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Abstract

There is an increased need for integrative analyses of multi-omic data. We present and benchmark a novel tensorial
independent component analysis (tICA) algorithm against current state-of-the-art methods. We find that tICA
outperforms competing methods in identifying biological sources of data variation at a reduced computational cost.
On epigenetic data, tICA can identify methylation quantitative trait loci at high sensitivity. In the cancer context, tICA
identifies gene modules whose expression variation across tumours is driven by copy-number or DNA methylation
changes, but whose deregulation relative to normal tissue is independent of such alterations, a result we validate by
direct analysis of individual data types.

Keywords: Multi-omic, Tensor, Dimensional reduction, Independent component analysis, mQTL, Epigenome-wide
association study, Cancer

Background
Omic data is now most often generated in a multi-
dimensional context. For instance, for the same individual
and tissue type, one may measure different data modali-
ties (e.g. genotype, mutations, DNA methylation or gene
expression), whichmay help pinpoint disease-driver genes
[1]. Alternatively, for the same individual, the same data
type may be measured across different tissues or cell
types [2, 3], which may help identify the most relevant
cell types or tissues for understanding disease aetiology.
We refer to all of these types of multi-dimensional data
generally as multi-way or multi-omic data, and when sam-
ples and molecular features are matched, the data can
be brought into the form of a multi-dimensional array,
formally known as a tensor [4].
While several statistical algorithms for the analysis of

multi-way or tensorial data are available [4–7], their appli-
cation to real data has been challenging. There are mainly
three reasons for this. First, the associated multi-way
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datasets are often very large and how well the algorithms
perform on such large sets is currently still unclear. Sec-
ond, the algorithms can be computationally demanding,
compromising their benefit-to-cost ratio [4]. Third, inter-
preting the output of these algorithms requires an in-
depth understanding of the underlying methods. Exac-
erbating this problem, most available software packages
are not user-friendly, requiring the user to have such an
in-depth understanding to extract the relevant biological
information. Beyond these technical challenges, there is
also a lack of comparative studies, making it difficult to
choose the appropriate algorithm for the task in question.
To help address some of these outstanding challenges,

we here consider and evaluate a novel data tensor decom-
position algorithm [8, 9], which is based on blind source
separation (BSS), and specifically independent compo-
nent analysis (ICA) [10]. Although common BSS tech-
niques such as non-negative matrix factorisation and
ICA have been successfully applied to a wide range of
single omic data types, including e.g. gene expression
[11–16], DNA methylation [17] and mutational data [18],
their application to multi-way data is largely unexplored
[19]. For single-omic datasets, the improved performance
of ICA over non-BSS techniques like principal compo-
nent analysis (PCA) is due primarily to the non-Gaussian
and often sparse nature of biological sources of variation,
which means that statistical deconvolution of biological
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samples benefits from non-linear decorrelation measures
such as statistical independence (as used in ICA) [13]. It is,
therefore, natural to consider analogous ICA algorithms
for multi-way data, as we do here, since these may also
lead to improved inference.
To assess this, we here benchmark our novel tensorial

BSS algorithm against some of the most popular and pow-
erful algorithms for inferring sources of variation from
multi-omic data, including JIVE (joint and individual vari-
ation explained) [5], PARAFAC (parallel factor analysis)
[4, 6], iCluster [7] and canonical correlation analysis
(CCA) [20–22]. Each of these algorithms has particu-
lar strengths and weaknesses, which render comparisons
between them highly non-trivial. For instance, a limitation
of CCA is that it can infer only common sources of vari-
ation between data types or tissues, in contrast to JIVE
or PARAFAC, which can infer both joint as well as indi-
vidual sources of variation. On the other hand, JIVE and
CCA can be run on multiple data matrices with differ-
ent numbers of molecular features, while PARAFAC and
iCluster require matched sets of features (and samples)
for each data type. Model complexity also differs sub-
stantially between methods, with PARAFAC exhibiting a
much lower model complexity than an algorithm such as
iCluster. Thus, a comparison of all of these methods is of
paramount interest, and here we do so in a tensorial con-
text, i.e. one where the multi-way data is defined over a
matched set of molecular features (e.g. genes or CpGs)
and samples across all data types, allowing the data to be
brought into the form of a tensor. Specifically, we shall
here consider order-3 data tensors, i.e. data which can be
brought into the form of an array with three dimensions
(often called modes). In our evaluation and comparison
of all multi-way algorithms, we consider both simulated
data as well as data from real epigenome-wide associa-
tion studies (EWAS). We further illustrate potential uses
of our tensorial BSS algorithm (i) to detect cell-type-
independent and cell-type-specific methylation quantita-
tive trait loci (mQTLs) in multi-cell-type or multi-tissue
EWAS and (ii) to detect cancer gene modules deregulated
by copy-number and DNA methylation changes.

Results
Tensorial ICA outperforms JIVE, PARAFAC, iCluster and
CCA on simulated data
Tensorial ICA (tICA) aims to infer from a data tensor
statistically independent sources of data variation, which
should correspond better to underlying biological factors
(‘Methods’). Indeed, since biological sources of data vari-
ation are generally non-Gaussian and often sparse, the
statistical independence assumption implicit in the ICA
formalism can help improve the deconvolution of com-
plex mixtures and thus, better identify the true sources of
data variation (Fig. 1). As with ordinary ICA itself, there

are different ways of implementing tICA, and we here
consider two different flavours: tensorial fourth-order
blind identification (tFOBI) and tensorial joint approxi-
mate diagonalisation of high-order eigenmatrices (tJADE)
(‘Methods’). Specifically, we consider two modified ver-
sions of these, whereby tensorial PCA is applied as a noise
reduction step (also called whitening) prior to implement-
ing tICA, resulting in two algorithms we call tWFOBI and
tWJADE (‘Methods’).
First, we tested the two tICA algorithms, as well as

tensorial PCA (tPCA), on simulated multi-way data con-
sisting of two different data matrices defined over the
same 1000 features (genes) and 100 samples (‘Methods’).
The data for the two matrices was generated with a total
of four sources of variation, two for each matrix, and with
one source in each data matrix describing joint variation,
driven by a total of 100 genes. A total of nine different
noise levels were simulated, ranging from a high signal-to-
noise ratio (SNR) regime (SNR = 3 and noise level = 1)
to a low SNR regime (SNR = 0.6 and noise level = 5). For
each noise level, a total of 1000 Monte Carlo runs were
performed. In each run, we compared the multi-way algo-
rithms in terms of their sensitivity (SE) and specificity (SP)
to detect the 50 genes driving the joint variation. We did
not consider the corresponding performancemeasures for
the individual variation (i.e. the variation specific to one
data type), because not all algorithms infer sources of indi-
vidual variation (e.g. CCA), thus precluding direct com-
parison between them, and because identifying sources of
joint variation is always the main purpose of multi-way
algorithms. The number of components chosen for each
method and the number of genes selected within com-
ponents to compute SE and SP is explained in detail in
‘Methods’. SE and SP values for joint variation of each
algorithm and noise level were averaged over the 1000
runs (‘Methods’). Benchmarking tICA and tPCA against
PARAFAC, CCA, JIVE and iCluster, we observed that
for low noise levels, all algorithms performed similarly,
except PARAFAC, which exhibited significantly worse
SE and SP values (Fig. 2a,c). For larger noise levels, we
observed worse performance for JIVE, CCA and iCluster
compared to the two different tICA methods (tWFOBI
and tWJADE) (Fig. 2, ‘Methods’). Differences in SE and
SP between the tICA methods and JIVE, CCA, iClus-
ter and PARAFAC were statistically significant (Fig. 2b,d).
On this data, and since tICA uses tPCA as a preliminary
step, we did not observe a substantial difference between
tPCA and tICA (Fig. 2). We note that in this evaluation
on the simulated data, we did not consider sparse CCA
(SCCA ), since the sparsity itself does not optimise sensi-
tivity and thus SCCA would perform substantially worse
than CCA (data not shown). Results were unchanged
if we replaced Gaussian distributions (as the sources
of variation) with super-Gaussian Laplace distributions,
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Fig. 1 Decomposing data tensors using independent component analysis. Tensorial ICA (tICA) works by decomposing a data tensor, here depicted
as an order-3 tensor with three dimensions representing features (CpGs/genes), samples and tissue or data type, into a source tensor S and two
mixing matrices defined over tissue/data type and samples, respectively. The key property of tICA is that the independent components in S are as
statistically independent from each other as possible. Statistical independence is a stronger criterion than linear decorrelation and allows improved
inference of sparse sources of data variation. Positive kurtosis can be used to rank independent components to select the most sparse factors. The
largest absolute weights within each independent component can be used for feature selection, while the corresponding component in the mixing
matrices informs about the pattern of variation of this component across tissue/data types and samples, respectively. In the latter case, the weights
can be correlated to sample phenotypes, such as normal/cancer status or genotype. For the first mixing matrix, the weights inform us about the
relation between data types (e.g. if the copy-number change is positively correlated with gene expression), or for a multi-cell EWAS, whether mQTLs
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association study, mQTL methylation quantitative trait locus, mRNA messenger RNA

