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A B S T R A C T

Adaptive expertise is a valued, but under-examined, feature of students' mathematical development (e.g. Hatano
& Oura, 2012). The present study investigates the nature of adaptive expertise with rational number arithmetic.
We therefore examined 394 7th and 8th graders’ rational number knowledge using both variable-centered and
person-centered approaches. Performance on a measure of adaptive expertise with rational number arithmetic,
the arithmetic sentence production task, appeared to be distinct from more routine features of performance.
Even among the top 45% of students, all of whom had strong routine procedural and conceptual knowledge,
students varied greatly in their performance the arithmetic sentence production task. Strong performance on this
measure also predicted later algebra knowledge. The findings suggest that it is possible to distinguish adaptive
expertise from routine expertise with rational numbers and that this distinction is important to consider in
research on mathematical development.

1. Distinguishing adaptive from routine expertise with rational
number arithmetic

Rational number knowledge is a linchpin of students’ mathematical
development (Booth & Newton, 2012; DeWolf, Bassok, & Holyoak,
2015; Hurst & Cordes, 2018; Siegler et al., 2012). It is both a key
outcome of early mathematical development (Steffe & Olive, 2010) and
a cornerstone for later algebra knowledge (Hurst & Cordes, 2018).

Most research on rational numbers has examined students’ diffi-
culties (e.g. Jordan et al., 2013; Van Hoof, Janssen, Verschaffel, & Van
Dooren, 2015); far fewer studies have examined high-level performance
with basic rational number topics, such as understanding of magnitudes
of individual rational numbers and standard, frequently practiced, ra-
tional number arithmetic procedures. This is unfortunate, because
routine expertise in a mathematical topic often is insufficient for future
success in applying the knowledge to novel situations, regardless of the
strength of the routine knowledge in typical situations (Baroody, 2003;
Hatano & Oura, 2012). Students less often acquire adaptive expertise,
which requires more malleable, fluid knowledge that is readily ap-
plicable to novel situations. This is unfortunate, because adaptive ex-
pertise is expected to be an important predictor of future success with
mathematics (Lehtinen, Hannula-Sormunen, McMullen, & Gruber,
2017). Therefore, the present study investigates the nature of adaptive

expertise with rational number arithmetic.

1.1. Adaptive expertise with rational number arithmetic

Theories of adaptive expertise (e.g., Baroody, 2003) make an ex-
plicit distinction between (a) static, sparsely connected knowledge that
can only be applied to typical tasks, and (b) richly connected knowl-
edge that can be flexibly applied in novel contexts. The former typifies
routine expertise; the latter typifies adaptive expertise. In the present
study, we attempt to integrate previous theories of conceptual and
procedural knowledge (e.g. Hiebert & Lefevre, 1986) with those of
adaptive expertise (e.g. Hatano & Inagaki, 1986).

Previous theories of conceptual knowledge have proposed that the
degree of interconnectedness of conceptual knowledge is crucial to its
quality (Hiebert & Lefevre, 1986; Schneider & Stern, 2009). However,
these theories have not pursued the distinction beyond noting that
students vary in the interconnectedness of the knowledge. Based on the
distinction between adaptive and routine expertise, it may be fruitful to
make a distinction between highly-connected conceptual knowledge
and less-connected conceptual knowledge. Previous examinations of
rational number sense have more generally outlined a broad range of
skills and knowledge that could typify adaptive expertise with rational
numbers, including useful estimation; flexible representations; mental
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manipulations (often calculations); application to novel, real-world si-
tuations; and numerical judgements (e.g. Markovits & Sowder, 1994;
Moss & Case, 1999). However, to the best of our knowledge, no prior
study has examined specific aspects of adaptive expertise with rational
numbers on a large scale in relation to features of students’ routine
expertise. Thus, the present study is an attempt to provide data on
which future theoretical distinctions in this area can be more solidly
based.

A core feature of adaptive expertise that distinguishes it from rou-
tine expertise is the ability to flexibly apply knowledge to solve novel
tasks. As Baroody (2003) notes, this perspective suggests that in-
tegrating strong procedural fluency with strong conceptual knowledge
is needed for adaptive expertise. However, descriptions of adaptive
expertise require specification of behavioral differences that follow
from the theoretical distinctions (Fazio, DeWolf, & Siegler, 2016;
Schneider, Rittle-Johnson, & Star, 2011; Torbeyns, Verschaffel, &
Ghesquière, 2006; Verschaffel, Luwel, Torbeyns, & Van Dooren, 2009).
One attempt to specify these behaviors led to investigations of chil-
dren's performance on the arithmetic sentence production task, which is
proposed to measure one aspect of adaptive expertise with whole
number arithmetic (McMullen et al., 2016). Substantial individual
differences emerged in the quantity and mathematical complexity of
the solutions students generated on this novel calculation task
(McMullen et al., 2017). These differences were related to, but not
entirely explained by, procedural and conceptual knowledge on
common tasks (i.e. routine knowledge). However, these studies did not
explicitly examine if it is possible to empirically distinguish those as-
pects of performance related to adaptive expertise from those related to
routine expertise. Therefore, we aim to examine one aspect of adaptive
expertise with rational number arithmetic, by examining performance
on the arithmetic sentence production task and determining if this
should be distinguished from performance on measures of routine ex-
pertise with rational number knowledge.

1.2. The present study

To examine the nature of adaptive expertise with rational number
arithmetic, we employed both variable-centered and person-centered
approaches (Bergman & Magnusson, 1997; Hickendorff, Edelsbrunner,
McMullen, Schneider, & Trezise, 2018). In the variable-centered ap-
proach, we used Confirmatory Factor Analysis (CFA) to determine if
performance on a measure of adaptive expertise can be distinguished
from performance on measures of routine expertise of rational numbers.
In the person-centered approach, we used Latent Profile Analysis (LPA)
to identify individual students’ knowledge patterns across these mea-
sures.

