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A B S T R A C T   

Accurate segmentation of kidneys and kidney tumors is an essential step for radiomic analysis as well as 
developing advanced surgical planning techniques. In clinical analysis, the segmentation is currently performed 
by clinicians from the visual inspection of images gathered through a computed tomography (CT) scan. This 
process is laborious and its success significantly depends on previous experience. We present a multi-scale su-
pervised 3D U-Net, MSS U-Net to segment kidneys and kidney tumors from CT images. Our architecture com-
bines deep supervision with exponential logarithmic loss to increase the 3D U-Net training efficiency. 
Furthermore, we introduce a connected-component based post processing method to enhance the performance of 
the overall process. This architecture shows superior performance compared to state-of-the-art works, with the 
Dice coefficient of kidney and tumor up to 0.969 and 0.805 respectively. We tested MSS U-Net in the KiTS19 
challenge with its corresponding dataset.   

1. Introduction 

Renal cell carcinoma is one of the most common genitourinary 
cancers with the highest mortality rate [3]. An accurate segmentation of 
kidney and tumor based on medical images, such as images from 
computed tomography (CT) scans, is the cornerstone to appropriate 
treatment. In computer-aided therapy, the success of this step is an 
essential prerequisite to any other processes. The segmentation process 
therefore is the key for exploring the relationship between the tumor and 
its corresponding surgical outcome, and aids doctors in making more 
accurate treatment plans [8]. Nonetheless, the manual segmentation of 
organs or lesions has the potential to be highly time-consuming, since a 
radiologist may need to label out target regions in hundreds of slices for 
one patient. The need for more accurate automatic segmentation tools is 
thus evident. 

In recent years, considerable research efforts have been put towards 
the automatic segmentation of kidney and kidney tumors from CT im-
ages. In particular, novel deep learning techniques have played a key 
role. Previous works have mostly been focusing on the utilization of 
unsupervised training methods, including threshold-based methods, 
region-based methods (e.g., region growing), clustering-based methods 
(e.g., fuzzy C-means or Markov Random Fields), edge-detection 

methods, or deformable model methods [7]. More recently, the appli-
cation of deep artificial neural networks for medical image segmentation 
has gained increased momentum, in particular 3D convolutional neural 
networks [4]. Neural networks providing end-to-end analysis (from raw 
images to segmented images) are more generic and therefore do not 
suffer of some of the challenges in previous methods. For instance, 
threshold-based techniques yield the best results when the regions of 
interest have a significant difference in intensity with respect to the 
background, but present problems in more homogeneous images, 
significantly reducing their performance and limiting their applicability. 

Fig. 1 shows abdominal CT images from three different patients. 
Because the location, size and shape of kidney and tumor vary consid-
erable across patients, the segmentation of kidneys and kidney tumors is 
challenging. The major challenges can be attributed to the following 
considerations. First, the location of tumors may vary significantly from 
patient to patient. The tumor can appear anywhere inside the organs or 
attached to the kidneys. Trying to predict the location from experience 
and previous knowledge is unfeasible both from a human’s and a com-
puter’s perspective. Second, the shape and size of tumors present huge 
diversity. Tumors in some patients can be very small on the kidneys 
while others can almost erode the whole kidney. Besides, their shapes 
might be regular, distorted, or scattered. Third, the tissue of tumors is 
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also heterogeneous: the large amount of different subtypes of renal cell 
carcinoma, coupled with their heterogeneity, can bring diverse intensity 
attribution in CT images. Finally, the simultaneous segmentation of 
kidney and kidney tumor from raw full-scale CT images may lead to 
additional difficulties due to the co-existence of multiple labels and large 
background sizes. 

1.1. Background 

In recent years, deep learning methods have emerged as a promising 
solution for segmentation in medical imaging. Among these methods, 
convolutional neural network (CNN) architectures have already out-
performed traditional algorithms in computer vision tasks in general 
[16], and in the segmentation of CT images in particular [4]. Fully 
convolutional network (FCN) architecture is a notably powerful 
end-to-end training segmentation solution [19]. This type of architec-
ture is able to produce raw-scale, pixel-level labels at the images, and it 
is the current state-of-the-art across multiple domains. Other recent 
works have taken FCN as a starting point towards deeper and more 
complex segmentation architectures, such as SegNet [2] introducing the 
decoder part to enhance the segmentation performance, the feature 
pyramid networks (FPN), mainly used in object detection [17], pyramid 
scene parsing networks (PSPNet), utilized in scene understanding [30], 
Mark R–CNN, for object instance segmentation [11], or DeepLab series 
for semantic image segmentation [16]. 