indicating that our results are not dependent on the
type of data distribution (Additional file 1: Figure S1).

Tensorial PCA/ICA reduces running time compared to JIVE,
PARAFAC and iCluster
Using the same simulated data, we further compared
the algorithms in terms of their running times. A
detailed comparison is cumbersome because the param-
eters specifying the number of components to search
for are not directly comparable and differ substantially
between methods. Nevertheless, using reasonable param-
eter choices for the simulated model above, we found
that tPCA and tICA substantially speed up inference
over methods such as JIVE or iCluster (Table 1). In fact,
even when specifying a larger number of components for
tPCA/tICA, compared to PARAFAC, JIVE or iCluster,
the latter were substantially slower (Table 1), whilst also
exhibiting marginally worse SE and SP values (Fig. 2). In
general, we observed tICAmethods to be at least 50 times

faster than PARAFAC, and at least 100 times faster than
JIVE and iCluster (Table 1). For much larger datasets, we
found the application of iCluster to be computationally
demanding and not practical. Thus, in subsequent analy-
ses on real datasets, we decided to benchmark tPCA/tICA
against PARAFAC, CCA, SCCA and JIVE.

tICA exhibits improved power in a real multi-tissue
smoking EWAS
Next, we asked if tPCA/tICA also leads to improved
power on real data. An objective evaluation on real data
is challenging due to the difficulty of defining a gold-
standard set of true positive associations. Fortunately,
however, a meta-analysis of several smoking EWAS in
blood has demonstrated that smoking-associated differ-
entially methylated CpGs (smkDMCs) are highly repro-
ducible, defining a gold-standard set of 62 smkDMCs
(‘Methods’) [23]. Recently, we also showed that effectively
all 62 smkDMCs are associated with smoking exposure if



Teschendorff et al. Genome Biology  (2018) 19:76 Page 4 of 18

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Noise Level

S
E

a

CCA
JIVE
TPCA
TWFOBI
TWJADE
PARAF
iCLUSTER

1 2 3 4 5

0.
94

0.
96

0.
98

1.
00

Noise Level

S
P

c
SE

b High Noise Level

0.0 0.1 0.2 0.3 0.4 0.5 0.6

CCA

JIVE

TPCA

TWFOBI

TWJADE

PARAFAC

iCLUSTER

SP

d High Noise Level

0.94 0.95 0.96 0.97 0.98

CCA

JIVE

TPCA

TWFOBI

TWJADE

PARAFAC

iCLUSTER

Statistical Significance

CCA
JIV

E
TPCA

TW
FOBI

TW
JA

DE

PA
RAFA

C

iC
LU

STER

P<1e−50 P<1e−10 P<0.001 n.s

Statistical Significance

CCA
JIV

E
TPCA

TW
FOBI

TW
JA

DE

PA
RAFA

C

iC
LU

STER

P<1e−50 P<1e−10 P<0.001 n.s

Fig. 2 Comparison of multi-way algorithms on simulated data. a Sensitivity (SE) versus noise level (x-axis) for seven different methods as indicated,
as evaluated on simulated data (data points are averages over 1000 Monte Carlo runs). In each case, the data tensor was of size 2 × 100 × 1000, i.e.
two data types, 100 samples and 1000 genes. b Left panel: Box plots of SE values for the same seven methods for the largest noise level (5). Each box
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the alternative hypothesis is that the method specified in the row has a higher SE than the method specified in the column. c,d As a,b, but for the
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DNAmethylation (DNAm) is measured in buccal samples
[2]. Thus, one way to compare algorithms objectively is in
terms of their sensitivity to identify these 62 smkDMCs
in a matched blood-buccal EWAS consisting of Illu-
mina 450k DNAm profiles for a total of 152 women
(‘Methods’, [2]). Because there are two distinct samples
(one blood plus one buccal) per individual, most of the
variation is genetic. Hence, to reduce this background
genetic variation, we first computed the SE values on
a reduced data matrix obtained by combining the 62
smkDMCs with 1000 randomly selected non-smoking
associated CpGs (a total of 100 Monte Carlo randomi-
sations). We considered both the maximum SE value
attained by a component, as well as the overall SE obtained
by combining selected CpGs from components signifi-
cantly enriched for smkDMCs (‘Methods’). This revealed
that JIVE, CCA/SCCA and PARAFACwere all superseded
by tPCA and tICA (Fig. 3a,b). Differences between tPCA
and tICA were generally not significant (Fig. 3a), although

tWFOBI attained higher combined SE values than tPCA
and tWJADE (Fig. 3b).
Next, we scaled up the data matrices by combining the

62 smkDMCs with a larger set of 10 000 non-smkDMCs,
recomputing the SEs (again for 100 different Monte Carlo
selections of 10 000 non-smkDMCs). As expected, with
an increase in the number of CpGs, the SE of all algo-
rithms dropped, likely driven by increased confounding
due to genetic variation (Fig. 3c,d). With the increase
in probe number, tICA (tWFOBI and tWJADE) outper-
formed not only JIVE, PARAFAC and CCA/SCCA, but
also tPCA (Fig. 3c,d), in line with the increased sparsity of
the smoking-associated source of variation.
To illustrate how the output produced by tICA can

be used for valuable inference, we focus on a particular
Monte Carlo run and a specific component (estimated
using tWJADE), which obtained a high sensitivity for
smkDMCs (component 12, Fig. 4a). We note that the two
independent components (ICs) S1,12,i and S2,12,i exhibited
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Table 1 Comparison of running times of multi-way algorithms