Students’ performance on an arithmetic sentence production task
similar to one used previously with whole numbers was theorized to
describe one potential behavioral manifestation of adaptive expertise
with rational number arithmetic (McMullen et al., 2017). On this task,
participants needed to generate as many distinct correct arithmetic
sentences as possible that included subsets of five numbers to produce a
target number. Each item included pairs of equivalent fractions and
decimals (e.g. ½ and 0.5, ¼ and 0.25), as well a whole number (e.g. 4).
Previous research has found that some students adaptively move among
solution strategies based on the characteristics of the problem, but other
students do not (McMullen et al., 2017). Thus, we also carried out ex-
ploratory analysis describing the solutions students produced on the
arithmetic sentence production task. In particular, we examined their
relative use of fractions and/or decimals and multiple operations in
their solutions. As well, given the equivalent fractions and decimals that
can be used as numbers in these arithmetic sentences, and the im-
portance of representational flexibility between fractions and decimals
(Deliyianni, Gagatsis, Elia, & Panaoura, 2016), we also examined how
often participants used mathematically equivalent, but notationally
different, solutions (i.e. using both 1/2 + 1/2 and 0.5 + 0.5).

Several aspects of rational number knowledge typical for routine
expertise with rational numbers seemed relevant for performance on
the arithmetic sentence production task. These aspects were considered
routine because they did not require solving novel tasks (Baroody,
2003) and are part of a foundational understanding of the rational
number concept (Van Hoof et al., 2015). Knowledge of arithmetic cal-
culation procedures with fractions and decimals was considered routine
procedural knowledge that was necessary to produce correct solutions.
Three aspects of routine conceptual knowledge of rational numbers also
seemed relevant to performance on the arithmetic sentence production
task. One was knowledge of the magnitude of rational numbers, which
seemed essential for producing arithmetic sentences that would yield
the target value (Bailey, Hansen, & Jordan, 2017). Another was
knowledge about rational number representations (e.g. Deliyianni
et al., 2016), which seemed crucial for generating equivalent fractions
and decimals in number sentences. Finally, knowledge of relations
among rational number operations was expected to support high level
performance on the task by opening up opportunities to use multi-
plication and division with numbers less than one, a type of knowledge
that many students lack (Lortie-Forgues, Tian, & Siegler, 2015).

To test whether students with the best performance on the ar-
ithmetic sentence production task were simply those with the most
rational number knowledge, we presented a task measuring knowledge
of the density of rational numbers, the knowledge that there are infinite
numbers between any two rational numbers. Performance on the ar-
ithmetic sentence production task and understanding of density seemed
likely to be positively correlated. However, we did not expect that
density knowledge would directly contribute to this performance. Even
after years of experience with rational numbers, many students do not
understand the density property (Vamvakoussi & Vosniadou, 2010; Van
Hoof, Degrande, Ceulemans, Verschaffel, & Van Dooren, 2018). This
presumably includes students who are skillful in solving routine ra-
tional number arithmetic problems (Vamvakoussi, Van Dooren, &
Verschaffel, 2012).

We also examined whether performance on the arithmetic sentence
production task predicts later algebra knowledge. Rational number
knowledge in general has been found to be related to algebra knowl-
edge (Booth & Newton, 2012; DeWolf et al., 2015; Empson, Levi, &
Carpenter, 2010; Hurst & Cordes, 2018), but the sources of the relation
remain unspecified. Performance on the arithmetic sentence production
task seemed likely to be related to algebra knowledge because algebra
requires the type of flexible mathematical thinking that the arithmetic
sentence production task is intended to measure (e.g. Star, 2007).

Finally, to demonstrate that relations between performance on the
arithmetic sentence production task and other mathematical knowledge
do not simply reflect greater motivation or skill at learning in school,
we also examined relations between this performance and reading
achievement. Our hypothesis was that reading knowledge is unrelated
or minimally related to performance on the arithmetic sentence pro-
duction task.

2. Methods

2.1. Participants

Students from the 7th and 8th grades of a school in the southeastern
US (N = 394; 53% female; 7th grade n = 232) participated in the
study. The population of the school was 51% white, 28% African
American, 11% Hispanic, and 5% Asian; 43% of students received free
or reduced lunch. All participants had parental permission to partici-
pate and gave their own assent; the ethics board of the first authors’
institution approved the study, as did district and school administra-
tion. Participants completed paper-and-pencil measures of rational
number knowledge in their science classrooms in January 2017.
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2.2. Measures

2.2.1. Rational number conceptual knowledge
We assessed three aspects of routine conceptual knowledge of ra-

tional numbers that might be related to adaptive expertise with rational
number arithmetic: magnitudes of rational numbers, operations with
rational numbers, and representations of rational numbers.

2.2.2. Rational number magnitude knowledge
Rational number magnitude knowledge was assessed through two

tasks: an ordering task and a number line estimation task (Schneider &
Siegler, 2010; Stafylidou & Vosniadou, 2004; Van Hoof et al., 2015).
The ordering task included two fraction items (e.g. “Put the numbers in
order from smallest to largest”: 6/12; 5/7; 2/6), two decimal items (e.g.
“Put the numbers in order from smallest to largest”: 5.89; 5.886; 6.5),
and two fraction and decimal items (e.g. "Put the numbers in order from
smallest to largest": 0.5; 1/4; 5/100; 0.356). Each item was scored as
correct or incorrect with a maximum score of 6 for the test. Reliability
was good (Cronbach's α = 0.81).

