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Abstract A complex-valued linear mixture model is considered for discrete weakly station-
ary processes. Latent components of interest are recovered, which underwent a linear mixing.
Asymptotic properties are studied of a classical unmixing estimator which is based on simul-
taneous diagonalization of the covariance matrix and an autocovariance matrix with lag τ . The
main contributions are asymptotic results that can be applied to a large class of processes. In
related literature, the processes are typically assumed to have weak correlations. This class is
extended, and the unmixing estimator is considered under stronger dependency structures. In
particular, the asymptotic behavior of the unmixing estimator is estimated for both long- and
short-range dependent complex-valued processes. Consequently, this theory covers unmixing
estimators that converge slower than the usual

√
T and unmixing estimators that produce non-

Gaussian asymptotic distributions. The presented methodology is a powerful preprocessing
tool and highly applicable in several fields of statistics.
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1 Introduction

In modern statistics, there is an increasing demand for theoretically solid methodol-
ogy which can be applied beyond standard real-valued data, in the realm of more ex-
otic data structures. In this paper, we consider a complex-valued linear mixture model
based on temporally uncorrelated components. We consider the problem under dis-
crete weakly stationary processes. We aim to find latent processes of interest when
only linear mixtures of them are observable. The recovery of the latent processes
is referred to as the unmixing procedure. The properties of the recovered processes
themselves can be the source of interest, or alternatively, the approach can be used
to reduce multivariate models into several univariate models, which can simplify the
modeling burden.

In the context of linear mixture models, the assumption of uncorrelated compo-
nents or stronger conditions that imply uncorrelated components is considered to be
natural in several applications, for example, in finance and signal processing, see
the article [14] and the book [10]. Applications where the observed time series are
naturally complex-valued are frequent in, e.g., signal processing and biomedical ap-
plications, see [19, 41]. In such applications, the interest can lie in the shapes of the
unobservable signals, such as the shapes of three-dimensional image valued signals,
which correspond to different parts of the brain under different activities. In the signal
processing literature, the problem is often referred to as the blind source separation
(BSS) problem. In the BSS literature, it has been argued that discarding the special
complex-valued structure can lead to loss of information, see [1]. Thus, it is often ben-
eficial to natively work with complex-valued signals in such applications. We wish
to emphasize that our Cd -valued model does not directly correspond to existing R2d

valued models, e.g., the one in [23]. In R
2d valued BSS, it is assumed that all 2d com-

ponents are uncorrelated. In our model, the real part and the corresponding complex
part are allowed to be correlated. For a collection of BSS applications, see [10].

In parallel to the signal processing community, linear mixture models, with sim-
ilar model assumptions as in BSS literature, have recently received notable attention
in finance, see for example [14, 22]. In financial applications, the term blind source
separation is rarely used, and usually more descriptive model naming conventions
are utilized. Note that our complex-valued approach is highly applicable in many
real-valued financial applications. In our approach, we assume little concerning the
relationship between the real and imaginary parts of a single component. Thus, from
the real-valued perspective, the problem can be equivalently considered as model-
ing real-valued temporally uncorrelated pairs, where the elements contained in a sin-
gle pair are not necessarily uncorrelated. However, transforming this complex-valued
problem into a real-valued counterpart is often unfeasible, as it usually introduces
additional constraints that would be otherwise embedded within the complex-valued
formulation. Once the temporally uncorrelated components are recovered, one can
then, for example, model volatilities bivariately (or univariately) or assess risk by
modeling tail behavior with the tools of bivariate (or univariate) extreme value the-
ory. Moreover, our approach is natural in applications where a single observation is
vector valued, that is, the observations have both a magnitude and a direction, e.g.,
modeling the latent components of wind at an airport.
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The main focus in this paper is on asymptotic behavior of a classical unmixing
estimator. We consider an algorithm that is identical to the so-called Algorithm for
Multiple Unknown Signals Extraction (AMUSE), [35]. In the financial side, asymp-
totic properties of an alternative approach, with slightly differing model assumptions
compared to our approach, are given in, e.g., [14]. In the context of real-valued BSS,
asymptotics have been considered in, e.g., [23–25]. Compared to the above men-
tioned approaches, we consider a substantially wider class of processes. In particu-
lar, we analyze the asymptotic behavior of the corresponding estimators under both
long- and short-range dependent complex-valued processes. Furthermore, we take
a semiparametric approach, that is, our theory is not limited to specific parametric
family of distributions. As a pinnacle of the novel theory presented in this paper, we
consider square-integrable processes without summable autocovariance structures,
which causes the limiting distribution of the corresponding unmixing estimator to be
non-Gaussian. Instead of using the classical central limit theorem, we take a modern
approach and utilize general central limit theorem type results that are also applicable
for processes with strong temporal dependencies. Moreover, we consider convergence
rates that differ from the usual

√
T . We wish to emphasize that modeling long-range

dependent processes, that is, processes without summable autocovariance structures,
are of paramount importance in many financial applications.

The paper is structured as follows. In Section 2, we recall some basic theory re-
garding complex-valued random variables. In Section 3, we present the temporally
uncorrelated components mixing model. In Section 4, we formulate the estimation
procedure and study the asymptotic properties of the estimators. In Section 5, we
consider a data example involving photographs, which can be presented as complex-
valued time series. The proofs for the theoretical results are presented in the supple-
mentary Appendix.

2 Random variables in the complex plane

Throughout, let (�,F ,P) be a common probability space and let z• := (zt )t∈N be
a collection of random variables zt : � → C

d , t ∈ N = {1, 2, . . .}, where the
dimension parameter d is a finite constant. Furthermore, let z

(k)
t = prk ◦ zt , where prk

is a projection to the kth complex coordinate. We refer to the process z(k)
•

:= (z
(k)
t )t∈N

as the kth component of the Cd -valued stochastic process z•. Note that the components
can be expressed in the form z

(k)
t = a

(k)
t + ib

(k)
t , where a

(k)
t , b

(k)
t are real-valued

∀k ∈ {1, 2, . . . , d} and i is the imaginary unit. We denote the complex conjugate of zt

as z∗
t and we denote the conjugate transpose of zt as zH

t := (z∗
t )

�. Furthermore, we use
B(Cd) and B(R2d) to denote the Borel-sigma algebras on C

d and R
2d , respectively.

We use the following notation for the multivariate mean and the (unsymmetrized)
autocovariance matrix with lag τ ∈ {0} ∪ N:

μzt
= E [zt ] ∈ C

d, S̈τ [zt ] = E

[(
zt − μzt

) (
zt+τ − μzt+τ

)H
]

∈ C
d×d .

Furthermore, we use the notation Sτ [zt ] = 1
2 [S̈τ [zt ] + (S̈τ [zt ])H] ∈ C

d×d for the
symmetrized autocovariance matrix with lag τ ∈ {0} ∪ N.
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In the case of univariate stochastic processes, we use S̈τ [xt , ys] to denote
S̈τ [xt , ys] = E

[
(xt − μxt )(ys+τ − μys+τ )

∗]. Note that the unsymmetrized autoco-
variance matrix S̈τ is not necessarily conjugate symmetric, i.e., Hermite symmetric
or Hermitian, and it can have complex-valued diagonal entries. In contrast, the sym-
metrized autocovariance matrix Sτ is always conjugate symmetric, that is, Sτ = SH

τ ,
and the diagonal entries of the symmetrized autocovariance matrix are by definition
real-valued.

In the literature, the definition of stationarity for complex-valued stochastic pro-
cesses varies. In this paper, we use the following definition.

Definition 1. The C
d -valued process z• := (zt )t∈N is weakly stationary if the com-

ponents of z• are square-integrable and if for any τ ∈ {0} ∪ N and for any pair
(u, v) ∈ N × N, we have that E[zu] = E[zv] and S̈τ [zu] = S̈τ [zv].

Let Z := (
Zj

)
j∈T , T = {1, 2, . . . , T }, be a sampled process generated by

z•, where Zj is C
d -valued for every j ∈ T . We use the following classical fi-

nite sample estimators for the mean vector and the autocovariance matrix with lag
τ ∈ {0, 1, . . . , T − 1}:

μ̂[Z] = 1

T

T∑
j=1

Zj , S̃τ [Z] = 1

T − τ

T −τ∑
j=1

(
Zj − μ̂[Z]) (Zj+τ − μ̂[Z])H

,

where for τ = 0, the scaling used in S̃τ is 1/(T − 1). Furthermore, the symmetrized
autocovariance matrix estimator with lag τ ∈ {0, 1, . . . , T − 1} is defined as Ŝτ [Z] =
1
2 [S̃τ [Z] + (S̃τ [Z])H]. Note that the symmetrized autocovariance matrix estimator is
always conjugate symmetric.

Let y1 and y2 be R
d -valued random vectors such that the concatenated random

vector, that is,
(
y�

1 y�
2

)�
, follows a R

2d -valued Gaussian distribution. Then, the
C

d -valued random vector y = y1 + iy2 follows the C
d -valued Gaussian distribution

with the location parameter μy, the covariance matrix �y and the relation matrix Py,
defined as

μy = E [y] = E
[
y1
] + iE

[
y2
] ∈ C

d, �y = E

[(
y − μy

) (
y − μy

)H
]

∈ C
d×d,

Py = E

[(
y − μy

) (
y − μy

)�] ∈ C
d×d .

We distinguish between complex- and real-valued Gaussian distributions with the
number of given parameters — Nd(μy,�) denotes a d-variate real-valued Gaussian
distribution and Nd(μy,�, P) denotes a d-variate complex-valued Gaussian distri-
bution.

The classical central limit theorem (CLT) for independent and identically dis-
tributed complex-valued random variables is given as follows. Let {x1, x2, . . . , xn}
be a collection of i.i.d. Cd -vectors with square-integrable components, mean μx, co-
variance matrix � and relation matrix P. Then,

1√
n

n∑
j=1

(
xj − μx

) D−−−→
n→∞ x ∼ Nd (0,�, P) ,
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where
D−→ denotes convergence in distribution. We can harness the rich literature on

real-valued limiting theorems via the following lemma.

Lemma 1. Let {vn}n∈N be a collection of R2d -valued random vectors v�
j =(

x�
j y�

j

)
, where xj , yj are R

d -valued for every j ∈ N, and let v� = (
x� y�).

Then, vn
D−−−→

n→∞ v if and only if xn + iyn

D−−−→
n→∞ x + iy.

Lemma 1 can be, for example, applied to Gaussian vectors in a straightforward
manner, see Corollary 1 in the supplementary Appendix.

In our work, we utilize Lemma 1 in order to apply real-valued results for complex-
valued scenarios, but we wish to emphasize that it also works in the other way — the
complex-valued asymptotic distribution automatically grants the corresponding real-
valued limiting distribution. For additional details regarding complex-valued statis-
tics, see, e.g., [13, 15, 31].