Algorithm Number of Runtime (s) Runtime (s)
components ng = 1000 ng = 2000

CCA K = 3 0.57 ± 0.11 1.15 ± 0.12

K = 12 0.58 ± 0.14 1.34 ± 0.13

JIVE jV = 1, iV = (1, 1) 28.44 ± 4.04 23.84 ± 4.18

jV = 4, iV = (4, 4) 137.77 ± 44.94 173.20 ± 60.35

tPCA (2,2) 0.57 ± 0.17 1.35 ± 0.24

(2,6) 0.61 ± 0.15 1.25 ± 0.23

tWFOBI (2,2) 0.65 ± 0.16 1.50 ± 0.21

(2,6) 0.76 ± 0.14 1.53 ± 0.25

tWJADE (2,2) 0.66 ± 0.19 1.44 ± 0.24

(2,6) 1.23 ± 0.21 2.71 ± 0.28

PARAFAC R = 6 22.37 ± 2.53 37.32 ± 4.51

R = 12 48.11 ± 2.98 100.83 ± 7.92

iCLUSTER K = 3 79.28 ± 14.16 595.06 ± 70.67

K = 12 114.28 ± 30.02 688.74 ± 166.85

Seven multi-way algorithms in terms of the running times to infer components of
variation (runtime) in the simulation model considered in Fig. 2. Estimates are
medians and median absolute deviations over 100 Monte Carlo runs for when the
signal-to-noise ratio is 1 (i.e. noise level = 3 in Fig. 2). The second column specifies
the parameter values for the number of components used in each algorithm. The
first rows for eachmethod are as follows. For CCA, three sets of canonical vector pairs
(K = 3) are shown. For JIVE, the rank of joint variation (jV = 1) and rank of individual
variation (iV = 1) for each data type are shown. For TPCA, TWFOBI and TWJADE, we
inferred two components for both the data type and sample dimensions. For
PARAFAC, the rank of decomposition was R = 6 and for iCLUSTER the maximum
number of clusters K was set to 3. For the second rows, the total number of
components is exactly matched (12) for all methods. The running times are reported
for two scenarios differing in the number of genes ng , as indicated, and were
obtained on a Dell PowerEdge R830 with Intel Xeon E5-4660 v4 2.2 GHz processors

a less correlative structure than the corresponding com-
ponents projected onto the blood and buccal dimensions,
demonstrating that tWJADE does indeed identify compo-
nents that are less statistically dependent (Fig. 4a). Con-
firming the high sensitivity of these ICs, the 62 smkDMCs
were highly enriched among CpGs with the largest abso-
lute weights in any one of the two ICs (Fig. 4a, Fisher
test P < 1 × 10−36 and SE = 41/62 ∼ 0.66). We fur-
ther verified that the 41 enriched smkDMCs exhibited
strong Pearson correlations between their DNAm profiles
in blood and buccal, as required since smoking exposure
is associated with similar DNAm patterns in these two tis-
sue types (Fig. 4b) [2]. Further confirming that component
12 is associated with smoking exposure, we correlated the
weights of the corresponding column of the estimated
mixing matrix with two different measures of smoking
exposure, demonstrating in both cases a strong associa-
tion (Fig. 4c). Thus, application of tICA on DNAm data
results in components that are readily interpretable in
terms of their associations with known smoking exposure
across features and samples.

tICA identifies mQTLs in a multi-cell-type EWAS
Having established the better performance of tICA over
other state-of-the-art methods, we next considered the
application of tICA (specifically tWFOBI) in an EWAS
of 47 healthy individuals, for which three purified cell
types (B cells, T cells and monocytes) have been profiled
with Illumina 450k DNAm bead arrays [3] (‘Methods’).
We chose tWFOBI over tWJADE because of its compu-
tational efficiency (Table 1). Given that three cell types
were measured for each individual, the expectation is
that a significant amount of inter-individual variation
in DNAm would correlate with genetic variants (i.e.
mQTLs) [24]. Thus, it is important to evaluate the ability
of tICA to detect mQTLs and to determine whether
these are blood-cell-subtype specific or not. Applying
tWFOBI to the data tensor for the 3 cell types × 47
samples × 388 618 probes, we inferred a total of 11 ICs
in the sample-mode space (yielding 33 ICs across sample
and cell-type modes combined). For each of these 11 ICs
in each cell type, we ranked probes according to their
absolute weights and tested the enrichment of the top-
500 probes against a high-quality list of 22 245 mQTLs
as derived in [25] (‘Methods’). This high-confidence
list of mQTLs all passed a very stringent unadjusted P
value threshold of P = 1 × 10−14 in each of five dif-
ferent human cohorts, encompassing five different age
groups [25]. We observed strong statistical enrichment
for mQTLs in many ICs (Fig. 5a). We also tested sep-
arately for enrichment of chromosomes. This revealed
enrichment, notably of chromosomes 6 and 21, but also
of 1, 4, 7 and 8 (Fig. 5b). For instance, IC-9 was enriched
for mQTLs and chromosome 1 in all three cell types
(Fig. 5a,b). Supporting this, we found a clear example
of a cell-type-independent mQTL mapping to the 1q32
locus of the PM20D1 gene (Fig. 5c), a major genome-wide
association study (GWAS) locus associated with Parkin-
son’s disease [26]. Focusing on chromosome 6, another
cell-type-independent mQTL mapped to MDGA1
(Additional file 1: Figure S2), a major susceptibility
locus for schizophrenia [27]. Other mQTLs driving
ICs were cell type specific, e.g. mQTLs mapping to
ATXN1 and SYNJ2 were dominant in the ICs projected
along B cells, but not among T cells or monocytes
(Additional file 1: Figure S3). Although assessing
whether mQTLs are truly cell type independent or cell
type specific is not possible without genotype infor-
mation, we nevertheless estimated, based on the IC
weight distribution of the mQTLs across cell types,
that approximately 75% of the mQTLs enriched in ICs
were cell type independent (Additional file 1: Figure S4).
This estimate of the non-specificity of blood-cell-
subtype mQTLs is similar to that obtained by a previous
study (≥79%) using neutrophils, monocytes and T
cells [28].
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Fig. 3 Comparison of multi-way algorithms on a multi-tissue smoking EWAS. a Left panel: Box plot of sensitivity (SE) values for each of the seven
methods as applied to the data tensors of dimension 2 × 152 × 1062 (two tissues, 152 samples and 1000 randomly selected non-smkDMCs plus 62
smkDMCs) and for 100 different selections of non-smkDMCs. SE(Max) is the maximum sensitivity to capture 62 smkDMCs among all inferred
components. Right panel: Heat map of the corresponding one-tailed paired Wilcoxon rank sum test, benchmarking the SE values of each method
(y-axis) against each other method (x-axis). b As a, but now for the combined sensitivity (SE(All)) obtained from all enriched components. c,d As a,b,
but now for data tensors of dimension 2 × 152 × 10 062 and for 100 randomly selected 10 000 non-smkDMCs. EWAS epigenome-wide association
study, SE sensitivity, smkDMC smoking-associated differentially methylated CpG, SP specificity

Next, we validated the mQTLs found using an inde-
pendent dataset. Thus, we applied tWFOBI to the blood-
buccal EWAS considered earlier. We inferred a source
tensor of dimension 2 × 26 × 447 259, i.e. a total of 52
ICs, defined over two tissue types and 26 components in
sample-mode space. As before, we observed very strong
enrichment, notably for the same chromosomes 6 and 21
(Additional file 1: Figure S5). The previously found mQTL
at the PM20D1 locus was also prominent in one of the
inferred ICs in this blood-buccal EWAS, confirming its
validity and further supporting that this mQTL is cell type
independent (Fig. 5d). Overall, from the pure blood-cell-
subtype EWAS, we detected a total of 1763 mQTLs, of
which 547 were also observed in the blood-buccal EWAS
(odd ratio = 12.8, Fisher test P < 1 × 10−50, Fig. 5e).
Thus, we can conclude that tWFOBI is able to identify
components of variation across cell types and samples that
capture a significant number of mQTLs, without matched
genotype information.

