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Abstract

Every topological space has a Kolmogorov quotient that is obtained
by identifying points if they are contained in exactly the same open
sets. In this survey, we look at the relationship between topological
spaces and their Kolmogorov quotients. In most natural examples
of spaces, the Kolmogorov quotient is homeomorphic to the original
space. A non-trivial relationship occurs, for example, in the case of
pseudometric spaces, where the Kolmogorov quotient is a metric space.
The author's interest in the subject was sparked by study of abstract
model theory, speci�cally the paper [1] by X. Caicedo, where Kol-
mogorov quotients are used in a topological proof of Lindström's the-
orem. We omit the proofs in this extended abstract; a full version [2]
with detailed proofs is in preparation.

1 Introduction

Given a topological space X, we obtain its Kolmogorov quotient X/≡ by
identifying points x and y if and only if they have exactly the same open
neighbourhoods. Such points are topologically indistinguishable; there is
no sequence of operations on open sets that would give a set A such that
x ∈ A and y 6∈ A. Nothing topologically important to the space X is lost in
identifying these points.

The resulting space is a T0-space: a space where all points are topologi-
cally distinguishable. Most topological spaces of interest are T0. A T0-space
is, arguably, aesthetically more pleasing than a space that is not T0. In a
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T0-space, every point serves a purpose. When studying the topology of X,
there seems to be no reason to keep useless, super�uous points around.

The construction of the Kolmogorov quotient is simple, intuitive, and can
be carried out for any topological space. If a mathematician comes across a
space that is not naturally T0, the unnecessary points can be left out from
the space right at the beginning and the original space forgotten. Perhaps
for this reason, the construction is not even mentioned in most textbooks on
topology, and where it is mentioned, this is done very brie�y, and proofs are
generally omitted.

However, there are situations where it is inconvenient if a space is T0. Such
a situation occurs when one is interested in re�nements of the topology: the
more points there are in X, the more choices there are for re�nements. The
same is true for subspaces, though the loss here is not so dramatic: for each
subspace S ⊆ X that we lose, X/≡ retains a subspace homeomorphic to
S/≡. Still, if one is interested in the speci�c points of the space, one might
not wish to clump them together in equivalence classes.

Removing the T0-property from a space can generate new properties for
topological spaces. Given a property P (for example, the Hausdor� separa-
tion axiom T2) of a T0-space we obtain a new property P ′ by de�ning: a space
X has the property P ′ if and only if X/≡ has the property P . Generally the
arising property is interesting in itself and admits a more direct de�nition.
In a similar vein, given a structure S (for example, a metric) on a T0-space
we can de�ne: a space X has the structure S ′ if and only if X/≡ has the
property S.

This survey is not about T0-spaces, but focuses rather on the relationship
between spaces and their Kolmogorov quotients. It appears that no compre-
hensive treatment on the matter has been published, and as stated before,
standard textbooks often omit the construction entirely. As our sources don't
usually give proofs, it seems unnecessary to cite each theorem individually.
Various results presented here can be found without proofs in [1] and [3]. The
notes in [4] contain some proofs. We present the results in a more general
form when possible.

2 Kolmogorov quotients

Given a topological space X and a subset A ⊆ X, we write Ac for the
complement X \A and A for the closure of A. We denote the Borel algebra
of X by ΣX and the collection of (not necessarily open) neighbourhoods of
x ∈ X by N (x).

Let X be a topological space. We de�ne an equivalence relation ≡ ⊆ X2
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by letting x ≡ y if and only if every open neighbourhood of x is an open
neighbourhood of y and vice versa. If x ≡ y, we say that the points x
and y are topologically indistinguishable. Otherwise they are topologically
distinguishable, and we write x 6≡ y. A space where all pairs of distinct
points are topologically distinguishable is called a T0-space or a Kolmogorov
space. Most spaces studied by mathematicians are T0.

