On the number of signals in multivariate time
series
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Abstract. We assume a second-order source separation model where
the observed multivariate time series is a linear mixture of latent, tem-
porally uncorrelated time series with some components pure white noise.
To avoid the modelling of noise, we extract the non-noise latent com-
ponents using some standard method, allowing the modelling of the ex-
tracted univariate time series individually. An important question is the
determination of which of the latent components are of interest in mod-
elling and which can be considered as noise. Bootstrap-based methods
have recently been used in determining the latent dimension in various
methods of unsupervised and supervised dimension reduction and we
propose a set of similar estimation strategies for second-order stationary
time series. Simulation studies and a sound wave example are used to
show the method’s effectiveness.

1 Time series modelling via blind source separation

Consider a multivariate time series x; = (z14,...,2,)" € RP, t € {1,...,T},
commonly encountered in contemporary applications in the form of e.g. climate,
financial, EEG, MEG of fMRI-data [1]. Naturally, in each of these cases the
series can have dependency both within and between the individual series and it
is this richness of structure that sets multivariate time series analysis apart from
its univariate counterpart. Needless to say, the added complexity comes with a
price: already in the simplest first-order vector autoregressive VAR(1)-model [2],
where each time point linearly depends on the values of the previous time only,
it takes a total of 2p? parameters to describe the full covariance structure of
the model, and with any more sophisticated models the number of parameters
inflates even further. The problem with modelling is further amplified when the
dimensionality p is large: as multivariate data often contains varying quantities
of redundancy and noise some of the model parameters are actually used to
model them while in reality we could resort to a simpler model.

A simultaneous solution to both previous problems is given by (linear) blind
source separation (BSS) [3]. In our time series context, we assume in BSS that



the observed series @x; is an invertible mixture of some latent series z; with a
simpler dependency structure, i.e.

wt:/l/+nzta te{l,"'aT}v (1)

where pu € RP is the location vector and the mizing matriz 2 € RP*P is invert-
ible. Furthermore, z; is usually assumed to be weak second-order stationary and
its component series temporally uncorrelated,

E((z: — E(2:)) (2447 — E(2)) ") = A, is diagonal for all lags 7 € Z, .

The assumption on stationarity further allows us to fix E(2z;) = 0, Cov(z;) = I,
as the two moments are in (1) confounded with g and 2, respectively. The BSS
model (1) equipped with the previous assumptions is commonly known as the
second order separation (SOS) model [3].

Measurement error and noise are commonly included in the model (1) addi-
tively, as ¢y = p+ 22+ €; where €; € RP is a white noise vector [3] representing
the two sources of external variation. However, as in this case all estimates of
the signals will always be distorted by some noise, we work in the following
with the contrasting idea that the noise is not an external but an internal part
of the model. That is, we assume that the latent series can be partitioned as
zy = (s ,w;)" where w; € RP~* is white noise and the sources of interest
(“signals”) in s; € R¥ contain all the time dependency manifested in x;. Similar
models (with different definitions of “noise”) have been previously used in the
context of both unsupervised and supervised dimension reduction in e.g. [4-7].
Compared to the additive noise model the proposed one makes the modelling
and predicting of x; particularly simple, the process consisting of four steps: es-
timate the latent series z; using some standard method, identify the p — k white
noise series among z; and discard them, model the remaining k£ temporally un-
correlated signal series individually, and finally, back-transform the model to the
original scale. This recipe avoids both of the previous problems affecting multi-
variate time series models: the number of parameters is kept in control as instead
of modelling a full p-variate time series we model k univariate time series, and
the modelling of noise is averted as we discard it prior to the modelling step.

However, the second of the four steps, the estimation of the dimensionality
k, is often heavily overlooked in similar contexts in the literature. BSS as a
solution to the modelling problem can be seen to have succeeded only partially
if our estimate d of k is inconsistent: on one hand, having d > k means the
we model noise in the third step, further biasing any predictions made with
the model later, and on the other hand, having d < k means that not all of the
signal gets captured by the model and we have voluntarily discarded information.
The task is similar to that of selecting the number of principal components in
principal component analysis where naive descriptive tools such as the scree plot
or the Kaiser rule [8] are commonly used. [9] approached the estimation via the
ladle estimator of [10] but, as far as the authors know, no other work towards
this goal in the context of time series has been done in the literature. As our
current approach, we propose a semi-parametric, bootstrap-based strategy for
estimating k.