tICA outperforms JIVE and PARAFAC in their sensitivity to
detect mQTLs
Given the ability of tICA to detect mQTLs, we next
benchmarked the performance of all algorithms in terms
of their sensitivity to detect mQTLs in the EWAS of
the three purified blood cell subtypes considered earlier.
Because of the presence of three cell types, for this anal-
ysis we excluded CCA and sCCA since these methods
are designed for only two data matrices. As before, we
computed two sensitivity measures to detect the 22 245
mQTLs from the Aries database [25], designed to assess
the overall sensitivity across all inferred components,
and another designed to assess the maximum sensitivity
attained by any single component. Varying the number
of top-ranked selected CpGs in components from 500
up to 22 245, we observed that over the whole range,
tFOBI and tJADE were optimal, clearly outperforming
both PARAFAC and JIVE (Fig. 6a). The maximum sensi-
tivity attained by any individual component was also best
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for the tICA methods (Fig. 6b). To better evaluate the
enrichment of these components for mQTLs, we also con-
sidered the ratio of the sensitivity to the maximum possi-
ble sensitivity, recording the maximum value attained by
any component. This demonstrated that when selecting
the top-500 CpGs, the components inferred using tICA
could capture over 60% of the maximum possible num-
ber of mQTLs, i.e. over 60% of the 500 CpGs mapped
to mQTLs (Fig. 6c). In contrast, JIVE components con-
tained only just over 40% of mQTLs (Fig. 6c).We note that
although the performance of JIVE could be significantly
improved by also including the components of individual
variation, that approximately 80% of mQTLs have been
estimated to be independent of blood cell subtype [28],
supporting the view that JIVE is less sensitive in capturing

cell-type-independent mQTLs. All these results were sta-
ble to repeated runs of the algorithms, as only PARAFAC
exhibited variation between runs. However, this variation
was relatively small (Additional file 1: Figure S6).
Next, we repeated the same sensitivity analysis to

detect mQTLs in our buccal-blood EWAS, now also
including CCA and sCCA (as there are only two tis-
sue/cell types). Confirming the previous analysis, tICA
methods outperformed JIVE and PARAFAC by over
20% in terms of the overall sensitivity, whilst also
attaining a better sensitivity at the individual compo-
nent level (Additional file 1: Figure S7). Of note, the
sensitivity of both CCA and sCCA was substantially
worse, since mainly only the top canonical vector was
significant.



Teschendorff et al. Genome Biology  (2018) 19:76 Page 8 of 18

OR

0 10 20 30 40

1
2
3
4
5
6
7
8
9

10
11

IC

a mQTL enrichment of ICs

B T M
P<1e-10
P<1e-5
P<0.001
P<0.05
P=n.s Chromosome

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

B-cellb

Chromosome

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

T-cell

Chromosome

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Monocyte

S
[B

,9
,*

]

-
2

0
2

4
6

8

Cell-type independent mQTL

B-cell

c
PM20D1

S
[T

,9
,*

]

-
5

0
5 T-cellPM20D1

S
[M

,9
,*

]

-
4

0
2

4
6

8

Monocyte

200 205 210 215 220

Genomic Position Chr-1 (Mb)

PM20D1

S
[W

B
,1

3,
*]

Validation of PM20D1 mQTL

-
5

0
5

10

Whole Blood

d
PM20D1

S
[B

C
,1

3,
*]

-
5

0
5

10 BuccalPM20D1

200 205 210 215 220

Genomic Position Chr-1 (Mb)

e
Blood-
Buccal

Purified
Cell-types

OR=12.8
P<1e-50

B-cell

T-cell
Monoc.

Fig. 5 Tensorial ICA identifies components enriched for mQTLs in an EWAS of purified cell types. a Left panel: Bar plot of the odds ratio (OR) of
enrichment of the top-ranked 500 CpGs for mQTLs in each of the 11 ICs and cell types, as indicated. Right panel: Corresponding heat map indicating
the P values of enrichment as estimated using a one-tailed Fisher’s exact test. b Heat maps of enrichment P values of the top-ranked 500 CpGs from
each IC for chromosomes. The significance of P values is indicated in different colours using same scheme as in a. c An example of a
cell-type-independent mQTL mapping to chromosome 1. Plots show the weights of the corresponding components for B cells, T cells and
monocytes, with the selected CpGs mapping to the mQTL indicated in red. d Validation of the mQTL in c in an independent blood-buccal EWAS. f
Venn diagram showing the overlap of mQTLs derived from the ICs in the purified cell-type EWAS with those derived from the blood-buccal EWAS.
The odds ratio (OR) and one-tailed Fisher test P value of the overlap are given. Chr chromosome, EWAS epigenome-wide association study, IC
independent component, mQTL methylation quantitative trait locus, OR odds ratio

Application of tICA to multi-omic cancer data reveals
dosage-independent effects of differentially expressed
genes
To demonstrate further the ability of tICA to retrieve
interesting patterns of variation in a multi-omic context,
we applied it to the colon cancer The Cancer Genome
Atlas (TCGA) dataset [1], comprising a matched subset
of copy-number variation (CNV), DNAm and RNA-seq
data over 13 971 genes and 272 samples (19 normals plus
253 cancers) [29]. We applied tWFOBI to the resulting
3 × 272 × 13 971 data tensor, inferring a total of 3 × 37
ICs, which were ranked in order of decreasing kurtosis
(‘Methods’). Of the 37 ICs, 20 correlated with nor-

mal/cancer status (P < 0.05/37 ∼ 0.001), with four
of these capturing correlations between CNV and gene
expression (Additional file 1: Table S1). All four ICs
were strongly enriched for specific chromosomal bands
(Additional file 1: Table S1), in line with those reported
in the literature [1, 30], and one of these (IC-35) also
exhibited concomitant correlation between DNAm and
gene expression (Additional file 1: Table S1). Plotting the
weights of IC-35 along the CNV, DNAm and mRNA
axes confirmed the ability of tWFOBI to identify pat-
terns of mRNA expression variation, which are driven
by local CNV and which also associate with local vari-
ation in DNAm (Fig. 7a). The corresponding weights



Teschendorff et al. Genome Biology  (2018) 19:76 Page 9 of 18

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

Top# Selected CpGs per comp.

S
E

(A
LL

)

a

tPCA
tWFOBI
tWJADE
JIVE
PARAFAC

0 5000 10000 15000 20000

0.
0

0.
1

0.
2

0.
3

0.
4

Top# Selected CpGs per comp.

S
E

(M
A

X
)

b
tPCA
tWFOBI
tWJADE
JIVE
PARAFAC

500 1500 2500 3500 4500 5500 6500

Top# Selected CpGs per comp.

