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Abstract. We investigate the computational power of affine automata
(AfAs) introduced in [5]. We first present a simplified proof for changing
the cutpoint and a method for reducing the error rate. We then address to
the question of [5] by showing that any affine language can be recognized
by an AfA with certain limitation on the entries of affine states and
transition matrices. Finally, we present the first examples of languages
that cannot be recognized by AfAs with bounded-error.
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1 Introduction

Finite automata are interesting computational models because of their simplicity,
compared to more complex models like pushdown automata or Turing machines.
They also represent a very concrete restriction on computation: they only have a
finite memory. A lot of different automata models have been studied during the
years, such as deterministic [11], probabilistic [9] and quantum [3] ones. All these
models share two a common features: The state vector set is compact and the
acceptance function mapping the final state vector into real interval [0, 1] can be
interpreted linear. The linearity is desirable because of mathematical simplicity,
but on the other hand, it may represent a limitation on the computational power.

Recently, A. Díaz-Caro and A. Yakaryılmaz introduced a new model, called
affine computation [5], also investigated in [14] and [4]. As a non-physical model,
the goal of affine computation is to investigate on the power of interference
caused by negatives amplitudes in the computation, like in the quantum case.
But unlike quantum automata, affine ones have unbounded state set and the
final operation corresponding to quantum measurement cannot be interpreted as
linear. The final operation in affine automata is analogous to renormalization in
Kondacs-Watrous [7] and Latvian [2] quantum automata models.
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In this paper, we present some stability results (Section 3): We use classical
constructions of tensoring and direct sum simultaneously to get a simpler proof for
the fact that the cutpoint of affine languages can be changed. The aforementioned
operations are also used to produce an error reduction method in bounded error
case. It should be emphasized here that in the case of (one-way) probabilistic
and quantum automata, the constraint of bounded error implies the regularity
of accepted language, and hence there is always a zero-error (deterministic)
automaton accepting the same language. Therefore, the error reduction technique
is apparently uninteresting when restricting to automata with compact state set.

Any entry of an affine state vector or a transition matrix can be arbitrarily
away from zero. However, here we show that (Section 4) any affine language can
be recognized by an AfA providing that any such entry can be in the interval
[−1, 1]. This partially answers to the question implicitly proposed in [5]: In the
case of unbounded error, affine automata computations can be performed with a
compact state vector set, and hence in that case, the power of affine automata
seems to originate rather from the nonlinear nature of the final value function.

Finally, we present (Section 5) the first languages shown not to be recognized
by any bounded-error AfA and conclude in Section 6.

2 Preliminaries

We use notation Σ for the input alphabet and ε for the empty string .
Probabilistic automata are a generalization of deterministic finite automata

that can make random choices [10].
Formally, a probabilistic finite automaton (PFA) P is a 5-tuple

P = (E,Σ, {Mx | x ∈ Σ},v0, Ea)

where E = {e1, . . . , ek} is the finite set of states of P , {Mx | x ∈ Σ} is the set of
stochastic transition matrices, v0 is the initial probabilistic state (the probability
distribution on the states), and Ea ⊆ E is the set of accepting states.

The computation starts in v0, and then the given input, say w = w1 · · ·wn ∈
Σ∗ for some n > 0, is read once from left to right symbol by symbol and for each
symbol the corresponding transition matrix is applied:

vf = Mwv0 = Mwn
. . .Mw1v0.

Remark that if w = ε, vf = v0. The accepting probability of P on w is given by

fP (w) = pMwv0, (1)

where p =
(
δ1 . . . δk

)
and δi = 0 if and only if ei ∈ Ea.

Affine automata are a generalization of PFAs allowing negative transition
values. Only allowing negative values in the transition matrices does not add any
power (generalized probabilistic automata are equivalent to usual ones [12]), but
affine automata introduces also a non-linear behaviour. The automaton acts like
usual generalized probabilistic automaton until the last operation, a non-linear
operation called weighting.
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A vector v ∈ Rn is an affine vector if and only if its coordinates sums up to
1. A matrix M is an affine matrix if and only if all its columns are affine vectors.
Note that if M and N are affine matrices , then MN is also an affine matrix. In
particular, if v is an affine vector, then Mv is also an affine vector.

