local adaptation facilitates specialization and promotes
diversity. The American Naturalist 174, E141–E169.

Rodrigues, A.M.M., Gardner, A., 2012. Evolution of helping and harming in
heterogeneous populations. Evolution 66, 2065–2079.

Ronce, O., Promislow, D., 2010. Kin competition, natal dispersal and the moulding of
senescence by natural selection. Proceedings of the Royal Society B-Biological
Sciences 277, 3659–3667.

Rousset, F., 2004. Genetic Structure and Selection in Subdivided Populations. of
Monographs in Population Biology, vol. 40. Princeton University Press,
Princeton, N.J.

Rousset, F., Ronce, O., 2004. Inclusive fitness for traits affecting metapopulation
demograpy. Theoretical Population Biology 65, 127–141.

Rueffler, C., Van Dooren, T.J.M., Leimar, O., Abrams, P.A., 2006. Disruptive selection
and then what? Trends in Ecology and Evolution 21, 238–245.

Rueffler, C., Metz, J.A.J., Van Dooren, T.J.M., 2013. What life cycle graphs can tell
about the evolution of life histories. Journal of Mathematical Biology 66, 225–
279.

Svardal, H., Rueffler, C., Hermisson, J., 2015. A general condition for adaptive genetic
polymorphism in temporally and spatially heterogeneous environments.
Theoretical Population Biology 99, 76–97.

Szathmary, E., Demeter, L., 1987. Group selection of early replicators and the origin
of life. Journal of Theoretical Biology 128, 463–486.

Taylor, P.D., 1989. Evolutionary stability of one-parameter models under weak
selection. Theoretical Population Biology 36, 125–143.

Taylor, P.D., 1990. Allele-frequency change in a class structured population. The
American Naturalist 135, 95–106.

Taylor, P.D., Frank, S.A., 1996. How to make a kin selection model. Journal of
Theoretical Biology 180, 27–37.

Tuljapurkar, S., 1990. Population dynamics in variable environments. Lecture Notes
in Biomathematics, vol. 85. Springer Verlag, Berlin, Germany.

Van Cleve, J., 2015. Social evolution and genetic interactions in the short and long
term. Theoretical Population Biology 103, 2–26.

Wakano, J.Y., Lehmann, L., 2014. Evolutionary branching in deme-structured
populations. Journal of Theoretical Biology 351, 83–95.

Wild, G., 2011. Inclusive fitness from multitype branching processes. Bulletin of
Mathematical Biology 73, 1028–1051.

Wild, G., Traulsen, A., 2007. The different limits of weak selection and the
evolutionary dynamics of finite populations. Journal of Theoretical Biology
247, 382–390.

Wild, G., Gardner, A., West, S.A., 2009. Adaptation and the evolution of parasite
virulence in a connected world. Nature 459, 983–986.

Wright, S., 1943. Isolation by distance. Genetics 28, 114–138.

https://doi.org/10.1016/j.jtbi.2020.110449
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0005
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0005
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0010
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0010
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0015
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0020
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0020
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0025
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0025
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0030
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0030
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0035
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0035
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0040
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0040
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0045
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0045
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0050
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0050
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0050
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0055
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0055
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0060
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0060
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0065
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0065
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0070
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0070
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0075
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0075
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0080
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0080
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0085
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0085
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0090
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0090
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0095
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0095
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0095
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0100
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0100
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0100
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0105
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0105
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0110
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0110
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0125
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0125
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0130
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0130
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0130
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0135
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0135
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0140
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0140
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0145
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0145
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0150
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0150
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0150
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0155
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0155
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0160
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0160
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0160
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0165
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0170
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0170
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0175
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0175
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0180
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0180
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0180
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0185
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0185
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0190
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0190
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0190
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0195
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0195
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0195
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0200
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0200
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0205
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0205
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0210
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0210
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0210
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0215
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0215
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0215
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0220
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0220
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0225
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0225
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0230
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0230
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0235
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0235
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0240
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0240
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0245
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0245
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0250
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0250
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0255
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0255
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0260
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0260
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0260
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0265
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0265
http://refhub.elsevier.com/S0022-5193(20)30304-0/h0270

	The components of directional and disruptive selection in heterogeneous group-structured populations
	1 Introduction
	2 Model
	2.1 Biological assumptions
	2.2 Multitype branching process and invasion fitness
	2.3 Statistical description of the mutant lineage
	2.3.1 Asymptotic probabilities and relatedness of k-individuals
	2.3.2 Individual fitness and individual k-fitness
	2.3.3 Notation for perturbation analysis
	2.3.4 Properties of the monomorphic resident population

	2.4 Invasion fitness as reproductive-value-weighted fitness

	3 Sensitivity analysis
	3.1 Eigenvalue perturbations
	3.2 Individual fitness functions
	3.2.1 Individual 1-fitness
	3.2.2 Individual 2- and 3-fitness

	3.3 Sensitivity results
	3.3.1 Selection gradient
	3.3.2 Disruptive selection coefficient


	4 Application to a lottery model with spatial heterogeneity
	4.1 Spatial lottery model
	4.1.1 Decomposition into philopatric and dispersal components
	4.1.2 General results for spatial lottery model

	4.2 Fecundity selection under two different forms of density regulation
	4.3 Selection analysis
	4.3.1 Hard selection
	4.3.2 Soft selection


	5 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