Number line estimation was assessed on a 0–1 number line with four
items (0.6, 1/5, 3/7, and 0.42), and on a 0–5 number line with four
other items (11/7, 3.7, 9/2, and 0.83). Percent absolute error was used
to measure accuracy on both number lines (e.g. Siegler, Thompson, &
Opfer, 2009). Reliability was acceptable for these items (Cronbach's
α = 0.70).

2.2.3. Rational number arithmetic operations knowledge
Knowledge of rational number operations was measured using six

items adapted from Van Hoof et al. (2015). Items tested students'
knowledge of the effects of arithmetic operations with fractions and
decimals (e.g. “Is the outcome of 40 × 1/3 smaller or larger than 40?“;
“What is half of 1/6?“). All items were incongruent, such that reasoning
based on features of arithmetic with whole numbers would lead to in-
correct answers (e.g. Multiplication always makes a number bigger).
Reliability was good for these items (Cronbach's α = 0.80).

2.2.4. Rational number representation knowledge
Knowledge of rational number representations was examined via

the Number Sets Test (Geary, Bailey, & Hoard, 2009). Students had
1 min to identify as many symbolic and non-symbolic representations as
possible that equaled first ½ and then 0.9. Each item had fifteen al-
ternative answers, with nine and eight correct matches per item. Cor-
rect answers added a point; incorrect answers deleted a point. Relia-
bility was good for these items (Cronbach's α = 0.82).

2.3. Procedural knowledge of rational number arithmetic

Participants were also asked to solve 12 fraction arithmetic pro-
blems (2/3−1/3; 4/7 ÷ 1/2; 3/4 × 1/5; 8 1/2 ÷ 4 1/8; 5/7−1/2; 1/
5 + 2/3; 7/8 + 2/8; 2 3/4 + 4 1/8; 2 6/7 + 5 1/2; 5/8 ÷ 3/8; 3 2/
3−3/4; 3/5 × 1/5) and 12 decimal arithmetic problems (1.05 × 0.2;
0.71–0.4; 0.11 + 0.7; 5.29–4.2; 3.4 + 1.02; 0.38–0.14; 0.4 + 0.2;
0.9 ÷ 0.3; 0.4 × 0.52; 0.111 × 0.097; 3.06 × 5.3; 0.84 ÷ 0.4).
Answers were scored as correct or incorrect, with the maximum score
for the test being 24. Reliability was good for these items (Cronbach's
α = 0.89).

2.4. Adaptive rational number knowledge

Following previous research (McMullen et al., 2016), we use the
term adaptive rational number knowledge to describe students' per-
formance the arithmetic sentence production task with rational num-
bers. Students had 90 s to generate as many mathematically correct
arithmetic sentences as possible that produced a target number by ar-
ithmetically combining subsets of five other numbers. First, students
completed a practice item with whole numbers (make 6 by combining a

subset of 1, 2, 3, and 4). Individual numbers could be used repeatedly.
After completing this item, the students were encouraged to ask ques-
tions about it and then were presented four test items. Each test item
included two pairs of equivalent fractions and decimals (e.g. ½ and 0.5;
¼ and 0.25) and a single whole number (e.g. 4) as the numbers from
which students should make the target number (e.g. 1; See Table 1).
Answers were counted as correct if they were mathematically correct,
only used the given numbers, and were not literal repetitions of a
previous solution. Thus, mathematically similar solutions (e.g. 1/
2 + 1/2 and 0.5 + .5) and inverses (e.g. 1/4 + 1/2 and 1/2 + 1/4)
were counted as correct. Participants received one point for each cor-
rect arithmetic sentence. Reliability was good (Cronbach's α = 0.86).

To classify the solutions, we coded the number of correct responses
that included (a) fractions, (b) decimals, (c) both fractions and decimals
(e.g. 1/2 + 0.5), and (d) both addition/subtraction and multiplication/
division (e.g. 2 * 1/4 + 1/2). The number of mathematically equivalent
solutions (e.g. 1/2 + ½, 0.5 + 0.5, 0.5 + 1/2, and 1/2 + .5) used by a
participant within an item was also coded. As these codings did not
require subjective interpretations, they were not checked for inter-rater
reliability.

2.5. Rational number density knowledge

Density knowledge was assessed using short-answer and multiple-
choice items (Vamvakoussi & Vosniadou, 2010). It was not included in
the main analyses, because it was not considered directly relevant to
adaptive rational number knowledge. Rather, it was used as a control
for ability to learn difficult, and often implicitly taught, mathematical
content. The 10 open-ended or multiple-choice items asked students,
for example: “Are there other fractions/decimals between [5/7 and 6/
7] OR [0.3 and 0.4]? If so, how many?“.

Each response was scored as indicating full (3 points), partial (2
points), limited (1 point), or incorrect (0 points) knowledge of density:

• Full knowledge responses displayed a mathematically correct concept
of the density of rational numbers (e.g. There are an infinite number
[of numbers between 3/7 and 4/7.]).

• Partial knowledge responses expressed a partially correct under-
standing of the dense nature of rational numbers but were con-
strained by the representation (e.g. there are an infinite number of
fractions between 3/7 and 4/7 [but not an infinite number of dec-
imals]).

• Limited knowledge answers expressed an understanding that there are
many, but not unlimited, numbers between any two other rational
numbers.

• Incorrect knowledge answers displayed no understanding of the
density of rational numbers, for example stating that there are only
one or no number(s) between any two other numbers.

Reliability was high for the density items (Cronbach's α = 0.93)

2.6. Algebra and reading achievement

End-of-year statewide standardized test scores for mathematics and

Table 1
Given and target numbers for arithmetic sentence production task with rational
numbers.