Formally, an affine finite automaton (AfA) A is a 5-tuple

A = (E,Σ, {Mx | x ∈ Σ},v0, Ea)

where all components exactly the same as for probabilistic automata by replacing
stochastic property with affine one in the initial state and transition matrices.

As in PFAs, after reading a word w = w1 . . . wn, the final state of A is
vf = Mwv0 like in the probabilistic case, but the function fA : Σ∗ → [0, 1]
computed by A is defined as

fA(w) =
∑
ei∈Ea

|(vf )i|∑
ei∈E |(vf )i|

, (2)

and referred as the accepting value of A on w. Similar to projective measurements,
we can rewrite Eq. 2 as given below. First, we define a projection matrix based

on Ea: PA = P =


δ1
δ2

. . .
δn

 , where δi =
{

1 if ei ∈ Ea
0 otherwise .

Then, we can denote fA(·) as

fA(w) = |PMwv0|
|Mwv0|

. (3)

Notice that the final value for PFA P (1) is defined as matrix product vf 7→ p.vf ,
which is a linear operation on vf . On the other hand, computing final value from

vf as in (3) involves nonlinear operations vf 7→
|Pvf |
|vf |

. The renormalization here

is analogous to those in Kondacs-Watrous [7] and Latvian [2] quantum automata
models.

Given a function f : Σ∗ → [0, 1] computed by an automaton (stochastic or
affine), there are different ways of defining the language of a PFA. The natural
one is as follows: A language L ⊆ Σ∗ is recognized by an automaton A with
cutpoint λ if and only if

L = {w ∈ Σ∗ | fA(w) > λ}.

These languages are called cutpoint languages. In the case of probabilistic (resp.
affine automata), the set of cut-point languages are called stochastic languages
(resp. affine languages) and denoted by SL (resp. AfL).

A stronger condition is to impose that accepted and rejected words are
separated by a gap: the cutpoint is said to be isolated: A language L is recognized
by an automaton A with isolated cutpoint λ if and only if there exist δ > 0 such
that ∀w ∈ L, fA(w) ≥ λ+ δ, and ∀w /∈ L, fA(w) ≤ λ− δ.
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As we shall see, for affine automata it is always possible to shift the cutpoint
λ ∈ (0, 1) to λ = 1

2 , and hence this notion of isolated cutpoint becomes equivalent
to the bounded error recognition: Language L ⊆ Σ∗ is said to be recognized by
an automaton A with bounded error if and only if there exists ε > 0 such that
∀w ∈ L, fA(w) ≥ 1− ε, and ∀w /∈ L, fA(w) ≤ ε.

The set of languages recognized with bounded error (or isolated cutpoint)
affine automata is denoted by BAfL.

A classical result by Rabin [10] shows that isolated cutpoint stochastic lan-
guages are regular (denoted REG). Rabin’s proof essentially relies on two facts:
1) the function mapping the final vector into [0, 1] is a contraction, and 2) the
state vector set is bounded.

By modifying Rabin’s proof, it is possible to show that also many quantum
variants of stochastic automata obey the same principle: bounded-error property
implies the regularity of the accepted languages. In fact, E. Jeandel generalized
Rabin’s proof by demonstrating that the compactness of the state vector set
together with the continuity of the final function are sufficient to guarantee the
regularity of the accepted language, if the cutpoint is isolated [6].

In the affine case however, the vector states do not lie in a compact set, we
cannot prove that BAfL = REG like in the probabilistic (or even quantum) case
[6]. In fact, it is even the contrary: REG ( BAfL [5].

We close this section by three basic facts. The following three operations on
the state sets will be useful, when constructing new (affine) automata from the
existing ones:
– E = {ei | ei /∈ E} the complement of E,
– Ea × Eb = {(ei, ej) | ei ∈ Ea, ej ∈ Eb} the Cartesian product of Ea and Eb,
– Ea ∪ Eb = {ei | ei ∈ Ea or ei ∈ Eb} the union of Ea and Eb.

