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CONFORMAL MODULE OF THE EXTERIOR

OF TWO RECTILINEAR SLITS

D. DAUTOVA, S. NASYROV, AND M. VUORINEN

Abstract. We study moduli of planar ring domains whose complements are linear segments
and establish formulas for their moduli in terms of the Weierstrass elliptic functions. Numerical
tests are carried out to illuminate our results.
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1. Introduction

TheWeierstrass and Jacobian elliptic and theta functions and the Schwarz-Christoffel formula
form the foundation for numerous explicit formulas for conformal mappings (N.I. Akhiezer [2],
W. Koppenfels, F. Stallmann [23]). During the past thirty years many authors have studied
numerical implementation of conformal mappings. We refer the reader to the bibliography
of the monograph N. Papamichael and N. Stylianopoulos [29]. In particular, the Schwarz-
Christoffel toolbox of T. Driscoll and N. Trefethen [11] has become a standard tool in the field.
In a series of papers of T. DeLillo, J. Pfaltzgraff, D. Crowdy and their coauthors have extended
the Schwarz-Christoffel method to certain cases of multiply connected domains with polygonal
boundary components [8, 10, 9].

In addition to the conformal mapping problem, also the computation of numerical values of
conformal invariants is an important issue in geometric function theory. Here one can often use
a conformal map onto a canonical domain so as to simplify the computation. Therefore com-
putation of conformal invariants has a natural link to numerical conformal mapping. However,
the so called crowding phenomenon can create serious obstacles for computation of conformal
maps, e.g. when long rectangles are mapped onto the upper half space [29].

A basic conformal invariant is the module of a ring domain. A ring domain G can be
conformally mapped onto an annulus {z ∈ C : q < |z| < 1} and its conformal module and
capacity are defined as

modG = (log(q−1))/(2π) , capG = 2π/ log(q−1) .

Therefore, modG = 1/capG and the computation of modG can be reduced to the solution of
the Dirichlet problem for the Laplace equation and to the computation of the L2-norm of its
gradient. This method was applied in [4, 18, 19] for the case of bounded ring domains.

Here we shall consider unbounded ring domains whose complementary components are seg-
ments. We describe one-parametric families of functions f(z, t) each of which maps conformally
an annulus {q < |ζ | < 1} onto the exterior G = G(t) of two disjoint segments A1A2 and A3A4.
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Foundation for Basic Research, grant No 17-01-00282. The third author expresses his thanks to the Kazan Re-
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Here Aj = Aj(t), 1 ≤ j ≤ 4, are some smooth functions and q = q(t); t is a real parameter.
Further we will denote such domains by G(A1, A2, A3, A4). It is also assumed that the straight
lines, containing the segments A1A2 and A3A4, are fixed.

We note that one-parametric families of conformal mappings were considered earlier. There is
the well-known Loewner-Komatu differential equation which is a generalization of the Loewner
equation to the doubly-connected case. The approach of Komatu was developed by Goluzin [16]
and others (see, e.g. [3, 6, 7]).

We deduce a differential equation for f(z, t) in the considered case (Theorem 3). In contrast
to the Loewner-Komatu equation, we do not assume that the family of the images is monotonic
as a function of the parameter t. As a corollary, we obtain a system of ODEs to determine
the behavior of the accessory parameters, which are the preimages of the points Aj , and the
conformal module m(t) := modG(t) = (log(q(t))−1)/(2π). On the base of the system, we
suggest an approximate method for finding the accessory parameters and the conformal module.
We note that in our approach we use essentially the Weierstrass elliptic functions.

Further we apply the obtained results to investigate the behavior of the conformal module
in the case when one of the segments and the length of the other one are fixed.

Now we briefly describe the structure of the paper. In Section 2 we give some information
on the Weierstrass elliptic functions, moduli, and reduced moduli. In Section 3 we describe an
integral representation of an annulus onto the exterior of two slits A1A2 and A3A4 (Theorem 2).
In contrast to the known representations [22]; (see also [20], [9], [10]), our representation is based
on the Weierstrass σ-functions. The representation contains some unknown constants; they are
called accessory parameters. In Section 4 we consider one-parametric families of such functions
f(z, t) and deduce a differential equation for them (Theorem 3). As a corollary, we obtain a
system of ODEs for accessory parameters (Theorem 4). We note that to deduce the equations
we use the approach developed earlier for one-parametric families of rational functions [27] and
conformal mappings of complex tori [25, 26]. In Section 5 we give results of some numerical
calculation. In Section 6 we study monotonicity of the conformal module of the exterior of two
slits when one segment is fixed and the other one slides along a straight line and has a fixed
length.

Finally we should note that recently the capacity computation of doubly connected domains
with complicated boundary structure has been studied for instance in [19].

2. Some preliminary results

Elliptic functions. First we recall some information about elliptic functions (see, e.g., [2, 28]
and also [30, 31]).

A meromorphic in the complex plane function is called elliptic if it has periods ω1 and ω2
1*,

linearly independent over R. In the fundamental parallelogram constructed by the vectors ω1

and ω2, every nonconstant elliptic function takes each value the same number of times; the
number r is called the order of the elliptic function.

If a1, . . . , ar are zeroes of an elliptic functions of order r and b1, . . . , br are its poles in the
fundamental parallelogram, then

a1 + . . .+ ar ≡ b1 + . . .+ br (modΩ)

1∗ In contrast to [2], we denote by ω1 and ω2 periods of elliptic functions, not half-periods. The same remark
concerns the values ηk defined by (2).
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where Ω is the lattice generated by ω1 and ω2. Further we will denote by ω an arbitrary element
of the lattice. We note that, by given lattice, the generators ω1 and ω2 are not determined by
a unique way; we will further assume that Im(ω2/ω1) > 0.

One of the main elliptic functions is the Weierstrass P-function

P(z) =
1

z2
+
∑′

[
1

(z − ω)2
− 1

ω2

]
;

here the summation
∑′ is over all nonzero elements of the lattice. The Weierstrass ζ-function

(1) ζ(z) =
1

z
+
∑′

[
1

z − ω
+

1

ω
+

z

ω2

]

has the properties: ζ ′(z) = −P(z) and

(2) ζ(z + ωk) = ζ(z) + ηk, k = 1, 2,

where ηk = 2ζ(ωk/2). In the fundamental parallelogram it has a unique pole with residue 1.
The numbers ηk and ωk satisfy the equality

(3) ω2η1 − ω1η2 = 2πi.

At last, we need the Weierstrass σ-function

(4) σ(z) = z
∏′

{(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)}
.

It is an odd entire function with the properties:

σ′(z)

σ(z)
= ζ(z), σ(z + ω) = εσ(z)eη(z+ω/2).

Here η = mη1 + nη2, if ω = mω1 + nω2. Moreover, ε = 1, if ω/2 belongs to the lattice Ω,
otherwise, ε = −1.

We recall the Weierstrass invariants g2 and g3:

g2 = 60
∑′ 1

(mω1 + nω2)4
, g3 = 140

∑′ 1

(mω1 + nω2)6
.