S
E

(M
A

X
)/

M
ax

T
he

or
S

E

0.
0

0.
2

0.
4

0.
6

0.
8

c
tPCA
tWFOBI
tWJADE
JIVE
PARAFAC

Fig. 6 tICA outperforms JIVE and PARAFAC in detecting mQTLs. a Plot of the overall sensitivity (SE(ALL), y-axis) against the number of top-ranked
CpGs selected in a component (x-axis) for five different algorithms. b As a, but now for the maximum sensitivity attained by any single component
(SE(MAX), y-axis). c Bar plot of the maximum sensitivity attained by any single component expressed as a fraction of the maximum possible value
given the number of selected top-ranked CpGs per component. mQTL methylation quantitative trait locus, SE sensitivity

along the sample mode confirmed the association with
normal/cancer status (Fig. 7b). Scatterplots of the z-
score normalised CNV and DNAm patterns against gene
expression for one of the main driver genes (STX6) con-
firmed the strong associations between CNV/DNAm and
mRNA expression (Fig. 7c). Strikingly, we observed that
while variations in copy number and DNAm of STX6
modulate expression differences between colon cancers,
that the deregulation of STX6 expression between normal
and cancer is clearly independent of copy-number and
DNAm state (Fig. 7c).
To validate this important finding and determine the

extent of this phenomenon, we analysed five additional
TCGA datasets (see ‘Methods’), but now using a more
direct approach. For each TCGA set, we first identified the
subset of differentially expressed genes (DEGs) between
normal and cancer (adjusted P value threshold of 0.05)
that also exhibit a positive correlation between expres-
sion and copy number as assessed over cancers only,
i.e. we selected those DEGs with a CNV-dosage effect
across cancers. For those overexpressed in cancer, we then
asked if individual tumours exhibiting a neutral CNV state
(the CNV state of the normal samples) or a CNV loss
still exhibited overexpression relative to the normal sam-
ples. Remarkably, we observed that a very high fraction
of these DEGs remained overexpressed when restrict-
ing to the subset of cancer samples with low or neutral
CNV, thus indicating that their overexpression in cancer

is not dependent on CNV state, despite their expres-
sion across individual cancer samples being modulated by
CNV state (Fig. 8a). This pattern of differential expression
being independent of CNV state was also seen for DEGs
with a CNV-dosage effect across tumours and which
were underexpressed in cancer. Indeed, restricting to can-
cers with neutral or copy-number gain (Fig. 8a), these
genes were generally still underexpressed in these can-
cer samples compared to normal tissue. Similar patterns
were observed when DEGs were selected for DNAm-
expression dosage effects across tumours (Fig. 8a). Spe-
cific examples for lung squamous cell carcinoma (LSCC)
confirmed that DEGs in LSCC that exhibit a CNV or
DNAm dosage effect across tumours exhibit differential
expression that is not dependent on CNV or DNAm state
(Fig. 8b,c). Thus, these data support the finding obtained
using tICA, demonstrating the value and power of tICA to
extract biologically important and novel patterns of data
variation in a multi-omic context.

Discussion
Here we have assessed and benchmarked a novel suite
of tensorial decomposition algorithms (tPCA, tWFOBI,
and tWJADE) against a number of state-of-the-art alter-
natives. Specifically, while popular multi-way algorithms
such as JIVE, iCluster or CCA/SCCA are in principle
applicable to non-tensorial multi-way data (e.g. if the
features across data types are distinct or not matched),
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when assessed in a tensorial context (i.e. when all
dimensions are matched), these established methods
are outperformed by the tensorial PCA and ICA meth-
ods considered here. This was demonstrated not only
on simulated data, but also in the context of two real
EWAS, where tICA methods were significantly more
powerful in detecting differentially methylated CpGs
associated with an epidemiological factor (smoking)
and single-nucleotide polymorphisms (SNPs; mQTLs).
For a real EWAS, tICA also outperformed tPCA, in
line with the fact that biological sources of data varia-
tion are non-Gaussian and sparse, and therefore, more
readily identified using statistical independence as a
(non-linear) deconvolution criterion (as opposed to the
linear decorrelation criterion used in tPCA). Thus, this
extends the improvements seen for ICA over PCA on
ordinary omic data matrices [13, 16] to the tensorial
context. In addition, tPCA and tICA offer substantial
(50–100-fold) speed advantages over methods like
iCluster, JIVE and PARAFAC, which can become com-
putationally demanding or even prohibitive. Further
application of tICA to a multi-cell-type EWAS (B cells,
T cells and monocytes) revealed its ability to identify
loci enriched for cis-mQTLs (as cis-mQTLs make up
over 90% of validated mQTLs in the Aries database [25]).

Indeed, tICA achieved relatively high sensitivity values
with top-ranked CpGs in components containing over
60% mQTLs. Given that here we were limited because
we did not have access to matched genotype information,
our results demonstrate the potential of tICA to detect
mQTLs in the absence of such genotype information.
For instance, it identified many cell-type-independent
mQTLs, of which a substantial proportion have been val-
idated in an independent blood-buccal EWAS study, and
with several mapping to key GWAS loci for important dis-
eases like Parkinson’s and schizophrenia. Although most
of the identified mQTLs were blood cell type indepen-
dent, tICA estimated that approximately 25% of mQTLs
may be blood cell type specific, in line with the estimate of
20% obtained by Blueprint using a slightly different com-
bination of blood cell subtypes (neutrophils, monocytes
and T cells) [28]. We note that application of tICA to
any multi-cell-type or multi-tissue EWAS is likely to have
components strongly enriched for mQTLs, since for the
same individuals, DNAm is being measured in at least two
different tissues or cell types, and therefore, genetic effects
that do not depend on cell type are bound to explain most
of the inter-individual variation [24, 31]. Thus, we con-
clude that tICA could be an extremely versatile tool for
identifying novel candidate mQTLs in multi-cell EWAS
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for which matched genotype information may not be
available. tICA may also help to identify groups of widely
separated mQTLs that are regulated by the same SNP and
bound e.g. by a common transcription factor [32].
More generally, tICA can be applied to any multi-way

data tensor to identify complex patterns of variation
correlating with phenotypes of interest and the under-
lying features driving these variation patterns. This is
accomplished by first correlating inferred ICs of varia-
tion in the sample-mode space with sample phenotype

information (e.g. age, smoking, normal/cancer status
and genotype) and subsequently selecting the features
with the largest weights in these correlated components.
As an illustrative example, the application of tICA to a
multi-omic TCGA dataset revealed a deep novel insight:
namely, that most DEGs in cancer that exhibit a CNV
or DNAm dosage-dependent effect on expression across
individual tumours exhibit differential expression relative
to the normal tissue in a manner that does not, in fact,
depend on CNV or promoter DNAm state. In other
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words, although CNV and DNAm variation strongly
modulates expression variation of these DEGs across
individuals tumours, for most of the genes exhibiting this
CNV or DNAm dosage-dependent expression pattern,
their deregulation relative to normal cells appears to be
independent of the underlying CNV or promoter DNAm
state. Although it is clear that differential expression in
cancer can be the result of many mechanisms other than
CNV or DNAm, our observation is significant, because
we did not just select cancer DEGs, but the subset of
these that exhibit a CNV or DNAm dosage-dependent
effect on expression across tumours. The implications of
our observation are important, given that many cancer
classifications have been derived from unsupervised
(clustering) analyses that were performed using only
tumours, thus ignoring their patterns of variation relative
to the normal reference state. Other large cancer studies,
such as METABRIC [33], which did not profile normal
tissue samples, identified novel candidate oncogenes and
tumour suppressors solely based on CNV-dosage effects
on gene expression across cancers, yet our results indicate
that this could identify many false positives in the sense
that their overexpression or underexpression in cancer is
not dependent on the underlying CNV state.We point out
that although this finding could have been obtained with-
out application of a multi-way algorithm, that this would
have required substantial prior insight. Therefore, this
subtle pattern of variation across multiple data types was
only discovered thanks to applying an agnostic method
like tICA.
Although we have shown the value of tICA in identi-

fying mQTLs and interesting patterns of variation across
different data types in cancer-genome data, it is also
important to discuss some of the limitations, which, how-
ever, also apply to all the other multi-way algorithms con-
sidered here. In particular, identifying sources of DNAm
variation associated with epidemiological factors in a
multi-tissue EWAS setting can be difficult due to con-
founding genetic variation. Indeed, in our application to a
buccal-blood Illumina 450k EWAS, we found that the sen-
sitivity of all algorithms dropped very significantly if they
were applied to all ∼480 000 CpGs. Thus, it is important
to devise improvements to these tensorial methods. For
instance, one solutionmay be to first perform dimensional
reduction using supervised feature selection on sepa-
rate data types, and subsequently applying the tensorial
methods on a reduced feature space. Alternatively, super-
vised tensorial methods, such as tensorial slice inverse
regression [34], may help to identify sources of variation
specifically associated with epidemiological variables.