3 Temporally uncorrelated components model

In this section, we consider a linear temporally uncorrelated components model for
discrete time complex-valued processes. We define the following version of the model.

Definition 2. The Cd -process x• := (xt )t∈N follows the temporally uncorrelated com-
ponents mixing model, if

xt = Azt + μx, ∀t ∈ N,

where A is a constant nonsingular Cd×d -matrix, μx ∈ Cd is a constant location
parameter and z• is a C

d -process with components having continuous marginal dis-
tributions. In addition, the process z• satisfies the following four conditions for every
t, κ ∈ N,

(1) μzt
= 0, (2) S0 [zt ] = Id ,

(3) S̈κ [zt ] is finite and depends only on κ,

(4) ∃τ ∈ N : Sτ [zt ] = �τ = diag
(
λ(1)

τ , . . . , λ(d)
τ

)
,

such that +∞ > λ
(1)
τ > λ

(2)
τ > · · · > λ

(d)
τ > −∞.

To improve the fluency of the paper, from hereon, the term mixing model is used
to refer to the temporally uncorrelated components mixing model. The conditions
(1)–(4) of Definition 2 imply that the latent process z• is weakly stationary in the
sense of Definition 1. Note that under these model assumptions the concatenated
R

2d -process
(
Re(z�

• ) Im(z�
• )
)�

is not necessarily weakly stationary in the classical
real-valued sense. One could also require that the concatenated vector is stationary,
which can be done by adding to the model a condition involving the complex-valued
relation matrix, defined in Section 2. However, adding the extra condition would also
fix the relationship, up to heterogeneous sign-changes, between the real and imagi-
nary parts inside a single component. In this paper, we do not wish to make assump-
tions regarding the complex phase of a single component. Consequently, many of the
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following results involve a so-called phase-shift matrix J, that is, a complex-valued
diagonal matrix with diagonal entries of the form exp(iθ1), . . . , exp(iθd). A phase-
shift matrix J is by definition unitary, i.e., JJH = JHJ = Id . Note that all possible
phase-shift matrices can be constructed by considering phases on some suitable 2π-
length interval, e.g., the usual [0, 2π).

Condition (3) is included in Definition 2 to ensure that we can apply limiting
results that require the traditional real-valued weak stationarity. Since Condition (3)
is solely used to guarantee stationarity, the only requirements for S̈κ [zt ] are that it
has finite elements and that it is invariant with respect to the time parameter t .

For a process x• that follows the mixing model, the corresponding unmixing prob-
lem is to uncover the latent process z• by using only the information contained in the
observable process x•.

Definition 3. Let x• := (xt )t∈N be a process that satisfies Definition 2, such that
condition (4) holds for some fixed τ . The affine functional g : a → �(a−μ) : Cd →
C

d is a solution to the corresponding unmixing problem if the process g ◦ x• satisfies
conditions (1)–(3) and condition (4) is satisfied with the fixed τ .

Given a process x• that follows the mixing model and a corresponding solution
g : a → �(a − μ), we refer to A, see Definition 2, as the mixing matrix and we
refer to � as the unmixing matrix. The objective of the unmixing matrix is to reverse
the effects of the mixing matrix. However, under our model assumptions, we cannot
uniquely determine the relationship between the mixing and the unmixing matrix.
The relationship between the two matrices is �A = J, where J ∈ C

d×d is some
phase-shift matrix, see Lemma 3 in the supplementary Appendix.

Under our assumptions, we cannot distinguish between solutions that contain un-
mixing matrices that are a phase-shift away from each other. Thus, we say that two
solutions g1 : a → �1(a − μ1) and g2 : a → �2(a − μ2) are equivalent, if there
exists a phase-shift matrix J such that �1 = �2J.

We next provide a solution procedure for the unmixing problem. Recall that in the
mixing model we assume that the mixing matrix A and the latent process z• are unob-
servable. Therefore, the solution procedure relies solely on statistics of the observable
process x•.

Theorem 1. Let x• := (xt )t∈N be a process that satisfies Definition 2. The functional
g : a → �(a − μ) : Cd → C

d is a solution to the corresponding unmixing problem
if and only if the eigenvector equation

(S0 [xt ])
−1 Sτ [xt ] �H = �H�τ , ∀t ∈ N, (1)

and the scaling equation

�S0 [xt ] �H = Id, ∀t ∈ N, (2)

are satisfied.

One can apply Theorem 1 to find solutions by first estimating the eigenvalues and
eigenvectors of (S0 [xt ])−1 Sτ [xt ] and then scaling the eigenvectors so that the scaling
equation is satisfied. In addition, see Corollary 2 in the supplementary Appendix.
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4 Estimation and asymptotic properties

The algorithm for multiple unknown signals extraction (AMUSE), [35], is a widely
applied blind source separation unmixing procedure. AMUSE and the correspond-
ing asymptotic properties have been previously studied in the real-valued case, see,
e.g, [23]. Here, we adopt the estimation part of the AMUSE algorithm. However, our
underlying model assumptions are not identical to the ones in [23] and [35]. In this
section, we consider the consistency and the limiting distribution of the correspond-
ing unmixing estimator under complex-valued long-range and short-range dependent
processes, significantly extending the results given in [23].

Definition 4. Let x• := (xt )t∈N be a process that satisfies Definition 2 and let X
be a CT ×d -valued, 1 ≤ d < T < ∞, sampled stochastic process generated by x•.
Let μ̂ := μ̂[X] and let 1T be a R

T -vector full of ones. The mapping ĝ : C →
(C−1T μ̂�

)�̂
� : CT ×d → CT ×d is a solution to the finite sample unmixing problem,

if λ̂
(1)
τ ≥ · · · ≥ λ̂

(d)
τ , such that

�̂Ŝ0[X]�̂H = Id and �̂Ŝτ [X]�̂H = �̂τ = diag
(
λ̂(1)

τ , . . . , λ̂(d)
τ

)
.

Recall that Ŝτ is the symmetrized autocovariance matrix, and it is, by definition,
conjugate symmetric. In addition, recall that the diagonal entries and the eigenvalues
of a conjugate symmetric matrix are, again by definition, real-valued. Hereby, the or-
dering of λ̂

(j)
τ is always well-defined. The diagonal elements (eigenvalues) λ̂

(j)
τ can

be seen as finite sample estimates of λ
(j)
τ . Even though the population eigenvalues

λ
(j)
τ are assumed to be distinct, it is possible, due to, e.g., limited computational ac-

curacy, that ties occur among the estimates λ̂
(j)
τ . Hereby, in the finite sample case,

strict inequalities are not imposed on the estimates λ̂
(j)
τ in Definition 4.

Using Lemma 4 of the supplementary Appendix, we can straightforwardly im-
plement the unmixing procedure. The first step is to calculate Ŝ0 := Ŝ0[X], from a
realization X, and the corresponding conjugate symmetric inverse square root �̂0 :=
Ŝ

−1/2
0 . Recall that, by assumption, the components of z• have continuous marginal

distributions and the mixing matrix is nonsingular. Thus, the eigenvalues of covari-
ance matrix estimates are always real-valued and almost surely positive. Hereby, the
matrix �̂0 can be obtained by estimating the eigendecomposition of Ŝ0. The next

step is to choose a lag-parameter τ and estimate the eigendecomposition Ŝτ [X�̂
�
0 ] =

�̂0Ŝτ [X]�̂0 = V̂�̂τ V̂
H

. The covariance matrix and autocovariance matrix estima-
tors are affine equivariant in the sense that Ŝj [XC�] = CŜj [X]CH, j ∈ {0, τ }, for all
nonsingular Cd×d -matrices C. An estimate for the latent process can then be found

via the mapping (X − 1T μ̂�
)(V̂

H
�̂0)

�, where μ̂ is the sample mean vector of X.
In practice, one should choose the lag parameter τ �= 0 such that the diagonal

elements of �̂τ are as distinct as possible. Strategies for choosing τ are discussed,
e.g., in [9]. From a computational perspective, the estimation procedure is relatively
fast. Hereby, in practice, one should try several different values of τ and study �̂τ .

We emphasize that one can apply the theory of this paper to other estimators
as well. That is, under minor model assumptions, the estimators Ŝ0, Ŝτ can be re-
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placed with any matrix-valued estimators that have the so-called complex-valued
affine equivariance property, see [16].

The conditions given in Definition 4 remain true if we replace �̂ with J�̂, where
J ∈ C

d×d can be any phase-shift matrix. Thus, as in the population level, we say that
the estimates �̂1 and �̂2 are equivalent if �̂1 = J�̂2 for some phase-shift matrix J.

Justified by the affine invariance property given in supplementary Appendix Lem-
mas 5 and 6, we can, without loss of generality, derive the rest of the theory under the
assumption of trivial mixing, that is, in the case when the mixing matrix is A = Id .
See also the beginning of the Proof of Lemma 2.

4.1 Limiting behavior of the AMUSE estimator

We next consider limiting properties of the finite sample solutions. Note that the finite
sample statistics and the sampled stochastic process X depend on the sample size T .
In the framework of this paper, our usage of the notation is equivalent with the one
presented in [38]. We use the short expression XT = op(1) to denote that a sequence
of Cd×d -matrices X1, X2 . . ., converges in probability to a zero matrix. In addition,
we use Yβ = Op(1) to denote that a collection of Cd×d -matrices {Yβ : β ∈ B}
is uniformly tight under some nonempty indexing set B. By saying that a matrix is
uniformly tight, we mean that real part and imaginary part of every element in the
matrix is uniformly tight.

Lemma 2. Let x• := (xt )t∈N be a process that satisfies Definition 2 and let X be a
C

T ×d -valued, 1 ≤ d < T < ∞, sampled stochastic process generated by x• and let

ĝ : C → (C − 1T μ̂�
)�̂

�
be a T -indexed sequence of corresponding finite sample

solutions. Furthermore, let αT (Ŝ0[X] − S0[xt ]) = Op(1) and βT (Ŝτ [X] − Sτ [xt ]) =
Op(1), for some real-valued sequences αT and βT , which satisfy αT ↑ ∞, βT ↑ ∞
as T → ∞. Then, for γt = min(αt , βt ), there exists a sequence of T -indexed phase-
shift matrices Ĵ , such that

γT

(
Ĵ�̂ − �

)
= Op(1)

holds asymptotically.

Hereby, under the assumptions of Lemma 2, there exists a sequence of T -indexed
matrices Ĵ such that Ĵ�̂ converges in probability to �.