The following lemmata show how to formulate the above operations by using the
formalism of projection matrices. The proofs are simple and we omit them.

Lemma 1. Let E be the set of all states, Ea, Eb ⊆ E and Pa, Pb the projections
associated to them. Then
– P is the projection associated to the complement Ea if and only if P = I−Pa,
– P is the projection associated to Ea × Eb if and only if P = Pa ⊗ Pb.

Lemma 2. Let E be the set of all states, Ea, Eb ⊆ E, such that Ea ∩ Eb = ∅.
Let Pa and Pb the projections associated to them. Then,
– P is the projection associated to Ea ∪ Eb if and only if P = Pa + Pb,
– For any matrix M and vector v, |PMv| = |PaMv|+ |PbMv|.

Lemma 3. If A and B are affine matrices, then A⊗B is also affine. Moreover,
|A⊗B| = |A||B|.

3 Stability Results

The main results of this section are stability results. The first are about the
function of affine automata. They provide a way to prove an error reduction
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theorem. We then use this theorem to show the stability of bounded-error affine
languages under intersection and union.

Proposition 1. Let f , g be functions computed by affine automata, then there
exists an affine automaton C such that fC = fg.

Proof. The proof is the same as the stochastic case and essentially relies on the
property of tensor product of Lemma 3. ut

It is easy to design a 2-state PFA P such that fP : Σ∗ → α for α ∈ [0, 1]. Thus:

Corollary 1 Let f be a function computed by an AfA and α ∈ [0, 1], then there
exists an AfA C such that fC = αf .

Proposition 2. Let f , g be functions computed by some AfAs and α, β ≥ 0 such
that α+ β = 1, then there exists an AfA C such that fC = αf + βg.

Proof. Let A = (EA, Σ, {Ax},vA0 , EAa ) and B = (EB , Σ, {Bx},vB0 , EBa ) two
automata such that f = fA and g = fB. The idea here is to make two copies of
A⊗ B working in parallel, one having the final states of A, the other the final
states of B. We define C = (EC , Σ, {Cx},vC0 , ECa ) by:

Cx =


Ax ⊗Bx 0

0 Ax ⊗Bx

 ,vC0 =


α(vA

0 ⊗ vB
0 )

β(vA
0 ⊗ vB

0 )

 , PC =


PA ⊗ In 0

0 Ik ⊗ PB

 ,

with PA, PB and PC be the projections on EAa , EBa and ECa . Thus,

fC(w) = α|(PA ⊗ In)(Ax ⊗Bx)(vA0 ⊗ vB0 )|+ β|(Ik ⊗ PB)(Ax ⊗Bx)(vA0 ⊗ vB0 )|
(α+ β)|(Ax ⊗Bx)(vA0 ⊗ vB0 )|

= α
|PAAwvA0 |
|AwvA0 |

+ β
|PBBwvB0 |
|BwvB0 |

= αf(w) + βg(w). �

The first consequence of these stability results is a really short proof for shifting
the cutpoint of an affine automaton. Although the construction in [5] gives a
much more compact automata in term of number of states, our construction is
simpler, and does not require as many specific cases.

Proposition 3. Let A be and affine automaton and λ1, λ2 ∈ [0, 1]. There exists
an affine automaton B such that
– fA(w) > λ1 ⇔ fB(w) > λ2 and
– fA(w) = λ1 ⇔ fB(w) = λ2.

Proof. First we suppose λ1 6= 1. Let B the automaton such that fB = αfA+ (1−
α)1, with α = 1−λ2

1−λ1
. Then fA > λ1 ⇒ fB >

(1−λ2)λ1+λ2−λ1
1−λ1

= λ2. And one has
the same with = or <.

For λ1 = 1 it is even simpler, one has just to “resize” the function by taking
B such that fB = λ2fA. And then, fA = 1⇒ fB = λ2, and same for <. ut
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Using the same kind of construction we can prove that bounded-error mode,
it is always possible to reduce the error. Reducing the error means increasing the
gap between accepted and rejected words. The error probability could even be
made as close to zero as one wants.