Conclusion
In summary, the combined tPCA and tICA methods pre-
sented here will be an extremely valuable tool for analysis

and interpretation of complex multi-way data, includ-
ing multi-omic cancer data, as well as for the detection
and clustering of mQTLs in multi-cell-type EWAS where
genotype information may not be available.

Methods
Below we briefly describe the main tensorial BSS algo-
rithms [8, 9, 35] as implemented here. For more technical
details, see [8, 9, 35]. We also provide brief details of
our implementation of JIVE, PARAFAC, iCluster, CCA
and SCCA. All these implementations are available as R
functions within Additional file 2.

Tensorial PCA
We assume that we have i = 1, . . . , p independent and
identically distributed realisations of amatrixXi ∈ Rp1×p2 ,
which can be structured as an order-3 data tensor X of
dimension p1 × p2 × p. Then, tPCA decomposes X as
follows:

X = S �2
m=1 �m, (1)

where S is also a 3-tensor of dimension p1×p2×p and�m
(m = 1, 2) are orthogonal pm × pm matrices, i.e. �T

m�m =
Ipm . Here, � denotes the tensor contraction operator. For
instance, for Z an r-tensor of dimension p1 × · · · × pr and
A a matrix of dimension pm × pm, Z �m A describes the
r-tensor with entries (Z �m A)i1...im...ir = Zi1...jm...irAimjm
where the Einstein summation convention is assumed (i.e.
indices appearing twice are summed over, e.g. MikMin =∑

i MikMin = (
MTM)kn

)
. Thus, S �2

m=1 �m is a 3-tensor
with entries

(
S �2

m=1 �m
)
i1i2i = Sk1k2i(�1)i1k1(�2)i2k2 . (2)

In the above tPCA decomposition, the entries Sk1k2 are
assumed to be linearly uncorrelated. Introducing the oper-
ator �−m, which for general r is defined in entry form by

(X �−m X)uv = Xi1...im−1uim+1...ir iXi1...im−1vim+1...ir i (3)

uncorrelated components, means that the covariance
matrix S �−m S = �m is diagonal of dimension pm × pm.
Its entries are the ranked eigenvalues of the m-mode
covariance matrix (X �−m X), which can be expressed as

(X �−m X) = �m�m�T
m. (4)

These ranked eigenvalues are useful for performing
dimensional reduction, i.e. projecting the data onto sub-
spaces carrying significant variation. For instance, one
could use random matrix theory (RMT) [17, 36] on each
of the m-mode covariance matrices above to estimate the
appropriate dimensionalities d1, . . ., dr . This would lead to
a tPCA decomposition of the form X = S�2

m=1 �
(R)
m , with

S a d1 × d2 × p tensor and each �
(R)
m a reduced matrix

obtained from �m by selecting the first dm columns. We
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note that for any of the original dimensions p1, . . . , pr that
are small, such dimensional reduction is not necessary.
In the applications considered here, our data tensor X is

typically of dimension nt × ns × nG, where nt denotes the
number of data or tissue types, ns the number of samples
and nG the number of features (e.g. genes or CpGs). We
note that the tPCA decomposition is performed on the
first two dimensions (typically data type and samples), so
there are two relevant covariance matrices. In the special
case of a data matrix (a 2-tensor), standard PCA involves
the diagonalisation of one data covariance matrix.Hence,
for a 3-tensor, there are two data covariance matrices, and
for an (r + 1)-tensor, there are r. Here we use tPCA as
implemented in the tensorBSS R package [37].

tICA: the tWFOBI and tWJADE algorithms
For a data tensor X ∈ Rp1×···×pr×p, the tICA model is

X = S �r
m=1 �m, (5)

but now with the p1, . . . , pr random variables Sk1...kr ∈ Rp

(S ∈ Rp1×...×pr×p) mutually statistically independent and
satisfying E[Sk1...kr ]= 0 and Var[Sk1...kr ]= I. We note that
X could be a suitably dimensionally reduced version X(R)

of X, such as that obtained using tPCA. For instance, in
our applications, X(R) would typically be a 3-tensor of
dimension nt × dS × nG where dS < nS. This dimen-
sional reduction, and optionally the scaling of variances, is
known as whitening (W).
As with ordinary ICA, there are different algorithms for

inferring mutually statistical ICs Sk1...kr . One algorithm is
based on the concept of simultaneously maximising the
fourth-order moments (kurtosis) of the ICs (since by the
central limit theorem, linear mixtures of these are more
Gaussian and therefore, have smaller kurtosis values).
This approach is known as fourth-order blind identifica-
tion (FOBI) [38]. Alternatively, one may attempt a joint
approximate diagonalisation of higher order eigenmatri-
ces (JADE) [35, 39]. We note that although we use the
tFOBI and tJADE functions in tensorBSS, that these do
not implement tPCA beforehand. Hence, in this work we
implement modified versions of tFOBI and tJADE, which
include a prior whitening transformation with tPCA. We
call these modified versions tWFOBI and tWJADE.

Benchmarking of tPCA and tICA against other tensor
decomposition algorithms
JIVE (joint and individual variation explained) [5] is a
powerful decomposition algorithm that identifies both
joint and individual sources of data variation, i.e. sources
of variation that are common and specific to each data
type. For two data types (i.e. two tissue types or two types
of molecular features), three key parameters need to be
specified or estimated to run JIVE. These are the num-
ber of components of joint variation (dJ) and the number

of components of variation that are specific to each data
type (dI1 and dI2). On simulated data, these parameters
are chosen to be equal to the true (known) values, i.e. for
our simulation model, dJ = 1, dI1 = 1 and dI2 = 1. In our
real-data applications, dJ is estimated using RMT on the
concatenated matrix obtaining by merging the two data
type matrices together (after z-score normalising features
to make them comparable), whilst dIi are estimated using
RMT [17]. We note that these are likely upper bounds on
the true number of individual sources of variation that are
not also joint. We implemented JIVE using the r.jive R
package available from http://www.r-project.org.
PARAFAC (parallel factor analysis) [4, 6] is a tensor

decomposition algorithm in which a data tensor is decom-
posed into the sum of R terms. Each term is a factorised
outer product of rank-1 tensors (i.e. vectors) over each
mode. Thus, the one key parameter is R, which is the
number of terms or components in the decomposition.
In our simulation model, we chose R = 4. Although one
of the two sources of variation in each data type is com-
mon to both (hence, there are three independent sources),
we nevertheless ran PARAFAC with one additional com-
ponent to assess its ability to infer components of joint
variation more fairly. In the real-data applications, we
estimated R as