Theorem 2. Let X, g and ĝ be defined as in Lemma 2 and denote the element (j, k)

of Ŝτ [X] as [Ŝτ ]jk . Then, under the assumptions of Lemma 2 and the trivial mixing

scenario A = Id , there exists a sequence of T -indexed phase-shift matrices Ĵ, such
that

γT

(
Ĵjj �̂jj − 1

)
= γT

2

([
Ŝ0

]
jj

− 1

)
+ Op(1/γT ), ∀j ∈ {1, . . . , d}, and

γT

(
λ(k)

τ − λ(j)
τ

)
Ĵjj �̂jk = γT

(
λ(j)

τ

[
Ŝ0

]
jk

−
[
Ŝτ

]
jk

)
+ Op(1/γT ), j �= k.

By Theorem 2, we can directly find the asymptotic distribution of the unmixing
matrix estimator �̂, if we have the asymptotic distributions and the convergence rates
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of the estimators Ŝ0 and Ŝτ . Note that, if the rates αT and βT differ, the estimator
with the faster convergence will tend to zero in probability in Theorem 2. Further-
more, note that the asymptotic distributions of the diagonal elements of γT (Ĵ�̂ − Id)

only depend on the asymptotic distribution of the covariance matrix estimator Ŝ0.
However, the rate of convergence of the off-diagonal elements depends on both Ŝ0
and Ŝτ , and consequently, if the covariance estimator Ŝ0 converges faster than the
autocovariance estimator Ŝτ , the diagonal elements of γT (Ĵ�̂ − Id) converge to zero
in distribution and in probability. Conversely, it may happen that the autocovariance
estimator Ŝτ converges faster. In that case, the off-diagonal elements of γT (Ĵ�̂ − Id)

converge to zero in distribution and in probability.
Theorem 2 can alternatively be presented in matrix form as

γT

(
diag

[
Ĵ�̂ − Id

])
= γT

(
1

2
diag

[
Ŝ0 − Id

])
+ Op(1/γT ),

γT

(
Ĵ�̂ − diag

[
Ĵ�̂

])
= γT

(
H �

[
�τ Ŝ0 − Ŝτ

])
+ Op(1/γT ),

where Hjj = 0 and Hjk = (λ
(k)
τ − λ

(j)
τ )−1, j �= k, � denotes the Hadamard (i.e.,

entrywise) product and Ĵ is the T -indexed sequence of phase-shift matrices that set
the diagonal elements of �̂ to be on the positive real-axis.

4.2 Limiting behavior under summable covariance structures

In this section, we consider a class of stochastic processes that satisfy the Breuer–
Major theorem for weakly stationary processes. The Breuer–Major theorem is con-
sidered in the context of Gaussian subordinated processes, see, e.g., [2, 8, 30]. A uni-
variate real-valued Gaussian subordinated process z•, defined on a probability space
(�,F ,P), is a weakly stationary process that can be expressed in the form z• = f ◦y•,
where y• is a R

�-variate Gaussian process and f : R� → R.
We emphasize that Gaussian subordinated processes form a very rich model class.

For example, recently in [39], the authors showed that arbitrary one-dimensional
marginal distributions and a rich class of covariance structures can be modeled by
f ◦ y• with simple univariate stationary Gaussian process y•. While the model class
is very rich, underlying driving Gaussian processes still provide a large toolbox for
analyzing limiting behavior of various estimators. Such limit theorems have been a
topic of active research for decades. For recent relevant papers on the topic, we refer
to [27–30] and the references therein.

We next give the definitions of univariate real-valued Hermite polynomials and
Hermite ranks. We define the kth, k ∈ {0} ∪ N, (probabilistic) Hermite polynomial
Hk , using Rodrigues’ formula

Hk(x) = (−1)k exp
(
x2/2

) dk

dxk
exp

(
−x2/2

)
.

The first four Hermite polynomials are hereby H0(x) = 1, H1(x) = x, H2(x) =
x2 − 1 and H3(x) = x3 − 3x. The set {Hk/

√
k! : k ∈ {0} ∪N} forms an orthonormal

basis on the Hilbert space L2(R, Py), where Py denotes the law of a univariate stan-
dard Gaussian random variable. Consequently, every function f ∈ L2(R, Py) can be
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decomposed as

f (x) =
∞∑

k=0

akHk(x), (3)

where ak ∈ R for every k ∈ {0}∪N. If x and y follow the univariate standard Gaussian
distribution, the orthogonality of the Hermite polynomials and the decomposition of
Equation (3) give

E [f (x)f (y)] =
∞∑

k=0

k!α2
k (E [(x − E[x])(y − E[y])])k =

∞∑
k=0

k!α2
k (Cov[x, y])k .

In the following, we consider real-valued functions of several variables and apply
some known results that are based on multivariate Hermite polynomials. However,
our derivations (in Section 4.3) require the use of univariate Hermite polynomials
only. Thus, we only define univariate Hermite polynomials here.

The Hermite rank for a function f is defined as follows.

Definition 5 (Hermite rank). Let y be a R
�-valued Gaussian random vector, � ∈ N,

and let f : R� → R be a function such that f ◦ y is square-integrable. The function
f has Hermite rank q, with respect to y, if

E [(f (y) − E [f (y)]) pm (y)] = 0,

for all Hermite polynomials pm : Rd → R that are of degree m ≤ q − 1 and there
exists a polynomial pq of degree q such that

E
[
(f (y) − E [f (y)]) pq (y)

] �= 0.

Note that in the one-dimensional setting, the Hermite rank q of a function f is
the smallest nonnegative integer in Equation (3), such that αq �= 0. We next present
the multivariate version of the well-known Breuer–Major theorem from [8].

Theorem 3. Let y• := (yt )t∈N be a R
�-valued centered stationary Gaussian process.

Let f1, f2, . . . , fd : R� → R be measurable functions that have the Hermite rank
at least q ∈ N, with respect to y•, and let fj ◦ y• be square-integrable for every
j ∈ {1, . . . d}. Additionally, let the series of covariances satisfy

∞∑
τ=0

∣∣∣S̈τ

[
y

(j)

1 , y
(k)
1

]∣∣∣q =
∞∑

τ=0

∣∣∣E [
y

(j)

1 y
(k)
1+τ

]∣∣∣q < +∞, ∀j, k ∈ {1, . . . , �} .

Then, the R
d -sequence

1√
T

(∑T
t=1

(
f1(yt ) − E

[
f1(yt )

]) · · · ∑T
t=1

(
fd(yt ) − E

[
fd(yt )

]))�
converges in distribution, as T → ∞, to a centered Gaussian vector ρ =(
ρ1, ρ2, . . . , ρd

)
with finite covariances E

[
ρjρk

]
equal to

S0
[
fj (y1), fk(y1)

] +
∞∑

τ=1

(
S̈τ

[
fj (y1), fk(y1)

] + S̈τ

[
fk(y1), fj (y1)

])
.
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The proof of Theorem 3 is omitted here. Theorem 3 follows directly from the
univariate Breuer–Major theorem, given in [8], and by using the usual Cramér–Wold
device, see, e.g., [7, Theorem 29.4]. A similar version of Theorem 3 can also be found
in Section 5 of [2].

We next present the following assumption which enables us to find the asymptotic
behavior of the unmixing matrix estimator using the Breuer–Major theorem.

Assumption 1. Let x• := (xt )t∈N be a process that satisfies Definition 2 with the
trivial mixing matrix A = Id and let X be a C

T ×d -valued, 1 ≤ d < T < ∞, sampled
stochastic process generated by x•. Denote z• = (bt + ict )t∈N = b• + ic•. We assume
that there exists � ∈ N and a centered R

�-valued stationary Gaussian process η•,
such that, for all k ∈ {1, . . . d}, the component b(k)

• has the same finite-dimensional
distributions and, asymptotically, the same autocovariance function as f̃k(η•), for
some function f̃k : R� → R. Similarly, we assume that, for all k ∈ {1, . . . d}, the
component c(k)

• has the same finite-dimensional distributions and, asymptotically, the
same autocovariance function as f̃k+d(η•), for some function f̃k+d : R

� → R.
Furthermore, we assume that E[|f̃k(η1)|4] < +∞, ∀k ∈ {1, . . . , 2d}, and that

r
(j,k)
η (t) = E

[
η

(j)
t+1η

(k)
1

]
satisfies r

(j,j)
η (0) = 1, ∀j ∈ {1, . . . , �}, and

∞∑
t=1

∣∣∣r(j,k)
η (t)

∣∣∣ < +∞, ∀j, k ∈ {1, . . . , �} .

Note that the finite-dimensional distributions of the R-valued stochastic process
c• is the collection of probability measures defined as,

{
P
[{

ct1∈B1, . . . , ctm∈Bm

}] | m∈N : ∀Bj ∈ B(R) and {t1, . . . , tm}⊂ N
}
.

We again want to emphasize that a wide class of stochastic processes satisfy As-
sumption 1. Indeed, we allow an arbitrary dimension � for the driving Gaussian pro-
cess η• and arbitrary (summable) covariance structures. In comparison, it was shown
in [39] that in many cases it would suffice to relate only one stationary Gaussian
process η(j)

• to each function f̃j .
We are now ready to consider the asymptotic distribution for the unmixing matrix

estimator under Assumption 1.

Theorem 4. Let Assumption 1 be satisfied and let ĝ : C → (C − 1T μ̂�
)�̂

�
be a T -

indexed sequence of finite sample solutions. Then, under the trivial mixing scenario
A = Id , there exists a T -indexed sequence Ĵ of phase-shift matrices such that

√
T · vec

(
Ĵ�̂ − Id

) D−−−→
T →∞ ν ∼ Nd2(0,�ν, Pν).

The exact forms for �ν and Pν are given in the supplementary Appendix.

Note that it is possible to present Theorem 4 with even weaker assumptions. In
the current formulation, we require that the Gaussian process y• (equivalently, η•) has
summable covariances and cross-covariances. By studying the exact Hermite ranks
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of the underlying functions, weaker summability conditions would suffice (cf. Theo-
rem 3). However, given the Hermite ranks of the functions fj , it is in general impos-
sible to say anything about the Hermite ranks of transformations such as f 2

j arising

from Ŝ0, see the proof of Theorem 4. On the other hand, assuming Hermite rank equal
to one is a very natural assumption in many occasions. For example, the modeling ap-
proach given in [39] sets the rank of fj to equal 1. Hermite rank 1 is stable in a sense
that even small perturbations in a function with higher Hermite rank leads to rank 1
again. For further discussion on the stability of Hermite rank 1, we refer to [4].

4.3 Notes on noncentral limit theorems

In this section, we provide examples where the convergence rate of the unmixing
estimator differs from the standard

√
T and where the limiting distribution is non-

Gaussian. Such situations arise, especially, when the convergence summability con-
dition of Theorem 3 does not hold.