Elliptic functions depend not only on the variable z but also on the lattice. Further we need
explicit expressions for the partial derivatives ζ(z) = ζ(z;ω1, ω2) by the periods ω1 and ω2 of
the lattice. In [25] the following theorem is proved.

Theorem 1. The partial derivatives of ζ(z) = ζ(z;ω1, ω2) with respect to the periods ω1 and
ω2 are equal to

∂ζ(z)

∂ω1
=

1

2πi

[
1

2
ω2P

′(z) + (ω2ζ(z)− η2z)P(z) + η2ζ(z)− (ω2g2/12)z

]
,

∂ζ(z)

∂ω2
= − 1

2πi

[
1

2
ω1P

′(z) + (ω1ζ(z)− η1z)P(z) + η1ζ(z)− (ω1g2/12)z

]
.

We will also need the Jacobi theta-function ϑ1(z). For given lattice Ω, generated by ω1 and
ω2, let τ = ω2/ω1, Im τ > 0, and q = eπiτ . Then, by definition (see, e.g. [2, ch. 1, sect. 3], [30]),

(5) ϑ1(z) = ϑ1(z|τ) = 1 +

∞∑

n=0

(−1)nq(n+1/2)2 sin((2n+ 1)z).
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There is the following connection between σ-function and ϑ1(z) (see, e.g. [2, ch. 4, sect. 19,
formula (1)]):

(6) σ(z) = ω1
e

η1z
2

2ω1 ϑ1(z/ω1)

ϑ′1(0)
.

Conformal moduli, reduced moduli, and capacities of condensers. Let G be a ring domain in
the plane, i.e. a doubly-connected domain with non-degenerate boundary components. There
is a conformal mapping ψ : G → A of G onto an annulus A = {q < |z| < 1} (see, e.g., [17]).
The value q does not depend on the choice of ψ. We call

modG =
1

2π
log(q−1)

the conformal module of G. It is conformal invariant and plays an important role in the theory
of conformal and quasiconformal mappings.

Let G be a ring domain in the plane with complementary components C1 and C2 , and let K
be the condenser with plates C1 and C2 and with field G . We recall that

capK = inf
u

∫∫
|∇u|2dxdy

where the infimum is taken over all smooth functions u such that u = 0 on C1 and u = 1 on C2.
We will define capG := capK and call capG the conformal capacity of the ring domain G .

Let D be a simply connected domain with non-degenerate boundary and z0 ∈ D. For
sufficiently small ε consider the condenser defined by D \ Bε(z0); here Bε(z0) is the disk of
radius ε centered at the point z0. Denote by Kε its capacity. Then there exists the limit

r(D, z0) := lim
ε→0+

(Kε + (1/(2π)) log ε)

which is called the reduced module of D at the point z0 [13, Section 2.4], [15].

3. Integral representation

Consider a conformal mapping g of an annulus {q < |ζ | < 1} onto the exterior G =
G(A1, A2, A3, A4) of two disjoint rectilinear slits A1A2 and A3A4 in the w-plane. With the
help of the exponential map z 7→ ζ = exp(2πiz) we can consider the map f := g(2πiz) from
the horizontal strip

S := {−m < Im z < 0}, m =
1

2π
log(q−1),

onto G. It maps conformally the rectangle Π = {0 < Re z < 1, −m < Im z < 0} with identified
vertical sides onto G (Fig. 1). The value m is the conformal module of G. It is evident that f
has a unique pole in Π.

We will find an integral representation for the conformal mapping f of Schwarz–Christoffel
type using the Weierstrass σ-function. We should note that analogs of the Schwarz–Christoffel
integral for doubly-connected domains were obtained earlier in [22]; it is based on θ-functions
(see also [9, 10, 20]).

Using the Riemann–Schwarz reflection principle, we can extend f to C as a meromorphic
function. We see that the function h(z) = f ′′(z)/f ′(z) is doubly periodic in C with periods ω1 =

1 and ω2 = 2mi. Consider h in the double rectangle Π̃ = {0 < Re z < 1, −m < Im z < m}; it
is its fundamental parallelogram. Here the function h has only polar singularities at points zk,
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Figure 1. Conformal mapping of the rectangle Π with identified vertical sides
onto G(A1, A2, A3, A4).

1 ≤ k ≤ 4, corresponding to the endpoints Ak of the slits, and also at two distinct points, z0
and z0, where f has poles. For definiteness, we assume that y0 := Im z0 > 0. The residues of h
are known, therefore, we can express it with the help of the Weierstrass zeta-function:

(7) h(z) = γ +
4∑

k=1

ζ(z − zk)− 2ζ(z − z0)− 2ζ(z − z0)

where γ is a constant. (Here and further, unless otherwise specified, we assume that ζ(z) and
other elliptic functions have periods ω1 = 1 and ω2 = 2mi.)

From (7) we have

log f ′(z) = γz + logC +

4∑

k=1

log σ(z − zk)− 2 log σ(z − z0)− 2 log σ(z − z0),

f ′(z) = Ceγz
∏4

k=1 σ(z − zk)

σ2(z − z0)σ2(z − z0)
,

(8) f(z) = C

∫ z

0

eγξ
∏4

k=1 σ(ξ − zk)

σ2(ξ − z0)σ2(ξ − z0)
dξ + C1

where σ(z) is the Weierstrass sigma-function, C 6= 0 and C1 are complex constants.
The residue of f ′(z) at z0 must vanish, therefore,

γ +
4∑

k=1

ζ(z0 − zk)− 2ζ(z0 − z0) = 0 .

The σ-function satisfies (2). Because f ′(z) must be periodic with period ω1 = 1, we have

f ′(z + 1) = Ceγ(z+1)

∏4
k=1 σ(z − zk + 1)

σ2(z − z0 + 1)σ2(z − z0 + 1)

=
Ceγeγz

∏4
k=1 e

η1(z−zk+1/2)σ(z − zk)

e2η1(z−z0+1/2)σ2(z − z0)e2η1(z−z0+1/2)σ2(z − z0)
= eγ+η1(2z0+2z0−

∑
4

k=1
zk)f ′(z).

Consequently,

(9) γ + η1

(
2z0 + 2z0 −

4∑

k=1

zk

)
≡ 0 (mod 2πi).
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In a similar way, we have

f ′(z + ω2) = eγω2+η2(2z0+2z0−
∑

4

k=1
zk)f ′(z).

Since arg f ′(z + ω2) − arg f ′(z) = 2β where β is the angle between the segments A1A2 and
A3A4, we have

(10) γω2 + η2

(
2z0 + 2z0 −

4∑

k=1

zk

)
= 2βi (mod 2πi).

Now we will specify the position of the points zk. We will assume that z1 and z2 lie on the real
axis, and z3 and z4 are on the lower side of Π (Fig. 1). Because zk can be chosen up to the
values kω1 + nω2, k, n ∈ N, for convenience, we shift z3 by ω2 = 2mi and assume that

(11) z1 = x1, z2 = x2, z3 = x3 + im, z4 = x4 − im,

where xk are real numbers.
Denote

(12) a =
4∑

k=1

zk − 2z0 − 2z0.