While there is a wide range of deep learning methods for image 
segmentation, medical images present significant differences from nat-
ural images. Some of the most distinct features are the following: First, 
medical images are relatively simple, when compared to the wide range 
of semantic patterns, colors and intensities in natural images. This 
increased homogeneity across individual images hinders the identifi-
cation of patterns and regions of interest; Second, the boundary between 
organs, lesions or other regions of interest is fuzzy, and the images are 
not obtained through passive observation of the subject but instead 
through an active stimulus. In consequence, methods and neural 
network architectures employed in other types of image segmentation 
cannot be directly extrapolated to the medical field. When taking into 
account the way in which these images are obtained, the difference 
becomes even more significant. Medical images are often obtained 
through a volumetric sampling of the subject’s body. This characteristic 
and key differential aspect can be taken as an advantage towards inte-
grating three-dimensional neural network architectures. Among those, 
one of the most popular architectures to date is 3D U-Net presented in 
2016 [5]. 

3D U-Net is one of the most well-known methods and widely used 

three-dimensional architecture for medical image segmentation [21], 
inspired by FCNs and encoder-decoder models. The 3D U-Net architec-
ture has been further developed and new solutions are built on top of it, 
for example: Nabila et al. proposed the use of Tversky loss to enhance the 
performance of the attention mechanism in U-Net [1], whereas Zhe et al. 
proposed an improved U-Net architecture in which the authors perform 
liver segmentation in CT images by minimizing the graph cut energy 
function [18]. 

A smaller number of research have been focused on the segmentation 
of kidneys or kidney tumors. An ideal architecture should further extend 
the existing end-to-end networks for pixel-wise segmentation. In addi-
tion, the nature of three-dimension data could provide higher levels of 
correlation to employ. In this direction, Yang et al. combined in 2018 a 
basic 3D FCN and a pyramid pooling module to enhance the feature 
extraction capability, with a network able to segment kidneys and kid-
ney tumor at the same time [28]. However, the experiment is conducted 
on the region of interest (ROI) only, rather than on raw CT images. This 
significantly reduces the complexity of the segmentation task as well as 
the clinical practicality. Yu et al. proposed in 2019 a novel network 
architecture combining vertical patch and horizontal patch based 
sub-models to conduct center pixel prediction of kidney tumors [29]. 
However, owing to the nature of the data being segmented, its training 
and inference processes become increasingly challenging, and this type 
of solution minimizes the problem with a simpler output. 

In general, we have found that most algorithms in the field of med-
ical image segmentation take the U-Net architecture as a starting point 
for further developments. Fabian et al. implemented a well-tuned 3D U- 
Net (nnU-Net) and demonstrated its applicability and potential with top 
rankings in multiple medical image segmentation challenges [15]. In 
this paper, we get inspiration from their work towards an end-to-end 
framework to perform segmentation of kidneys and kidney tumors 
simultaneously from CT images. The proposed network architecture is 
also developed from the original 3D U-Net architecture [5]. Because of a 
clear similarity of CT images across multiple patients, we make the 
assumption that the original 3D U-Net is capable of extracting sufficient 
features for recognition. Therefore, we do not consider the utilization of 
additional modules or branches behind the main 3D U-Net backbone, 
such as residual modules [20], FPN [17], or attention gates [24], among 
others. Instead, we focus on optimizing the training and enhancing the 
performance of the original 3D U-Net architecture. 

1.2. Contribution and structure 

In this work, we explore the potential of the 3D U-Net architecture 
through the combination of deep supervision and the exponential 

Fig. 1. Illustration of sample segmented images from three patients in the KiTS19 dataset [13]. The first row is the transverse plane, and the second row is the 3D 
reconstruction. Red voxels denote kidney while green voxels denote kidney tumor. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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logarithmic loss. With the increased number of hyperparameters, we can 
train better the network and utilize our results as a baseline to analyze 
the performance of 3D U-Net. Thus, the main contributions of this work 
are the following:  

1. The introduction of a multi-scale supervision scheme for the 3D U- 
Net that tunes the network to conduct an accurate prediction from 
deep layers; and  

2. The utilization of exponential logarithmic loss [27] to alleviate the 
class imbalance problem between foregrounds (kidney and tumor 
voxels) and background. 

By integrating these two approaches, we have improved the perfor-
mance of the original 3D U-Net architecture. Furthermore, we have 
designed a connected-component based post processing method to 
remove disconnected voxels that are detected as evident false positives. 

The remainder of this paper is organized as follows. Section 2 in-
troduces the neural network architecture, and the different methods 
employed in the experiments, after which Section 3 introduces experi-
mental results and analysis of the network’s performance. In Section 4, 
we discuss on the different strategies being taken towards medical image 
segmentation. Finally, Section 5 concludes the work and outlines future 
research directions. 