∑nt
i=1 dIi − dJ (with nt the number of tis-

sue or cell types), since this should approximately equal
the total number of independent sources of variation. We
implemented PARAFAC using the multiway R package
available from http://www.r-project.org.
iCluster [7] is a joint clustering algorithm for multi-way

data. It models joint and individual sources of variation as
latent Gaussian factors. The key parameter is K, which is
the total number of clusters to infer. Although for the sim-
ulated data there were only three independent sources of
variation, we chose K = 4 to assess more fairly the ability
of the algorithm to infer the joint variation (choosingK=3
would force the algorithm to find the source of joint vari-
ation). We implemented iCluster using the iCluster
R package available from http://www.r-project.org. CCA
[20] and its sparse version, sparse CCA (sCCA/SCCA)
[21, 22], are methods to identify joint sources of varia-
tion (called canonical vectors) between two data matrices,
where at least one of the dimensions is matched across
data types. Here we implement the version of CCA and
sCCA in the R package PMA available from http://www.r-
project.org. One key parameter is K, the maximum num-
ber of canonical vectors to search for. Another parameter
is the number of permutations used to estimate the sig-
nificance of the covariance of each of the K canonical
vectors. In each permutation, one of the data matrices
is randomised (say by permuting the features around)
and CCA/sCCA is reapplied. Since the data matrices are
typically large, the distribution of covariances for the per-
muted cases is very tight. Thus, even 25 permutations are

http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
http://www.r-project.org
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sufficient to estimate the number of significant canon-
ical vectors reasonably well. The number of significant
canonical vectors was defined as the number of compo-
nents that exhibit observed covariances larger than the
maximum value obtained over all 25 permutations, and
is, thus, bounded above by K. In the non-sparse case, the
two penalty parameters were chosen to be equal to 1,
which means no penalty term is used. For sCCA, we esti-
mated the best penalty parameters using an optimisation
procedure, as described in [21, 22], with the number of
permutations set to 25 and the number of iterations equal
to 15. On the simulated data, we ran CCA with K = 3,
as K needs to specify only the maximum number of com-
ponents to search for (the actual number of significant
canonical vectors is one in our instance, as we have one
source of joint variation). In the real-data applications, we
chose K to be equal to dJ, as estimated using the proce-
dure for JIVE, and used a larger number of iterations (50)
per run.

Evaluation on simulated data
Here we describe the simulation model. The model first
generates two data matrices of dimension 1000×100, rep-
resenting two data types (e.g. DNA methylation and gene
expression) where rows represent features and columns
samples. We assume that the column and row labels (i.e.
samples and genes) of the two matrices are identical and
ordered in the same way. We assume one source of indi-
vidual variation (IV) for each data matrix, each driven
by 50 genes and 10 samples with the 50 genes and 10
samples unique to each data matrix. We also assume one
source of common variation driven by a common set of 20
samples. The genes driving this common source of varia-
tion, however, are assumed distinct for each data matrix.
In total, there are 100 genes (50 for each data matrix)
associated with this joint variation (JV). For the 50 genes
driving the JV in one data type and the 20 samples asso-
ciated with this JV, we draw the values from a Gaussian
distribution N (e, σ), whereas for the other 50 genes in
the other data type, we draw them from N (−e, σ), all
with e = 3 and σ representing the noise level. Like-
wise for the IV, we use Gaussians N (e, σ). The rest of
the data is modelled as noise N (0, σ). We consider a
range of nine noise levels, with σ ranging from 1 to 5
in steps of 0.5. Thus, at σ = 3, the SNR = e/σ =
1. For each noise level, we perform 1000 Monte Carlo
runs, and for each run and algorithm, we estimate SE
and SP for correctly identifying the 100 genes driving
the JV.
For tPCA, tWJADE and tWFOBI, SE and SP were

calculated as follows. We inferred a total of 12 compo-
nents over the combined data type and sample modes
(2 in data type mode × 6 in sample space). We then
projected the inferred components onto the original data-

type dimensions, using the inferred 2 × 2 mixing matrix.
For each data type and each of the six components, we
then selected the top-ranked 50 genes by absolute weight
in the component. This allowed us to compute a SE and
SP value for each data type and component. For each com-
ponent, we then averaged the SE and SP values over the
two data types. In the last step, we select the component
with the largest SE and SP value and record these values.
We note that the resulting SE and SP values are not depen-
dent on choosing 12 components. As long as the number
of estimated components is larger than the total number
of components of variation in the data (which for the sim-
ulated data is four), the results are invariant to the number
of inferred components.
For CCA, which can only infer sources of joint varia-

tion, we ran it to infer a number of components (K = 3)
larger than the true number (there is only one source of
JV). Pairs of canonical vectors were then selected accord-
ing to whether their joint variance is larger than expected,
as assessed using permutations. From hereon, the pro-
cedure to compute SE and SP proceeds as for the other
algorithms, by selecting the component with the best SE
and SP value. As with the other methods, the results do
not depend on howwe chooseK as long asK is larger than
or equal to 1.
For PARAFAC, we ran it to infer R = 4 components.

Since for PARAFAC there is only one inferred projection
across features per component, for each component we
rank the features according to their absolute weight, select
the top-ranked 50, and then compute two separate SE (or
SP) values, one for each of the two sets of 50 true pos-
itive genes driving JV. We then select for each set of JV
driver genes, the component achieving the best SE (or
SP). Finally, we average the SE and SP values for the two
sets of true positives. As with the other algorithms, the
results do not depend on the choice of R, as long as R
is larger then or equal to 4 (since there are four sources
of variation, two of IV and two of JV, which counts as
two in the PARAFAC setting). For JIVE, we ran it to infer
one source of JV and two sources of IV. Because JIVE
stacks the data matrices corresponding to the two data
types together, we then select the 100 top-ranked genes,
ranked by absolute weight in the inferred JV matrix. SE
and SP are then computed. Once again, the results are
stable to choosing a larger number of inferred sources
of JV, because for the simulated data there is only one
source of JV. Further details for all methods can be found
in Additional file 2. Finally, for each algorithm and noise
level, SE and SP are averaged over all the 1000 Monte
Carlo runs. Finally, the statistical significance of the SE
and SP values between algorithms was assessed using
paired non-parametric Wilcoxon rank sum tests. The
whole analysis above was repeated for sources of varia-
tion drawn from a Laplace distribution (with the same
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mean and standard deviation as the Gaussians above),
to capture the super-Gaussian nature of real biological
data better.

Illumina 450k DNAmethylation andmulti-way TCGA
datasets
We analysed Illumina 450k datasets from three main
sources. One dataset is a multi-blood-cell subtype EWAS
derived from 47 healthy individuals and three cell types
(B cells, T cells and monocytes) [3]. Specifically, we used
the same normalised data as used in [3], with the result-
ing data tensor being of dimension 3× 47× 388 618, after
removing poor quality probes and probes with SNPs [40].
Another dataset was generated in [2]. It consists of two

tissue types (whole blood and buccal), 152 women and
447 259 probes, resulting in a data tensor of dimension
2× 152× 447 259. After quality control, and after remov-
ing probes on the X and Y chromosomes, polymorphic
CpGs, probes with SNPs at the single-base extension site
and probes containing SNPs in their body as determined
by Chen et al. [40], we were left with 447 259 probes.
Finally, we also analysed six datasets from TCGA.