Taking into account (11), we see that a is real. We write (9) and (10) in the form

(13) γ − η1a = 2πki, ω2γ − η2a = 2βi+ 2πni, k, n ∈ N.

Solving (13) as a system of linear equation with respect to γ and a and taking into account
that its determinant equals ω1η2 − ω2η1 = 2πi, we obtain

(14) γ = −kη2 + (n+ β/π)η1, a = −kω2 + (n+ β/π).

Since ω2 is a purely imaginary number, from the second equality in (14) we deduce that k = 0.
We can change x3 by entire values, therefore, we can assume that n = 0. So (14) has the form

(15) γ = βη1/π, a = β/π.

Thus, from (12) and (15) we have

4∑

k=1

xk = 4x0 + β/π, x0 = Re z0.

Since every horizontal shift does not change the strip S, we can assume that x0 = 0.
Therefore, we establish the following theorem.

Theorem 2. The function, mapping the annulus {q < |ζ | < 1} onto G(A1, A2, A3, A4), is
f(z) where z = (2πi)−1 log ζ and f is defined by (8). In (8) γ = βη1/π, the points zk =
xk + iyk correspond to the endpoints Ak of the slits and satisfy (11) with real xk and m =
(1/(2π)) log(q−1), the point z0 = iy0 matches to the infinity, C 6= 0 and C1 are some complex
constants. Moreover,

∑4
k=1 xk = β/π.
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4. One-parametric families

The parametric method for doubly connected domains was developed by Komatu [21] and
Goluzin [16] (in details, see [3], ch. 5). In recent papers [6, 7] some new results were obtained.
Here we obtain an equation of Loewner type using ideas of the papers [25, 27].

Taking into account the integral representation (8), obtained in Theorem 2, we consider a
smooth one-parametric family of conformal mappings

(16) f(z, t) = c(t)

∫ z

0

eγ(t)ξ
∏4

k=1 σ(ξ − zk(t))

σ2(ξ − z0(t))σ2(ξ − z0(t))
dξ + c1(t)

Here σ(z) = σ(z; 1, ω2) where ω2 = 2mi, m = m(t) > 0. For a fixed t, f(z, t) is periodic with
period ω1 ≡ 1 and maps the half of the fundamental parallelogram (rectangle) {0 < Rex <
1,−m < Im z < 0} onto the exterior of two rectilinear slits. Without loss of generality we may
assume that one slit lies on the positive part of the real axis and the second one is on the ray
{argw = β}. (The general case can be obtained by multiplying c(t) by eiθ; this means the
rotation by the angle θ. Further, in some situations, we will use this remark.)

We note once more that the angle 0 < β < 2π does not depend on t. Moreover,

Im z1(t) = Im z2(t) = 0, Im z3(t) = − Im z4(t) = m(t), Re z0(t) = 0,

therefore,

z1(t) = x1(t), z2(t) = x2(t), z3(t) = x3(t) + im(t), z4(t) = x4(t)− im(t), z0(t) = iy0(t),

x1(t) < x2(t) < x1(t) + 1, x3(t) < x4(t) < x3(t) + 1, 0 ≤ y0(t) ≤ m,

γ(t) = (β/π)η1(t),

4∑

k=1

xk(t) = β/π,

γ(t) +

4∑

k=1

ζ(z0(t)− zk(t))− 2ζ(z0(t)− z0(t)) = 0,

By the Riemann-Schwarz symmetry principle, we can extend f(z, t) meromorphically to the
whole complex plane. It is evident that the extension satisfies

(17) f(z + 1, t) = f(z, t), f(z + ω2(t), t) = e2iβf(z, t),

Differentiating (17) with respect to t and z, we obtain

ḟ(z + 1, t) = ḟ(z, t), ω̇2(t)f
′(z + ω2(t), t) + ḟ(z + ω2(t), t) = e2iβ ḟ(z, t),

f ′(z + 1, t) = f ′(z, t), f ′(z + ω2(t), t) = e2iβf ′(z, t).

Here and further the dot means differentiation with respect to the parameter t and the prime
is differentiation with respect to z. Thus, we have

ḟ(z + ωk(t), t)

f ′(z + ωk(t), t)
+ ω̇k(t) =

ḟ(z, t)

f ′(z, t)
.

Consequently, the function h(z, t) := ḟ(z, t)/f ′(z, t) satisfies

(18) h(z + ωk(t), t)− h(z, t) = −ω̇k(t), k = 1, 2,

where ω̇1(t) ≡ 0.
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Now we write Taylor’s expansion of f(z, t) in a neighborhood of zk(t):

(19) f(z, t) = Ak(t) +
Dk(t)

2
(z − zk(t))

2 + . . . ,

where Dk(t) = f ′′(zk(t), t). We have

f ′′(z, t) = c(t)eγ(t)z

4∏
j=1

σ(z − zj(t))

σ2(z − z0(t))σ2(z − z0(t))

×
[
γ(t) +

4∑

j=1

ζ(z − zj(t))− 2ζ(z − z0(t))− 2ζ(z − z0(t))
]
,

therefore, as z → zk(t), we obtain

(20) Dk(t) = c(t)eγ(t)zk(t)

4∏
j=1, j 6=k

σ(zk(t)− zj(t))

σ2(zk(t)− z0(t))σ2(zk(t)− z0(t))
.

From (19) it follows that

(21) f ′(z, t) = Dk(t)(z − zk(t)) + . . . ,

ḟ(z, t) = Ȧk(t)− żk(t)Dk(t)(z − zk(t)) + . . . ,

and, therefore,

h(z, t) =
ḟ(z, t)

f ′(z, t)
=

γk(t)

z − zk(t)
+O(1), z → zk(t),

where

(22) γk(t) :=
Ȧk(t)

Dk(t)
.

At the point z0(t), the function ḟ(z, t) has a pole of order at most 2, and f ′(z, t) has a pole
of order 2. Thus, h(z, t) has a removable singularity at the point. In more details, denoting by
d−1(t) the residue of f(z, t) at the point z0(t), we have

f(z, t) =
d−1(t)

z − z0(t)
+ d0(t) +O(1),

(23) ḟ(z, t) = ż0(t)
d−1(t)

(z − z0(t))2
+

ḋ−1(t)

z − z0(t)
+O(1),

f ′(z, t) = − d−1(t)

(z − z0(t))2
+O(1).

From this we see that in a neighborhood of z0(t) the function h(z, t) has the expansion

(24) h(z, t) = −ż0(t) + o(1), z → z0(t).

In a similar way, we show that h(z, t) has a removable singularity at the point z0(t).
The function

F (z, t) := h(z, t)−
4∑

j=1

γj(t)ζ(z − zj(t))
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has only removable singularities at the points zk(t), 1 ≤ k ≤ 4, z0(t), and z0(t), and at points
equivalent to them (by mod of the lattice). At other points of the plane it is holomorphic.
Consequently, it can be extended holomorphically to the whole plane C.