2. Methodology 

The current approaches to medical image segmentation with deep 
learning can be roughly classified in two trends. First, those in which the 
input data to the neural networks is not the raw data but instead the 
regions of interest (ROIs). This naturally allows higher accuracy and 
performance across multiple metrics. Nonetheless, the overall perfor-
mance can be significantly impacted by the uncertainty in the detection 
and extraction to ROIs. Second, in a more recent trend, end-to-end 
segmentation architectures have been introduced. In these, raw im-
ages are fed to the network and the output of the network is pixel-wise 
segmentation with images of the same size as the inputs. We follow this 
end-to-end architecture to segment both kidneys and kidney tumors 
simultaneously from raw volumetric CT images. This allows for direct 
application of our methods in clinical settings. 

The CT data that is fed to a CNN consists of abdominal CT images 
with hundreds of slices. Each three-dimensional region is called a voxel. 
A typical input is 512 � 512 � 200 voxels, where 200 is the number of 
slices and 512 � 512 the resolution of each image in pixels. Owing to the 
large input size, it is unfeasible to fed the data into the network at once 
especially when graphic processing units (GPUs) are used to accelerate 
CNNs. In GPUs, the challenges stem from both the limited amount of 
memory and the required computing power in general. Therefore, we 
follow the recent trend in both patch-based training and inference for 
our network architecture. 

The rest of this section describes the different steps taken for training 

Fig. 2. The effect of data augmentation techniques used in our method. First row is the original images; second row shows the effect of contrast augmentation and 
mirroring; third row shows elastic deforming, scaling, gamma correction and rotation. Of note, we show 2D images instead of the actual 3D ones for simplicity. 
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the network and processing the data. 

2.1. Data preprocessing 

Preprocessing raw CT images before feeding them to the network is 
an essential step to enable an efficient training. The first aspect to 
consider is the existence of unexpected materials that might appear in-
side patients’ bodies. In particular, it is a well-known fact that metallic 
artifacts have a significant negative effect on the quality of CT images. 
The main problem with artifacts is when these create regions in the 
images with abnormal intensity values, either much higher or much 
lower than in pixels corresponding to organic tissue. Due to data-driven 
models that deep learning algorithms are built upon, the learning pro-
cess can be significantly affected by outlier voxels corresponding to non- 
organic artifacts. To reduce the impact of non-organic artifacts, we 
perform a unified preprocessing of the complete dataset, both for 
training and testing data. In all images, we only consider valid the in-
tensity range between the 0.5th and 99.5th percentiles, and clip outlier 
values accordingly. After preprosessing, the data is normalized with a 
normal foreground mean and standard deviation to improve the training 
of the three-dimensional network. 

Another preprocessing technique necessary to appropriately train a 
three-dimensional network from the KiTS19 dataset is the unification of 
the voxel space across different image sets. This is necessary because 
even though the transverse plane is always formed by a constant number 
of pixels, the corresponding voxel size may change. Therefore, failing to 
unify the voxel space will lead to different data inputs representing 
different volumes. Such anisotropy of 3D data might diminish the 
advantage of using 3D convolution, and end up leading to a worse 
performance than 2D networks can achieve. Therefore, we chose to 
resample the original CT images into the same voxel space if they are 
not, even though the resampled images often end up being of different 
sizes. 

2.2. Data augmentation 

Annotating a medical image dataset can often be a lengthy and 
challenging task. This has so far limited the availability and size of 
labelled datasets. At the same time, the more complex deep learning 
methods become, the more data is needed to train the networks. This 

becomes even more critical with three dimensional networks due to the 
inherent increase of parameters that comes with the extra dimension. 
Insufficient training data would lead to overfitting and devaluate the 
advantage of deep learning. To solve this, a typical step is to utilize 
different augmentation techniques to increase the amount of available 
data while avoiding overfitting as much as possible. We conduct a va-
riety of data augmentation techniques on our limited training data in 
order to obtain an enhanced performance of the trained network. These 
techniques are implemented based on the batchgenerator framework1 

including random rotations, random scaling, random elastic de-
formations, gamma correction augmentation and mirroring. Visualiza-
tion of their effect is shown in Fig. 2. 

2.3. Network architecture 

The network architecture defined in this paper has been designed 
taking the nnU-Net neural network framework as a starting point [15]. 
The nnU-Net framework, unlike other recently published methods, does 
not add complex submodules and instead is mostly based on the original 
U-Net architecture. In addition to the default framework, we utilize 
multi-scale supervision to enhance the network’s segmentation perfor-
mance. The architecture of our proposed network is illustrated in Fig. 3, 
where two-dimensional images have been utilized for illustrative pur-
poses even though the network’s layers are three-dimensional. 
Following the main structure of 3D U-Net, the network implements 
decoder (left side) and encoder (right side) elements. The encoder layers 
are utilized to learn feature representations from the input data. The 
decoder is then employed for retrieving voxel locations and for deter-
mining their categories based on the semantic information extracted 
from encoder path. 