Item Given Numbers Target Number

1 1/2
; 1/4; 0.5; 0.25; 4

1

2 1/2
; 1/8; 0.5; 0.125; 2

1/4

3 1/4; 3/4; 0.25; 0.75; 2 .5
4 3/2; 3/4; 1.5; 0.75; 2 3
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reading were obtained. Tests were taken four months after the rational
number knowledge assessment. Only a sub-set of the original sample
completed the algebra test, because students completed different
mathematics tests based on which course they took that year: general
mathematics, algebra, or geometry. Since these topics were not directly
comparable (e.g. the algebra test was more difficult than the general
mathematics tests), and we were particularly interested in the relation
between rational number knowledge and algebra, only algebra scores
were examined. Scores were obtained for the 127 students who com-
pleted the algebra test (highest possible score = 6) and the 352 stu-
dents who completed the reading test (highest possible score = 5).

2.7. Analysis

All analyses were carried out in Mplus version 8.0 (Muthén &
Muthén, 1998-2017). CFA was used to examine the hypothesis that
adaptive expertise with rational number arithmetic is distinct from
routine expertise with rational numbers. Two manifest variables for
each knowledge type were used in the analysis (a) the odd (i.e. Items 1
and 3): and even (i.e. Items 2 and 4) items from the arithmetic sentence
production task for adaptive number knowledge, (b) fraction and dec-
imal arithmetic procedural scores for procedural knowledge, (c) frac-
tion and decimal ordering and number line estimation for magnitude
knowledge, (d) fraction and decimal operations knowledge, and (e)
fraction and decimal representation knowledge. Overall model fit was
evaluated based on thresholds of less than 0.05 for root-mean-square
error of approximation (RMSEA), greater than 0.95 for comparative fit
index (CFI), greater than 0.90 for the Tucker-Lewis Index (TLI) and less
than 0.08 for the standardized root-mean-square residual (SRMR).
Lower values for Akaike Information Criterion (AIC) and Bayesian In-
formation Criterion (BIC) indicate a better fit when comparing models
(Hu & Bentler, 1999).

Latent Profile Analysis (LPA) was used to examine patterns of ra-
tional number knowledge. The estimation method was maximum like-
lihood with robust routine errors, which is a full information approach
that can handle missing-at-random data. The analyses of LPA models
were carried out as mixture models, in which 1000 and 100 random
start values were used in the first and second steps of model estimation,
respectively, to ensure the validity of the solution (Geiser, 2013). Model
fits were evaluated with a combination of statistical indicators and
substantive theory to determine the most suitable number of latent
classes and best fitting models (Nylund, Asparouhov, & Muthén, 2007).
Entropy values that approach 1 signify more certainty in the resulting
classification. Finally, a significant result of the Parametric Boot-
strapped Likelihood Ratio Test (BLRT) and Lo-Mendell-Rubin (LMR)
test suggests support for the k-class solution in comparison with the k-1-
class solution. In other words, a significant result on this test suggests
that the use of that model is more appropriate than the model that has
one less class in it.

3. Results

Table 2 details the means and standard deviations for all rational
number knowledge measures, as well as the correlations among the
measures. As can be seen in Table 2, the measures of rational number
knowledge were moderately to strongly interrelated.

3.1. Distinguishing adaptive rational number knowledge from routine
procedural and conceptual knowledge

To determine whether adaptive rational number knowledge is dis-
tinct from routine knowledge of rational numbers, we tested whether
the constructs were better modeled separately or combined in a series
of confirmatory factor analyses. If adaptive rational number knowledge
is more appropriately modeled separately from routine procedural and
conceptual knowledge of rational numbers, this would provide

evidence of discriminant validity.
Table 3 describes the CFA fit statistics for the series of models, in-

cluding a unitary one-factor model (Model A) with all variables in-
cluded in the same factor; three different two-factor models that com-
bine adaptive and routine conceptual, and routine procedural
knowledge into pairs of types of knowledge: (Model B) adaptive and all
conceptual, (Model C) adaptive and procedural, or (Model D) proce-
dural and all conceptual; the three-factor model (Model E) that treats
adaptive, procedural, and all conceptual knowledge as separate factors;
four different four-factor models that separate out the conceptual
components and pairs adaptive knowledge with each of the four
knowledge components leaving the others separate: (Model F) adaptive
and procedural, (Model G) adaptive and magnitude, (Model H) adap-
tive and operations, and (Model I) adaptive and representations; and
the five-factor model (Model J) that treats all five aspects of knowledge
as separate latent variables.

The fits of the estimated models suggest that either a three-factor
model, which distinguishes among adaptive and routine procedural and
conceptual rational number knowledge, or the five-factor model, which
distinguishes among all five aspects of knowledge, is most appropriate.
This suggests that adaptive rational number knowledge is best modeled
as a construct distinct from routine conceptual and procedural knowl-
edge.

3.2. Profiles of rational number knowledge

To further examine whether adaptive rational number knowledge is
a unique aspect of students’ understanding of rational numbers, we
conducted an LPA with the five aspects of rational number knowledge
as indicators: 1) magnitude knowledge (sum of standardized scores for
ordering and number line estimation; r (394) = 0.63), 2) operations
knowledge, 3) procedural knowledge of arithmetic, 4) representation
knowledge, and 5) adaptive rational number knowledge. The three aspects
of routine conceptual knowledge (magnitude, operations, and re-
presentations) were used as separate indicators in the LPA modelling.
This was done to determine if there were varying relations among these
variables, and in particular whether adaptive rational number knowl-
edge was differently related to the different aspects of routine rational
number knowledge. This decision is in line with the results of the CFA
suggesting that the 5-factor model J and 3-factor model E are similarly
appropriate for describing rational number knowledge.