From (18) we obtain

(25) F (z + ωk(t), t)− F (z, t) = −ω̇k(t)− ηk(t)

4∑

j=1

γj(t), k = 1, 2.

By (25), the function F grows not faster than a linear function, therefore, F (z, t) = α(t)z+β(t).
So we have

(26) h(z, t) =

4∑

j=1

γj(t)ζ(z − zj(t)) + α(t)z + β(t).

From (24) we find

(27) β(t) = −
4∑

j=1

γj(t)ζ(z0(t)− zj(t))− α(t)z0(t)− ż0(t).

From (25) it follows that

(28) α(t)ωk(t) = −ω̇k(t)− ηk(t)

4∑

j=1

γj(t), k = 1, 2.

If we put k = 1, then, taking into account that ω1(t) ≡ 1, we obtain

(29) α(t) = −η1(t)
4∑

j=1

γj(t).

At last, from (26), (27), and (29) we deduce that

(30) h(z, t) =
4∑

j=1

γj(t)[ζ(z − zj(t))− ζ(z0(t)− zj(t))− η1(t)(z − z0(t))]− ż0(t).

If we put k = 2, from (28) we have

ω̇2(t) = −α(t)ω2(t)− η2(t)

4∑

j=1

γj(t) = (ω2(t)η1(t)− η2(t))

4∑

j=1

γj(t),

and, with the help of the equality (3), we obtain

(31) ω̇2(t) = 2πi
4∑

j=1

γj(t).

Therefore, we proved the following result.

Theorem 3. The family f(z, t) satisfies the PDE

ḟ(z, t)

f ′(z, t)
= h(z, t)

where h(z, t) is defined by (30); here γk(t) and Dk(t) are specified by (22) and (20). The period
ω1(t) is equal 1 and the period ω2(t) satisfies (31).
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Now we will write a system of differential equations to find zl(t), 1 ≤ l ≤ 4. For this, we will

write ḟ ′(al(t), t) in two different ways. On the one hand, from (21) it follows that

(32) ḟ ′(zl(t), t) = −żl(t)Dl(t).

On the other hand, by Theorem 3, we have ḟ(z, t) = h(z, t)f ′(z, t), therefore,

(33) ḟ(z, t) = c(t)

[
4∑

j=1

γj(t)[ζ(z − zj(t))− ζ(z0(t)− zj(t))− η1(t)(z − z0(t))]− ż0(t)

]

× eγ(t)z
∏4

k=1 σ(z − zk(t))

σ2(z − z0(t))σ2(z − z0(t))

and

(34) ḟ ′(z, t) = c(t)

{[
4∑

j=1

γj(t) [ζ(z − zj(t))− ζ(z0(t)− zj(t))− η1(t)(z − z0(t))]− ż0(t)

]

×
(
γ(t) +

4∑

s=1

ζ(z − zs(t))− 2ζ(z − z0(t))− 2ζ(z − z0(t))
)

−
4∑

j=1

γj(t)[P(z − zj(t))− η1(t)]

}
eγ(t)z

∏4
k=1 σ(z − zk(t))

σ2(z − z0(t))σ2(z − z0(t))
.

From (34) we obtain, as z → zl(t),

(35) ḟ ′(zl(t), t) = c(t)

[
−ż0(t) +

4∑

j=1,j 6=l

γj(t)
[
ζ(zl(t)− zj(t))− ζ(z0(t)− zj(t))

− η1(t)(zl(t)− z0(t))
]
+ γl(t)

( 4∑

s=1,s 6=l

ζ(zl(t)− zs(t)) + γ(t)− η1(zl(t)− z0(t))

− ζ(zl(t)− z0(t))− 2ζ(zl(t)− z0(t))
)] eγ(t)zl(t)

∏4
k 6=l,k=1 σ(zl(t)− zk(t))

σ2(zl(t)− z0(t))σ2(zl(t)− z0(t))
.

Comparing (32) and (35), taking into account (20), we see that

(36) żl = ż0 −
4∑

j=1,j 6=l

γj
[
ζ(zl − zj)− ζ(z0 − zj)− η1(zl − z0)

]

− γl

( 4∑

s=1,s 6=l

ζ(zl − zs) + γ − η1(zl − z0)− ζ(zl − z0)− 2ζ(zl − z0)
)
, 1 ≤ l ≤ n.

Now we will find a differential equation to determine c(t). Comparing (16), (33), and (23),
we have

(37) d−1(t) = −c(t)eγ(t)z0(t)
∏4

k=1 σ(z0(t)− zk(t))

σ2(z0(t)− z0(t))
,
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ḋ−1(t) = −c(t)
{

4∑

j=1

γj(t)P(z0(t)− zj(t)) + η1(t) + ż0(t)

×
[
γ(t) +

4∑

k=1

ζ(z0(t)− zk(t))− 2ζ(z0(t)− z0(t))

]}
eγ(t)z0(t)

∏4
k=1 σ(z0(t)− zk(t))

σ2(z0(t)− z0(t))
.

Since

(38) γ +

4∑

k=1

ζ(z0 − zk)− 2ζ(z0 − z0) = 0,

we have

ḋ−1(t) = −c(t)
[

4∑

j=1

γj(t)P(z0(t)− zj(t)) + η1(t)

]
eγ(t)z0(t)

∏4
k=1 σ(z0(t)− zk(t))

σ2(z0(t)− z0(t))
.

Therefore,

(39) ȧ(t) =

4∑

j=1

γj(t)P(z0(t)− zj(t)) + η1(t)

where a = log d−1.
Differentiating (38), we obtain

i
4β

π

∂ζ(1/2)

∂ω2

ṁ−
4∑

k=1

P(z0 − zk)(ż0 − żk) + i2
4∑

k=1

∂ζ(z0 − zk)

∂ω2

ṁ

+2P(z0 − z0)(ż0 − ż0)− i4
∂ζ(z0 − z0)

∂ω2
ṁ = 0,

(
4P(z0 − z0)−

4∑

k=1

P(z0 − zk)

)
ż0 =

−
4∑

k=1

P(z0 − zk)żk + i

[
4
∂ζ(z0 − z0)

∂ω2

− 4β

π

∂ζ(1/2)

∂ω2

− 2
4∑

k=1

∂ζ(z0 − zk)

∂ω2

]
ṁ,

and, therefore,

(40) ẏ0 = −
4∑

k=1

Im
P(z0 − zk)

4P(z0 − z0)−
∑4

j=1P(z0 − zj)
ẋk + Re

[ 4
∂ζ(z0 − z0)

∂ω2

4P(z0 − z0)−
∑4

k=1P(z0 − zk)

+

−4β

π

∂ζ(1/2)

∂ω2

− 2
4∑

k=1

∂ζ(z0 − zk)

∂ω2

−P(z0 − z3) +P(z0 − z4)

4P(z0 − z0)−
∑4

k=1P(z0 − zk)

]
ṁ.