Specifically, we processed the RNA-seq, Illumina 450k
DNAm and copy-number data for six different cancer
types: colon adenocarcinoma (COAD), lung adenocarci-
noma (LUAD), lung squamous cell carcinoma (LSCC),
kidney renal cell carcinoma (KIRC), kidney papillary car-
cinoma (KIRP) and bladder adenocarcinoma (BLCA).
All of these contained a reasonable number of normal-
adjacent samples. The processing was carried out follow-
ing the same procedure described by us in [29], which
resulted in data tensors over three data types (mRNA,
DNAm and copy number), 14 593 common genes and the
following sample numbers: 273 cancers and 8 normals for
LSCC, 390 cancers and 20 normals for LUAD, 292 can-
cers and 24 normals for KIRC, 195 cancers and 21 normals
for KIRP, 194 cancers and 13 normals for BLCA, and 253
cancers and 19 normals for COAD.We note that although
these numbers of normal samples are small, that these are
the normal samples with data for all three data types.

Identifying smoking-associated CpGs in the multi-tissue
(whole blood + buccal) EWAS
To test the algorithms on real data, we considered the
matched multi-tissue (whole blood and buccal) Illumina
450kDNAmdataset for 152women [2]. Smoking has been
shown to be reproducibly associated with DNAm changes
at a number of different loci [23]. We, therefore, used as
a true positive set a gold-standard list of 62 smkDMCs,
which have been shown to be correlated with smoking
exposure in at least three independent whole blood EWAS
[23]. The 62 smkCpGs were combined with 1000 ran-
domly selected CpGs (non-smoking-associated), resulting
in a data tensor of dimension 2 × 152 × 1062. Robustness

was assessed by performing 1000 different Monte Carlo
runs, each run with a different random selection of 1000
non-smoking associated CpGs. The whole analysis was
then repeated for 10 000 randomly selected CpGs (data
tensor of dimension 2 × 152 × 10 062) and for a total
of 1000 different Monte Carlo runs. For the tPCA/tICA
algorithms, the dimensionality parameters were chosen
based on RMT as applied on the two separate matrices.
Specifically, estimated unmixing matrices were of dimen-
sion 2 × 2 (for tissue-type mode) and d × d (for sample
mode) with d the maximum of the two RMT estimates
obtained from each tissue-type matrix.
SE to capture the 62 smkCpGs was calculated in two dif-

ferent ways. In one approach, we used the maximum SE
attained by any IC, denoted SE(max), whilst in the other
approach, we allowed for the possibility that different
enriched ICs could capture different subsets of smkCpGs.
Thus, in the second approach, the SE was estimated using
the union of the selected CpGs over all enriched ICs.
We note that enrichment of ICs for the smkCpGs was
assessed using a simple binomial test and selecting those
with a P value less than the Bonferroni corrected value
(i.e. less than 0.05 per number of ICs). In both approaches,
the CpGs selected per component were the 62 with the
largest absolute weights in the component, i.e. the num-
ber of selected CpGs was matched to the number of true
positives.
For JIVE, the number of components of joint varia-

tion was determined by applying RMT to the data matrix
obtained by concatenating the features of the blood and
buccal sets together with features standardised to unit
variance to ensure comparability between data types. For
the number of components of individual variation, we
used the RMT estimates of each individual dataset, as this
provides a safe upper bound. For PARAFAC, the number
of components was determined by the sum of the RMT
estimates for the blood and buccal sets separately minus
the value estimated for the concatenated matrix, as we
reasoned that this would best approximate the total num-
ber of components of variation across the two data types
(joint or individual). For CCA and sCCA, the maximum
number of canonical vectors to search for was set to be
equal to the RMT estimate of the concatenated matrix,
i.e. equal to the dimension of joint variation used in JIVE.
For all methods, we selected the top-ranked 62 CpGs with
the largest absolute weights in each component, and esti-
mated SE using the same two approaches described above
for tPCA/tICA.

mQTL and chromosome enrichment analysis
We applied tWFOBI to the data tensor of a multi-cell-
type EWAS (Illumina 450k) for 47 healthy individuals
and three cell types (B cells, T cells and monocytes) [3].
Specifically, we used the same normalised data as used
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in [3], i.e. a data tensor of dimension 3 × 47 × 388 618,
after removing poor quality probes and probes with SNPs
[40]. Using RMT [17], we estimated a total of 11 com-
ponents in the sample-mode space, and so we inferred a
source tensor of dimension 3 × 11 618, and mixing matri-
ces of dimension 3 × 3 and 11 × 11. We also applied
tWFOBI to the previous blood plus buccal DNAmdataset,
but for all 447 259 probes that passed quality control.
Applying RMT, we estimated 26 significant components
in the sample space. Hence, we applied tWFOBI on the
2 × 152 × 447 259 data tensor to infer a source tensor of
dimension 2×26×447 259 andmixingmatrices of dimen-
sion 2 × 2 and 26 × 26. For both datasets, and for each
inferred IC, we selected the 500 probes with the largest
absolute weights and tested enrichment of mQTLs against
a high-confidence mQTL list from [25] (22 245 mQTLs).
This list was generated as the overlap of mQTLs (pass-
ing a stringent P value threshold of 1 × 10−14) in blood
derived from five different cohorts representing five dif-
ferent age groups. Odds ratios and P values of enrichment
were estimated using Fisher’s exact test. For chromosome
enrichment, we obtained P values using a binomial test.
In selecting the top-500 probes from each component,
we note that this threshold is conservative, as all inferred
ICs exhibited positive kurtosis with kurtosis values that
remained significantly positive after removing the top-500
ranked probes.
To obtain estimates of cell-type-independent and cell-

type-specific mQTLs, we used the following approach.
The first mode/dimension of the estimated source ten-
sor was rotated back to the original cell types, using the
estimated mixing matrix (of dimension 3 × 3, since there
were three cell types). For each of the previously enriched
mQTLs, we compared its weights in all three components,
each component being associated with a given cell type.
For instance, if St,cp,∗ denotes the component cp for cell
type t, thus defining a vector of weights over all CpGs, we
asked if the absolute weight of the given mQTL CpG is
large for all cell types or not. If it was sufficiently large (i.e.
if within the top 10% quantile of the weight distribution)
for all cell types, it was declared to be cell type indepen-
dent. If the mQTL weight for one or two cell types fell
within the lower 50% quantile of weights, we declared it a
cell-type-specific mQTL.
We also performed a comparative analysis of all multi-

way algorithms in terms of their sensitivity to detect
mQTLs, as given by the high-confidence list of 22 245
mQTLs from the Aries database [25]. To assess the sta-
bility of the conclusions, we computed SE as described
earlier, but considered a range of top selected CpGs per
component, ranging from 500 up to 22 245 in units of
500. As before, we estimated the overall SE by taking
into account the union of all selected CpGs from each
component, as well as the maximum SE attained by any

single component. Since the SE attained by any single
component is bounded by the number of selected CpGs,
we also considered the SE normalised for the number of
selected CpGs.

Application of tICA to multi-omic cancer data
We used the same normalised integrated copy-number
state (segment values), Illumina 450k DNAm and RNA-
seq datasets of six cancer types from TCGA [1], as used in
our previous work [29]. For the cancer types considered,
see above. We initially applied tWFOBI to the colon ade-
nocarcinoma TCGA dataset, estimating unmixing matri-
ces of dimension 3 × 3 (for data type) and K × K (for
sample mode) where K was the maximum RMT estimate
over each of the three data-type matrices. Features driving
each IC in each data-type dimension were selected using
an iterative approach in which genes were ranked by abso-
lute weight, and recursively removed until the kurtosis of
the IC was less than 1, or the number of removed genes
was larger than 500. Genes selected in common between
the CNV and mRNA modes, or between the DNAm and
mRNA modes, were declared driver genes between the
respective data types. To identify components correlating
with normal/cancer status, we obtained the mixing matrix
of the samples and then correlated each component to
normal/cancer status using Wilcoxon’s rank sum test.
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