
1  |  INTRODUCTION

Birth weight is a widely used measure of the early health status of infants (e.g., Corman et al., 2017). Low birth weight 
has been linked to poor health outcomes. The literature documents associations between low birth weight and various 
health concerns, ranging from infant illnesses to adult heart disease (e.g., Almond et al., 2018; Barker, 1995; Fonseca 
et al., 2019). Low birth weight has also been linked to poor cognitive performance and educational disadvantages in 
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Abstract
This paper examines the causal links between early human endowments and 
socioeconomic outcomes in adulthood. We use a genotyped longitudinal survey 
(Cardiovascular Risk in Young Finns Study) that is linked to the administra-
tive registers of Statistics Finland. We focus on the effect of birth weight on 
income via two anthropometric mediators: body mass index (BMI) and height 
in adulthood. We find that (i) the genetic instruments for birth weight, adult 
height, and adult BMI are statistically powerful; (ii) there is a robust total effect 
of birth weight on income for men but not for women; (iii) the total effect of 
birth weight on income for men is partly mediated via height but not via BMI; 
and (iv) the share of the total effect mediated via height is substantial, of ap-
proximately 56%.
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childhood (e.g., Cheadle & Goosby, 2010; Figlio et al., 2014; Maruyama & Heinesen, 2020) and to weaker educational and 
labor market outcomes in adulthood (e.g., Behrman and Rosenzweig, 2004; Black et al., 2007; Cook & Fletcher, 2015).

The direct economic costs of low birth weight to society are large. Preterm and low birthweight infants incur some of 
the highest healthcare expenditures of any population. For example, Beam et al. (2020), using data on 763,566 infants, 
documented that infants with a preterm status (<37 weeks) or low birthweight status (<2500 g) incurred expenditures of 
approximately $76,000 and $114,000 during the first 6 months of life, respectively. Later-life economic costs of low birth 
weight for an individual may also be substantial and long-lasting, though these concerns have not received much atten-
tion in prior research. Notably, an examination of possible pathways that mediate the effect of birth weight on long-term 
economic outcomes have not received attention, though the identification of these pathways could provide policy-rele-
vant information for interventions.

The effect of birth weight on later-life socioeconomic outcomes is not straightforward to identify for two reasons. First, 
the birth weight of a child depends on the environment provided by the mother, which may affect the child’s later life 
outcomes. This could confound the relationship between birth weight and outcomes in adulthood (Brooks et al., 1995; 
Kramer, 1998). Second, variations in early endowments, such as birth weight, influence later life outcomes through their 
effects on individuals' development of traits and behaviors. The pathways that mediate the effects over the life course are 
numerous, and the gene–environmental interplay potentially complicates the picture (e.g., Belsky et al., 2019; Brumpton 
et al., 2020; Mills & Tropf, 2020).

To address the confounding problem, a method called Mendelian randomization (MR) uses genetic markers as in-
struments for potentially endogenous variables (e.g., Davey Smith & Hemani, 2018; Lawlor et al., 2008). This method 
has gained growing interest in economic research, as genome-wide association studies (GWASs) have identified signif-
icant correlations between genetic variants and observable traits (e.g., Horikoshi et al., 2016; Belsky et al., 2016; Okbay 
et  al.,  2016). Because genetic variants are randomly assigned at conception, this “randomization by nature” leads to 
exogenous variations in observable traits and, under certain identification assumptions, enables causal inference (e.g., 
Fletcher, 2011; von Hinke et al., 2016). The research on causal effects using genetic information has inspired a multivar-
iable Mendelian randomization (MVMR) method that uses genetic markers as instruments for the exposure and factors 
that may operate as mediators between exposure and later life outcomes (e.g., Burgess et al., 2015; Sanderson et al., 2019; 
Zheng et al., 2017).

In this paper, we build on the recent advances in MR modeling by examining the association between birth weight 
and later life economic success, measured by earnings during prime working-age. To this end, we use a genotyped Finn-
ish longitudinal survey (Cardiovascular Risk in Young Finns Study [YFS]) that we link to the administrative registers of 
Statistics Finland. Using linked data, we contribute to the literature on two frontiers. First, we examine whether birth 
weight has a causal effect on labor income. As such, our study contributes to earlier sibling and twin studies on the US 
(Behrman & Rosenzweig, 2004), Norway (Black et al., 2007), and Japan (Nakamuro et al., 2013). Second, MVMR provides 
a novel method for examining the possible pathways that mediate the effect of birth weight on income. Two mediators 
are considered: adult body mass index (BMI) and adult height. This approach allows us to contribute to earlier research 
examining how the anthropometric traits of an individual track from birth weight to adulthood (e.g., Dubois et al., 2012; 
Ward et al., 2017) and how these traits are rewarded in the labor market (e.g., Averett, 2011; Cawley, 2015; Norton & 
Han, 2008; Tyrrell et al., 2016).