Theorem 4. The accessory parameters satisfy the system of ODEs: (36), (39), and (40) where
a = log d−1 and d−1 is defined by (37).
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Corollary 1. The conformal module of the domains satisfies the equation

ṁ(t) = π
4∑

j=1

γj(t).

where γk(t) := Ȧk(t)/Dk(t), Dk(t) = f ′′(zk).

5. Symmetric case. Numeric results

Now we will describe an approximate method of finding the accessory parameters in (8). It
is based on Theorem 4. If we consider a smooth one-parametric family f(z, t), 0 ≤ t ≤ 1, of
conformal mappings of the form (16), then, knowing the values of the parameters for t = 0,
we can solve the Cauchy problem with this initial data and obtain the values of the accessory
parameters for all t. We note that it is natural to use the uniform motion of the points
Ak = Ak(t), therefore, in our calculations we will take Ȧk = const. Moreover, if we choose
the appropriate initial data, then we change only two of Ak, say, A1 and A2; thus, we can put
Ȧ3 = Ȧ4 ≡ 0.

Therefore, to solve the Cauchy problem for the obtained system, we need to know the initial
data, i.e. the values of the accessory parameters for some t. For this, it is convenient to use the
data for the symmetric case when the segment A1A2 and A3A4 are symmetric with respect to
the real axis and the straight lines, containing these segments, pass through the origin. (This
can be achieved by a rotation and a shift.)

Now we describe the conformal mapping for the symmetric case. Because of the Riemann-
Schwarz symmetry principle, we can consider the conformal mapping of a strip onto the upper
half of the symmetric domain G = G(A1, A2, A3, A4) and then extend it up to the conformal
mapping of the strip, with twice the original width, onto the whole domain G.

a) If 0 < β < π, then the conformal mapping has the form (see [23, Part B, Section 8.2,
Example 1, p. 354]):

f(z) = c̃
ϑ1(z − α)

ϑ1(z + α)
, α =

β

4π
,

where ϑ1(z) is the Jacobi theta-function defined by (5) and c̃ > 0 is a constant. From (6),
taking into account that ω1 = 1, we easily deduce that

(41) f(z) = ce2αη1z
σ(z − α)

σ(z + α)
, c > 0.

We should note that, in contrast to (8), here σ(z), defined by (4), matches to the periods 1 and
im, not to 1 and i2m.

The function f , defined by (41), maps the rectangle R := {−1/2 < Re z < 1/2, 0 < Im z <
m/2} with identified vertical sides onto the upper half of G(A1, A2, A3, A4) and keeps the real

axis; it can be extended, by symmetry, to the rectangle R̃ := {−1/2 < Re z < 1/2, −m/2 <
Im z < m/2}, and the extended function maps R̃ onto the whole domain G(A1, A2, A3, A4).
The function f has four critical points ±zk, 1 ≤ k ≤ 4, and z1 = x1 + im/2, z2 = x2 + im/2,
z3 = x1− im/2, z4 = x2− im/2. Besides, f has a pole at the point z = −α and a zero at z = α
(Fig. 2).

The critical points zk, 1 ≤ k ≤ 4, can be found from the equality f ′(z) = 0, i.e.

ζ(α− z) + ζ(α+ z) = 2η1α.
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Figure 2. Conformal mapping of the rectangle R̃ with identified vertical sides
onto symmetric domain G(A1, A2, A3, A4).

Because of the equality ([2], ch.III, § 15),

ζ(u+ v) + ζ(u− v)− 2ζ(u) =
P′(u)

P(u)−P(v)
,

we have

(42) P(z) = P(α)− P′(α)

2(αη1 − ζ(α))
,

therefore, zk can be found via the inverse function P−1. Because of the evenness of the P-
function, we see that z3 = −z2 and z4 = −z1.

Without loss of generality we can assume that the nearest points of the slits are located at
the distance 1 from the origin. Then the farthest points are at the distance l := if(z3)/f(z2) =
if(−z2)/f(z2). Therefore, making use of (41) and oddness of the σ-function, we have

(43) l = ie−4αη1z2
σ2(z2 + α)

σ2(z2 − α)
.

Let z2 be a root of (42); we note that it depends on m. Then we solve (43) with respect to
m, to obtain the initial value of the module. After that, we easily find the initial values of zk,
1 ≤ k ≤ 4. To use them in the non-symmetric case, we need to shift the obtained values of zk
by the vector α− im/2.

To find c we use the equalities

f(z3) = f(−z2) = ce−2αη1z2
σ(z2 + α)

σ(z2 − α)
, f(z2) = ce2αη1z2

σ(z2 − α)

σ(z2 + α)
.

Multiplying them, we have c2 = f(z3)f(z2) = |f(z3)f(z2)|, therefore,
c =

√
|f(z3)f(z2)| =

√
|f(z3)f(z4)|.

The residue of f(z), defined by (41), is equal to

d 0
−1 = −ce−2α2η1σ(2α),

therefore, the initial value of a is

a0 = log d 0
−1 = (1/2) log |f(z3)f(z4)| − 2α2η1 + log σ(2α) + πi.

We note that |f(z3)| and |f(z4)| are the distances l3 and l4 from A3 and A4 to A5; here A5 is
the point of intersection of the straight lines containing the slits. Finally, we have

a0 = log d 0
−1 = (1/2) log(l3l4)− 2α2η1 + log σ(2α) + πi.
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b) Consider the case β = 0 when the slits lie on the (distinct) parallel lines. Without loss of
generality we can assume that the slits are on straight lines parallel to the real axis. Then the
conformal mapping has the form (see [23, Part B, Section 8.1, Example 1, p. 339] ):

f(z) = − b

π
(ζ(z)− η1z) .

As in the case a), ζ(z), defined by (1), has the periods 1 and im, not 1 and i2m. The parameter
b means a half of the vertical distance between the slits. The critical points zk of the map can
be found from the equation f ′(z) = 0; it is equivalent to the equality P(z) = −η1. Using the
evenness of the P-function, we see that x1 = −x2, z3 = −z2 and z4 = −z1. Finding z2 and
using the oddness of f(z), we obtain

− b

π
(ζ(z2)− η1z2) = l/2

where l is the length of each slit. From the last equality we find the initial value of m and zk.
As in the case a), to use the obtained values, we need to shift them; taking into account that
here α = 0, we see that the shift parameter is the vector −im/2. The residue of f(z) at z = 0
equals −b/π, thus, the initial value of a is log(b/π) + πi or

a0 = log(Im(z1 − z3)/(2π)) + πi.

Now we give the Mathematica code, with commentaries, to calculate the values of parameters,
the module and the capacity of ring domains with the exterior of two rectilinear slits. For
convenience, we divide it into 5 steps.