We adopt strided convolution instead of common pooling operation 
to implement downsampling, which could avoid significant negative 
effect on the fusion of position information. Furthermore, we replace 
trilinear interpolation with transposed convolution to enable adaptive 
upsampling. In multiple previous works, normalization is usually 
deployed between any two layers to obtain fixed input distribution. 
However, since the batch size we used is limited by the GPU memory 

Fig. 3. The architecture of our proposed multi-scale supervised 3D U-Net. For simplicity, we use 2D icons instead of actual 3D ones, and it is best viewed in color. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

1 https://github.com/MIC-DKFZ/batchgenerators/. 
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capacity, in this work we employ instance normalization instead of 
batch normalization. Batch normalization naturally suits better bigger 
batch sizes. 

The depth of the network is often decided as a trade-off between the 
amount of semantic features and the spatial accuracy of the segmenta-
tion. The deeper the layer, the more semantic information can be 
extracted. At the same time, deeper layers tend to lose location infor-
mation due to the continuous decrease of resolution of the feature maps. 
Therefore, we have set the architecture of our network to only 6 layers, 
including the bottleneck, so that the deepest feature map is not smaller 
than 8� 8� 8. At the same time, to reduce the model volume, we set the 
basic kernel number to 30. In addition, a short connection between the 
encoder and decoder layers is built in the U-Net to enable the utilization 
at the decoder of more exact location information embedded in the 
encoder part. 

In contrast with the original 3D U-Net architecture, we construct 
multi-scale supervision to encourage every layer in the decoder path to 
achieve exact location as well as semantic information. The motivation 
behind of our proposed multi-scale supervision is comprehensively 
depicted in the next subsection. 

2.4. Multi-scale supervision 

In traditional deep learning based segmentation, the model outputs 
the probability map from the top layer, which does not fully utilize the 
deeper feature maps even though they might contain more semantic 
information. As the top layer is upsampled from the deep layers, it is 
reasonable to in advance guarantee the deep layers with correct pre-
dictions. This would expected to provide a better basis to up layers in 
turn. Therefore, we add labels with corresponding resolution to each 
layer in the decoder path, and compare them with the side outputs from 
deep layers. With the loss calculated from different layers, more effec-
tive gradient backpropagation can be obtained and thus increase the 
learning efficiency. The loss function for each iteration from multi-scale 
supervision is given by (1): 

Losst ¼
XN

l¼1
Losslwl (1)  

where Losst denotes the total loss achieved by the multi-scale supervi-
sion, while Lossl refers to the loss calculated at the l-th layer. The total 
number of layers with N, excluding the bottleneck layer in the network. 
Finally, the weight of each individual layer’s loss is given by wl. 

2.5. Loss function 

Cross entropy (CE) is a widely used pixel-wise loss as it computes the 
entropy of prediction probability and ground truth based on each pixel. 
However, such property might lead to severe sample imbalance since the 
background occupies most of the CT images. Its definition is given by 
(2): 

CE¼ �
X

c2 classes
wcytruelog

�
ypred

�
(2)  

where ytrue represents the ground truth and ypred the predicted proba-
bility. The weight wc for each of the classes is utilized to adjust the global 
cross entropy value. 

Another key loss function is the Dice coefficient (Dice). The Dice 
differs from the cross entropy in that it is especially useful for tiny target 
segmentation as it calculates the similarity of predicted result and 
ground truth regardless of the target’s relative size. Its definition for a 
class is given by (3): 

Dice¼
2
�
�Upred \ Utrue

�
�

�
�Upred

�
�þ jUtruej

(3)  

where Upred and Utrue represent the segmentation results set (predictions) 
and the ground truth set, respectively, and jUij denotes the cardinality of 
set Ui. The Dice is proportional to intersection of both sets, and therefore 
is affected by both false positives and false negatives. The higher the 
value of Dice, the better the segmentation effect is. Additionally, we 

Fig. 4. The principle of exponential logarithmic loss. Compared with linear loss, exponential logarithmic loss shows specific nonlinearity providing better indication 
for the learning process. 
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utilize the Soft Dice (SD) coefficient, as it is beneficial to directly utilize 
the prediction probabilities and not the binary mask that the softmax 
layer generates. This allows us to have a cost function that is more 
sensitive to the learning process, and adjust the network weights more 
efficiently during the learning process. In order to have a function to 
minimize, 1 � Dice is often utilized as a cost function. Thus, in practice, 
(3) turns into (4) for each class mask: 

SDcost ¼ 1 �
2
P

pixelsypredytrue
P

pixels
y2

pred þ
P

pixels
y2

true
(4) 

The nnU-Net implementation utilizes both cross-entropy and 1� Dice 
for training. However, in kidney and kidney tumor segmentation addi-
tional challenges arise leading us to choose a different cost function. 
First, the number tumor samples in the CT images is significantly smaller 
than the number of background and kidney samples. Second, the 
morphological heterogeneity of tumor voxels is significantly larger than 
that of kidney voxels. This imbalance of both samples and difficulty is a 
generic problem in medical image segmentation and would cause ten-
dency of the network to incorrectly categorize tumor voxels. 