Our results show that the genetic instruments for birth weight and potential mediators are statistically powerful and 
that there is a robust effect of birth weight on income for men that is partly mediated via height. These results are robust 
to numerous specification checks.

2  |  DATA, VARIABLES, AND METHODS

2.1  |  Data

The YFS consists of randomly chosen children and adolescents from 5 university hospital districts and their rural sur-
roundings in six age cohorts (aged 3, 6, 9, 12, 15, and 18 years in 1980). This ongoing epidemiological study began in 1980 
with 3596 subjects who participated in several follow-up evaluations (Raitakari et al., 2008). The data were collected from 
questionnaires and physical measurements and included information regarding the participants' weight at birth. Using 
unique personal identifiers, we linked the YFS data to two registers of Statistics Finland: the Finnish Longitudinal Em-
ployer-Employee Data (FLEED) and the Longitudinal Population Census (LPC). The use of the linked YFS-FLEED-LPC 
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data was approved by Statistics Finland (permission TK-53-673-13). In the linked data, N = 3577, because 19 participants 
denied linking their YFS information to register data. The FLEED data include information on labor market outcomes, 
and the LPC contains information on the participants' parental backgrounds (family income and education). Appendix 1 
presents the summary statistics of the study sample. Due to missing information in some variables, the size of the study 
sample is 1703. Appendix 2 compares the summary statistics for the total linked sample and the study sample. The pro-
portion of individuals born in 1962 (1974) is lower (higher) in the study sample. In addition, the individuals in the study 
sample had, on average, higher education and earnings in 2001.

2.2  |  Variables

2.2.1  |  Birth weight, height, BMI, and labor market income in prime working age

Information on the YFS participants' birth weights was based on parental reports. The mean birth weight in the study 
sample was 3.50 kg, with a standard deviation of 0.541 kg (see Appendix 1). The average birth weight varied between 
3.46 and 3.55 kg among the cohorts. The fraction of low-birth-weight children (less than 2.5 kg) was 3.6%. The fraction 
of high-birth-weight children (more than 4.5 kg) was 2.9%. The YFS participants' birth weights are representative of the 
Finnish population (National Institute for Health and Welfare, 2014). Height and weight measurements were conducted 
by healthcare professionals in 2001 when the participants were between 24 and 39 years of age. Using these measures, 
the BMI was calculated as weight (kg)/squared height (m2).

Income is measured as the logarithm of the average annual wage and salary earnings over the 2001–2012 period. 
The register-based income measure is not top coded and does not suffer from underreporting or recall error. The ag-
gregated measure is also less likely to suffer from idiosyncratic variation, which characterizes cross-sectional measures 
of income (Dahl et al., 2011). Information on prime working-age individuals (age ranging from 24–50 years) extends 
the earlier literature that has used data on middle-aged workers (Cook & Fletcher,  2015) or young adults (Black 
et al., 2007).

2.2.2  |  Genetic instruments for birth weight and mediators

The polygenic scores (PGSs) that we use as instruments to identify causal effects are calculated as a sum of several 
genetic variants (single nucleotide polymorphism [SNP]) that are related to the potentially endogenous phenotype.1 In 
this study we use weighted PGSs that were calculated by summing the risk alleles for each independent SNP, weighted 
by its effect size from the GWAS.2 To maximize the strength of the instrument, we used PGSs that are based on a leni-
ent significance threshold (p < 0.01). The PGS for birth weight in the YFS data is based on the GWAS of Warrington 
et al.  (2019).3 The PGSs for height and BMI are based on the GWASs of Wood et al.  (2014) and Locke et al.  (2015), 
respectively.

2.2.3  |  Additional control variables

The information on parental background (family income measured in euros, mother’s years of education, and father’s 
years of education) was drawn from the LPC from 1980. As additional control variables, we used the following biomark-
ers and their PGSs: waist-to-hip ratio (WHR) (Shungin et al., 2015), triglycerides, LDL cholesterol, and HDL cholesterol 
(Willer et al., 2013). These biomarkers were based on anthropometric measures or blood tests conducted in 2001. The 
information on years of education was obtained from the register-based FLEED in 2001, and its PGS was based on the 
GWAS of Okbay et al. (2016).

We also used the following self-reported measures of health and health behavior in the analyses: the number of 
chronic conditions based on physician diagnoses, the smoking status based on pack-years, and an indicator for excessive 
drinking pattern equal to one if the subject had suffered from a hangover at least once a month during the past year. 
These measures also refer to the year 2001.
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2.3  |  Methods

The MR method is a special case of the instrumental variables method, which uses genetic markers as instruments for po-
tentially endogenous variables. The MR analysis is based on the assumption that genetic instruments are robustly related 
to the exposure (the relevance assumption) and that they are not associated with any confounders of the exposure–out-
come relationship (the independence assumption). The independence assumption could be violated because of popula-
tion stratification (the allele frequencies differ between population subgroups), genetic nurturing (the parental genotype 
indirectly affects offspring’s phenotype by influencing parent’s phenotype), or assortative mating (the selection of part-
ners based on phenotype) (e.g., Brumpton et al., 2020). The third assumption, exclusion restriction, could be violated if 
genetic instruments affect the outcome via multiple pathways or if they are in linkage disequilibrium (i.e., co-inherited) 
with other genetic variants that affect the outcome via other pathways (e.g., Hemani et al., 2018; von Hinke et al., 2016).