If 0 < β < π, we first find the point A5 which is the intersection of the straight lines containing
the slits. We will assume that A3A4 does not contain A5; in the opposite case we renumber
the points and use the reflection with respect to the real axis which, in fact, does not change
the desired parameters. We also assume that A4 is farther from A5 than A3. If A1A2 also does
not contain A5, then we number the points so that A2 is farther from A5 than A1. If A1A2

contains A5, then we consider that arg(A2−A5)/(A4−A5) = β. In the case, either A1 = A5 or
arg(A1−A5)/(A4−A5) = β ± π. Dependence on t describes the uniform movement of points
A1(t) and A2(t) along the corresponding segments; A3(t) and A4(t) are herewith constant.
Therefore, Ȧk(t) are constant, moreover, Ȧ3(t) = Ȧ4(t) = 0.

Step 1. Input of location of the points Ak, 1 ≤ k ≤ 4. (Here we take A1 = −2i, A2 = 3i,
A3 = 1, A4 = 3.) Finding A5, β, Ȧ1, and Ȧ2.

A1=-2.*I; A2=3.*I; A3=1.; A4=3.;

A5=A2+(A1-A2)*Im[(A4-A2)Conjugate[(A3-A4)]]/

Im[(A1-A2)Conjugate[(A3-A4)]];

l1=Sign[Re[(A1-A5)Exp[-I*beta/2]]]*Abs[A1-A5]; l2=Abs[A2-A5];

l3=Abs[A3-A5]; l4=Abs[A4-A5]; beta=Arg[(A2-A1)/(A4-A3)];

alpha=beta/(4*Pi); Adot1=(l1-l3)Exp[I*beta/2];

Adot2=(l2-l4)Exp[I*beta/2];

Step 2. Defining Weierstrass elliptic functions (P(z), P′(z), ζ(z), σ(z), ∂ζ(z)/∂ω2) with
periods ω1 = 1 and ω2 = im as functions depending on complex variable z and m. Defining
functions γk(t), k = 1, 2.

wp1[z_,w1_,w2_]:=WeierstrassP[z,WeierstrassInvariants[{w1/2,w2/2}]]; wpp1[z_, w1_,

w2_]:=WeierstrassPPrime[z,WeierstrassInvariants[{w1/2,w2/2}]];

wz1[z_,w1_,w2_]:=WeierstrassZeta[z,WeierstrassInvariants[{w1/2,w2/2}]];

ws1[z_,w1_,w2_]:=WeierstrassSigma[z,WeierstrassInvariants[{w1/2,
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w2/2}]]; wi1[x_,y_]:=WeierstrassInvariants[{x,y}]; g2[w1_,w2_]:=

-4(wp1[w1/2,w1,w2]*wp1[w2/2,w1,w2]+wp1[w1/2,w1,w2]*wp1[(w1+w2)/2,w1,w2]+

wp1[w2/2,w1,w2]*wp1[(w1+w2)/2,w1,w2]);

wz1primeperiod[z_,w1_,w2_]:=-1/(2*Pi*I)((1/2)wpp1[z,w1,w2]+(wz1[z,w1,w2]-

z*2*wz1[1/2,w1,w2])wp1[z,w1,w2]+2*wz1[w1/2,w1,w2]*wz1[z,w1,w2]-g2[w1,w2]*z/12);

wp[z_,t_]:=wp1[z,1,2*I*t]; ws[z_,t_]:=ws1[z,1,2*I*t]; wz[z_,t_]:=wz1[z,1,2*I*t];

wzw2[z_,t_]:=wz1primeperiod[z,1,2*I*t]; gamma[t_]:=2*beta/Pi*wz[0.5,m[t]];

gamma1[t_]:=-ws[z0[t]-z1[t],m[t]]*ws[z0[t]-z2[t],m[t]]*ws[z0[t]-z3[t],m[t]]*

ws[z0[t]-z4[t],m[t]]/(ws[2*z0[t],m[t]])^2*Exp[-(a[t]+gamma[t]*(z1[t]-z0[t]))]*

(ws[z1[t]-z0[t],m[t]])^2*(ws[z1[t]+z0[t],m[t]])^2/(ws[z1[t]-z2[t],m[t]]*

ws[z1[t]-z3[t],m[t]]*ws[z1[t]-z4[t],m[t]]);

gamma2[t_]:=-ws[z0[t]-z1[t],m[t]]*ws[z0[t]-z2[t],m[t]]*ws[z0[t]-z3[t],m[t]]*

ws[z0[t]-z4[t],m[t]]/(ws[2*z0[t],m[t]])^2*Exp[-(a[t]+gamma[t]*(z2[t]-z0[t]))]*

(ws[z2[t] - z0[t],m[t]])^2*(ws[z2[t]+z0[t],m[t]])^2/(ws[z2[t]-z1[t],m[t]]*

ws[z2[t]-z3[t],m[t]]*ws[z2[t]-z4[t],m[t]]);

Step 3. Finding initial value of module, critical points, pole, and constant a .

f1[t_]=wp1[alpha,1,I*t]-wpp1[alpha,1,I*t]/(2(alpha*2*wz1[0.5,1,I*t]-

wz1[alpha,1,I*t]));

Z1[t_]=InverseWeierstrassP[f1[t],WeierstrassInvariants[{0.5,0.5*I*t}]];

L[t_]=Abs[Exp[-4*alpha*2*wz1[0.5,1,I*t]*Z1[t]]*(ws1[Z1[t]+alpha,1,I*t]/

ws1[Z1[t]-alpha,1,I*t])^2]-l4/l3; ar=0.1; bl=3.0; Do[m0=(ar+ bl)/2.;

fc=L[m0]; If[L[bl]*fc>0,bl=m0,ar=m0],{i,70}]; X0=Re[Z1[m0]]; x10=beta/(4*Pi)+X0;

x20=beta/(4*Pi)-X0; x30=beta/(4*Pi)+X0; x40=beta/(4*Pi)-X0;

a20=Pi; y00=m0/2; a10=(1/2)*Log[l3*l4]-(beta/(2*Pi))^2*Re[wz1[0.5,1,I*m0]]+

Log[Abs[ws1[beta/(2*Pi),1,I*m0]]];

Step 4. Solving system of ODEs.