Lemma 4. Let f be a function computed by affine automaton, then there exists
an affine automaton B such that fB = f2(3− 2f).

Proof. Let A = (E,Σ, {Ax},v0, Ea) such that f = fA. The automaton B will
run 3 copies of A in parallel, and its final states are made to accept if 2 or 3 copies
of A accept and reject otherwise (i.e. taking the majority answer). Formally,
B = (E ⊗ E ⊗ E,Σ, {Bx},v′0, E′a) with

Bx = Ax ⊗Ax ⊗Ax,

v′0 = v0 ⊗ v0 ⊗ v0,

E′a = (Ea × Ea × Ea) ∪
(
Ea × Ea × Ea

)
∪
(
Ea × Ea × Ea

)
∪
(
Ea × Ea × Ea

)
.

Note that the four sets in parenthesis are all pairwise disjoints. Let P and P ′ be
the projections associated to Ea and E′a. Then,

P ′ = P ⊗ P ⊗ P + (I − P )⊗ P ⊗ P + P ⊗ (I − P )⊗ P + P ⊗ P ⊗ (I − P ).

And by Lemma 1,

fB(w) = |P
′Bwv′0|
|Bwv′0|

= |PAwv0|3 + 3|PAwv0| (|Awv0| − |PAwv0|)
|Awv0|3

= f(w)3 + 3f(w)2(1− f(w))
= f(w)2(3− 2f(w)).

ut

Proposition 4 (Error reduction). Let L ∈ BAfL. There exists an affine au-
tomaton A such that:
– ∀w ∈ L, fA(w) ≥ 3

4
– ∀w /∈ L, fA(w) ≤ 1

4

Proof. We do not give the details here, but the idea is as follows: Mapping
x→ x2(3− 2x) has attracting points at x = 0 and x = 1. Iterating the mapping,
any point x ∈ [0, 1] \ { 1

2} will tend to 0 (if x < 1
2 ) or to 1 (if x > 1

2 ). ut

This technique could be applied to get any constant instead of 1
4 , to have an

error bound as small as one wants.
This error reduction theorem also applies to probabilistic automata, but is not

very interesting because in the probabilistic case it is known that bounded-error
languages are exactly regular languages [6], and hence the error probability
could always be 0. In our case, bounded-error languages are more complex than
regular languages. But thanks to this error reduction they are stable under union,
intersection and complement, just like regular languages.
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Proposition 5. Let LA, LB ∈ BAfL. Then
– LA ∪ LB ∈ BAfL,
– LA ∩ LB ∈ BAfL,
– LA ∈ BAfL.

Proof. Let A and B be automata recognizing LA and LB with error bound ε at
most 1

4 (thanks to Proposition 4). We define C and D such that fC = 1
2 (fA + fB)

and fD = fAfB. Let w ∈ Σ∗. We study the 4 possible options depending on the
membership of w to LA and LB .
– w ∈ LA, w ∈ LB (i.e. w ∈ LA ∪ LB , w ∈ LA ∩ LB) ⇒ fC ≥ 3

4 and fD ≥ 9
16 ,

– w ∈ LA, w /∈ LB (i.e. w ∈ LA ∪ LB , w /∈ LA ∩ LB) ⇒ fC ≥ 3
8 and fD ≤ 1

4 ,
– w /∈ LA, w ∈ LB (i.e. w ∈ LA ∪ LB , w /∈ LA ∩ LB) ⇒ fC ≥ 3

8 and fD ≤ 1
4 ,

– w /∈ LA, w /∈ LB (i.e. w /∈ LA ∪ LB , w /∈ LA ∩ LB) ⇒ fC ≤ 1
4 and fD ≤ 1

16 .
Because 3

8 >
1
4 and 9

16 >
1
4 , C and D are deciding LA ∪ LB and LA ∩ LB with

bounded error.
For the complement one has just to make a copy of A with accepting states

Ea. The resulting function will be 1− fA, leading to accept the rejected words
of A and vice-versa. ut

4 Equivalent Forms of Affine Automata

General affine automata are hard to study because of the lack of structure of
their transition matrices and state vectors. We provide here some equivalent
forms which have more restrictive properties. These equivalent forms are useful
not only because it provides simpler equivalent models but also because they
provide a way understand the power of affine computation.