Therefore, in this paper, we modify the nnU-Net to perform expo-
nential logarithmic loss on our Soft Dice loss to alleviate this imbalance. 
Exponential logarithmic loss shows specific nonlinear property as the 
objective value increases, as shown in Fig. 4. In the initial training phase, 
the loss has a dramatic variety which could better indicate the correct 
learning direction. In the middle phase, it shows stable decrease as the 
linear function. As the learning goes, the exponential logarithmic keeps 
higher loss than the linear loss. Until the objective value is rather close to 
one it shows a fast drop. The details of the modification appear on the 
public GitHub repository where we have uploaded the code utilized in 
this paper. The cost function utilized for minimization durint the 
training is given by (5): 

SDell ¼
�
� logSDkidney

�0:3
� 0:4þð � logSDtumorÞ

0:3
� 0:6 (5)  

where SDell represents the Soft Dice modified by exponential logarithmic 
loss. SDkidney and SDtumor denote the original Soft Dice calculated on 
kidney and tumor respectively: 

SDkidney ¼

2
P

kidney
pixels

ypredytrue

P

kidney
pixels

y2
pred þ

P

kidney
pixels

y2
true
; SDtumor ¼

2
P

tumor
pixels

ypredytrue

P

tumor
pixels

y2
pred þ

P

tumor
pixels

y2
true

(6) 

This operation of nonlinearity could enable the network to achieve 
higher loss when the samples are very difficult to recognize, i.e. the 
prediction result is very bad, and only when the prediction is good above 
a certain threshold will the loss decline dramatically. In this way, the 
network with exponential logarithmic loss will potentially obtain more 
efficient gradient updates than when using linear loss functions. In 
addition, to further induce the network into increasing the significance 
of tumor samples during training, we attribute different multipliers, 0.4 
and 0.6, as weights to kidney and tumor, respectively. 

Finally, we combine the Soft Dice with exponential logarithmic loss 
and CE as the loss function for each layer, shown in (7): 

Losslayer ¼ SDell þ CE (7)  

where the Losslayer denotes the loss we obtain from each layer. With 
multi-scale supervision, we further assign different weights on different 
layers. As a result, from the top down, the total 5 layers excluding the 
bottleneck get 0.4, 0.2, 0.2, 0.1, 0.1 respectively and we attribute 0.28, 
0.28 and 0.44 for the CE weights of background, kidney and tumor, 
respectively, to further emphasize tumor samples. Our method brings 
such hyperparameters combining the multi-scale supervision with 
exponential logarithmic loss, which can be further optimized to extract 
more potential out of the 3D U-Net. While there is plenty of room for 
optimization of these parameters, our experiments already show the 
benefits and an enhanced segmentation performance. 

2.6. Inference and postprocessing 

Because network training and inference are conducted patch-wise, 
the accuracy of the border of patches is decreased compared with the 
patch center. Therefore, we adopt overlap prediction and weigh more on 
the center values when aggregating predictions across patches. Patches 
are chosen to overlap by one half of the patch size. Furthermore, we 
employ test-time data augmentation by mirroring testing patches along 
all valid axes to aggregate more predictions as well as adding Gaussian 
noise. Thus, for every voxel there are multiple predictions aggregated to 

Fig. 5. The effect of our postprocessing method. The top row is original output from the network; the middle is after post processing and the bottom is the 
ground truth. 
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determine its optimal value. In the center of patient data, up to 64 
predictions from several overlaps and mirroring are aggregated up. 

After the inference by the network, we utilize the basic knowledge to 
further improve the performance: most humans have two kidneys, and 
the kidney tumor should be attached on or embedded in kidneys. Even 
though this is very elementary information, it can be employed in 
postprocessing to remove disconnected voxels that are detected as false 
positive. False positive kidney voxels are removed from the output after 
either one or two kidney components have been found. Thus, all tumor 
components attached to a kidney are maintained as valid segmentation 
result while others are removed from the output as well. The 3D con-
nected components are detected following a similar procedure to 
Ref. [22], and utilizing the connected-components-3d2 Python library [9]. 

Fig. 5 shows how our postprocessing method increases the quality of 
the segmentation. In the top most figure, we have two kidneys and a 
disconnected tumor. The segmentation keeps the top two biggest kidney 
components as shown in the middle of the figure. The result after the 

post-processing effectively matches the ground truth sample. It should 
be accounted that if there is only one kidney, the patient might have 
previously received a nephrectomy. 

3. Experimental results 

In order to evaluate the proposed three-dimensional network archi-
tecture, and to validate its usability with real data, we conduct experi-
ments on the public KiTS19 dataset. We separate the KiTS19 dataset into 
the training, validation and test datasets, which we utilize to train and 
evaluate our model’s performance with both visualization metrics and 
quantification metrics. 