Table 4 details the fit indices for the two-through seven-class solu-
tions for the LPA. These model fit indices suggested that the four-class
model was most appropriate, as the BIC was lowest with this model, and
both BLRT and VLMR tests suggested that the five-class model was not
better than the four class model. Entropy for this model was sufficient
(i.e. > 0.6; Collins & Lanza, 2010), and the posterior probabilities for
the classes showed that the model had high agreement with regard to
placing most individuals clearly into a particular class (all probabilities
≥ .87).

Fig. 1 details the means for each indicator for the different latent
classes, allowing for a comparison of rational number knowledge of
students in each class. Labels were assigned to the latent classes based
on our interpretation of the quantitative results. The 26% of children in
the Basic class had relatively low rational number knowledge of all
types. The 28% of children in the Procedural class had above-average
performance on arithmetic procedural knowledge problems, but below-
average performance on magnitude and operation conceptual knowl-
edge, representation knowledge, and adaptive rational number
knowledge problems. The 35% of children in the Routine class had re-
latively well-developed rational number knowledge of all types, in-
cluding adaptive rational number knowledge. Finally, the 10% of
children in the Adaptive class performed similarly to those in the Rou-
tine Expertise class on four of the five measures but performed much
better than students in any of the other four profiles on the measure of
adaptive knowledge, the arithmetic sentence production task.
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Patterns of routine procedural, routine conceptual, and adaptive
rational number knowledge varied across the four profiles. Procedural
knowledge was fairly strong in the Procedural, Routine, and Adaptive
profiles, with little distinction among these profiles. Routine conceptual
knowledge of rational number magnitudes, operations, and re-
presentations was relatively low among children in the Basic and
Procedural profiles, whereas children who fit the Routine and Adaptive
profiles had similar high levels of routine conceptual knowledge.
Adaptive rational number knowledge varied most widely among the
profiles. Students who fit the Basic and Procedural profiles had simi-
larly low levels of adaptive number knowledge; peers who fit the
Routine profile had somewhat higher adaptive knowledge; those who
fit the Adaptive profile clearly outperformed children in all three other
profiles. There appeared to be a hierarchy in the three types of
knowledge that suggested that: (a) procedural knowledge can exist
without routine conceptual knowledge, but the reverse does not occur;
and (b) routine conceptual knowledge is necessary, but not sufficient
for exceptional adaptive number knowledge.

3.3. Describing adaptive rational number knowledge

To explore the features of students’ responses that might explain
inter-individual differences in adaptive number knowledge, we com-
pared performance on the arithmetic sentence production task of chil-
dren who differed in their most likely class membership in the LPA. The
most likely profile membership distributions did not differ by grade (χ2

(3) = 6.27, p = .10).
Table 2 reveals the pattern of correlations between the different

aspects of rational number knowledge among the students in the Rou-
tine and Adaptive profiles. Due to the nature of profile formation with
LPA (e.g. Hickendorff et al., 2018), the relations were much weaker
than in the sample as a whole. This reflects a kind of attenuation of
range, because the variation within each of the profiles (and across the
top two profiles for most indicators) is much less than the variation in
the total data set.

One-way ANOVAs were run to examine group differences in the
proportion of responses on the arithmetic sentence production task that
included (a) fractions, (b) decimals, (c) both fractions and decimals, (d)
multiple arithmetic operations, and (e) mathematically equivalent so-
lutions (e.g. 1/2 + 1/2 is equivalent to 0.5 + 0.5 and 0.5 + 1/2).

As shown in Table 5, the most substantial differences among stu-
dents who best fit different profiles were in use of both fractions and
decimals in a single solution and in use of mathematically equivalent
solutions within an item. Post-hoc comparisons of performance of
children who best fit the Routine and Adaptive classes showed that
these children differed only in the proportion of solutions that were
mathematically equivalent (mean difference = 0.12, SE = 0.03,
p < .001, Cohen's d = 0.73). Children who best fit the Routine Ex-
pertise profile used equivalent solutions on about 1/4 of trials, whereas
children who best fit the Adaptive profile used mathematically similar

Table 2
Means of and correlations among rational number knowledge measures for the whole sample and only in Routine and Adaptive profiles. Means and standard
deviations of the proportion of correct responses of each variable are shown in Column 2. Correlations among the variables are shown in Columns 3–6.

A Whole sample (N = 394) M (SD) 1. Magnitude 2. Operations 3. Procedural 4. Representations

1. Magnitude knowledge
a. Ordering .46 (.33)
b. Number line Estimation (PAE) 16.61 (10.34)
2. Operation conceptual knowledge .45 (.34) .76***
3. Arithmetic procedural knowledge .22 (.12) .71*** .69***
4. Representation knowledge .62 (.28) .75*** .71*** .65***
5. Adaptive rational number knowledge (total correct) 9.05 (7.21) .71*** .71*** .68*** .69***

B Routine and Adaptive profiles (n = 183)
1. Magnitude knowledge
a. Ordering .70 (.23)
b. Number line Estimation (PAE) 10.18 (7.17)
2. Operation conceptual knowledge .72 (.20) .35***
3. Arithmetic procedural knowledge .58 (.17) .27** .26**
4. Representation knowledge .79 (.13) .25** .26** .29***
5. Adaptive rational number knowledge (total correct) 12.27 (3.74) .13 .13 .19* .22*

Notes: PAE = percent absolute error. *p < .05; **p < .01; ***p < .001.

Table 3
Descriptions and fit statistics for estimated Confirmatory Factor Analyses.