Assumption 2. Let x• := (xt )t∈N be a process that satisfies Definition 2 with the
trivial mixing matrix A = Id and let X be a C

T ×d -valued, 1 ≤ d < T < +∞,
sampled stochastic process generated by x• and z• = b• + ic•. We assume that there
exists centered R-valued stationary Gaussian processes η(k)

• , k ∈ {1, 2 . . . , 2d}, such
that, for all k ∈ {1, . . . d}, the component b(k)

• has the same finite-dimensional distri-
butions and, asymptotically, the same autocovariance function as f̃k(η

(k)
• ), for some

function f̃k : R → R. Similarly, we assume that, for all k ∈ {1, . . . d}, the compo-
nent c(k)

• has the same finite-dimensional distributions and, asymptotically, the same
autocovariance function as f̃k+d(η(k+d)

• ), for some function f̃k+d : R → R. Further-

more, we assume that E[|f̃k(η
(k)
1 )|4] < +∞, ∀k ∈ {1, . . . , 2d}, and that the Gaussian

processes η(1)
• , η(2)

• , . . . , η(2d)
• are mutually independent.

In comparison to Assumption 1, we here assume that real and imaginary parts of
each component are driven by a single Gaussian process. As discussed in Section 4.2,
this is not a huge restriction. In addition, we assume independent components and
that the real and imaginary parts of each component are independent. Although in-
dependence is a common assumption in the blind source separation literature, we
note that our results can be extended to cover dependencies as long as, for every
j, k ∈ {1, 2, . . . , 2d}, the cross-covariances between η(k) and η(j) are negligible com-
pared to the decay of the autocovariance functions rη(j) (t).

If the autocovariance functions rη(j) satisfy

∞∑
t=1

|rη(j) (t)| < +∞, ∀j ∈ {1, . . . 2d}, (4)

then we are in the situation of Theorem 4. More generally, a weakly stationary se-
ries is called short-range dependent if the corresponding autocovariance function r

satisfies Equation (4). Hence, we assume that at least one of the functions rη(j) is not
summable. For such components, we assume the following long-range dependence
condition.



Modeling temporally uncorrelated components of complex-valued stationary processes 487

Definition 6. We say that a R-valued weakly stationary process η• is long-range de-
pendent if the autocovariance function rη satisfies

lim
k→∞ k2−2H rη(k) = C (5)

for some H ∈ [1/2, 1) and C ∈ (0,∞).

Note that the definition of long-range dependence varies in the literature. For
details on long-range dependent processes and their different definitions, we refer to
[5, 6, 33].

There is a large literature on limit theorems under long-range dependence. See,
e.g., [3, 11, 34] for a few central works on the topic. For an insightful and detailed pre-
sentation we refer to [18], and for recent advances on the topic, see, e.g., [21, 40]. In
the case of long-range dependent processes, the rate of convergence of the normalized
mean is slower than the usual

√
T and the limiting distribution depends on the corre-

sponding Hermite rank. More precisely, the limiting distribution follows a so-called
q-Hermite distribution, where q is the Hermite rank of the underlying function. Note
that q-Hermite distributions can be fully characterized by the corresponding Hermite
rank q and a self-similarity parameter H , i.e., the Hurst index. In the stable case
q = 1, we obtain a Gaussian limit, and in the case q = 2 we obtain the so-called
Rosenblatt distribution that is not Gaussian. Similarly, for q ≥ 3 the limiting distri-
bution is not Gaussian. For details on Hermite distributions and processes, we refer to
[3, 12, 36]. In particular, we apply the following known result (see [11, Theorem 1]).

Proposition 1. Let η• be a R-valued stationary Gaussian process with autocovari-
ance function rη such that rη(0) = 1 and rη satisfies Equation (5) for some H ∈
[1/2, 1). Let f be a function such that E[(f (η1))

2] < +∞ and the Hermite rank of
f equals q. If q(2H − 2) > −1, then, for some constant C = Cf,η > 0, we have

T q(1−H)−1
T∑

t=1

(f (ηt ) − E[f (ηt )]) D−−−→
T →∞ CZq,

where Zq follows a q-Hermite distribution.

In view of Proposition 1, in the long-range dependent case the Hermite rank plays
a crucial role. Thus, one cannot pose general results without any a priori knowledge
on the ranks. Indeed, it can be shown — see, e.g., [6, Equation 4.26] with d = H−1/2
— that if f has Hermite rank q and r satisfies Equation (5) with some H such that
q(2H − 2) > −1, then

lim
T →∞ T q(2−2H)

E

⎡
⎣( 1

T

T∑
t=1

(
f (ηt ) − E[f (ηt )]

))2⎤⎦ = C. (6)

This justifies the normalization in Proposition 1 and also gives the constant explic-
itly, as E[Zq ] = 0 and E[(Zq)2] = 1. We pose the following assumption on the
autocovariances rη(j) and Hermite ranks.
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Assumption 3. We assume that for every j ∈ {1, 2, . . . , 2d} the autocovariance
functions rη(j) with rη(j) (0) = 1 satisfy either Equation (4) or Equation (5), and that
Equation (5) is satisfied for at least one index. Let I ⊂ {1, 2, . . . , 2d} denote the set
of indices for which Equation (5) holds, and for every i ∈ I , denote the Hermite rank

of x → f̃i (x) by q1,i and the Hermite rank of x →
[
f̃i (x) − E(f̃i(η

(i)))
]2

by q2,i .

We assume that, for any indices j, k ∈ I , j �= k,

max
i∈I

q2,i (2Hi − 2) > max
j,k∈I

{
q1,k(2Hk − 2) + q1,j (2Hj − 2),−1

}
, (7)

and, for any k ∈ I ,

max
i∈I

q2,i (2Hi − 2) ≥ q1,k(4Hk − 4). (8)

We stress that Assumption 3 is not very restrictive. We allow a combination of
short- and long-range dependent processes η(j)

• and we assume that at least one of
the processes is long-range dependent, since otherwise we may apply Theorem 4. In
this respect, Condition (7) guarantees that at least one of the [f̃i (x) −E(f̃i(η

(i)))]2 is
long-range dependent. Indeed, if maxi∈I qi(2Hi − 2) < −1, then Theorem 4 applies
again. Moreover, one could also study the limiting case maxi∈I qi(2Hi − 2) = −1.
Then, one usually obtains a Gaussian limit, but with a rate given by

√
T/log(T ). Our

more restrictive Assumptions (7) and (8) are posed in order to apply known results
on limit theorems in the long-range dependent case. Indeed, if these conditions were
violated, then we would need to study the convergence of complicated dependent
random vectors towards some combinations of Hermite distributions. Unfortunately,
to the best of our knowledge, there are no studies in this topic that would fit into our
general setting (on some results in special cases, see, e.g., [3]).

In view of Proposition 1, the rate of convergence, T γ , of our unmixing estimator
arises from Equation (7). We set

γ := −1

2
max
i∈I

q2,i (2Hi − 2). (9)

By Equation (7), we have that γ < 1
2 , meaning that our rate is slower than the usual√

T . The following results show that cross-terms do not contribute to the limit.

Proposition 2. Let Assumptions 2 and 3 be satisfied. Then for every j �= k, we have
that

T γ−1
T∑

t=1

(
f̃k(η

(k)
t ) − E[f̃k(η

(k)
t )]

) (
f̃j (η

(j)
t ) − E[f̃j (η

(j)
t )]

) L2−−−→
T →∞ 0 (10)

and

T γ−1
T∑

t=1

(
f̃k(η

(k)
t ) − E[f̃k(η

(k)
t )]

) (
f̃j (η

(j)
t+τ ) − E[f̃j (η

(j)
t )]

) L2−−−→
T →∞ 0 (11)

where
L2−→ denotes convergence in the space L2(�,P). Consequently, the conver-

gence also holds in probability.
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In the presence of long-range dependency, the mean estimator μ̂[X] in the defini-
tion of S̃τ [X] has to be studied separately as it may contribute to the limit.

In order to obtain the limiting distribution for T γ (Ĵ�̂ − Id), we introduce some
notation. For each k ∈ {1, 2, . . . , 2d} we define Hermite processes Zq1,k

and Zq2,k
,

such that for a given k, we allow Zq1,k
and Zq2,k

to be dependent on each other,
while both are independent of Zq1,j

, Zq2,j
for j �= k. We also introduce constants

C1,k , C2,k in the following way: if k ∈ I is such that equality holds in (8), i.e.,
maxi∈I q2,i (2Hi − 2) = 2[q1,k(2Hk − 2)], then we let C1,k to be the constant given
in Proposition 1 associated to the limit

T q1,k(1−Hk)−1
T∑

t=1

(
f̃k(η

(k)
t ) − E[f̃k(η

(k)
t )]

) D−−−→
T →∞ C1,kZq1,k

.

Otherwise we set C1,k = 0. Similarly, if k ∈ I is such that

q2,k(2Hk − 2) = max
i∈I

q2,i (2Hi − 2), (12)

we let C2,k to be the constant given in Proposition 1 associated to the limit

T q2,k(1−Hk)−1
T∑

t=1

(
hk(η

(k)
t ) − E

[
hk(η

(k)
t )

]) D−−−→
T →∞ C2,kZq2,k

,

where

hk(η
(k)
t ) =

(
f̃k(η

(k)
t ) − E[f̃k(η

(k)
t )]

)2
.

Otherwise we set C2,k = 0. The following theorem is our main result of this subsec-
tion.

Theorem 5. Let Assumptions 2 and 3 hold. Then,

T γ
(

Ĵ�̂ − Id

) D−−−→
T →∞

1

2
ϒ,

where ϒ is a Rd×d -valued diagonal matrix with elements given by

(ϒ)jj ∼ C2,jZq2,j
+ C2

1,jZ
2
q1,j

+ C2,j+dZq2,j+d
+ C2

1,j+dZ2
q1,j+d

.

We remark that it might be that most of the elements vanish. Indeed, the coeffi-
cient C2,j (C2,j+d , respectively) is nonzero only if the real part (imaginary part, re-

spectively) of
[
fj (x) − E(fj (η))

]2 converges with the correct rate T γ . In this case,
C1,j (C1,j+d , respectively) is nonzero only if the corresponding element in μ̃ con-
verges with the rate T γ/2.

5 Image source separation

The restoration of images, which have been mixed together by some transformation,
is a classical example in blind source separation (BSS), see, e.g., [26]. The image
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Fig. 1. Original images

source separation is usually only considered for black and white images, where the
colors can be presented using a single color parameter. Since there is only a single
color parameter associated with a single pixel, the black and white image source
problem can be straightforwardly formulated as a real-valued BSS problem. This
does not remain true for colored photographs.