Example 2.1. A space with the trivial topology is not T0, unless it has less
than two points.

Example 2.2. All Hausdor� spaces are T0. This includes all discrete spaces
and the space R with the euclidean topology.

Example 2.3. Let X = {0, 1} and τ = {∅, {1}, {0, 1}}. The Sierpi«ski space
(X, τ) is T0 but not Hausdor�.

Example 2.4. The product of R with the euclidean topology and R with the
trivial topology is not T0: indeed, the points (1, 0) and (1, 1) are topologically
indistinguishable.

We will see more examples later. In the meanwhile, the following lemma
should provide intuition into topological indistinguishability.

Lemma 2.5. Let X be a topological space and x, y ∈ X. The following
statements are equivalent:

(i) x ≡ y;
(ii) N (x) = N (y);
(iii) x and y are contained in the same basic open sets;
(iv) x and y are contained in the same subbasic open sets;
(v) x and y are contained in the same open sets;
(vi) x and y are contained in the same closed sets;
(vii) {x} = {y};
(viii) x and y are contained in the same Borel sets;
(ix) a �lter or net that converges to x, converges also to y, and vice versa;
(x) a �lter or net that has x as a cluster point, has also y as a cluster point,

and vice versa.

Example 2.6. Let Um = {n ∈ N | m divides n} for all m ∈ Z+. Then
S = {N} ∪ {Up | p is a prime} is a subbasis of a topology on N. By lemma
2.5, x ≡ y if and only if x and y have the same prime factors.

Given a topological space X, we denote by η(x) the equivalence class of
x ∈ X with respect to ≡, that is, η(x) = {y ∈ X | y ≡ x}. The following
theorem gives a simple formula for the equivalence classes.
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Theorem 2.7. Let (X, τ) be a topological space. For all x ∈ X,

η(x) = {x} ∩
⋂
U∈τ
x∈U

U =
⋂

B∈ΣX
x∈B

B.

Corollary 2.8. For all x ∈ X,

η(x) ⊆
⋂

U∈N (x)

U.

Corollary 2.9. For all x ∈ X, η(x) ⊆ {x}.

Given a topological space X, we de�ne X/≡ as the topological space,
where the space as a set is the set of equivalence classes under ≡, and the
topology is the �nest such topology that the quotient map η : X → X/≡
that maps each element x ∈ X to its equivalence class η(x) is continuous. In
other words, the open sets of X/≡ are precisely those sets whose preimage
under η is open in X. We call the space X/≡ the Kolmogorov quotient of X.

Clearly the Kolmogorov quotient is always a Kolmogorov space. A space
is T0 if and only if it is homeomorphic to the Kolmogorov quotient of itself.

The continuity of η already lets us know some things about the relation-
ship between X and X/≡; for example, if A ⊆ X is compact, then so is
η(A).

Example 2.10. Take the set X = {1, 2, 3, 4} with the clopen basis {{1, 2},
{3, 4}}. The Kolmogorov quotient X/≡ is the two-element set {η(1), η(3)} =
{{1, 2}, {3, 4}} with the discrete topology.

Example 2.11. The Kolmogorov quotient of any nonempty set with the
trivial topology is a space consisting of a single point.

Example 2.12. Let p ≥ 1. Let Lp be the set of all measurable functions f
from a measure space (S,Σ, µ) to R such that∫

S

|f |p dµ <∞.

Denote

‖f‖p =

(∫
S

|f |p dµ

) 1
p

.

The map f 7→ ‖f‖p is a seminorm: there are functions f other than the zero
function for which ‖f‖p = 0, but all other properties of a norm are satis�ed.
In the Kolmogorov quotient Lp = Lp/≡, this seminorm becomes a norm.
The spaces Lp are important in analysis and measure theory ([5]).
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Example 2.13. A discrete version of example 2.12 is obtained by taking the
measure space N with the counting measure i.e. the measure of a subset of
N is its cardinality. In this case, the space consists of sequences converging
to 0, and

‖(xn)‖p =

(
∞∑
n=0

|xn|p
) 1

p

.