2 Two SOS methods and test statistics

To motivate our approach we next go through the steps taken in the two most
popular SOS methods, AMUSE (algorithm for multiple signals extraction) [11]
and SOBI (second order blind identification) [12]. Also, without loss of generality,
we assume that all our series are centered, i.e. g = 0. AMUSE and SOBI both
assume the model (1) and the assumptions following it. We denote the lag-7
autocovariance matrix of the series x; by X (x;) = E(z¢x/, ,), the choice 7 =0
giving the marginal covariance matrix of the series.

The usual starting point in BSS is whitening the data: we estimate the
marginal covariance matrix Xy(x;) and standardize the series using its (unique
symmetric) inverse root X (x;) /2. This yields us the standardized series §* =
Xo(x:) /22, with the property that Xo(x;*) = I,. Some algebra reveals the
importance of the standardization for the BSS model: the standardized series
satisfies x' = Uz, for some unknown orthogonal matrix U € RP*P [13,14].

This insight instantly suggests using the eigendecompositions of the autoco-
variance matrices to recover the missing matrix U. Following our assumptions,
for any fixed lag 70 > 0 we have X, (z;!) = UA,, U " where A, is diagonal. The
diagonal elements of A, contain the marginal Toth autocovariances of the latent
series and for the white noise series w; they naturally equal 0. Thus, assuming
that all the k signal series correspond to distinct, non-zero eigenvalues, the re-
lated eigenvectors U; € RP*F can be identified up to sign and order, and finally,
we obtain the signal series s; via the transformation x; — U;Z’o(wt)_lmmt,
yielding the AMUSE-solution with lag 79. In practice the time series of interest
are selected from the estimated p latent series by inspecting the diagonal val-
ues of the estimated /ifo, where the squaring is used simply for convenience to
order the components in a decreasing order of interestingness. The noise compo-
nents can now be identified as being the last p — d components that have “small
enough” eigenvalues, d = 0, ..., p, the key question then being what actually is
small enough. An equivalent formulation for the problem can be stated via the
running means my_q of the last p — d squared eigenvalues by asking for which d
the estimate ™,_q is “too large”. This prompts to use m,_q as a test statistic
for testing the null hypothesis,

Hy q : The last p — d latent series are white noise.

For a fixed d, if the observed value of 771,_4 exceeds some pre-defined critical
value we conclude that the result is too unlikely to have been originated under
the null hypothesis and infer that the number of signal components is larger
than d. Chaining together tests for several null hypotheses Hy 4,, Ho d, - . . then
allows us to pinpoint the true value d = k. However, obtaining the distribution
of our test statistic under the null hypothesis is a highly non-trivial task under
the general SOS-model, and we thus resort to the bootstrap [15] to obtain the
quantiles, the next section detailing several bootstrapping strategies we can use
to accurately replicate the null distribution.

AMUSE already gives us a reasonable starting point for devising a test statis-
tic for the signal dimensionality, but suffers from a clear drawback: the signal



components must all have non-zero 7oth autocovariances in order to be distin-
guished from the noise (to be distinguishable from each other the signal autoco-
variances also need to be mutually distinct but that is irrelevant with respect to
our current problem of separating the noise subspace from the signal subspace
as a whole). In practice this necessitates a careful choosing of the single lag 7q,
possibly using some expert knowledge on the phenomenon at hand. Such incon-
venience is avoided with our preferred SOS-method, SOBI. In SOBI one instead
chooses a set of lags, Ty, and jointly diagonalizes all |Tg| autocovariance matrices
of the standardized series corresponding to the lags (with | 7| = 1 we revert back
to AMUSE). The joint diagonalization is captured by the optimization problem

U' = argmax diag (VT 2, (25 V)|
VTgV:Ip;O |diag (V" 27 (i) V)|

commonly solved using the Jacobi rotation algorithm [16]. For two latent com-
ponents to be mutually distinguishable by the joint diagonalization it is suffi-
cient that the corresponding marginal autocovariances differ for some lag in 7
[12]. In particular, we can distinguish the noise subspace from the signal sub-
space if all signal series exhibit autocorrelation for at least one lag in 7y (which
can be a different lag for different signals), prompting us to choose a relatively
large set of lags, 7o = {1,...,12} being a common choice. Thus, a natural test
statistic for the null hypothesis Hy 4 is again obtained by considering “eigen-
values”, the diagonal elements of the estimated as-diagonal-as-possible matrices
A, = diag(U " X, () U). Ordering the sums of the squared elements in de-
creasing order, the running means 1,_q of the last p — d components of the
sample estimate of ZTGTO A2 will be “small” for large enough values of d and
their null distributions can be used to find the value of d where 171,,_4 is too large
to have originated under the null hypothesis, again allowing us to identify the
correct dimensionality.