In our example, we consider colored photographs and conduct the example us-
ing the statistical software R ([32]). We start with three photographs that are of size
1536 × 2048, 1200 × 1600 and 960 × 720, the figures are imported to R using the
package JPEG, [37]. As a first step, we resize all of the photographs to be of equal size
960 × 720. The resized images are stored in a 960 × 720 × 3 array format, such that
a red-green-blue color parameter triplet, denoted as (R,G,B), is assigned to every
pixel.

We apply a bijective cube to unit sphere transformation for every color triplet.
Then, we use the well-known stereographic projection, which is an almost bijective
transformation between the unit sphere and the complex plane. The stereographic
projection is bijective everywhere except for the north pole of the unit sphere. For
almost all photographs, we can choose the color coordinate system such that no pixel
has a color triplet located on the north pole. This holds for our example and we can
apply the inverse mappings in order to get back to the color cube surface.

We then have a single complex-number corresponding to every pixel of the color
corrected images and we can present the images in a C

960×720-matrix form. We de-
note the images with complex-valued elements as Z1, Z2 and Z3 and apply the fol-
lowing transformation,

X� =
⎛
⎝vec(X1)

�
vec(X2)

�
vec(X3)

�

⎞
⎠

�

=
⎛
⎝vec(Z1)

�
vec(Z2)

�
vec(Z3)

�

⎞
⎠

�

(I3 + E + iF) ,

where I3 is the identity matrix and the elements of E and F were generated indepen-
dently from the univariate uniform distribution Unif(-1/2, 1/2). The complex-
valued mixed images X1, X2 and X3 can then be plotted by performing the chain of
inverse mappings in reverse order. The corresponding mixed images are presented in
Figure 2.

We then apply the unmixing procedure presented in Section 4 to the matrix X,
using several different lag parameters τ . In this example, X has three columns and
691200 rows, such that every element of the matrix is complex-valued. In controlled
settings, where the true mixing matrix is known, the minimum distance index (MD)
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Fig. 2. Mixed images

Fig. 3. Unmixed images using the AMUSE procedure with τ = 1

index is a straightforward way to compare the performance of different estimators,
see [20] for the complex-valued formulation. The MD index is a performance index,
defined between zero and one, where zero corresponds to the separation being per-
fect. In addition, the MD index ensures that comparison between different estimators
is fair, this is especially important in this paper since under our model assumptions,
different estimators do not necessarily estimate the same population quantities. The
minimum distance index is based on the minimum distance between the known mix-
ing matrix and the unmixing matrix estimate with respect to permutations, scaling
and phase-shifts. While applying the AMUSE procedure, if we can find a parameter
τ such that the diagonal elements of �̂τ are sufficiently distinct (from a computa-
tional perspective), we can recover the unmixing matrix up to phase-shifts. Hereby,
the choice of the mixing matrix in this example is inconsequential from the viewpoint
of minimum distance index, identical values are obtained for a fixed τ with any finite
mixing matrix. Consequently, in this example, minimum distance index will produce
the same value if the mixing matrix was replaced with, e.g., the identity matrix.

We tried several different lag parameters and the best performance, in the light of
the MD index and visual inspection, was attained with τ = 1 and the corresponding
MD index value was approximately 0.174. The unmixed images obtained using the
unmixing procedure with τ = 1 are presented in Figure 3. In addition, for example,
lag parameter choices τ = 2, 3, 961, 962, 963 provided only slightly worse results,
the corresponding MD index values were between 0.177 and 0.183. Note that the
autocovariances are calculated from the vectorized images, and for example the first
and the 961st entries are neighboring pixels in the unvectorized images.

Comparing the original color corrected images in Figure 1 and the unmixed im-
ages in Figure 3, the shapes seem to match almost perfectly. The color schemes vary
since the complex phase is not uniquely fixed in our model. In addition, recall that
under our model, solutions that are a phase-shift away from each other are consid-
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Fig. 4. Unmixed images produced by equivalent solutions

ered to be equivalent. In Figure 4, we present the first unmixed image, produced by
the unmixing procedure with τ = 1, under three equivalent solutions. The images in
Figure 4 are obtained such that we first find an unmixing estimate �̂ and then right-
multiply the obtained estimate with a diagonal matrix with diagonal entries exp(iθ).
In Figure 4, the left image is obtained with θ = π/4, the middle one is obtained with
θ = 3π/4 and the right image is obtained with θ = 5π/4.

A Appendix

Proof of Lemma 1. Both directions of the claim follow directly from the multivari-
ate version of the continuous mapping theorem. Note that the mapping f :(r1, r2, . . . ,

r2d)� → (r1, r2, . . . , rd)� + i(rd+1, rd+2, . . . , r2d)� : R2d → C
d is homeomorphic,

that is, f is continuous and bijective, and the preimage f −1 is also continuous.

Corollary 1. Let {vn}n∈N be a collection of R
2d -valued random vectors v�

j =(
x�
j y�

j

)
, where xj , yj are R

d -valued for every j ∈ N. Let

αn

n∑
j=1

(
vj − μv

) D−−−→
n→∞ v ∼ N2d (0,�v) ,

where αn ↑ ∞ as n → ∞ and

μv =
(

μx
μy

)
and �v =

(
�x �xy

��
xy �y

)
.

Then, for the sequence of Cd -valued random vectors zj = xj + iyj , we have that

αn

n∑
j=1

(
zj − μz

) D−−−→
n→∞ z ∼ Nd (0,�z, Pz) ,

where μz = μx+iμy, �z = �x+�y+i(��
xy−�xy) and Pz = �x−�y+i(��

xy+�xy).

Proof of Corollary 1. The corollary follows directly by applying Lemma 1 and by
calculating the mean, the covariance and the relation matrix of z.
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Lemma 3. Let x• := (xt )t∈N be a process that satisfies Definition 2. The functional
g : a → �(a − μ) : Cd → C

d is a solution to the corresponding unmixing problem
if and only if

μ = μx and �A = J,

where J ∈ C
d×d is a phase-shift matrix.

Proof of Lemma 3. Let y• := g ◦ x•. First, let y• be a solution, that is, y• satisfies
conditions (1)–(4) of Definition 2. Recall that � is assumed to be nonsingular. Using
condition (1), we get that

E
[
yt

] = E [� (xt − μ)] = E
[
� (Azt + μx − μ)

] = �E
[
μx − μ

] = 0,

and thus μx = μ, since � is nonsingular. Next, we can rewrite condition (2) as

S0[yt ] = E

[
yty

H
t

]
= E

[
�Azt (�Azt )

H
]

= �AAH�H = Id ,

which implies that �A is a unitary matrix. Similarly, we can rewrite condition (4) as

Sτ [yt ] = 1

2

(
E

[
yty

H
t+τ

]
+ E

[
yt+τ yH

t

])
= �A�τ AH�H = �τ ,

which is equivalent to

�τ AH�H = AH�H�τ .

Since �τ has real-valued distinct diagonal entries and since �τ and AH�H commute,
we get that �A is also a diagonal matrix. Consequently, �A is a unitary diagonal
matrix, which implies that the diagonal elements of the matrix product are of the
form exp(iθ1), . . . , exp(iθd).

For the second part of the proof, let μ = μx and �A = J, where J is some
phase-shift matrix. We next verify that y• := g ◦ x• is a solution, that is, we verify that
y• satisfies conditions (1)–(4) of Definition 2. Condition (1) is clearly satisfied, since
E[xt ] = μx. Furthermore, we have that, for every τ, t ∈ N,

S̈τ [yt ] = E

[
�Azt (�Azt+τ )

H
]

= J�̈τ JH,

where �̈0 = Id . Thus, conditions (2)–(3) are satisfied. Finally, we have for a fixed τ

and for every t ∈ N that

Sτ [yt ] = JSτ [zt ]JH = J�τ JH = �τ ,

since diagonal matrices commute. Thus, condition (4) is satisfied and the proof is
complete.

Proof of Theorem 1. In order to simplify the notation, we denote S0 := S0 [xt ] and
Sτ := Sτ [xt ]. First, let g be a solution. Then, since x• follows the mixing model,
Lemma 3 gives

S0�
H = AAH�H = AJH =⇒ A = S0�

HJ.
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Using the above expressions, we get that

Sτ�
H = A�τ AH�H = S0�

HJ�τ JH = S0�
H�τ ,

and left-multiplying by S−1
0 yields Equation (1). In addition, Lemma 3 directly gives

Equation (2). Since the process x• is weakly stationary, the previous is true for every
t ∈ N.

Next, let Equations (1) and (2) be satisfied for every t ∈ N. Left-multiplying
by S0, Equation (1) can be reformulated as

A�τ AH�H = AAH�H�τ ,

which, after left-multiplication by A−1, gives that AH�H and �τ commute. Since
the diagonal matrix �τ has real-valued distinct diagonal elements, we get that AH�H

is a diagonal matrix. Then the scaling equation gives that �AAH�H = Id , i.e., �A
is a unitary matrix. Consequently, �A = J, where J is some phase-shift matrix.
By Lemma 3, the functional g is hereby a solution to the corresponding unmixing
problem, and the proof is complete.

Corollary 2. Let x• := (xt )t∈N be a process that satisfies Definition 2 and denote
Sj := Sj [xt ]. Let S−1/2

0 be a conjugate symmetric matrix, such that S−1/2
0 S0S−1/2

0 =
Id . Then the eigendecomposition S−1/2

0 Sτ S−1/2
0 = V�τ VH is satisfied for some uni-

tary V, and the functional

g : a → VHS
− 1

2
0 (a − μx) : Cd → C

d

is a solution to the corresponding unmixing problem.

Proof of Corollary 2. Under the assumptions of Definition 2, we have that S0 is a
positive-definite matrix and that Sτ is a conjugate symmetric matrix. Thus, the matrix-
square root of S0 exists and the conjugate symmetric matrix-square root is unique,
and consequently similar arguments as in the real-valued counterpart presented in
[17] can be applied here. Hereby, S−1/2

0 Sτ S−1/2
0 can always be eigendecomposed.

The second part of the proof follows directly from Theorem 1 by verifying that
� = VHS−1/2

0 satisfies Equations (1) and (2).

Lemma 4. Let x• := (xt )t∈N be a process that satisfies Definition 2 and let X be a
C

T ×d -valued, 1 ≤ d < T < ∞, sampled stochastic process generated by x•. Denote
μ̂ := μ̂[X] and Ŝj := Ŝj [X], j ∈ {0, τ }. Let �̂0 be a conjugate symmetric matrix

that satisfies �̂0Ŝ0�̂0 = Id and let �̂0Ŝτ �̂0 = V̂�̂τ V̂
H

, where V̂ is unitary. Such
matrices �̂0, V̂ exist, and the mapping

ĝ : C → (C − 1T μ̂�
)
(

V̂
H
�̂0

)� : CT ×d → C
T ×d

is a solution to the finite sample unmixing problem.
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Proof of Lemma 4. Note that Lemma 4 can be seen as a finite sample version of
Corollary 2. By assumption, the components of z• have continuous marginals, which
implies that covariance matrix estimates are almost surely nonsingular. Thus, we can
almost surely find a unique matrix �̂0 which is the conjugate symmetric inverse

square root of Ŝ0. We proceed to verify that �̂ = V̂
H
�̂0 satisfies the conditions of

Definition 4. First,

V̂
H
�̂0Ŝ0

(
V̂

H
�̂0

)H = V̂
H

V̂ = Id,

and similarly,

V̂
H
�̂0Ŝτ

(
V̂

H
�̂0

)H = V̂
H

V̂�̂τ V̂
H

V̂ = �̂τ .