Based on the quotient map η : X → X/≡, we de�ne two maps η→ : ΣX →
ΣX/≡ and η← : ΣX/≡ → P(X) as follows:

η→(B) = η(B) = {η(x) | x ∈ B},

and
η←(B′) = η−1(B′) = {x ∈ X | η(x) ∈ B′}

for all B ∈ ΣX and B′ ∈ ΣX/≡.

Theorem 2.14. The map η→ is an isomorphism between the Boolean alge-
bras ΣX and ΣX/≡.

Corollary 2.15. The quotient map η is open, i.e. if A ⊆ X is open, then
η→(A) is open.

Corollary 2.16. The quotient map η is closed, i.e. if A ⊆ X is closed, then
η→(A) is closed.

Lemma 2.17. Let X and Y be topological spaces and f : X → Y continuous.
If x1 ≡ x2 for some x1, x2 ∈ X, then f(x1) ≡ f(x2).

Theorem 2.18. Let ηX : X → X/≡ and ηY : Y → Y/≡ be the quotient maps
and f : X → Y an arbitrary continuous map. Then there exists a continuous
map f≡ : X/≡ → Y/≡ such that the diagram below commutes.

X Y

X/≡ Y/≡

f

ηX ηY

f≡

Choosing a representative from each equivalence class gives the following
theorem, which states that all topological properties of the Kolmogorov quo-
tient of X hold also in a dense subspace of X. If there are in�nitely many
equivalence classes, then the axiom of choice is required.

Theorem 2.19. The space X/≡ is homeomorphic to a dense subspace of X.
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The Kolmogorov quotient may have fewer subspaces than the original
space. The following theorem tells that the quotients of the lost subspaces
are still subspaces of X/≡, up to homeomorphism.

Theorem 2.20. Let X be a topological space and S a subspace of X. Then
the space S/≡ is homeomorphic to some subspace of X/≡.

Sketch of proof. Let η : X → X/≡ and ηS : S → S/≡ be the quotient maps.
Let f : S/≡ → η(S), f(ηS(x)) = η(x) for all ηS(x) ∈ S/≡. The map f is a
homeomorphism when η(S) is considered as a subspace of X/≡.

Theorem 2.21. Let I be a set and (Xi)i∈I a sequence of topological spaces.
The spaces

(∏
i∈I Xi

)
/≡ and

∏
i∈I Xi/≡ are homeomorphic.

Xi∏
i∈I Xi Xi/≡(∏

i∈I Xi

)
/≡

∏
i∈I Xi/≡

ηipi

η

f

πi

Sketch of proof. Let η be the quotient map from
∏

i∈I Xi to
(∏

i∈I Xi

)
/≡,

and let ηi be the quotient map from Xi to Xi/≡ for all i ∈ I. De�ne a map
f :
(∏

i∈I Xi

)
/≡ →

∏
i∈I Xi/≡ from the condition f(η(z))(i) = ηi(z(i)) for

all i ∈ I and all z ∈
∏

i∈I Xi. The diagram above should commute. The maps
pi and πi are the canonical projections. The map f is a homeomorphism.

3 Properties of spaces compared to properties

of their Kolmogorov quotients

The separation axioms are properties a topological space can have that guar-
antee the existence of disjoint neighbourhoods in various situations. The
separation axioms are ordered so that Ti implies Tj whenever i ≥ j. There
is also another set of analogous properties called the regularity axioms such
that Ti = Ri−1 ∧ T0. In other words, a space satis�es Ti if and only if it
is a Kolmogorov quotient of a space that satis�es Ri−1. Table 1 shows the
connection. Some authors require normal and regular spaces to be Hausdor�;
we do not.