sol = NDSolve[ {-z1’[t]==Re[Adot1*gamma1[t]*(wz[z1[t]-

z2[t],m[t]]+wz[z1[t]-z3[t],m[t]]+

wz[z1[t]-z4[t],m[t]]+gamma[t]-2*wz[0.5,m[t]]*(z1[t]-z0[t])-wz[z1[t]-z0[t],

m[t]]-2*wz[z1[t]+z0[t],m[t]])+Adot2*gamma2[t](wz[z1[t]-z2[t],m[t]]-

wz[z0[t]-z2[t],m[t]]-2*wz[0.5,m[t]]*(z1[t]-z0[t]))],

-z2’[t]==Re[Adot2*gamma2[t]*(wz[z2[t]-z1[t],m[t]]+wz[z2[t]-z3[t],m[t]]+

wz[z2[t]-z4[t],m[t]]+gamma[t]-2*wz[0.5,m[t]]*(z2[t]-z0[t])-wz[z2[t]-z0[t],

m[t]]-2*wz[z2[t]+z0[t],m[t]])+Adot1*gamma1[t] (wz[z2[t]-z1[t],m[t]]-

wz[z0[t]-z1[t],m[t]]-2*wz[0.5,m[t]]*(z2[t]-z0[t]))],

-z3’[t]==-I*m’[t]+Re[Adot1*gamma1[t](wz[z3[t]-z1[t],m[t]]-wz[z0[t]-z1[t],m[t]]-

2*wz[0.5,m[t]]*(z3[t]-z0[t]))+Adot2*gamma2[t](wz[z3[t]-z2[t],m[t]]-

wz[z0[t]-z2[t],m[t]]-2*wz[0.5,m[t]]*(z3[t]-z0[t]))],

-z4’[t]==I*m’[t]+Re[Adot1*gamma1[t](wz[z4[t]-z1[t],m[t]]-wz[z0[t]-z1[t],m[t]]-

2*wz[0.5,m[t]]*(z4[t]-z0[t]))+Adot2*gamma2[t](wz[z4[t]-z2[t],m[t]]-

wz[z0[t]-z2[t],m[t]]-2*wz[0.5,m[t]]*(z4[t]-z0[t]))],

m’[t]==Re[Pi*(Adot1*gamma1[t]+Adot2*gamma2[t])],

a’[t]==Adot1*gamma1[t]*wp[z0[t]-z1[t],m[t]]+Adot2*gamma2[t]*wp[z0[t]-z2[t],m[t]]

+2*wz[0.5,m[t]]*(Adot1*gamma1[t]+Adot2*gamma2[t]),

z0’[t]==I*Im[(4*wp[2*z0[t],m[t]]-wp[z0[t]-z1[t],m[t]]-wp[z0[t]-z2[t],m[t]]-

wp[z0[t]-z3[t],m[t]]-wp[z0[t] - z4[t],m[t]])^(-1)(-wp[z0[t]-z1[t],m[t]]z1’[t]-

wp[z0[t]-z2[t],m[t]]z2’[t]-wp[z0[t]-z3[t],m[t]]z3’[t]-wp[z0[t]-z4[t],m[t]]

z4’[t])]+I*Re[(4*wp[2*z0[t],m[t]]-wp[z0[t]-z1[t],m[t]]-wp[z0[t]-z2[t],m[t]]-

wp[z0[t]-z3[t],m[t]]-wp[z0[t]-z4[t],m[t]])^(-1)(4*wzw2[2*z0[t],m[t]]
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-(4*beta/Pi)wzw2[0.5,m[t]]-2(wzw2[z0[t]-z1[t],m[t]]+wzw2[z0[t]-z2[t],m[t]]+

wzw2[z0[t]-z3[t],m[t]]+wzw2[z0[t]-z4[t],m[t]]))]*Pi*Re[(Adot1*gamma1[t]+

Adot2*gamma2[t])],

z1[0]==x10,z2[0]==x20,z3[0]==x30+I*m0,z4[0]==x40-I*m0,a[0]==a10+I*a20,

m[0]==m0,z0[0]==-I*y00},{z1,z2,z3,z4,m,a,z0},{t,0,1.}];

Step 5. Output of desired values of capacity, module, critical points, pole, and constant a.

s=1.; {1/m[s], m[s], z1[s], z2[s], z3[s], z4[s], a[s], z0[s]} /.sol

In the case of slits, parallel to the real axis, we have the same system of ODEs. We recall
that we can assume that ReA1 < ReA2, ReA3 < ReA4, and ImA1 = ImA2 > ImA3 = ImA4.
Then we find the values of Ȧ1 and Ȧ2 by the formulas Ȧ1 = Re(A1 − A3). Ȧ2 = Re(A2 − A4).
We also have other formulas to find the initial values. Thus, Steps 1 and 3 must be changed to
the following ones.

Step 1’. Input of location of the points Ak, 1 ≤ k ≤ 4. (Here we take A1 = i, A2 = 2 + i,
A3 = −2 − i, A4 = −1− i.) Finding A5, β, Ȧ1, and Ȧ2.

A1=1.*I; A2=2.+1.*I; A3=-2.-1.*I; A4=-1.-1.*I; Adot1=Re[A1-A3];

Adot2=Re[A2-A4]; beta=0.;

Step 3’. Finding initial value of module, critical points, pole, and constant a.

g[m_]:=-2*WeierstrassZeta[0.5,WeierstrassInvariants[{0.5,0.5*m*I}]];

h[m_]:=Re[InverseWeierstrassP[g[m],WeierstrassInvariants[{0.5,0.5*m*I}]]];

f[m_]:=Re[(2/Pi)(WeierstrassZeta[h[m]+0.5*m*I,WeierstrassInvariants[{0.5,0.5*m*I}

]]-2(h[m]+0.5*m*I)WeierstrassZeta[0.5,WeierstrassInvariants[{0.5,0.5*m*I}]])]-

2*Abs[A3-A4]/Abs[Im[(A3-A1)]]; ar=0.1; bl=3.; Do[m0=(ar+bl)/2.;

fc=f[m0]; If[f[bl]*fc>0,bl=m0,ar=m0],{i,70}]; X0=Re[h[m0]]; x10=X0;

x20=-X0; x30=X0; x40=-X0; y00=m0/2; a10=Log[Im[A1-A3]/(2*Pi)]; a20=Pi;

Example 1. Consider the case when the endpoints of one of the segments are the points
a − 0.5, a + 0.5 on the real axis and the endpoints of the other one are the points −i, −2i of
the imaginary axis. Then β = π/2 and α = 0.125.

As an initial situation, we take the symmetric case when a = 1.5. With the help of (43) and
(42) we find the initial module and the real parts of the critical points:

m0 = 0.67578477 . . . , x̃ 0
2 = −x̃ 0

1 = 0.22367571 . . .

Since in the non-symmetric case we have Im z0 = 0 in (8), we use a shift z 7→ z + α in the
z-plane and take, as an initial data, the values x0k = x̃ 0

k + α. Therefore,

x01 = x03 = 0.34867571 . . . x02 = x04 = −0.09867571 . . .

Because of symmetry, we have y00 = m0/2. Consequently,

z01 = 0.34867571 . . . , z02 = −0.09867571 . . . ,

z03 = 0.34867571 . . .+ im0, z04 = −0.09867571 . . .− im0.

At last a0 = log d 0
−1 where d 0

−1 is the residue of (8) at the point z0.
Finding the residue in the symmetric case, we obtain

a0 = [ln
√
2− 4α2ζ(0.5; 1, im0) + lnσ(2α; 1, im0)] + πi

= −1.11526111 . . .+ i 3.14159265 . . .
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Figure 3. The graph of the dependence of the module m on the parameter a (Example 1).

Here the functions ζ(z) = ζ(z; 1, im0) and σ(z) = σ(z; 1, im0) correspond to the periods 1
and im0. Solving the system of differential equations, we find the dependence of the parameters
in (8) on the parameter a (see Fig. 3).