In this paper, we identify the total effect of birth weight (BW) on income (INC) using a PGS (PGSBW) as an instrument 
for birth weight. The MR model is estimated using the two-stage least squares (2SLS) regression consisting of the first-
stage equation (Equation 1) and the second-stage structural equation (Equation 2). Omitting any additional controls, the 
model can be written as:

   0 1 BW 1BW PGS v� (1)

   0 1 2INC BW v� (2)

where the total effect of birth weight on income is given by γ1.
Figure 1, together with equations (1)–(5), illustrates the MVMR setup used for mediation analysis. The MVMR ap-

proach is useful in settings where the exposures of interest may be correlated and if the purpose is to examine whether 
one of the exposures mediates the effect of the other on the outcome (Sanderson et al., 2019, p. 715). The total effect of 
birth weight on income is decomposed into a direct and an indirect effect. The direct effect is the effect of birth weight 
on income after accounting for the mediated effects via a mediator (M = BMI, height). The mediation model, based on 
genetic instruments (PGSBW for birth weight and PGSM for the mediator) and omitting any additional controls, can be 
parametrized as:

     0 1 BW 2 M 3BW PGS PGS v� (3)

     0 1 BW 2 M 4M PGS PGS v� (4)

     0 BW M 5INC BW M v� (5)

Using 2SLS, the PGSs for birth weight and the mediator are used to predict the exposure in the first-stage (Equa-
tions 3 and 4). In the second-stage (Equation 5), the outcome is regressed on the predicted values of each exposure. The 
direct effect of birth weight on income after controlling for the mediated effect is given by βBW. The indirect effect can be 
calculated by the difference method by subtracting the direct effect of birth weight from the total effect (γ1-βBW) (Carter 
et al., 2021). The confidence intervals for the indirect effects in this paper are based on bootstrapping with 1000 replica-
tions. The birth weight, mediators, and income are log-transformed; therefore, the dependent variable can be interpreted 
as the percentage change for a 1% increase in the independent variable.

The research design based on PGSs, anthropometric exposures, and MVMR has advantages that may mitigate the 
problems of MR. First, PGSs may enhance the strength of the instruments over individual SNPs. This may limit the finite 
sample bias toward the observational estimate (Hemani et al., 2018). A weak instrument also tends to increase biases, 
which stem from violations of other MR assumptions; consequently, using PGS instead of individual SNPs may alleviate 
this problem (Belsky, 2013). Second, MVMR allows exposure and a mediator to share some of the same genetic variables, 
thus reducing bias due to potential pleiotropy—the phenomenon of a genetic variant influencing multiple traits (Sander-
son et al., 2019; Carter et al., 2021). Third, anthropometric measures that are obtained by healthcare professionals togeth-
er with register data on income minimize measurement errors. This coupled with statistically strong instruments, miti-
gates concerns related to the small study sample. According to Brion et al. (2013), the MR sample should be 1/R2 times 
higher than in a non-MR study, where R2 is the variation explained in the exposure by the genetic variable. Furthermore, 
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an anthropometric mediator may be less vulnerable to gene–environmental confounding than, for example, educational 
attainment or health behavior (McMartin and Conley, 2020; Mills and Tropf, 2020).

Following Sanderson et al. (2019) and Carter et al. (2021), we examined the causal links in each step of the mediation 
path. We present evidence of the total effect and the causal links between the exposure and mediators and between the 
mediators and outcome. We report MVMR estimates for the indirect and direct effects and examine their robustness. 
The results are for both men and women. Although MVMR based on PGSs attenuates concerns related to confounding, 
we augment the baseline model with cohort indicators and covariates that describe the participants' family backgrounds 
during childhood in 1980—that is, prior to the participants' entry into the labor market. Furthermore, we control for 
the potential effect of assortative mating with an interaction variable (mother’s years of education × father’s years of 
education).

3  |  RESULTS

3.1  |  Descriptive evidence

Figure 2 depicts the relationship between birth weight and income in the study sample. The graph indicates that a high-
er birth weight is associated with higher income. Although the estimates are noisy for the very low and very high birth 
weights and potentially subject to confounding, the graph provides an indicative benchmark to further analyze causality 
and mediation. Furthermore, the graphs in Figure 3 (Panels A, B, and C), based on non-parametric kernel-weighted local 
polynomial regression, show that higher values of birth weight, BMI, and height are positively associated with higher 
values of their PGSs. As expected, the correlations (Appendix S1) between the PGSs are weak, especially for PGSBMI 
and PGSBW (r = −0.002; p = 0.948) and for PGSH and PGSBMI (r =  0.097; p < 0.01). The correlation between PGSH and 
PGSBW is stronger and statistically significant (r = 0.205; p < 0.01). This indicates that the PGSs may have overlapping 
SNPs. Consequently, they may be invalid instruments for MR, although they do validate the use of MVMR (Sanderson 
et al., 2019; Carter et al., 2021).