Model Type RMSEA (< .05) CFI (> .95) TLI (> .90) SRMR (< .08) AIC BIC Χ2 (df)

A 1 factor (Adaptive + Procedural + All Conceptual) .085 .94 .93 .032 19591 19734 206(54)***
B 2 factor (Adaptive + All Conceptual, Procedural) .077 .95 .94 .029 19560 19707 175(53)***
C 2 factor (Adaptive + Procedural, All Conceptual) .073 .96 .95 .030 19547 19694 163(53)***
D 2 factor (Adaptive, Procedural + All Conceptual) .062 .97 .96 .027 19517 19665 133(53)***
E 3 factor (Adaptive, Procedural, All Conceptual) .048 .98 .98 .023 19484 19639 98(51)***
F 4 factor (Adaptive + Procedural, Magnitude, Operations, Representations) .065 .97 .96 .026 19522 19689 129(48)***
G 4 factor (Adaptive + Magnitude, Procedural, Operations, Representations) .069 .96 .95 .027 19530 19697 137(48)***
H 4 factor (Adaptive + Operations, Procedural, Magnitude, Representations) .066 .97 .96 .025 19523 19690 130(48)***
I 4 factor (Adaptive + Representations Procedural, Magnitude, Operations) .073 .96 .95 .027 19542 19709 149 (48)***
J 5 factor (Adaptive, Procedural, Magnitude, Operations, Representations) .032 .99 .99 .018 19461 19644 62 (44)*

Table 4
Fit measures of latent profile models.

Number of Classes AIC BIC Entropy BLRT (p) VLMR (p)

2 4639 4743 .86 < .001 < .001
3 4561 4689 .85 < .001 .02
4 4500 4651 .83 < .001 .09
5 4492 4668 .83 .10 .45
6 4473 4671 .90 < .001 .66
7 Did not converge
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solutions on about 1/3 of trials.
We also compared the frequency of the most common, mathemati-

cally unique, solutions among students in the four profiles (Table 6).
The frequency of correct, mathematically-unique solutions followed a
typical decreasing power law function. Among the 118 unique correct
solutions, 5 accounted for 50% of the correct solutions and 25 ac-
counted for almost 95%. Students who best fit the Adaptive profile (a)
more often generated less common solutions and (b) generated more
instances of the most common unique solutions than students who best
fit the Routine Expertise profile. This pattern was consistent across
problems. Thus, children who best fit the Adaptive profile displayed a
more diverse set of solutions, as well as displays that more often in-
cluded different representations.

Given that even within the Adaptive and Routine profiles, these 25
solutions accounted for 92% or 93% of correct solutions, differences in
performance on the arithmetic sentence production task appear to stem
from both the frequency of generating novel, correct solutions and also
finding more versions of mathematically equivalent solutions (e.g. not
only using ½ + ½, but also 0.5 + .5, ½ + 0.5, and 0.5 + ½). This
analysis indicates that students in the Adaptive group were not simply
relying on “tricks” to game the system, such as multiply and dividing by
the same number repeatedly.

3.4. Relation to density knowledge

In order to confirm that adaptive rational number knowledge was
not simply a proxy for greater rational number knowledge, we ran an
ANOVA examining levels of density knowledge by most likely group
membership. While we find that density knowledge (M = 9.45,
SD = 7.32) and adaptive rational number knowledge we highly cor-
related, r (394) = 0.60, p < .001, we were particularly interested in
examining potential differences in density knowledge between the
Routine and Adaptive profiles. There were differences in rational
number density knowledge across profiles, F (3, 388) = 122.77,
p < .001, η2 = 0.49 (see Fig. 2). Density appeared to follow the same
pattern as other features of rational number conceptual knowledge,
with the Basic (mean = 4.76, SD = 4.42) and Procedural
(mean = 4.69; SD = 4.64) profiles having similarly low levels, and the
Routine (mean = 14.52, SD = 5.76) and Adaptive (mean = 16.25,
SD = 6.83) profiles having similarly high levels. The Routine and
Adaptive profiles did not significantly differ from each other (mean
difference = 1.73, p = .26, Cohen's d = 0.29). These results suggest
that density knowledge is more closely aligned with other aspects of
routine conceptual knowledge than with adaptive rational number
knowledge per se.

Fig. 1. Mean scores for latent classes for each aspect of rational number knowledge. Error bars:± 2 S.E.

Table 5
Group means, standard errors (in parentheses) and ANOVA-test values for the proportion of solutions using Fractions, Decimals, both Fractions and Decimals, both
addition/subtraction and multiplication/division (Multiple Operations), and mathematically equivalent solutions.

Basic (n = 93) Procedural (n = 117) Routine Expertise (n = 141) Adaptive (n = 40) Total F (3, 387) p η2

Fraction .47 .40 .57 .57 .50 10.24 < .001 .07
(.04) (.03) (.01) (.02) (.01)

Decimal .56 .50 .61 .58 .56 4.76 .003 .04
(.05) (.03) (.01) (.02) (.02)

Fraction and Decimal .08 .06 .23 .20 .14 22.77 < .001 .15
(.02) (.01) (.02) (.02) (.01)

Multiple Operations .09 .12 .19 .26 .15 7.13 < .001 .05
(.03) (.02) (.01) (.02) (.01)

Equivalent Solution .09 .11 .24 .35 .18 40.86 < .001 .24
(.02) (.01) (.01) (.02) (.01)
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3.5. Predicting algebra and reading

We examined how LPA profile membership predicted performance
on end-of-year statewide standardized tests for algebra and reading.
ANOVAs revealed that performance across profiles differed on both
tests: Algebra, F (3, 119) = 24.7, p < .001, η2 = 0.38; Reading, F (3,
344) = 78.4, p < .001, η2 = 0.41. Most important, children who best
fit the Adaptive profile had higher Algebra scores than those who best
fit the Routine expertise profile (mean difference = 0.91, p = .001,
Cohen's d = 0.93), but children who best fit the Adaptive and Routine
expertise profiles did not differ in their Reading scores (mean differ-
ence = 0.46, p = .14, Cohen's d = 0.47).