A topological space X is symmetric if for all pairs of topologically dis-
tinguishable points x, y ∈ X, there are open sets U and V such that x ∈ U ,
y 6∈ U and y ∈ V , x 6∈ V .
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Table 1: The connection between separation and regularity axioms
X/≡ X
Kolmogorov (T0) topological space
Fréchet (T1) symmetric (R0)
Hausdor� (T2) preregular (R1)
regular Hausdor� (T3) regular (R2)
Tychono� (T3.5) completely regular (R2.5)
normal Hausdor� (T4) normal regular (R3)
completely normal Hausdor� (T5) completely normal regular (R4)
perfectly normal Hausdor� (T6) perfectly normal regular (R5)

Theorem 3.1. If X is symmetric, then η(x) = {x} for all x ∈ X.

A topological space X is preregular if for all pairs of topologically distin-
guishable points x, y ∈ X, there are open sets U and V such that x ∈ U ,
y ∈ V and U ∩ V = ∅.

Theorem 3.2. If K1 and K2 are disjoint compact subsets of a preregular
topological space X and do not have disjoint open neighbourhoods, then there
exist x1 ∈ K1 and x2 ∈ K2 such that x1 ≡ x2.

A pseudometric on X is a function d : X2 → R that satis�es all the
properties of a metric, except it is possible that d(x, y) = 0 even if x 6= y.
A pseudometric determines a topology in the same way a metric does. The
resulting topological space is called a pseudometric space and can be denoted
by (X, d).

Example 3.3. Pseudometrics can be used in the context of cellular au-
tomata. Given a �nite set A, let AZ denote the set of functions from Z to A.
For x ∈ AZ, we write xj for x(j). Also, for n, k ∈ Z, let [n, k] denote the set
of integers m such that n ≤ m ≤ k. Finally, for sequences (an)∞n=0 of natural
numbers, denote

lim sup
n→∞

an = lim
n→∞

(
sup
m≥n

am

)
.

Then

dB(x, y) = lim sup
l→∞

|{j ∈ [−l, l] | xj 6= yj}|
2l + 1

is the Besicovitch pseudometric on AZ, and

dW (x, y) = lim sup
l→∞

max
k∈Z

|{j ∈ [k + 1, k + l] | xj 6= yj}|
2l + 1
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is the Weyl pseudometric on AZ. The topologies induced by these pseudo-
metrics have some advantages to the standard approach, where A is given
the discrete topology and AZ the product topology; for example, the class of
continuous functions from AZ to itself is larger [6].

Theorem 3.4. Let (X, d) be a pseudometric space. Then d∗ : (X/≡)2 → R,
d∗(η(x), η(y)) = d(x, y) for all x, y ∈ X, is a metric on X/≡ that determines
the same topology as the quotient map.

The space (X/≡, d∗) is called the metric identi�cation of (X, d).
We mentioned seminorms in example 2.12. A (semi)norm on V induces

a (pseudo)metric on V by de�ning d(x, y) = ‖x− y‖ for all x, y ∈ X. The
resulting topological space is called a (semi)normed vector space and can be
denoted by (V, ‖·‖).

Theorem 3.5. Let (V, ‖·‖) be a seminormed vector space. Then (V/≡, ‖·‖∗)
is a normed vector space, where

λη(x) = η(λx) for all λ ∈ K, x ∈ V,
η(x) + η(y) = η(x+ y) for all x, y ∈ V,

and

‖η(x)‖∗ = ‖x‖ for all x ∈ V.

Furthermore, ‖·‖∗ determines the same topology as the quotient map.

A space is Alexandrov-discrete if all intersections of open sets are open.
All �nite spaces are Alexandrov-discrete, as is the space of natural numbers
with a basis consisting of the sets Vn = {m ∈ N | m ≥ n}.

Theorem 3.6 ([7]). If X is an Alexandrov-discrete space, then η is a ho-
motopy equivalence.

The proof of theorem 3.6 uses the axiom of choice.
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