3.1. KiTS19 dataset 

The KiTS19 dataset contains volumetric CT scans from 210 patients. 
These scans are all preoperative abdominal CT imaging in the late- 
arterial phase, with unambiguous definition of kidney tumor voxels in 
the ground truth images. The images are provided in Neuroimaging 
Informatics Technology Initiative (Nifti) format. Scans of different pa-
tients have different properties. Therefore, there is a heterogeneity in 
the raw data, including the voxel size along the three plans and their 
affine. As diverse voxel spacings may have a significantly negative 
impact on the learning process of deep neural networks, we use instead 
the interpolated dataset in KiTS19, which interpolates the original 
dataset to achieve the same affine for every patient. 

The statistic properties of the dataset are shown in Table 1. We 
randomly select 20% of the patients as the independent test dataset. 
Among the rest, we partition the records into validation dataset (20% of 
scans) and training dataset (80% of scans). 

3.2. Implementation details 

We utilize Adam as the network’s optimizer function and set the 
initial learning rate to be 3 � 10� 4. In addition, we conduct an adaptive 

Table 1 
Properties of the KiTS19 dataset.  

Property Value 

Number of Patients 210 
Modality CT (late-arterial phase) 
Training dataset size 134 
Validation dataset size 34 
Test dataset size 42 
Min Patient Size in Voxels [434, 434, 69] 
Max Patient Size in Voxels [639, 639, 182] 
Median Patient Size in Voxels [523, 523, 116] 
Affine 

0

B
B
@

0 0 � 0:7816 0
0 � 0:7816 0 0
� 3 0 0 0
0 0 0 1

1

C
C
A

Fig. 6. Loss and Dice evolution during the network training. The red and blue lines represent the validation and training loss, respectively. The green line represents 
the average Dice of kidneys and kidney tumor. The total training time was approximately five days. (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.) 

2 https://github.com/seung-lab/connected-components-3d. 
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adjustment strategy for the learning rate during the training process. 
This results in the learning rate dropping by the factor of 0.2 whenever 
the training loss is not improved over 30 epochs. Similarly, we consider 
that the training is over whenever no improvements in the loss are 
identified over 50 epochs. The complete process is implemented in Py-
thon utilizing the PyTorch framework. 

In the experiments, the training is carried out with two Nvidia Tesla 
32 GB GPUs. Owing to the limited amount of the GPU memory, we adopt 

a patch size of 192 � 192 � 48 and set the batch size to eight. Since the 
training is patch-based, the patch is randomly sampled from the data 
loader and we each epoch is set to 250 iterations. This translates into 
each epoch effectively selecting 250 � 8 patches from the training data. 

3.3. Experiment results 

The training time until convergence was achieved with our network 

Fig. 7. Examples of segmentation results. Each column denotes one patient, and from top down, they are scan images in transverse plane, sagittal plane, coronal 
plane, 3D reconstruction of our predictions and the ground truth. The red mask represents kidney area, while the green mask represents tumor area. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 8. Quantitative metrics.  
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architecture was approximately five days. The loss variation is shown in 
Fig. 6, from which we can observe that the loss decreases stably as the 
number of training epoch increases. 

After the model is trained and convergence achieved, we test it using 
the independent test dataset containing 42 patient scans. Several 
selected samples of output segmentation results are shown in Fig. 7. 
Even though the location, intensity and texture of kidneys and kidney 
tumor can differ significantly, the predicted regions are in good agree-
ment with the ground truth. 

We evaluate all of the 42 test patient scans using the six quantitative 
metrics to evaluate our method objectively and comprehensively; Dice, 
Jaccard, Accuracy, Precision, Recall and Hausdorff are computed for 
both kidney and kidney tumor segmentation. To clearly observe the 
distribution of all the test patients, the indicators of Dice, Jaccard, Ac-
curacy, Precision and Recall are gathered into two box plots, shown in 
Fig. 8a and Fig. 8b for kidney and kidney tumor segmentation, 
respectively. 

Our method is further elaborated from the basic 3D U-Net. We do not 
consider nor compare our approach to other complicated architecture 
modifications, as they are often only effective for specific cases or 
metrics. Therefore, in order to investigate the effectiveness of our stra-
tegies, we compare the performance of the basic 3D U-Net with our 
multi-scale supervised 3D U-Net. The implementation of the 3D U-Net is 
identical to our multi-scale supervised U-Net except for the three stra-
tegies defined in this paper. The comparison results are listed in Table 2 
and Table 3. These two tables present the average values of the six in-
dicators and prove the improvement after using our three-fold 
enhancing strategies. The most notable differences are in terms of 
tumor segmentation. 