Lemma 5. Let x• := (xt )t∈N be a process that satisfies Definition 2 and let g : a →
�(a − μ) be a corresponding solution. Furthermore, let x̃• := (Cxt + b)t∈N, where
C ∈ C

d×d is nonsingular, b ∈ C
d and let g̃ : a → �̃(a − μ̃) be a solution for the

process x̃•. Then,

�̃ = J�C−1

for some phase-shift matrix J.

Proof of Lemma 5. By Lemma 3, we have that �A = J1 and �̃CA = J2, where
J1 and J2 are some phase-shift matrices. Recall that the mixing matrix A is nonsin-
gular. Hereby, we get that � = J1A−1 and �̃ = J2(CA)−1. By using the obtained
expressions for � and �̃, we get that

�̃ = J2IdA−1C−1 = J2JH
1 J1A−1C−1 = J3�C−1,

where J3 = J2JH
1 is a phase-shift matrix as the set of phase-shift matrices is stable

under matrix multiplication.

Lemma 6. Let x• := (xt )t∈N be a process that satisfies Definition 2 and let X be a
CT ×d -valued, 1 ≤ d < T < ∞, sampled stochastic process generated by x• and

let ĝ : C → (C − 1T μ̂�
)�̂

�
be a corresponding finite sample solution defined in

Lemma 4. Let B ∈ C
d×d be nonsingular, let b ∈ C

d , let X̃ = XB� + 1T b� and

let g̃ : C → (C − 1T μ̃�)�̃
�

be a corresponding finite sample solution for X̃. Then,
�̃ = J�̂B−1 is a finite sample solution for X̃, where J is some phase-shift matrix.

Proof of Lemma 6. By Lemma 4, we can write �̂ = V̂
H
�̂0, where �̂0 denotes the

conjugate symmetric inverse square root of Ŝ0. Note that the matrix-valued estimators
are affine equivariant in the sense that

Ŝj [XB� − 1T b�] = BŜj [X]BH,

j ∈ {0, τ }, for all nonsingular Cd×d -matrices B and all Cd -vectors b. We proceed
to verify that J�̂B−1 satisfies the criteria of a finite sample solution, given in Defini-
tion 4. Using the affine equivariance property, we get that

J�̂B−1Ŝ0[X̃]
(

J�̂B−1
)H = JV̂

H
�̂0Ŝ0[X]�̂0V̂JH = JJH = Id
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and

J�̂B−1Ŝτ [X̃]
(

J�̂B−1
)H = JV̂

H
�̂0Ŝτ [X]�̂0V̂JH = J�̂τ JH = �̂τ .

Hereby, J�̂B−1 is a finite sample solution for X̃ and the proof is complete.

Lemma 7. Let �̂ be a T -indexed sequence of Cd×d -valued nonsingular estimates
and let αT be a real-valued sequence that satisfies αT ↑ ∞ as T → ∞. Furthermore,
let αT (�̂ − Id) = Op(1). Then the following two statements hold.

(i) �̂
a P−−−→

T →∞ Id , where a ∈ {−1,− 1
2 , 1

}
.

(ii) αT (�̂
a − Id) = Op(1), where a ∈ {−1,− 1

2

}
.

Proof of Lemma 7. The assumption αT (�̂ − Id) = Op(1) implies that �̂ − Id =
(1/αT )Op(1) = op(1)Op(1) = op(1), that is, �̂

P−→ Id , as T → ∞. Note that the
matrix inversion and the conjugate symmetric square root of the inversion are contin-
uous transformations in the neighborhood of I d . Thus, we can apply the continuous

mapping theorem which gives us that �̂
a P−→ I d , as T → ∞, for a ∈ {−1,− 1

2 }.
Using part (i) and Slutsky’s lemma, we get that the inverse is uniformly tight,

since

αT (�̂
−1 − Id) = (�̂

−1 − Id)αT (Id − �̂) + αT (Id − �̂)

= op(1)Op(1) + Op(1) = Op(1).

For the final part, first note that

(�̂
−1 − Id) = (�̂

− 1
2 − Id)(�̂

− 1
2 + Id).

Since �̂
− 1

2 + Id converges in probability to 2Id and the matrix inversion is a con-
tinuous transformation in the neighborhood of 2Id , the continuous mapping theorem

gives us that (�̂
− 1

2 + Id)−1 P−−−→
T →∞

1
2I d . Thus by Slutsky’s lemma,

αT (�̂
− 1

2 − Id) = αT (�̂
−1 − Id)(�̂

− 1
2 + Id)−1 = Op(1).

Proof of Lemma 2. Denote Ŝj := Ŝj [X] and Sj := Sj [xt ], where j ∈ {0, τ }. By
Lemmas 5 and 6, it is sufficient to consider the trivial mixing scenario A = Id . Note
that γT (Ĵ�̂ − �) = γT (Ĵ�̂�−1 − Id)� and by Lemma 6 we have that Ĵ�̂�−1 is a
finite sample solution for X��. Hereby, the trivial mixing can be generalized to any
full-rank mixing matrix A.

Under trivial mixing, we have that αT (Ŝ0 − Id) = Op(1) and βT (Ŝτ − �τ ) =
Op(1). Furthermore, by Corollary 2 and Lemma 4, we have �̂ = V̂

H
�̂0 and � =

V H�0, where �̂0 = Ŝ
−1/2
0 and �0 = S−1/2

0 are conjugate symmetric. Note that under

trivial mixing we have S−1/2
0 = Id and V = J, where J is some phase-shift matrix.
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We next denote �̂τ = �̂0Ŝτ �̂0 and show that γT (�̂τ − �τ ) = Op(1). The
uniform tightness follows from Lemma 7, Slutsky’s lemma and the factorization

γT (�̂τ − �τ ) = γT

[
(�̂0 − Id)(Ŝτ − �τ )(�̂0 − Id) + (�̂0 − Id)(Ŝτ − �τ )

+ (�̂0 − Id)�τ (�̂0 − Id) + (�̂0 − Id)�τ + (Ŝτ − �τ )

+ (Ŝτ − �τ )(�̂0 − Id) + �τ (�̂0 − Id)
]

= op(1) + γT

[
(�̂0 − Id)�τ + (Ŝτ − �τ ) + �τ (�̂0 − Id)

]
= Op(1).

Next, recall the eigendecomposition �̂τ = V̂�̂τ V̂
H

and that the space of unitary ma-
trices is compact. Consequently, U = Op(1) for any unitary U. By right-multiplying
both sides of the eigendecomposition with V̂ and by subtracting �τ from both sides,
we get

�̂τ V̂ − �τ = V̂�̂τ − �τ ,

where both sides of the equation can be further factorized as

(�̂τ − �τ )V̂ + �τ (V̂ − Id) = (V̂ − Id)�̂τ + (�̂τ − �τ ),

and multiplying by γT and rearranging the terms yield

γT

[
�τ (V̂ − Id) − (V̂ − Id)�̂τ − (�̂τ − �τ )

]
= Op(1). (13)

By assumption, the diagonal matrix �τ has distinct real-valued diagonal elements.
Furthermore, since the matrix �̂τ is obtained by estimating an eigendecomposition,
it is also diagonal, with diagonal elements denoted as λ̂

(1)
τ , . . . , λ̂

(d)
τ . Then, consider

the element (j, k), j �= k, of Equation (13):

γT V̂jk(λ
(j)
τ − λ̂(k)

τ ) = Op(1). (14)

Since γT (�̂τ − �τ ) = Op(1), we get that λ̂
(k)
τ converges in probability to λ

(k)
τ . Fur-

thermore, since the diagonal elements of �τ are distinct, we can divide both sides of
Equation (14) by λ

(j)
τ − λ̂

(k)
τ , which gives us that γT [V̂]jk = Op(1) holds asymptoti-

cally when j �= k.
Next, let Ĵ be a T -indexed sequence of phase-shift matrices, such that the di-

agonal entries of the product V̂Ĵ
H

are in the positive real axis for every T ∈ N.
Note that any complex number can be expressed in the form r exp(iθ), where θ

is the phase and r is the modulus, i.e., the length of the complex number. In the
matrix case, we can similarly express V̂ so that V̂ = V̂r V̂θ , where V̂θ is a phase-
shift matrix that contains the phases of the diagonal elements of V̂ and consequently
V̂r is a matrix with real-valued diagonal entries. Then, given a phase-shift matrix

V̂θ = diag(exp(iθ1), . . . , exp(iθd)), we can always construct a matrix Ĵ
H =
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diag(exp(−iθ1), . . . , exp(−iθd)) such that the product V̂Ĵ
H

has real-valued diago-
nal entries.

After the diagonal entries have been rotated to the positive real axis, the rotated

diagonal elements are equal to the corresponding moduli, that is, V̂kk Ĵ
H
kk = |V̂kk|.

Then, since V̂ is unitary, each of its row vectors has length one and the absolute value
of a single element is at most one, which gives us

∣∣∣1 − V̂kk Ĵ
H
kk

∣∣∣ = 1 − V̂kk Ĵ
H
kk = 1 −

∣∣∣V̂kk

∣∣∣ = 1 −

√√√√√√1 −
d∑

h=1
h�=k

∣∣∣V̂hk

∣∣∣2.

By unitarity of V̂, the above square root is always between zero and one, and thus
squaring the square root produces a smaller or equal number. Hereby, using the
(asymptotic) uniform tightness of the off-diagonal elements, we get that asymptot-
ically

∣∣∣1 − V̂kk Ĵ
H
kk

∣∣∣ ≤ 1 − 1 +
d∑

h=1
h�=k

∣∣∣V̂hk

∣∣∣2 =
d∑

h=1
h�=k

∣∣∣V̂hk

∣∣∣2 = Op(1/γ 2
T ).

Hereby, by combining the results for the diagonal and off-diagonal elements, we get

that there exists a sequence of phase-shift matrices Ĵ such that γT (V̂Ĵ
H−Id) = Op(1)

holds asymptotically.
The claim of the lemma can then be written as

γT

[
Ĵ�̂ − Id

]
= γT

[(
(V̂Ĵ

H)H
�̂0 − Id

]

=
(

V̂Ĵ
H)H

γT (�̂0 − Id) + γT

(
V̂Ĵ

H − Id

)H

= Op(1)Op(1) + Op(1) = Op(1).