3.2  |  MR estimates

3.2.1  |  Total effect of birth weight on income

Table 1 documents the total effect of birth weight on income in adulthood. The model uses a PGS for birth weight as an 
instrument. We utilized a logarithmic specification, following Black et al. (2007), and controlled for cohort effects. We 
report the pooled (column 1) and sex-stratified estimates (column 2 for men and column 3 for women). First, we found 
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F I G U R E  1   A multivariable Mendelian randomization (MVMR) model for total effect and mediation analysis. γ1 depicts the total 
effect of birth weight (BW) on income (INC). βBW is the remaining direct effect after controlling for the mediated effect. The indirect effect is 
obtained by subtracting the direct effect of birth weight from the total effect (γ1-βBW)



that the first-stage F-statistics support the strong instrument assumption (F = 523.87 for pooled, F = 204.70 for men, and 
F = 324.94 for women). Second, the PGS explains the variation in birth weight well (partial R2 = 0.211 for pooled, 0.201 
for men, and 0.221 for women). This reduces the concern that the analysis is insufficiently powered (Brion et al., 2013; 
Carter et al., 2021; Pierce et al., 2011). Third, there is a non-zero total effect of birth weight on income for men (β = 1.117; 
p = 0.002), but not for women (β =  −0.157; p = 0.740) or for the pooled data (β = 0.422; p = 0.165). A lack of evidence 
for a non-zero total effect suggests that either the birth weight has no causal effect on income for women or the analysis 
lacks statistical power.

3.2.2  |  Univariable MR estimates on causal mediation

The MR estimates (Table 2) provide evidence of the causal relationship between birth weight and mediators. The stand-
ard F-statistics for instrument strength are well above the rule of thumb cut-off of 10 (Staiger & Stock, 1997) and the 
much more conservative cut-off of 50 for genetic instruments proposed by Lee et al. (2020). The inclusion of parental 
covariates leaves the estimates intact. The estimates (columns 2 and 4) show that men and women with higher birth 
weights have a higher probability of being taller (β = 0.130; p < 0.01 for men and β = 0.099; p < 0.01 for women). The 
effect of birth weight on BMI differs by sex. A higher birth weight increases the probability of having a higher BMI among 
men (β = 0.124; p = 0.051) but not among women (β = 0.018; p = 0.812).

The MR estimates for the mediators (Table 3) show further differences between men and women. First, height (Panel A)  
is causally linked to income for men (β = 4.841; p < 0.01) but not for women (β = 0.155; p = 0.909). Second, the BMI 
(Panel B) has a weak causal link to income for men (β = 1.195; p = 0.098) but not for women (β =  −0.799; p = 0.125). 
For men, the association is positive, while for women, it is negative. In brief, the MR estimates show evidence of causal 
mediation via height for men but not for women, while the evidence of causal mediation via BMI remains weak.

3.2.3  |  MVMR estimates of the direct and indirect effects

The standard F-statistics (Table 4) show that the instruments strongly predict both exposure and mediators. The Sander-
son-Windmeijer multivariate F-test of excluded instruments shows that the instruments have sufficient strength to joint-
ly predict the exposure and mediator. In fact, the MVMR estimation increases the power of the instruments. As for the 
MR analysis, the inclusion of parental controls left the point estimates intact.

The MVMR estimates for men show an indirect effect of birth weight on income via height (β = 0.627; p = 0.020) but 
not via BMI (β = 0.146; p = 0.264). For women, there is no evidence of an indirect effect via height (β = 0.030; p = 0.847) 
or via BMI (β =  −0.014; p = 0.849). The estimates are thus consistent with the MR estimates in Tables 2 and 3. Using 
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F I G U R E  2   Log of the average working-age income by birth weight. Notes: N = 1,703. Income is measured as the log-transformed aver-
age annual earnings during the 2001–2012 period in the birth weight bins with 95% confidence intervals. The width of a bin is 0.200 kg. The 
participants whose birth weights were below 2 kg or above 5 kg were excluded from the analysis
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F I G U R E  3   Associations between birth weight and PGSBW (Panel A), BMI and PGSBMI (Panel B), and height and PGSH (Panel C). Note: 
Individuals whose BMI, height, or birth weight was in the top/bottom 2.5% of the corresponding distribution were excluded from the figure



the total effect estimate from Table 1, the estimate for the share mediated via height for men is 56% (0.627/1.117). The 
result of no indirect effect via BMI for men is consistent with a statistically strong estimate for the remaining direct effect 
(β = 0.968; p = 0.013). For women, the results of no indirect effect via BMI or via height are similarly consistent with a 
statistically weak estimate for the remaining direct effect for height (β = −0.185; p = 0.658) and for BMI (β = −0.141; 
p = 0.720), together with the result of no total effect from birth weight to income (β = −0.157; p = 0.740).