The inclusion of only the sub-set of the sample that completed the
algebra test as a part of the year-end state-wide testing may have af-
fected these results. However, the Chi-square test of routine or adaptive
profile membership and algebra test inclusion revealed that member-
ship in these profiles was not related to which year-end test the students

took. This indicates that there was no interaction between sub-sample
of algebra test takers and membership in the Routine versus Adaptive
profiles and suggests that the results of differences in algebra knowl-
edge on the year-end test was not due to sampling effects. Additionally,
the pattern of reading performance found in the initial analysis was
replicated in the sub-sample of algebra students, further confirming
apparent lack of sampling effects.

4. Discussion

Adaptive expertise with rational number arithmetic appears to be
distinguishable from routine expertise with rational numbers. This is
confirmed by both variable-centered and person-centered approaches.
CFA indicated that the most appropriate models for the different aspects
of rational number knowledge treat performance on a measure of
adaptive expertise as separate from performance on measures of routine
expertise. Additionally, the person-centered approach revealed that

Table 6
Most common mathematically unique solutions and their frequency of use overall and by rational number knowledge group. Decimal representation of solution is
shown, but all instances of mathematically equivalent solutions using fractions and/or decimals are included in the counts.

Item Decimal representation of solution Total Number of instances Average number of correct solutions Ratio Adaptive to Traditional

Adaptive Routine Procedural Basic

3 .75–.25 431 2.5 1.7 0.5 0.4 1.47
1 .5 + .5 374 1.8 1.3 0.6 0.5 1.38
1 .25*4 333 1.7 1.2 0.6 0.3 1.42
4 1.5 + 1.5 264 1.6 0.9 0.3 0.4 1.78
3 .25*2 237 1.6 0.9 0.2 0.2 1.78
3 .25 + .25 225 1.4 0.8 0.2 0.2 1.75
4 1.5*2 222 1.4 0.7 0.3 0.3 2.00
1 .25 + .25+.25 + .25 185 1.2 0.5 0.3 0.2 2.40
2 .125*2 144 1.2 0.6 0 0.1 2.00
2 .125 + .125 113 1.3 0.3 0.1 0.1 4.33
1 .25 + .5+.25 113 0.9 0.5 0 0 1.80
2 .5:2 104 0.8 0.4 0.1 0 2.00
2 .5*.5 93 0.6 0.2 0.1 0.2 3.00
2 .125:.5a 89 0.2 0.1 0.3 0.3 2.00
4 .75 + .75+.75 + .75 63 0.9 0.1 0.1 0 9.00
4 .75 + .75+1.5 45 0.4 0.2 0.1 0 2.00
1 4:4; .5:.5; .25:.25 37 0.5 0.1 0.2 0.2 5.00
1 4*.5*.5 28 0.2 0.1 0 0 2.00
1 .5*2 26 0.2 0.1 0.1 0 2.00
4 2*2*.75 24 0.2 0.1 0 0 2.00
3 2-.75-.75 24 0.2 0.1 0 0 2.00
4 .75*2 + 1.5 17 0.3 0 0 0 N/A
2 .5-.125-.125 14 0.1 0 0 0 N/A
3 (.25 + .75):2 12 0.2 0 0 0 N/A

Sum 3264 21.40 10.90 4.10 3.40
Proportion of Total Responses .93 0.92 0.92 0.95 0.94

a The most common instance of this answer was 1/8:1/2, which was both mathematically correct but also follows natural number conventions (i.e. 8:2 = 4). This
may explain the relatively high use of this solution among the less advanced groups.

Fig. 2. Mean scores for density, algebra, and reading by latent profile. Error bars represent 95% confidence intervals. Density: n = 394; Algebra: n = 126; Reading:
n = 352.
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there is substantial variation in performance on the arithmetic sentence
production task among those students who performed well on measures
of routine procedural and conceptual knowledge. Adaptive expertise
with rational number arithmetic does not require extraordinary levels
of general school (i.e. reading) achievement nor exceptional rational
number knowledge of other types, such as a correct understanding of
density. However, such adaptive expertise is useful, being closely re-
lated to algebra learning, perhaps because it reflects the well-connected
knowledge of numerical characteristics and arithmetic relations among
rational numbers.

The distinction between adaptive and routine expertise with ra-
tional number arithmetic appears most relevant at higher levels of
performance. Strong routine conceptual and procedural knowledge of
rational numbers appears necessary, but not sufficient, for adaptive
expertise with rational number arithmetic. For three of the four profiles
that emerged in the LPA, performance on the arithmetic sentence
production task paralleled routine conceptual knowledge of rational
numbers. However, this relation was much weaker when looking within
the top 45% of students, all of whom had high levels of routine pro-
cedural and conceptual knowledge. The weaker relation among those
students who were proficient in routine procedural and conceptual
knowledge suggests that adaptive expertise with rational number ar-
ithmetic may not simply reflect greater routine knowledge.

These results suggest that strong performance on the arithmetic
sentence production task reflects a particular behavioral manifestation
of the theoretical construct of adaptive expertise and, as such, requires
well-integrated conceptual and procedural knowledge about rational
numbers that is readily applicable in novel situations. However, the
present study provides too little detailed insight about the cognitive
processes needed to solve the arithmetic sentence production task to
conclude if a new construct is justified to describe performance on this
task or if the current definitions of advanced conceptual knowledge
(e.g. Hiebert & Lefevre, 1986; Schneider & Stern, 2009) cover the
nature of knowledge applied in these tasks. As well, further research is
needed to clarify if there are multiple distinct aspects of adaptive ex-
pertise with rational number arithmetic, as is suggested by previous
research on adaptive expertise (e.g. Torbeyns et al., 2006). If so, it may
be useful to describe performance on the arithmetic sentence produc-
tion task using a separate construct. In this case, we propose the term
adaptive rational number knowledge.