Proof of Theorem 2. Let Ŝj := Ŝj [X], τ ∈ {0, τ }, and recall the equations from
Definition 4

�̂Ŝ0�̂
H = Id and �̂Ŝτ �̂

H = �̂τ . (15)

In order to simplify the notation, we denote Ĝ := Ĵ�̂, where Ĵ is a T -indexed se-
quence of phase-shift matrices such that the diagonal elements of Ĵ�̂ are on the posi-
tive real axis. Under Lemma 2, we have that γT (Ĝ − Id) = Op(1) and note that both
parts of Equation (15) also hold for Ĝ.

The left part of Equation (15) can then be expanded as

(Ĝ − Id)Ŝ0Ĝ
H + (Ŝ0 − Id)Ĝ

H + (Ĝ
H − Id) = 0,

where the left-hand side can be further expanded as

(Ĝ − Id)(Ŝ0 − Id)(Ĝ
H − Id) + (Ĝ − Id)(Ŝ0 − Id) + (Ĝ − Id)(Ĝ

H − Id)
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+ (Ĝ − Id) + (Ŝ0 − Id)(Ĝ
H − Id) + (Ŝ0 − Id) + (Ĝ

H − Id)

= (Ĝ − Id) + (Ŝ0 − Id) + (Ĝ
H − Id) + Op(1/γ 2

T ).

By rearranging the terms, we get the form

(Ĝ
H − Id) = (Id − Ĝ) + (Id − Ŝ0) + Op(1/γ 2

T ). (16)

Similarly, the right part of Equation (15) can be expanded as

(Ĝ − Id)Ŝτ Ĝ
H + (Ŝτ − �τ )Ĝ

H + �τ (Ĝ
H − Id) + (�τ − �̂τ ) = 0,

where the left-hand side can be further expanded as

(Ĝ − Id)(Ŝτ − �τ )(Ĝ
H − Id) + (Ĝ − Id)(Ŝτ − �τ )

+ (Ĝ − Id)�τ (Ĝ
H − Id) + (Ĝ − Id)�τ + (Ŝτ − �τ )(Ĝ

H − Id)

+ (Ŝτ − �τ ) + �τ (Ĝ
H − Id) + (�τ − �̂τ )

= (Ĝ − Id)�τ + (Ŝτ − �τ ) + �τ (Ĝ
H − Id) + (�τ − �̂τ ) + Op(1/γ 2

T ).

Hereby we obtain

(Ĝ − Id)�τ + (Ŝτ − �τ ) + �τ (Ĝ
H − Id) = (�̂τ − �τ ) + Op(1/γ 2

T ),

which is, by using the expression for Ĝ
H − Id given by Equation (16), equivalent to

Ĝ�τ − �τ Ĝ = (�τ − Ŝτ ) + �τ (Ŝ0 − Id) + (�̂τ − �τ ) + Op(1/γ 2
T ). (17)

Recall that Ĝ = Ĵ�̂ and that �τ , �̂τ are both diagonal matrices with real-valued
diagonal elements. Then, by rearranging the terms and by considering the element
(j, j) of Equation (16), we get that

Ĵjj �̂jj − 1 = 1

2

(
1 −

[
Ŝ0

]
jj

)
+ Op(1/γ 2

T ).

Similarly, by considering the element (j, k), j �= k, of Equation (17), we get that

(λ(k)
τ − λ(j)

τ )Ĵjj �̂jk = λ(j)
τ

[
Ŝ0

]
jk

−
[
Ŝτ

]
jk

+ Op(1/γ 2
T ).

The theorem then follows by multiplying both sides by γT .

Proof of Theorem 4. In order to incorporate the shift τ given in Definition 2, we first
introduce some notation. For η• given in Assumption 1, we set y�

• = (
η�

• η�
•+τ

)
. We

also introduce functions gj (y•) : R
2� → R, j ∈ {1, 2, . . . , 4d}, through relations

gj (y•) = f̃j (η•), j ∈ {1, 2, . . . , 2d} and gj+2d(y•) = f̃j (η•+τ ), j ∈ {1, 2, . . . , 2d}.
That is, for j ≥ 2d + 1 the function gj corresponds to f̃j evaluated at shift η•+τ .
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The unsymmetrized autocovariance matrix estimator with lag τ is defined as

S̃τ [X] = 1

T − τ

T −τ∑
t=1

(
Xt − μ̂

) (
Xt+τ − μ̂

)H
,

where μ̂ := μ̂[X]. Let X̃ = X − 1T μ� and μ̃ = μ̂ − μ. Under Assumption 1, we

have that the kth component X̃
(k)

t has the same asymptotic autocovariance function
as gk(yt ) + igk+d(yt ) − E[gk(yt ) + igk+d(yt )]. To improve the fluency of the proof,
we denote fk(yt ) := gk(yt ) − E[gk(yt )].

We can reformulate the estimator as

S̃τ [X] = 1

T − τ

T −τ∑
t=1

[
X̃t X̃

H
t+τ − X̃t μ̃

H − μ̃X̃
H
t+τ + μ̃μ̃H

]
,

where the last three terms of the sum are equal to

1

T − τ

[
T∑

t=T −τ+1

X̃t μ̃
H +

τ∑
t=1

μ̃X̃
H
t − (T + τ)μ̃μ̃H

]
= Op(1/T ). (18)

Equation (18) holds, since the first two terms are finite sums. Furthermore, since
E[μ̃] = 0, we get that under Assumption 1 the kth component μ̃(k) is asymptoti-
cally equivalent to (1/T )

∑T
t=1[fk(yt ) − E[fk(yt )] + i(f(k+d)(yt ) − E[fk+d(yt )])].

We can then directly apply Theorem 3, which in combination with Prohorov’s theo-
rem and Corollary 1 gives that μ̃ = Op(1/

√
T ), and consequently the last term of

Equation (18) is Op(1/T ).
The symmetrized autocovariance estimator can then be expressed as

Ŝτ [X] = 1

2(T − τ)

T −τ∑
t=1

(
X̃t X̃

H
t+τ + X̃t+τ X̃

H
t

)
+ Op(1/T ),

and the existence of fourth moments and the model assumptions given in Definition 2
give us that

E

[
Ŝτ [X]

]
= 1

2

(
�̈τ + �̈

H
τ

)
+ O(1/T ),

where �̈0 = Id . Hereby, we have that

√
T
(

Ŝ0[X] − Id

)
= 1√

T

T∑
t=1

(
X̃t X̃

H
t − E

[
X̃t X̃

H
t

])
+ op(1).

Note that asymptotically it is indifferent whether we scale the autocovariance estima-
tors with 1/T or 1/(T − τ). Thus, for the fixed τ , that satisfies Definition 2, we have
that E[�τ Ŝ0[X] − Ŝτ [X]] = O(1/T ), which gives that

√
T
(
�τ Ŝ0[X] − Ŝτ [X]

)
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is equal to

1√
T

T∑
t=1

1

2

(
2�τ X̃t X̃

H
t − X̃t X̃

H
t+τ − X̃t+τ X̃

H
t

−E

[
2�τ X̃t X̃

H
t − X̃t X̃

H
t+τ − X̃t+τ X̃

H
t

])
+ op(1),

such that in the above expression the terms X̃k+τ = 0 when k + τ > T .
Let Ĵ be the T -indexed sequence that sets the diagonal elements of �̂ to the pos-

itive real axis. By Theorem 2 and Assumption 1, we have that the diagonal element
(j, j) of

√
T (Ĵ�̂ − Id) is asymptotically equivalent to Hjj + op(1) defined as

Hjj = 1

2
√

T

T∑
t=1

(
hj,j (yt ) − E

[
hj,j (yt )

] + i
(
h̃j,j (yt ) − E

[
h̃j,j (yt )

]))
,

such that for j ∈ {1, . . . d} we have hj,j (yt ) = (
fj (yt )

)2 + (
fj+d(yt )

)2 and
h̃j,j (yt ) = 0.

The off-diagonal element (j, k), j �= k, of
√

T (Ĵ�̂ − Id) is asymptotically equiv-
alent to Hjk + op(1), where Hjk is equal to

1√
T
(
λ

(k)
τ − λ

(j)
τ

) T∑
t=1

(
hj,k(yt ) − E

[
hj,k(yt )

] + i
(
h̃j,k(yt ) − E

[
h̃j,k(yt )

]))
,

where

hj,k(yt ) =λ(j)
τ

[
fj (yt )fk(yt ) + fj+d(yt )fk+d(yt )

] − 1

2

[
fj (yt )fk+2d(yt )

+fj+d(yt )fk+3d(yt ) + fj+2d(yt )fk(yt ) + fj+3d(yt )fk+d(yt )
]

and

h̃j,k(yt ) =λ(j)
τ

[
fj+d(yt )fk(yt ) − fj (yt )fk+d(yt )

] − 1

2

[
fj+d(yt )fk+2d(yt )

+fj+3d(yt )fk(yt ) − fj (yt )fk+3d(yt ) − fj+2d(yt )fk+d(yt )
]
.

Let Re[H] be the real part and Im[H] be the imaginary part of the matrix H, and
let v = vec

(
Re[H] Im[H]), such that the C

2d2
-valued vector v first contains the

columns of the real part and then the columns of the imaginary part.
Under Assumption 1, we have that fj (yt ) has finite fourth moments for every j ∈

{1, . . . 4d} and every t ∈ N. Hereby, the Cauchy–Schwarz inequality gives that every
hj,k(yt ) and h̃j,k(yt ) are square-integrable for every t ∈ N. Furthermore, covariances
and cross-covariances of the Gaussian process y• are summable. Hereby, we can apply
Theorem 3 for v, which gives that

v
D−−−→

T →∞ ρ ∼ N2d2(0,�ρ), where �ρ =
(

�ρ1
�ρ12

��
ρ12

�ρ2

)
.
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Corollary 1 then gives us

√
T · vec

(
Ĵ�̂ − Id

) D−−−→
T →∞ ν ∼ Nd2(0,�ν, Pν),

where �ν = �ρ1 + �ρ2 + i(��
ρ12

− �ρ12) and Pν = �ρ1 − �ρ2 + i(��
ρ12

+ �ρ12).