The first result is that assuming the initial affine (probabilistic) state as the
first deterministic state does not change the power of AfAs (PFAs); the proof is
the same as for the probabilistic automata.

Proposition 6. Let A be an affine automaton with n states, there exist B with
n+ 1 states with the initial state (1, 0, . . . , 0) and such that fA = fB.

Proof. Let A = (E,Σ, {Ax},v0, Ea). Then, B = (E∪{e′}, Σ, {Bx},v′0, Ea), with

v′0 = (1, 0, . . . , 0)T and Bx =


0 0 . . . 0

Axv0 Ax

 . Thus we can follow fB = fA by

Bwv′0 = Bwn . . . Bw2Bw1v′0 =


0 0 . . . 0

Awv0 Aw




1
0
...
0

 =


0

Awv0

 . ut

Then we prove that one could also assume that all state vectors and transition
matrices have coefficients only in [−1, 1].
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Proposition 7. Any language in AfL can be recognized by a AfA B with cutpoint
1
2 such that each entry of affine states during the computation is always in [−1, 1].

Proof. Let A = (E = {e1, . . . , ek}, Σ, {Ax}, v0 = (1, 0, . . . , 0)T , Ea) be an AfA
such that w ∈ L⇔ fA(w) > 1

2 , and C = maxx,i,j |(Ax)i,j |. Then, B is as follows:

B = (E ∪ {en+1, en+2}, Σ, {Bx},v′0, Ea ∪ {en+1}) with

Bx = 1
2kC


0 0

2Ax
...

...
0 0

kC − 1 . . . kC − 1 2kC 0
kC − 1 . . . kC − 1 0 2kC

 and v′0 = (1, 0, . . . , 0)T .

Then, with w = w1 . . . wn, we can follow that

Bw = Bwn
. . . Bw2Bw1 = 1

2(kC)n


0 0

2Aw
...

...
0 0

(kC)n − 1 . . . (kC)n − 1 2(kC)n 0
(kC)n − 1 . . . (kC)n − 1 0 2(kC)n

 ,

which gives the final values of the states:

v′f = Bwv′0 = 1
(kC)n



...
vf
...

(kC)n−1
2

(kC)n−1
2


.

Since |(vf )i| ≤ kn−1Cn, it is clear that |(v′f )i| ≤ [−1, 1]: the values of the states
are bounded. Now, one has

fB =
|PAwv0|+ (kC)n−1

2
|Awv0|+ (kC)n − 1 ,

and so,

w ∈ L⇔ fA >
1
2 ⇔ |PAwv0| >

1
2 |Awv0|

⇔ |PAwv0|+
(kC)n − 1

2 >
1
2 (|Awv0|+ (kC)n − 1)

⇔ fB >
1
2 .

ut
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5 The first languages shown to be not in BAfL
This part is dedicated to prove that some languages are not recognizable by
some affine automaton. This is an adaptation of the proof of Turakainen [13] for
non-stochastic languages. All the difficulty of exhibiting a non-affine language
relies in the fact that a large majority of non-stochasticity proof are based on
the linearity of the automaton, which is not the case in the affine case. This
proof however, is more based on some “regularity” induced by the matrix-based
operations, and number theoric properties of languages like Prime. Hence it was
possible to adapt it for the affine case, where the only non-linear operation is the
final projection.

Let L ⊆ a∗ be a unary language. We call lower density of L the limit

dens(L) = lim inf
n→∞

∣∣{ak ∈ L | k ≤ n}∣∣
n+ 1 .

Let (xn) be a sequence of vectors in Rk and I = [a1, b1) × · · · × [ak, bk) be an
“interval”. We define C(I, n) as C(I, n) = |{xi mod 1 ∈ I | 1 ≤ i ≤ n}|.

We say that (xn) is uniformly distributed mod 1 if and only if for any I of
such type,

lim
n→∞

C(I, n)
n

= (b1 − a1) . . . (bk − ak).