3.2.4  |  Robustness of the MVMR estimates for men

To control for any possible confounding, Appendix S2 augments the baseline model with several additional covariates. 
We controlled for years of education, three biomarkers (triglycerides, HDL, and LDL cholesterol), and their PGSs. Fur-
thermore, we estimate the model with height as mediator with weight-related traits (BMI and WHR and their PGSs) and 
with BMI as mediator with height and its PGS. The estimates are consistent with the baseline: the instruments jointly 
strongly predict both birth weight and height, and the estimate of the indirect effect via height for men remains signifi-
cant (p < 0.10). The results for BMI remain similarly unaltered—there is no indirect effect on income via BMI. However, 
the additional covariates reduced the estimate for the remaining direct effect, indicating that auxiliary pathways may 
mediate the total effect of birth weight on income. Further analysis based on a slightly smaller sample (Appendix S3) 
or inverse probability weighting (Appendix S4) are similarly consistent with the baseline results.4 The former analysis 
augments the baseline with variables related to the participants' health and health behavior (i.e., number of chronic 
conditions, smoking status, or drinking patterns). Probability weights, in turn, account for any possible non-random 
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Outcome

ln(Income)

Pooled Men Women

ln(BW) 0.422 (0.304) [0.165] 1.117*** (0.365) [0.002] −0.157 (0.473) [0.740]

Partial-R2 0.211 0.201 0.221

F-statistics 523.78 204.70 324.94

N 1,703 765 938

Notes: Standard errors in parentheses; p-values in square brackets. Significant at the *10%, **5%, and ***1% level. All models control for birth cohort. The pooled 
model also controls for sex.

T A B L E  1   The total effect of birth weight on Income. Univariable MR estimates

Outcome

ln(Height) ln(BMI)

(1) (2) (3) (4)

Panel A: Men

ln(BW) 0.132*** (0.019) [0.000] 0.130*** (0.019) [0.000] 0.133** (0.064) [0.039] 0.124* (0.064) [0.051]

Controls for SES No Yes No Yes

Instrument PGSBW PGSBW PGSBW PGSBW

F-statistics 204.70 208.25 204.70 208.25

N 765 765 765 765

Panel B: Women

ln(BW) 0.100*** (0.015) [0.000] 0.099*** (0.015) [0.000] 0.010 (0.075) [0.894] 0.018 (0.074) [0.812]

Controls for SES No Yes No Yes

Instrument PGSBW PGSBW PGSBW PGSBW

F-statistics 324.94 323.95 324.94 323.95

N 938 938 938 938

Notes: Standard errors in parentheses; p-values in square brackets. Significant at the *10%, **5%, and ***1% level. All models control for birth cohort. Controls 
for socio economic status (SES): log of family income in 1980, mother’s years of education in 1980, father’s years of education in 1980, and interaction term: 
mother’s years of education × father’s years of education.
Abbreviations: BMI, body mass index; BW, birth weight.

T A B L E  2   The effect of birth weight on the mediator. Univariable MR estimates for men and women
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Outcome Sex

ln(Income)

Men Women

(1) (2) (3) (4)

Panel A:

ln(Height) 5.275*** (1.643) [0.001] 4.841*** (1.633) [0.003] 0.494 (1.326) [0.710] 0.155 (1.359) (0.909)

Controls for SES No Yes No Yes

Instrument PGSH PGSH PGSH PGSH

F-statistics 257.12 255.13 338.73 327.91

N 765 765 938 938

Panel B:

ln(BMI) 1.098 (0.721) [0.128] 1.195* (0.721) [0.098] −0.848* (0.503) [0.092] −0.799 (0.521) [0.125]

Controls for SES No Yes No Yes

Instrument PGSBMI PGSBMI PGSBMI PGSBMI

F-statistics 99.44 99.89 148.75 141.79

N 765 765 938 938

Notes: Standard errors in parentheses; p-values in square brackets. Significant at the *10%, **5%, and ***1% level. All models control for birth cohort. Controls 
for SES: log of family income in 1980, mother’s years of education in 1980, father’s years of education in 1980, and interaction term: mother’s years of 
education × father’s years of education.