3 Bootstrap tests for the white noise dimension

Bootstrap-based methods have recently been used in determining the noise sub-
space dimension for principal component analysis (PCA), independent com-
ponent analysis (ICA) and sliced inverse regression (SIR) in [5] and for non-
Gaussian component analysis in [6]. As an alternative testing method both works
also discuss tests that are based on limiting behaviors of certain functions of the
noise eigenvalues. Such asymptotic procedures are indeed efficient when the sam-
ple size is high and could certainly be considered in our context as well, if not
for the general difficulty of obtaining limiting results for time series models (see
however the limiting behaviour of AMUSE and SOBI for linear processes in [17-
21]). As such we leave the development of asymptotic testing procedures to a
subsequent work and proceed now with bootstrapping tests.

Assume a time series coming from the model (1), fix a candidate for the
signal dimension d and let m,_4 be the test statistic of the previous section,
the mean of the last p — d squared eigenvalues produced by either AMUSE or



SOBI (mean of the sums of the squared “eigenvalues” in the case of SOBI).
To test the null hypothesis Hy 4 we need a way to generate samples from the
distribution of the model (1) under the null hypothesis. We will consider four
different strategies where we always leave the signal part untouched and take
bootstrap samples of the noise part under the current null hypothesis, denoted
z; s where i = d +1,...,p denotes the component and s = 1,...,T the time

point.

Parametric bootstrap: The most widely used assumption about the white noise
is that it is Gaussian, making all noise features independently and identically
N(0,1)-distributed. The bootstrap samples are then

Zig ™~ N(0,1).

Naturally, the parametric bootstrap makes the strongest assumptions, in this
case that (i) the noise processes are independent, (ii) within a noise process the
time points are serially independent and (iii) the noise is Gaussian. Using next
non-parametric bootstrap these assumptions can be relaxed in different ways.

Non-parametric bootstrap I: First we relax the distributional assumption while
keeping assumptions (i) and (ii), and assume only that the noise distribution
is for all noise components the same but not necessarily Gaussian. Then all
(p—k) X T elements in the noise part are iid samples from the same distribution
and we can use use the combined sample to estimate the empirical distribution
function (ecdf) and to sample (p — d) x T elements from it. Thus

ziy~ecdf{(24,q,....4)) }i=d+1,...,p, s=1,....T,

where 2; is the T-vector of the estimated jth latent series and ecdf{x} denotes
the ecdf of the samples in .

Non-parametric bootstrap II: Another way to relax the third assumption is to
keep assumptions (i) and (ii) but assume that each process has a possibly dif-
ferent standardized distribution. In that case each noise series should be boot-
strapped individually and independently from the others. Therefore using this
strategy the bootstrap samples are obtained as

zig~ecdf{2] ), i=d+1,...,p, s=1,...,T.

Non-parametric bootstrap III: The last approach considered relaxes also the
independence between the noise processes and just requires that they are un-
correlated and serially independent. Hence the ecdf is now multivariate and a
bootstrap sample of vectors is obtained as

z*

ms~ecdf{Zy 1, 20}, s=1,...,T,

_ T s (s 5 N\T
where z;;, = (z2+175, vz ) and 2y = (Zagit, -, 2pit)



In Algorithm 1 we describe the entire testing procedure for Hy 4 using SOBI
(where the version for AMUSE is obtained by using only a single lag).

Algorithm 1: Testing Hy 4

Set proposed dimension d, number of resamples R, observed sample X;;
Estimate the SOBI-solution for X;: UTZA‘JUQ, Mp—d;
forie{l,...,R} do

Z7 + bootstrap the last p — d series of Z; = UTﬁ‘al/QXi;

X« 520z

Estimate the SOBI-solution for X: m;; &

Return the p-value: [#(r;_; > my—a) + 1]/(R+1);

The addition of one in both the numerator and denominator of the p-value
is a commonly used “correction” to avoid the event of obtaining a zero p-value.
For some other guidelines concerning bootstrap hypothesis testing, see [22].

The procedure above tests only for a specific value of the signal /noise dimen-
sion. To obtain an estimate for the dimension, the changing point from rejection
to acceptance of the sequence of null hypotheses is of interest. For that the tests
have to be applied sequentially and different strategies are possible. For exam-
ple, one can start with the assumption that all components are noise and then
increase successively the hypothetical signal dimension until for the first time
the null hypothesis cannot be rejected or one can start with the hypothesis of a
single noise component and increase the noise dimension until the first time the
null hypothesis is rejected. Another possibility is to use some divide-and-conquer
strategy. Comparing different estimation strategies is however beyond the scope
of this paper and will be explored in a future work. The following simulation
study focuses on validating the bootstrap hypothesis tests as suggested above.