After comparing with the basic U-Net architecture, we compare our 
approach with three recent methods listed in Table 4. In this compari-
son, it should be noted that our proposed method processes raw-size CT 
images, which adds significant complexity to the sementation model 

when compared to the other three based on smaller ROIs. Nevertheless, 
our method still outperforms them in multiple metrics regarding both 
kidney and kidney tumor segmentation. 

In addition, to compare our methods with other current state-of-the- 
art architectures and approaches, we participated in the KiTS19 chal-
lenge. During the challenge, we were able to perform a broader evalu-
ation with the other state-of-the-art methods. The proposed network 
architecture, MSS U-Net, ranked in 7th position out of 106 teams [13] 
achieving a kidney and kidney tumor Dice of 0.974 and 0.818, respec-
tively, measured using the data of the 90 test patients. This demonstrates 
both the applicability of the approach described in this paper for real 
data and its improved performance compared to previous methods 
relying only on the 3D-UNet architecture for medical image 
segmentation. 

We list several top winners of KiTS19 challenge in Table 5. Fabian 
et al. [14], the first-ranked solution, proposed a residual 3D U-Net to 
enhance the segmentation performance. In this case, the authors 
modified part of the training data in order to gain a unique advantage. 
Xiaoshuai et al. [12] and Guangrui et al. [22] constructed their methods 
using 3-stage and 2-stage segmentation respectively, which followed a 
different strategy compared to our motivation for having an end-to-end 
method. Finally, Andriy et al. [23] followed a more similar strategy to 
ours because they also focused on how to better train a basic 3D U-Net 
and employed the fashionable boundary-aware loss [10]. However, they 
used a much bigger input (176 � 176 � 176). In general terms, we 
believe that our method can be further optimized by conducting more 
adaptive experiments due to the larger number of hyperparameters 
directed to training the 3D U-Net more efficiently. 

It is worth noting that, due to the limited size of the dataset, the 
results could vary significantly if only one tumor was not detected. This 
is particularly evident with particularly small tumors that can pass un-
detected simply because of sampling or data handling issues. Nonethe-
less, this is an important aspect that must be considered because 
detecting small tumors or lesions can be key in early disease detection. 
Thus, we believe that formal solutions need to be proposed to tackle this 
specific problem of small tumor segmentation. 

4. Discussion 

In recent years, deep learning based methods have accounted for the 
largest fraction of research papers in the field of medical image seg-
mentation. A wide variety of networks with many new architectures 
have been proposed, with innovative properties and significantly supe-
rior results in multiple aspects when compared to more traditional 
methods. Nonetheless, among all these, and to the best of our knowl-
edge, the original U-Net architecture is still able to achieve results 
comparable to the state-of-the-art and even outperform more recent 
architectures in certain aspects related to medical image segmentation 
[15]. This has been further exemplified in this paper, as we have 
demonstrated the capabilities of the original architecture if more effi-
cient training techniques are introduced as proved by our experimental 
results. 

Based on the 3D U-Net architecture, we have designed and trained a 
six-layer network and proposed three effective strategies including both 

Table 2 
Comparison between the proposed MSS U-Net and our implementation of the 
classic 3D U-Net (kidney), both on the KiTS19 dataset.  

Metric MSS U-Net Classic 3D U-Net 

Dice 0.969 0.962 
Jaccard 0.941 0.930 
Accuracy 0.999 0.999 
Precision 0.971 0.961 
Recall 0.968 0.965 
Hausdorff (mm) 19.188 38.945  

Table 3 
Comparison between the proposed MSS U-Net and classic 3D U-Net (tumor).  

Metric MSS U-Net Classic 3D U-Net 

Dice 0.805 0.781 
Jaccard 0.716 0.699 
Accuracy 0.999 0.999 
Precision 0.863 0.841 
Recall 0.802 0.810 
Hausdorff (mm) 33.469 50.808  

Table 4 
Comparison of Dice coefficient of the proposed MSS U-Net and state-of-the-art 
methods from Ref. [28] (PSPNET, 3D U-NET and FCN-PPM). The datasets uti-
lized in Ref. [28] and our paper (MSS U-NET) are different.  

Method Kidney Tumor 

2D PSPNET (RoI) 0.902 0.638 
3D U-NET (RoI) 0.927 0.751 
3D FCN_PPM (RoI) 0.931 0.802 
MSS U-NET (Raw Images) 0.969 0.805  

Table 5 
Dice of the proposed method and other algorithms in KiTS19 challenge. These 
results are obtained from the competition’s test dataset. This test dataset is 
public, but the ground truth labels were not made public.  