The values of moduli for some a are given on the Table 1.

Table 1. The values of moduli and capacities for some a (Example 1).

a 0 1 2 3 4 5 6 7
m 0.56247 0.62207 0.72955 0.82469 0.90239 0.96656 1.02073 1.06743
cap 1.77787 1.60753 1.37070 1.21258 1.10817 1.03459 0.97968 0.93682

Example 2. We also computed the moduli modG and the corresponding capacities capG
for some domains G(A1, A2, A3, A4) when Ak are from the integer lattice in the complex plane.
Comparison our results with those obtained by other methods show very good coincidence,
up to 10−6. In Table 2 we give some values of capacities obtained by our method and by a
MATLAB algorithm written by Prof. M. Nasser [24]; the values are given with 8 digits after
the decimal point.

6. Monotonicity of conformal module

Now we will investigate behavior of the conformal module of G = G(A1, A2, A3, A4) in the
case when the segment A3A4 is fixed and the segment A1A2 slides along a straight line with a
fixed length. This case is equivalent to the situation when the segment A1A2 is fixed and A3A4

has a fixed length and shifts by vectors with a fixed direction.
We note that some similar problems for quadrangles were investigated by Dubinin and Vuori-

nen [14].
Without loss of generality we may assume that A1A2 lies on the real axis and A1 is the left

endpoint of the segment. Moreover, we can consider the family with A1 = t, A2 = t+ l, where
l is the length of A1A2. Then Ȧ1(t) = Ȧ2(t) = 1. It is clear that Ȧ3(t) = Ȧ4(t) = 0. From
Corollary 1 we obtain that ṁ(t) = π(γ1(t) + γ2(t)) where γk(t) = 1/f ′′(xk, t), k = 1, 2. It is
easy to see that f ′′(x1, t) > 0 and f ′′(x2, t) < 0. Therefore,

ṁ(t) = π (|γ1(t)| − |γ2(t)|) = π

(
1

|f ′′(x1, t)|
− 1

|f ′′(x2, t)|

)
.

If |f ′′(x1, t)| > |f ′′(x2, t)|, then, when moving a segment A1A2 to the right, the conformal
module of G = G(A1, A2, A3, A4) decreases, otherwise, it increases. At critical points of the
module we have |f ′′(x1, t)| = |f ′′(x2, t)|.
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Table 2. The values of capacities for some domains G(A1, A2, A3, A4) (Example 2).

capG
A1 A2 A3 A4

our results Nasser’s
1 i 2 + i −2 − i −1 − i 1.44058466 1.44058486
2 i 2 + i −2− 2i −1− 2i 1.30971558 1.30971579
3 i 2 + i 3− 2i 4− 3i 1.35832035 1.35832051
4 i 2 + 2i −2 − i −1 − i 1.42710109 1.42710150
5 i 2 + 2i −2− 2i −1− 2i 1.29776864 1.29776889
6 i 2 + 2i 3− 2i 4− 3i 1.32814214 1.32814249
7 i 3 + 2i −2 − i −1 − i 1.49363842 1.49363897
8 i 3 + 2i −2− 2i −1− 2i 1.36333122 1.36333156
9 i 3 + 2i 3− 2i 4− 3i 1.45844055 1.45844094
10 i 3i 3 4 1.29126199 1.29126229
11 i 3i 0 2 2.18251913 2.18251948
12 i 3i −3 2 2.82846257 2.82846345
13 i 3 + i −i 3− i 2.69941565 2.69941690
14 i 3 + 2i −i 3− 2i 2.23470313 2.23470399
15 i 3 + 3i −i 3− 3i 2.11547784 2.11547801

Now we compare |f ′′(x, t)| at the points x1 and x2 using methods of the symmetrization
theory. We will temporarily assume that A1A2 is symmetric with respect to the imaginary
axis, i.e. A2 lies on the positive part of the real axis symmetrically to A1.

In the following lemma we investigate a more general case when the considered doubly con-
nected domain G is the exterior of the segment A1A2 and some continuum Q; if Q = A3A4, we
obtain our case.

Lemma 1. Let the continuum Q lie in the right half-plane Rew > 0 and let ψ : {q < |ζ | <
1} → G be a conformal mapping. If ζ1 and ζ2 are the points of the unit circle corresponding to
the endpoints A1 and A2 of the segment, then |ψ′′(ζ1)| > |ψ′′(ζ2)|.

Proof. Without loss of generality we can assume that A1A2 coincides with the segment [−1, 1]
(Fig. 4, a)). Consider the function ϕ inverse to the Joukowskii function; it maps G onto the
exterior of the unit disk with excluded set Q1 := ϕ(Q). Using the Riemann-Schwarz symmetry
principle, we conclude that ϕ(Q) lies in the right half-plane. Now applying the symmetry
principle once more, we can extend ϕ ◦ ψ to the annulus A := {q < |ζ | < 1/q}. The function
ϕ ◦ψ maps it onto the doubly connected domain G1 := C \ (Q1 ∩Q2); here Q2 is symmetric to
Q1 with respect to the unit circle, therefore, it also lies in the right half-plane.

Now consider the reduced moduli of A at the points ζ1 and ζ2; it is obvious that they are
equal, i.e. r(A, ζ1) = r(A, ζ2). On the other side,

r(G1,−1) = r(A, ζ1) +
1

4π
log |ψ′′(ζ1)|, r(G1, 1) = r(A, ζ2) +

1

4π
log |ψ′′(ζ2)|.

Therefore, we only need to show that r(G1,−1) > r(G1, 1). But this conclusion follows from
[12], thrm. 1.2, because the configuration (G1,−1) is obtained from (G1, 1) by polarization.

Corollary 2. Let A3A4 be a fixed segment in the right half-plane, intersecting the real at the
point x̃ , and let one of its endpoints lie on the imaginary axis. Let A1A2 be the segment
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Figure 4. The domain G: a) in Lemma 1; b) in Corollary 2.

[a − l/2, a + l/2] on the real axis with a fixed length l (Fig. 4, b)). If x̃ ≤ l/2, then, when a
increases from −∞ to x̃− l/2, the conformal module of G(A1, A2, A3, A4) decreases from +∞
to 0. If x̃ > l/2, then the conformal module decreases from +∞ to some positive value, when
a increases from −∞ to 0.

If A3A4 does not intersect the real axis then the conformal module decreases for a close to −∞
and increases for a close to +∞. In this connection the problem arises: does the module always
have a unique minimum or are there situations when it has more than one (local) minimum?

It is also interesting to investigate the problem for the case when the slits are parallel to each
other. Then, using the result that the conformal module decreases after symmetrization with
respect to a straight line, we conclude that the minimum of the conformal module is attained
for the case of slits symmetric with respect to the orthogonal line.

The same is valid when the slits are perpendicular to each other, one of the slits is fixed and
does not intersect the straight line containing the second one. Then the minimal module is
attainted for the case when the second slit is symmetric with respect to the line containing the
first slit.
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