4 Simulations

In order to assess the performance of the bootstrap tests, we conducted a sim-
ulation study with three different settings using 5-dimensional time series. The
first two are taken as ARMA-processes: 21 ~ ARMA(2,1) with parameters
¢1 = 0.5, ¢ = 0.2 and 6; = 0.5 and 2o ~ MA(5) with the parameter vector
6 =(—0.4,0.6,—0.3,0.1,—0.3). The final three series are noise with the following
distributions in the different settings: Setting 1: z3, 24, 25 ~ N(0,1); Setting 2:
(23,24, 25) ~ t5; Setting 3: 23 ~ N(0,1), 24 ~ t5 and 25 ~ U(—/3,V/3).

In all settings the signal subspace has the true dimension k = 2. Setting
1 is possibly the most natural one, in Setting 2 the noise has a spherical 3-
variate ts-distribution which means that there is some dependence among the
components and in Setting 3 the noise components are independent but have
different marginal distributions. As a mixing matrix we used a random matrix
02, where the elements of the matrix were drawn randomly from the N(0,1)-
distribution. Next the bootstrap p-values based on M = 200 and 500 bootstrap



Table 1. Rejection rates in Setting 1 over 200 bootstrap samples and 2000 repetitions.

AMUSE SOBI
n Booststrap method Hy Hy Ho s Hoa Hy Hy 3
200 parametric 0.998 0.042 0.004 1.000 0.049 0.006
200 non-parametric I 0.998 0.042 0.006 0.998 0.047 0.008

200 non-parametric 11 0.998 0.048 0.006 1.000 0.046 0.005
200 non-parametric 111 0.999 0.046 0.005 1.000 0.052 0.005
500 parametric 1.000 0.047 0.008 1.000 0.052 0.010
500 non-parametric I 1.000 0.043 0.007 1.000 0.047 0.008
500 non-parametric 1T 1.000 0.046 0.010 1.000 0.050 0.010
500 non-parametric IIT 1.000 0.045 0.010 1.000 0.054 0.008
2000 parametric 1.000 0.053 0.008 1.000 0.048 0.007
2000 non-parametric I 1.000 0.042 0.006 1.000 0.057 0.007
2000 non-parametric IT 1.000 0.052 0.006 1.000 0.050 0.008
2000  non-parametric I1I 1.000 0.052 0.008 1.000 0.048 0.008
5000 parametric 1.000 0.052 0.008 1.000 0.053 0.006
5000 non-parametric I 1.000 0.050 0.009 1.000 0.054 0.006
5000 non-parametric II 1.000 0.054 0.010 1.000 0.050 0.007
5000 non-parametric I1T 1.000 0.052 0.007 1.000 0.050 0.006

samples were calculated and the procedure was repeated 2000 times. We used
the time series lengths T" = 200, 500, 2000, 5000 and AMUSE with lag 1 and
SOBI with lags 1,...,12. Tables 1 — 3 show the proportions of rejections at the
a-level 0.05 based on 2000 repetitions for hypotheses Hy 1, Hp 2 (the true value
which should be the first test we do not reject) and Hy 3 for each combination of
settings and methods with M = 200. The results based on M = 500 gave very
similar results and were thus omitted from the tables.

Based on the simulation results we conclude that all the tests had quite good
power and successfully detected if there were non-noise components among the
hypothetical noise part. Interestingly, the parametric bootstrap test seems quite
robust — it works also in Settings 2 and 3 where the data were generated using
other noise processes. The non-parametric bootstrap test I, which is the closest to
the parametric one, seems however to be the least effective of the non-parametric
bootstrap tests. As the non-parametric bootstrap test III is valid in all three
settings, and the other tests do not gain much in the settings they were designed
for, this test might be the best choice in practise. As the differences between
AMUSE and SOBI seem minor, we advocate SOBI for practical applications as
it is usually preferable over AMUSE and most likely estimates the signals better.

5 Sound example

To evaluate the method in practice we used it to estimate the dimension of a set of
sound recordings mixed with noise. The signal part s; was 3-dimensional with the
length T = 50000 and was obtained from http://research.ics.aalto.fi/ica/cocktail/
cocktail_en.cgi as in [23]. To this we added 17 channels of N (0, 1)-noise to obtain



Table 2. Rejection rates in Setting 2 over 200 bootstrap samples and 2000 repetitions.