These results enrich understanding of adaptive expertise. While
theoretical accounts suggest that one requirement of adaptive expertise
is the integration of conceptual and procedural knowledge (e.g.
Baroody & Rosu, 2004), our results indicate that the interconnectedness
between different conceptual features may also be crucial for high-level
adaptive expertise. Students often struggle to use conceptual knowledge
of one type (e.g. fraction magnitudes) in solving tasks of another (e.g.
fraction arithmetic), even when highly relevant (Braithwaite & Siegler,
2020). Our results show that even among those students with strong
conceptual knowledge, there are differences in the frequency with
which these students can combine this disparate conceptual knowledge
into a coherent procedural process to solve a novel task. To do well on
the arithmetic sentence production task, students needed to integrate
knowledge of rational number representations, rational number ar-
ithmetic, and rational number magnitudes into a single procedural
process. Although some solutions may have reflected memorized facts
(e.g. 1/2 + 1/2 = 1), high level performance would have required
students to combine their knowledge of rational number magnitudes,
representations, and operations – for example knowing that 0.25 is less
than 1, but that 4 * 0.25 = 1, or by recognizing that 1/4 + 1/4,
0.25 + .25, 1/4 + .25 will all yield 1/2. Further investigation of the
interplay between the procedural processes and conceptual networks
involved in the task would better illustrate how these different
knowledge components contribute to success on the task (Rittle-
Johnson & Siegler, 1998).

These findings suggest that the arithmetic sentence production task

may be informative for measuring skills and knowledge that extend
beyond traditional measures of rational numbers, even measures of
advanced conceptual knowledge of rational numbers (e.g. Van Hoof
et al., 2015). These traditional measures of routine conceptual knowl-
edge explicitly guide the individual to the relevant knowledge needed
to solve the task. In contrast, the arithmetic sentence production task
required meeting novel constraints to generate arithmetic combinations
of measures that yield specific magnitudes. Thus, the task assesses a
different type of knowledge than, for example, determining the number
of numbers between two rational numbers (Vamvakoussi & Vosniadou,
2010).

Students in the two highest performing profiles (i.e. Routine and
Adaptive Expertise) did not substantially differ in reading achievement
or density knowledge, suggesting that the differences in these profiles
are not a matter of general school success or mathematical pre-
cociousness. This is consistent with previous descriptions of adaptive
expertise as not merely indicating stronger routine expertise (Baroody,
2003). However, students who best fit the two high-achieving profiles
differed substantially in algebra knowledge, confirming expectations
that adaptive expertise should facilitate future learning by allowing for
the ready application of knowledge in novel contexts. The flexibly-ap-
plicable and well-integrated knowledge that appears to describe strong
adaptive expertise with rational number arithmetic may be useful when
dealing with complex numerical relations in algebra. Unfortunately, in
the present study, it was not possible to examine which aspects of al-
gebra knowledge are related to high levels of adaptive expertise with
rational number arithmetic, something that should be addressed in
future studies.

4.1. Limitations and future directions

To date, the arithmetic sentence production task has not been used
with other measures of adaptive expertise. Despite its usefulness in
capturing features of what could be described as adaptive knowledge
with whole number and rational number arithmetic, relying on a single
measure limits the interpretability of the construct. Generating addi-
tional measures of adaptive expertise with rational number arithmetic
would strengthen the connection between theory and evidence. In
particular, examining how students construct arithmetic sentence pro-
blems in more routine situations (i.e. missing value problems) and ex-
amining the relation between performance on the arithmetic sentence
production task and more traditional measures of flexibility, such as
procedural flexibility (e.g. Schneider et al., 2011) and mathematical
creativity (e.g. Kattou, Kontoyianni, Pitta-Pantazi, & Christou, 2013)
could prove fruitful. Likewise, examining whether performance on the
task is specific to the types of numbers used (e.g. natural numbers,
rational numbers) or if it is general across different aspects of numerical
knowledge would be worthwhile.

Another limitation of the present study is its failure to specify the
mental processes underlying success on the arithmetic sentence pro-
duction task. Analysis of students' responses argued against the possi-
bility that some were “gaming” the system to produce a large number of
solutions. However, examining students’ performance on a varying set
of items (e.g. items without equivalent fractions and decimals or items
with solutions based entirely on multiplication and division) might
provide insight into the processes underlying performance on the task.
Evidence regarding cognitive and motivational correlates, longitudinal
predictors, and varied products of high level adaptive expertise with
rational numbers is needed to better understand the phenomenon,
especially with regard to general cognitive abilities.

5. Conclusions

In contemporary society, mathematical knowledge often needs to be
flexibly applied to varied situations (Gravemeijer, Stephan, Julie, Lin, &
Ohtani, 2017). The goal of producing such flexibly-applicable
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knowledge is highlighted in curricula in many countries (Mullis,
Martin, Goh, & Cotter, 2016) and is connected to the term adaptive
expertise used in learning research (e.g. Hatano & Inagaki, 1986). The
present study presents a new perspective on a kind of adaptive expertise
that may be useful for reaching this goal. Analyses of rational numbers
should be broadened to include varying tasks types such as the ar-
ithmetic sentence production task, which are not usually part of class-
room instruction but that could be used as tools to assess, adaptive
expertise with rational numbers.
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