Proposition 8. If L ⊆ a∗ satisfies the following conditions:
1. dens(L) = 0.
2. For all Q ∈ N∗, there exists h ∈ N and an infinite sequence (ni) ∈ NN such

that ah+niQ ⊆ L and for any irrational number α, the sequence ((h+ niQ)α)i∈N
is uniformly distributed mod 1.

Then L /∈ BAfL.
Proof. Let’s assume for contradiction that L ∈ BAfL. Then there exists an affine
automaton A with s states such that

fA(an) = |PM
nv|

|Mnv|
and there exists ε > 0 such that
– ∀w ∈ L, fA(w) ≥ 1− ε,
– ∀w /∈ L, fA(w) ≤ ε.

Note that

|Mnv| =
s∑
i=1
|(Mnv)i| ≥

∣∣∣∣∣
s∑
i=1

(Mnv)i

∣∣∣∣∣ = 1 (triangle inequality).

Hence the denominator of fA is never 0, and so fA is continuous.
Using the Jordan decomposition M = PJP−1, one has Mn = PJnP−1. So

the coordinates vi of Mnv have the form

vi =
s∑

k=1
pik(n)λnk (4)



10 Mika Hirvensalo, Etienne Moutot, and Abuzer Yakaryılmaz

where λi are the eigenvalues of M and pik are polynomials of degree less than
the degree of the corresponding eigenvalue. Let λi = |λi|e2iπθi , we assume
|λ1| = · · · = |λs′ | > |λs′+1| . . . . Let λ = |λ1| be the largest module of all
eigenvalues and r be the maximum degree of all polynomials pik, where k ≤ s′.
Then, one can use (4) to write

|Mnv| =
∑
i∈E
|vi| = λnnr

∑
i∈E

∣∣∣∣∣∣
s′∑
k=1

aike
2iπnθk

∣∣∣∣∣∣+ gE(n)


where aik is the coefficient of degree r of pik (note that one can have aik = 0 for
some a, k), and gE a function such that limn→∞ gE(n) = 0. Similarly,

|PMnv| =
∑
i∈Ea

|vi| = λnnr

∑
i∈Ea

∣∣∣∣∣∣
s′∑
k=1

aike
2iπnθk

∣∣∣∣∣∣+ gEa
(n)

 .

Now let F (n) = f(an). Using the previous equations, one has

F (n) = |PM
nv|

|Mnv|

=
λnnr

(∑
i∈Ea

∣∣∣∑s′

k=1 aike
2iπnθk

∣∣∣+ gEa(n)
)

λnnr
(∑

i∈E

∣∣∣∑s′

k=1 aike
2iπnθk

∣∣∣+ gE(n)
)

=

∑
i∈Ea

∣∣∣∑s′

k=1 aike
2iπnθk

∣∣∣+ gEa
(n)∑

i∈E

∣∣∣∑s′

k=1 aike
2iπnθk

∣∣∣+ gE(n)
.

We define

G(n) =

∑
i∈Ea

∣∣∣∑s′

k=1 aike
2iπnθk

∣∣∣∑
i∈E

∣∣∣∑s′

k=1 aike
2iπnθk

∣∣∣ .
As limn→∞ gEa

(n) = 0 and limn→∞ gE(n) = 0, one has G(n) ∼ F (n), and so,

lim
n→∞

|F (n)−G(n)| = 0. (5)

We define A = {k | 1 ≤ k ≤ s′, θk /∈ Q} the indices of the “first” eigenvalue
angles that are not rational. Let Q, h and the sequence (ni) be as in the statement.
Using the periodic behaviour induced by rational angle of eigenvalues, and by
taking a subsequence of the initial one, one can also assume that (ni) is such that

G(h+ niQ) =
∑
i∈Ea

∣∣∑
k∈A aike

2iπ(h+niQ)θk + c
∣∣∑

i∈E
∣∣∑

k∈A aike
2iπ(h+niQ)θk + d

∣∣
with c, d some constants.