T A B L E  3   The effect of the mediator on income. Univariable MR estimates for height and BMI by sex

Outcome 
Mediator 
Sex

ln(Income)

ln(Height) ln(BMI)

Men Women Men Women

(1) (2) (3) (4) (5) (6) (7) (8)

Indirect 
effect for 
mediator

0.630** 
(0.267) 
[0.018]

0.627** 
(0.269) 
[0.020]

0.066 (0.147) 
[0.655]

0.030 (0.156) 
[0.847]

0.142 (0.125) 
[0.253]

0.146 (0.130) 
[0.264]

−0.008 
(0.076) 
[0.911]

−0.014 
(0.074) 
[0.849]

Direct effect 
for birth 
weight

0.487 (0.458) 
[0.287]

0.555 (0.451) 
[0.219]

−0.222 
(0.417) 
[0.594]

−0.185 
(0.418) 
[0.658]

0.975** 
(0.394) 
[0.013]

0.968** 
(0.390) 
[0.013]

−0.148 
(0.396) 
[0.708]

−0.141 
(0.392) 
[0.720]

Controls for 
SES

No Yes No Yes No Yes No Yes

Instruments PGSBW PGSBW PGSBW PGSBW PGSBW PGSBW PGSBW PGSBW

PGSH PGSH PGSH PGSH PGSBMI PGSBMI PGSBMI PGSBMI

F-statistics

*BW 95.26 95.13 132.08 132.62 94.96 94.90 131.86 132.48

*Mediator 157.56 154.94 175.07 164.37 51.82 51.32 66.00 62.73

S-W F-statistics

*BW 118.94 119.81 232.88 226.57 177.49 179.40 263.38 264.60

*Mediator 157.92 158.28 297.23 271.34 99.82 99.53 131.92 125.38

N 765 765 938 938 765 765 938 938

Notes: Standard errors in parentheses; p-values in square brackets. Significant at the *10%, **5%, and ***1% level. Indirect effects are calculated using the 
difference method (Carter et al., 2021). All models control for birth cohort. Controls for SES: log of family income in 1980, mother’s years of education in 1980, 
father’s years of education in 1980, and interaction term: mother’s years of education × father’s years of education. S-W F-statistics refers to the Sanderson-
Windmeijer multivariate F-test of excluded instruments.

T A B L E  4   Indirect and direct effects of birth weight on income. Multivariable MR estimates by mediator and sex



attrition bias in the sample study. As previously, the instruments jointly strongly predict both birth weight and height, 
and the estimate of the indirect effect via height for men remains significant (p < 0.05). The specification that accounts 
for non-random attrition implicates a slightly larger estimate of the share mediated by adult height (approximately 66%). 
However, the estimate is well within the 95% confidence intervals of the baseline estimate.

4  |  DISCUSSION

In this paper, we examine the association between birth weight and later-life economic success, measured by earnings 
during prime working-age. To this end, we use a genotyped Finnish longitudinal survey that we link to the administra-
tive registers of Statistics Finland. The state-of-the-art MVMR approach based on strong genetic instruments provides a 
credible research design to examine causal links over the course of a person’s life. Furthermore, the setting provides an 
intuitively clear and consistent ordering of the exposure, mediators, and outcome: individuals who have a higher genetic 
propensity for a high birth weight are heavier at birth, and these children have a higher probability of being taller and 
having higher BMI values in adulthood, factors that may be later rewarded or penalized in the labor market.

The main findings of the study, based on a sample of prime working-age individuals in Finland and their wider 
relevance with respect to earlier research, can be summarized as follows. First, we show that birth weight matters. The 
genetic instrument for birth weight is strong, and we identified a nonzero total effect of birth weight on labor income for 
men. The pooled estimate, although imprecise, implies that a 10% increase in birth weight leads to 4–5% higher long-term 
income. This estimate can be compared to that of Black et al. (2007) and Cook and Fletcher (2015). The former, using 
twin data from Norway, showed that a 10% increase in birth weight is associated with a 1% increase in full-time earnings. 
The latter, using a sample of 469 sibling pairs in the US, reported an estimate of 5%. Furthermore, our study shows that 
sex matters: we do not detect a statistically significant total effect for women. The result is consistent with earlier findings. 
Nakamuro et al. (2013) reported similar results in a twin study for Japan. By contrast, Behrman and Rosenzweig (2004), 
using US data on female twins, found a significant effect for women. According to their study, an increase in birth weight 
by 1 lb. (approx. 450 g) increases adult earnings by 7%.

Second, the MR estimates on causal links are consistent with empirical findings on tracking: traits inherited at birth 
are likely to be associated with traits later in life (Couto Alves et al., 2019; Dubois et al., 2012; Ward et al., 2017). Our es-
timates differ by sex and mediator. The estimate for height is similar for men and women: a 10% (approx. 350 g) increase 
in birth weight increases height by around 1% (approx. 2 cm). The estimates for BMI differ notably by sex. There is no 
statistically strong effect for women, whereas a 10% increase in birth weight for men translates into an increase in BMI 
of around 1.3% (approx. 0.3 BMI units). The estimates are consistent with, although larger than, the twin-fixed effects 
estimates by Black et al. (2007) for men and Behrman and Rosenzweig (2004) for women: a 10% increase in birth weight 
is translated into 0.6 extra cm of height for men in Norway and 0.3 extra cm of height for women in the US. Consistent 
with our estimates, the latter found no effect for BMI, while the former reported a statistically strong estimate for men 
(approx. 0.11 BMI units).