AMUSE SOBI
n Booststrap method Hy Hy Ho s Hoa Hy Hy 3
200 parametric 1.000 0.046 0.007 1.000 0.052 0.008
200 non-parametric I 0.998 0.045 0.006 1.000 0.030 0.004

200 non-parametric 11 1.000 0.046 0.006 1.000 0.048 0.010
200 non-parametric 111 1.000 0.044 0.006 0.999 0.051 0.012
500 parametric 1.000 0.052 0.008 1.000 0.043 0.007
500 non-parametric [ 1.000 0.050 0.005 1.000 0.046 0.006
500 non-parametric 1T 1.000 0.046 0.006 1.000 0.044 0.006
500 non-parametric IIT 1.000 0.051 0.006 1.000 0.046 0.008
2000 parametric 1.000 0.042 0.003 1.000 0.047 0.007
2000 non-parametric I 1.000 0.044 0.005 1.000 0.051 0.006
2000 non-parametric IT 1.000 0.048 0.002 1.000 0.047 0.010
2000  non-parametric I1I 1.000 0.044 0.003 1.000 0.045 0.008
5000 parametric 1.000 0.050 0.008 1.000 0.047 0.009
5000 non-parametric I 1.000 0.068 0.010 1.000 0.055 0.006
5000 non-parametric II 1.000 0.049 0.005 1.000 0.048 0.008
5000 non-parametric IIT 1.000 0.049 0.007 1.000 0.046 0.006

the latent z = (s1, 52,83, W4, Ws, . .., wWwso) ' which was mixed with £2 € R20x20

containing iid N(0,1) variables to obtain the “observed” data x; = §2z;.

We considered all four bootstrap strategies using AMUSE with lag 1 and
SOBI with lags 1,...,12. Each combination then produced a string of p-values
Do, - - -, P19 corresponding respectively to the null hypotheses Hy g, ..., Hp 19. The
forwards estimate for d is then the first k for which Hy j is not rejected and the
backwards estimate for d is k4 1 where k is the last Hy j to be rejected. The re-
sulting estimates are shown in Table 4 and reveal that all combinations correctly
identify the true signal dimension. Note that as the forwards and backwards es-
timates yield the true dimension then also any divide-and-conquer methods are
bound to find the true dimension in this case.

6 Summary

We proposed four bootstrap tests to test the signal subspace dimension in an
SOS framework using AMUSE or SOBI. Simulations showed that the different
bootstrap tests work generally well and keep the a-level with good rejection
power. To estimate the subspace dimension, the tests would need to be applied
sequentially, maybe with different strategies and a possible need for multiple
testing adjustments. These issues will be addressed in future work, although
an application to sound wave data already yielded some evidence that the se-
quential estimation works in practice. Note that the suggested tests ignore any
possible variation coming from the estimation of the signal as these parts are
not bootstrapped. Time series bootstrap strategies as described, for example, in



Table 3. Rejection rates in Setting 3 over 200 bootstrap samples and 2000 repetitions.

AMUSE SOBI
n Booststrap method Hy Hy Ho s Hoa Hy Hy 3
200 parametric 0.999 0.044 0.006 0.998 0.051 0.008
200 non-parametric I 0.999 0.063 0.008 0.999 0.047 0.009

200 non-parametric 11 0.998 0.044 0.006 0.998 0.047 0.008
200 non-parametric 111 0.998 0.044 0.007 0.999 0.046 0.007
500 parametric 1.000 0.045 0.008 1.000 0.054 0.006
500 non-parametric I 1.000 0.052 0.005 1.000 0.047 0.006
500 non-parametric 1T 1.000 0.044 0.005 1.000 0.052 0.009
500 non-parametric IIT 1.000 0.051 0.006 1.000 0.056 0.006
2000 parametric 1.000 0.050 0.004 1.000 0.051 0.007
2000 non-parametric I 1.000 0.050 0.006 1.000 0.060 0.006
2000 non-parametric IT 1.000 0.050 0.006 1.000 0.052 0.009
2000  non-parametric I1I 1.000 0.049 0.003 1.000 0.046 0.008
5000 parametric 1.000 0.060 0.007 1.000 0.046 0.009
5000 non-parametric I 1.000 0.053 0.008 1.000 0.053 0.009
5000 non-parametric II 1.000 0.058 0.004 1.000 0.045 0.009
5000 non-parametric I1T 1.000 0.058 0.006 1.000 0.046 0.006

Table 4. The estimates for d for each combination of bootstrap strategy and methods
in the sound example.

Estimator BSS parametric non-par I non-par II non-par 111
Forwards AMUSE 3 3 3 3
Forwards SOBI
Backwards AMUSE
Backwards SOBI

w wlw

3 3 3
3 3 3
3 3 3

[24] could then be applied also here for the signal parts. This extension will also
be explored in future research.
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