By assumption, for all k ∈ A, the sequence ((h+ niQ)θk)i is uniformly
distributed modulo 1. The consequence is that the values e2iπ(h+niQ)θk are dense
in the unit circle. If for some n, G(h + nQ) < 1

2 , there exists ε > 0 such that
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G(h+ nQ) ≤ 1
2 − ε. Then, thanks to the density argument, there are arbitrarily

large values of i for which G(h + niQ) ≤ 1
2 −

ε
2 . Since for i sufficiently large,

|F (h + niQ) − G(h + niQ)| ≤ ε
2 (using (5)), one has F (h + niQ) ≤ 1

2 , and so
ah+niQ /∈ L, contradicting condition 2 of the statement.

Therefore, G(h+ nQ) ≥ 1
2 for large enough n. Because G is not identically

equal to 1
2 (if it is the case, F would be as close to 1

2 as one wants, which is
impossible since L ∈ BAfL), again using density, there must be some ε > 0 and
k0 such that G(h+ k0Q) ≥ 1

2 + ε.
First if A = ∅, it means that all the angles of the eigenvalues θ1, . . . , θs′ are

rational. We can then write them as θk = lk
mk

. Then G(n) takes a finite number
of values, and these values only depend on (n mod m1), . . . , (n mod ms′). Let’s
call k1 = h+ k0Q the number where G is larger than 1

2 : G(n1) > 1
2 . G has the

same value for all n ∈ Z = {k1 + km1 . . .ms′ |k ∈ N} (because for n in this set,
the values of all (n mod m1), . . . , (n mod ms′) are the same). Then, thanks to
(5), one has, for n ∈ Z sufficiently large, F (n) > 1

2 , so {a
n | n ∈ Z, n ≥ n1} ⊆ L.

And because |{an | n ∈ Z, n ≥ n1}| ∼ n
m1...ms′

, one has dens(L) > 0, which
contradicts condition 1 of the statement.

Next, if A 6= ∅. Let

R((xk)k∈A) =
∑
i∈Ea

∣∣∑
k∈A aikxk + c

∣∣∑
i∈E

∣∣∑
k∈A aikxk + d

∣∣ .
Note that G(h + niQ) = R((e2iπ(h+niQ)θk )k∈A). Then, because the sequences
((h + niQ)θk)i are uniformly distributed modulo 1, it follows that any value
obtained by the function R((e2iπyk )k∈A) can be approximated by some G(h+niQ)
with arbitrary precision. The function R is continuous, therefore there exists an
interval I = (x1, y1, ...) = ((xk, yk))k∈A on which R((xk)) > 1

2 + ε
2 . So, if ni is

large enough and satisfies

((h+ niQ)θ1 mod 1, . . . ) = ((h+ niQ)θk mod 1)k∈A ∈ I,

then G(h+ niQ) > 1
2 + ε

2 , which implies F (h+ niQ) > 1
2 and hence ah+niQ ∈ L.

Now we just have to prove that the sequence (h + niQ) is “dense enough” to
have dens(L) > 0, contradicting again condition 1.
Then, because of uniform distribution imposed by condition 2, one has

d = lim
i→∞

C(I, h+ niQ)
h+ niQ

=
∏
k∈A

(yk − xk)

And so for i large enough, C(I,h+niQ)
h+niQ

≥ d
2 , with a

h+niQ ∈ L, implying dens(L) >
0. We have proved that L cannot be affine. ut

Turakainen [13] proved that Prime = {ap | p is prime} and Poly(p) =
{ap(n) | n ∈ N, p(n) ≥ 0} satisfy the two conditions of Proposition 8 and they are
not in BAfL, where p is any polynomial (deg > 2) with non-negative coefficients.

Corollary 2 Prime /∈ BAfL and Poly(p) /∈ BAfL.
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6 Conclusion

In this paper we demonstrated that even if they are strictly more powerful,
bounded-error languages of affine automata share stability properties with regular
languages (which are bounded-error languages of stochastic automata).

We also showed that the computational power of affine automata does not come
alone from the unboundedness state vector set: he general model of unbounded
state vector set can always be simulated with a bounded state vector set. Hence
it appears obvious that the nonlinear nature of the final value incorporates some
computational power, at least in the case of unbounded-error computation.
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