Third, approximately 56% of the total effect of birth weight on men’s income is mediated via adult height. The esti-
mate is robust: it remains intact with respect to the inclusion of additional phenotype mediators, including BMI, WHR, 
educational attainment, health-related covariates, and health behavior indicators. The height premium estimate for men 
(approx. 2.8% per extra cm using the MR results)5 may occur for a variety of reasons, including differences in produc-
tivity (Lakdawalla & Philipson, 2007), cognitive ability (Case & Paxson, 2008), or discrimination against short people. 
Our estimate is consistent with the empirical results summarized in Hübler (2016) and the evidence provided by Böck-
erman and Vainiomäki (2013) and Böckerman et al. (2017) for the case of Finland. Using twin data, Böckerman and 
Vainiomäki (2013) reported a statistically strong ordinary least square estimate of 3.3% per cm but a statistically weak 
instrumental variable estimate of 12.3%. Böckerman et al. (2017) reported a statistically weak instrumental variable es-
timate of 0.9% for both sexes. Our results are also qualitatively similar to those of Tyrrell et al. (2016) for UK data, which 
showed two times stronger effects for men than women. Our finding of no mediation via height for the women in the 
study sample may be partly explained by strong occupational segregation; in Finland, women are more often employed 
in the public sector and in occupations where physical productivity gains have a minor role in remuneration and wage 
premiums for leadership are negligible (e.g., Emerek, 2008).

We stress that MVMR is based on strong assumptions that PGSs need to satisfy. Furthermore, statistical power (as 
determined by the sample size), the causal effect size, and the proportion of variance in the exposure explained by a ge-
netic instrument are additional concerns. The possible limitations of our study are related to these concerns. First, the 
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empirical analysis may not be sufficiently statistically powered, which may explain the null results. However, this issue 
is counterbalanced by two facts: we use high-quality register data that reduce measurement errors, and the PGSs used 
in the analysis explain over 20% of the variations in birth weight. Thus, the sample fulfils a rough rule of thumb for the 
relevance assumption in MR studies.

Second, MVMR is based on a sample of unrelated individuals, although recent research indicates that MR is most 
effectively applied within the family unit (Brumpton et al., 2020 Selzam et al., 2019). For example, Brumpton et al. (2020) 
showed that the effect of BMI and height on educational attainment decreases after accounting for the family effect. 
However, this limitation applies to almost all MR studies, and a recent study by Cawley et al. (2019) on peer effects in BMI 
showed no evidence of genetic nurture within families. Furthermore, we used covariates for the parental environment 
(income and education) to account for any possible confounding. Consequently, the concerns related to our research 
design should not be overstated.

Third, anthropometric mediators can be regarded a priori as not relevant to public policy because they provide limited 
opportunities for interventions. However, these mediators do offer an intuitively clear causal ordering of exposure and 
outcome and may contain fewer elements of environmentally-mediated genetic effects (e.g., Belsky et al., 2019). This may 
facilitate interpretation and increase the precision of the estimates. Furthermore, the mediators allow us to contribute 
to earlier research that has examined how the anthropometric traits of an individual track from birth weight to later life 
(e.g., Couto Alves et al., 2019) and how these traits are rewarded in the labor market (e.g., Averett, 2011; Cawley, 2015; 
Norton & Han, 2008).

Fourth, the local average treatment effect that we identified captures the average treatment effect for compliers. Con-
sequently, the result of no indirect effect via BMI applies to those whose birth weight is higher due to genetic inheritance. 
The finding broadens the picture given by earlier research (e.g., Brunello & D’Hombres, 2007; Cawley, 2004; Lindeboom 
et al., 2010) that used the BMI of biological relatives (parents, siblings, or children) as an instrument. For example, using 
US data and a biological sibling as an instrument for BMI, Cawley (2004) found that the effect of weight on wages varies 
by gender and race, with the greatest impact on white females. In short, our results suggest that differences in genetic 
inheritance may have different impacts on wages than differences driven by maternal nutrition or the parental environ-
ment in general. We also stress that earlier findings suggest that the effect of weight on wages can also be non-linear (e.g., 
Caliendo & Gehrsitz, 2016; Han et al., 2011; Royer, 2009). Using US data, Han et al. (2011) reported that the indirect wage 
penalty via education and occupation occurs at the upper tail of the BMI distribution for both men and women. However, 
the MR setup is based on the linearity assumption and does not allow us to focus on the tails of the BMI distribution in 
the study sample.