Method Kidney Tumor 

Fabian et al. [14], 1st place 0.974 0.851 
Xiaoshuai et al. [12], 2nd place 0.967 0.845 
Guangrui et al. [22], 3rd place 0.973 0.832 
Andriy et al. [23], 9th place 0.974 0.810 
MSS U-Net, 7th place 0.974 0.818  
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training techniques and data augmentation. First, we have employed 
multi-scale supervision to increase the probability of the network pre-
dicting low-resolution labels correctly from deeper layers. This concept 
can be better understood with an analogy of human behaviour: the ac-
tion of first zooming out an image to label or identify coarse contours 
and then zoom into precisely label the image at a finer level. Second, in 
order to alleviate the inherent imbalance in samples and segmentation 
difficulty across organs, we have introduced the use of exponential 
logarithmic loss to induce the network into paying more attention to 
tumor samples and more difficult samples. Third, we have designed a 
connected-component based post processing method to remove the 
clearly mistaken voxels that have been identified by the network. 

The experiments that we have carried out and the comparisons with 
existing methods have shown the advantages of the proposed architec-
ture and the effectiveness of the enhancement strategies over the orig-
inal 3D U-Net. Nevertheless, several aspects remain challenging and 
require further investigation. In particular, from the segmentation sta-
tistics of the test patients, we have found that two patients had a low 
tumor Dice with one of them being as low as zero. The data corre-
sponding to the latter patient are shown in Fig. 9. In the figure, we can 
see that the prediction mask does not map the tumor, a consistent result 
with the Dice coefficient. The cause of this low Dice might be the 
particularly small size of the tumor in the CT images. We attribute this 
phenomenon to the fixed receptive field of classic convolution. There-
fore, we will consider in our future work to employ deformable convo-
lution as a potential solution to this problem [6]. 

Even though we have achieved rather good performance on the 
kidney segmentation, it should be noted that all the experiments are 
performed on the same dataset, in which the training data are randomly 
split and would have identical distribution with test data. However, 
when applied to real clinical settings, the trained model has to adapt to 
CT images from different vendors and settings. This has the potential to 
bring different distribution and hence degrades its performance. This is a 
general problem in machine learning, and we hope to employ data from 
multiple vendors and centers to improve its generalization in the future 
[26]. 

In summary, the proposed architecture and chosen methodology in 
this paper are based on the assumption that the basic 3D U-Net archi-
tecture is capable of extracting sufficient features for segmentation. 
Therefore, we have directed our efforts towards the training procedures 
while discarding the complex architecture modifications with marginal 
effectiveness. At the time of finalizing the experiments reported in this 
paper, a modified U-Net (mU-Net) has been proposed by Seo et al. [25]. 
In their paper, the authors propose the utilization of residual path to the 
skip connections of the U-Net for the segmentation of livers and liver 
tumors. This paper shares a similar motivation with ours, aiming and 
innovative ways of mining more effective information from 
low-resolution features for accurate segmentation of medical images. 
The main difference from the architectural point of view is that Seo et al. 

introduce additional blocks, while we focus on effective but simpler 
strategies to achieve the same goal. 

5. Conclusion 

In this paper, we have proposed an end-to-end multi-scale supervised 
3D U-Net to simultaneously segment kidneys and kidney tumors from 
raw-scale computed tomography images. Extending the original 3D U- 
Net architecture, we have combined a multi-scale supervision approach 
with exponential logarithmic loss. This has enabled further optimization 
of the U-Net architecture, extending its possibilities, and hence obtain-
ing better performance. Compared with a current trend in deep neural 
networks with complex architectures and multiple different sub-
modules, we have taken a more generalized approach yet obtained re-
sults comparable to the state of the art. A simpler architecture has the 
advantage of higher reproducibility and wider generalization of results, 
in contrast with the potentially highly inflated models and poor repro-
ducibility of more complex architectures. 

In general, we have directed our efforts towards a more efficient 
training of the original 3D U-Net architecture by incorporating the 
multi-scale supervision and the exponential logarithmic loss. We have 
demonstrated the advantages of this approach with our experiments and 
comparisons with the state-of-the-art. While our architecture can be 
outperformed by others in specific metrics on the KiTS19 dataset, we 
have argued that having a simpler architecture still leaves room for 
further optimization and discussed the advantages from the point of 
view of applicability and extendability. 

Finally, the code leading to this work has been made public through a 
GitHub repository,3 with the code that has been used on the KiTS19 
dataset. In the future work, we expect to extend the application of our 
architecture towards segmentation of other organs and modalities, such 
as magnetic resonance imaging (MRI) or positron-emission tomography 
(PET). 
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Fig. 9. Illustration of the worst-case 
segmentation from the proposed 
network. The top row shows the pre-
dicted segmentation while the bottom 
row shows the ground truth. The tumor, 
in green, is not identified by our 
network, which is only able to segment 
the kidney tissue instead, in red. The 
small size of the tumor in this case may 
have played a significant role in the 
segmentation failure. (For interpreta-
tion of the references to color in this 
figure legend, the reader is referred to 
the Web version of this article.)   

3 https://github.com/LINGYUNFDU/MSSU-Net. 
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