Our results show that early human endowments have long-lasting effects on socioeconomic outcomes. Although 
MVMR alleviates problems related to unobserved confounders, we caution against the interpretation that our results 
are strictly causal estimates of how an individual’s physical traits are rewarded or penalized in the labor market. We also 
stress that gene–environment (GE) correlations, such as evocative rGEs (in which individuals' genetics induce environ-
mental responses) or passive rGEs (environments with shared genetic variation), may be country-specific—GE correla-
tions vary with the availability of resources and opportunities (McMartin & Conley, 2020). In this respect, data from a 
country such as Finland, which has narrow income inequality and comprehensive public services, is an advantage. On 
the other hand, this may limit the generalization of the results to other institutional contexts.

We emphasize that there are several extensions that could be addressed in future studies. For example, there are plenty 
of opportunities for comparisons between other mediating pathways. One potentially interesting mediator is childhood 
health. The effect of birth weight may be mediated through poor health in childhood, which, in turn, may have an impact 
on school absences or the ability to learn, thus leading to poorer education and income. There is also a need to consider the 
factors that may enhance or weaken the mediation pathways. However, in addition to the complexity of the pathways, such 
an analysis requires large samples, a family-based research design, and valid instruments that may be difficult to obtain.
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ENDNOTES
	1	 YFS participants (1,123 males and 1,319 females, including 546,776 SNPs) were genotyped in 2009. The genotypes were called up using the 

Illumina clustering algorithm (Teo et al., 2007). Quality control was performed using the Sanger genotyping QC pipeline, and individuals 
with possible relatedness were removed. Genotype imputation was conducted with the SHAPEIT v1 and IMPUTE 2 software (Delaneau 
et al., 2012), and the 1000 Genomes Phase I Integrated Release version 3 (March 2012 haplotypes) was used as a reference panel (Howie 
et al., 2009; Altshuler, Durbin and Abecasis 2010).

	2	 The independent effect SNPs on birth weight was identified by double-clumping with LD threshold R2 = 0.1; see Vösa et al., (2018) for tech-
nical details.

	3	 Because the analyses include the YFS as one of the data sources, they may suffer from over-predictions (Wray et al., 2013). However, this 
error is very unlikely in our research setting due to the very small contribution of the YFS data to the GWAS.

	4	 The inverse probability weights were constructed as follows: First, to obtain predicted probability for being in the estimation sample (p) a 
logit model where an indicator for being in the estimation sample was regressed on the following covariates separately for women and men: 
birth cohort, birth month, indicator for having university-level education in 2001, income in 2001, region of residence in 2001 (4 indicators). 
Then, the inverse probability weight for participants who were in the estimation sample was calculated as 1/(p) and these weights were used 
in the MVMR to control for potential attrition bias.

	5	 The average height among men was 180 cm. Since a 1% (1.8 cm) increase in height was associated with about a 5% increase in income (see 
Table 3), a 1 cm increase in height is associated with about a 2.8% (=5/1.8) increase in income.
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APPENDIX 1: Summary statistics
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Variable Mean Standard deviation N

Children’s characteristics (1962–1977)

Birth weight (kg) 3.501 0.541 1,703

Low birth weight (<2500 g, fraction) 0.036 0.186 1,703

High birth weight (>4500 g, fraction) 0.029 0.167 1,703

Sex (females, fraction) 0.551 0.498 1,703

Adulthood characteristics

Adult height (cm) 172.274 9.240 1,703

Adult BMI in 2001 25.047 4.366 1,703

Family background (1980)

Years of education, mother 11.076 2.457 1,703

Years of education, father 11.308 2.792 1,703

Log of family income (euros, annual) 9.321 0.866 1,703

Long-term outcomes

Log of average income (euros, 2001–2012) 9.817 0.973 1,703

Risk scores

Birth weight (PGSBW) 1.121 1.508 1,703

BMI (PGSBMI) 0.987 0.716 1,703

Height (PGSH) 2.112 2.501 1,703

Notes: To minimize the amount of missing information, adult height was obtained from either the 2001, 2007, or 2011 survey. In 2001, the participants 
were at least 24 years old.
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APPENDIX 2: Comparison of the total linked YFS-FLEED sample (N = 3,577) and the study 
sample (N = 1,703)
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Original sample mean Estimation sample mean Difference z-statistics (t-statistics)

Female 0.509 0.551 −0.042 −2.84**

Cohort 1974 0.161 0.181 −0.020 −1.83*

Cohort 1962 0.149 0.122 0.028 2.71***

High education (2001) 0.188 0.224 −0.036 −3.00***

Earnings (2001) 19,804.48 20,719.81 −915.333 (−2.224**)

Notes:  The table reports only variables whose means differ based on the two-sample test of proportions (indicator variables) or the two-sample t-test 
(continuous variables) at least at a 10% level. Statistically significant differences were not observed in terms of the following dimensions: cohorts 
born in 1965, 1968, 1971, and 1977; birth month; and region of residence in 2001 (4 indicators). Information on education and earnings in 2001 was 
available for 3,464 participants. Statistically significant at the *10%, **5%, and ***1% level.
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