Denoting ν� = (
ν1,1 ν2,1 · · · νd,d

)
, we get that �ν has entries of the form

E
[
νj,kν

∗
l,m

] = S0
[
hj,k(y1), hl,m(y1)

] + S0

[
h̃j,k(y1), h̃l,m(y1)

]

+
∞∑

τ=1

(
Rτ

[
hj,k(y1), hl,m(y1)

] + Rτ

[
h̃j,k(y1), h̃l,m(y1)

])

+ i
(

S0

[
h̃j,k(y1), hl,m(y1)

]
− S0

[
hj,k(y1), h̃l,m(y1)

])

+ i

∞∑
τ=1

(
Rτ

[
h̃j,k(y1), hl,m(y1)

]
− Rτ

[
hj,k(y1), h̃l,m(y1)

])
,

where S0 and Rτ are

S̈τ [xt , ys] = E
[
(xt − μxt )(ys+τ − μys+τ )

∗] and

Rτ [xt , ys] = S̈τ [xt , ys] + S̈τ [ys, xt ].
The elements of the relation matrix Pν have the form

E
[
νj,kνl,m

] = S0
[
hj,k(y1), hl,m(y1)

] − S0

[
h̃j,k(y1), h̃l,m(y1)

]

+
∞∑

τ=1

(
Rτ

[
hj,k(y1), hl,m(y1)

] − Rτ

[
h̃j,k(y1), h̃l,m(y1)

])

+ i
(

S0

[
h̃j,k(y1), hl,m(y1)

]
+ S0

[
hj,k(y1), h̃l,m(y1)

])

+ i

∞∑
τ=1

(
Rτ

[
h̃j,k(y1), hl,m(y1)

]
+ Rτ

[
hj,k(y1), h̃l,m(y1)

])
.

Note that the diagonal elements of �ν are real-valued and recall that h̃j,j = 0 for
every j ∈ {1, . . . d}.
Lemma 8. Let Assumptions 2 and 3 be satisfied. Let μ̂ := μ̂[X] and μ̃ = μ̂ − μ.
Then for every element (j, k), such that j, k ∈ {1, 2, . . . , d} and j �= k, we have

[T γ μ̃μ̃H]jk
L1−−−→

T →∞ 0, where
L1−→ denotes convergence in the space L1(�,P). Con-

sequently, the convergence also holds in probability.

Proof of Lemma 8. Recall that the real part of the kth component μ̃(k) is given by

1

T

T∑
k=1

[
f̃k(η

(k)
t ) − E

(
f̃k(η

(k)
t )

)]
.
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As in the proof of Proposition 2, we may assume k ∈ I and that q1,k(2Hk −2) > −1,
in which case we have

E

[(
Re(μ̃(k))

)2
]

≤ c1

T

T∑
t=1

∣∣∣S0

[
f̃k(η

(k)
t ), f̃k(η

(k)
1 )

]∣∣∣
≤ c2

T

T∑
t=1

tq1,k(2Hk−2) ≤ c3T
q1,k(2Hk−2),

where c1, c2, c3 ∈ (0,∞). Similarly, for j ∈ I and c4 ∈ (0,∞), we obtain

E

[(
Re(μ̃(j))

)2
]

≤ c4T
q1,j (2Hj −2).

Hereby, the Cauchy–Schwartz inequality yields

E

[∣∣∣T γRe(μ̃(k))Re(μ̃(j))

∣∣∣] ≤ T γ

√
E

[(
Re(μ̃(k))

)2
]
E

[(
Re(μ̃(j))

)2
]

≤ c5T
γ T q1,k(Hk−1)+q1,j (Hj −1),

which converges to zero by Equation (19) and c5 ∈ (0,∞). Note that identical argu-
ments remain valid for the imaginary parts. Finally, the short-range dependency cases
and the boundary cases q1,k(2Hk − 2) = −1 can be treated similarly as in the proof
of Proposition 2.

Proof of Proposition 2. With γ given by Equation (9), Condition (7) translates into

γ < min
j,k∈I

{
q1,k(1 − Hk) + q1,j (1 − Hj), 1/2

}
. (19)

Using independence of the processes η(k)
• and η(j)

• together with straightforward
computations, we obtain

E

[
T γ−1

T∑
t=1

[(
f̃k(η

(k)
t ) − E

(
f̃k(η

(k)
t )

)) (
f̃j (η

(j)
t ) − E

(
f̃j (η

(j)
t )

))]]2

= T 2γ−2
T∑

t,s=1

S0

[
f̃k(η

(k)
t ), f̃k(η

(k)
s )

]
S0

[
f̃j (η

(j)
t ), f̃j (η

(j)
s )

]

≤ c1T
2γ−1

T∑
t=1

∣∣∣S0

[
f̃k(η

(k)
t ), f̃k(η

(k)
1 )

]
S0

[
f̃j (η

(j)
t ), f̃j (η

(j)

1 )
]∣∣∣ ,

where c1 ∈ (0,∞) and the inequality follows from change of variables and the
Fubini–Tonelli theorem. Note that if

∞∑
t=1

∣∣∣S0

(
f̃k(η

(k)
t ), f̃k(η

(k)
1 )

)
S0

(
f̃j (η

(j)
t ), f̃j (η

(j)

1 )
)∣∣∣ < +∞,
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the claim follows, since by Equation (19) we have that γ < 1/2. In particular, this is
the case if fk(η

(k)) or fj (η
(j)) is short-range dependent. Hence we may assume that

j, k ∈ I and that q1,k(2Hk − 2) + q1,j (2Hj − 2) ≥ −1. Let first q1,k(2Hk − 2) +
q1,j (2Hj − 2) > −1. In this case we get

T 2γ−1
T∑

t=1

∣∣∣S0

(
f̃k(η

(k)
t ), f̃k(η

(k)
1 )

)
S0

(
f̃j (η

(j)
t ), f̃j (η

(j)
1 )

)∣∣∣
≤ c2T

2γ−1
T∑

t=1

tq1,k(2Hk−2)+q1,j (2Hj −2)

≤ c2T
2γ+q1,k(2Hk−2)+q1,j (2Hj −2),

which converges to zero by Equation (19) and c2 ∈ (0,∞). Similarly, if q1,k(2Hk −
2) + q1,j (2Hj − 2) = −1, we obtain

T 2γ−1
T∑

t=1

∣∣∣S0

(
f̃k(η

(k)
t ), f̃k(η

(k)
1 )

)
S0

(
f̃j (η

(j)
t ), f̃j (η

(j)

1 )
)∣∣∣

≤ c3T
2γ−1

T∑
t=1

t−1 ≤ c4T
2γ−1 log T ,

which converges to zero, since γ < 1
2 and c3, c4 ∈ (0,∞). This verifies Equa-

tion (10). Treating Equation (11) similarly concludes the proof.

Proof of Theorem 5. Similarly as in the proof of Theorem 4, we set

y�
• =

(
η(1)

• η(2)
• . . . η(2d)

• η
(1)
•+τ η

(2)
•+τ . . . η

(2d)
•+τ

)
.

We also introduce functions gj (y•) : R4d → R, j ∈ {1, 2, . . . , 4d}, through relations

gj (y•) = f̃j (η
(j)
• ), j ∈ {1, 2, . . . , 2d}, and gj+2d(y•) = f̃j (η

(j)
•+τ ), j ∈ {1, 2, . . . , 2d}.

Moreover, we denote fk(yt ) := gk(yt ) − E[gk(yt )], which gives that E
[
fk(yt )

] = 0
for all k ∈ {1, 2, . . . , 4d}.

Following the proof of Theorem 4, we can express the symmetrized autocovari-
ance matrix estimator as

Ŝτ [X] = 1

2(T − τ)

T −τ∑
t=1

(
X̃t X̃

H
t+τ + X̃t+τ X̃

H
t

)
+ μ̃μ̃H + Op(1/T ).

We begin by showing that the off-diagonal terms vanish. Following the proof of The-
orem 4, we obtain

T γ
(
�τ Ŝ0[X] − Ŝτ [X]

)
,

which is equal to

T γ−1
T∑

t=1

1

2

(
2�τ X̃t X̃

H
t − X̃t X̃

H
t+τ − X̃t+τ X̃

H
t

)
+ T γ (�τ − Id) μ̃μ̃H + op(1),



Modeling temporally uncorrelated components of complex-valued stationary processes 505

with the convention X̃k+τ = 0, when k + τ > T . By Lemma 8, the off-diagonal
elements of T γ μ̃μ̃H vanish. Thus, the off-diagonal element (j, k), j �= k, of T γ (Ĵ�̂−
Id) is asymptotically equivalent to Hjk + op(1), where independence and the proof
of Theorem 4 give that

Hjk = T γ−1

λ
(k)
τ − λ

(j)
τ

T∑
t=1

(
hj,k(yt ) + ih̃j,k(yt )

)
,

with

hj,k(yt ) =λ(j)
τ

[
fj (yt )fk(yt ) + fj+d(yt )fk+d(yt )

] − 1

2

[
fj (yt )fk+2d(yt )

+fj+d(yt )fk+3d(yt ) + fj+2d(yt )fk(yt ) + fj+3d(yt )fk+d(yt )
]

and

h̃j,k(yt ) =λ(j)
τ

[
fj+d(yt )fk(yt ) − fj (yt )fk+d(yt )

] − 1

2

[
fj+d(yt )fk+2d(yt )

+fj+3d(yt )fk(yt ) − fj (yt )fk+3d(yt ) − fj+2d(yt )fk+d(yt )
]
.

Thus, by Proposition 2, Hjk converges to zero in probability. Hence it remains to
prove the convergence of the diagonal elements. We can write

T γ
(

Ŝ0[X] − Id

)
= T γ−1

T∑
t=1

(
X̃t X̃

H
t − E

[
X̃t X̃

H
t

])
+ T γ μ̃μ̃H + op(1).

Thus, the diagonal element (j, j) of T γ (Ĵ�̂ − Id) is asymptotically equivalent to
1
2 Hjj + 1

2T γ
(
μ̃μ̃H

)
jj

+ op(1), where

Hjj = T γ−1
T∑

t=1

(
hj,j (yt ) − E

[
hj,j (yt )

])

with hj,j (yt ) = (
fj (yt )

)2 + (
fj+d(yt )

)2, and

[
μ̃μ̃H

]
jj

=
(
Re[μ̃(j)]

)2 +
(
Im[μ̃(j)]

)2
.

Recall that E[fj (yt )] = 0,

Re

(
μ̃(j)

)
= 1

T

T∑
t=1

fj (yt ) and Im

(
μ̃(j)

)
= 1

T

T∑
t=1

fj+d(yt ).

Hence, due to independence, it suffices to prove that, for every j ∈ {1, . . . , d},

T γ−1
T∑

t=1

(
hj,j (yt ) − E

[
hj,j (yt )

]) + T γ−2

⎛
⎝[ T∑

t=1

fj (yt )

]2

+
[

T∑
t=1

fj+d(yt )

]2⎞⎠
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D−−−→
T →∞ C2,jZq2,j

+ C2
1,jZ

2
q1,j

+ C2,j+dZq2,j+d
+ C2

1,j+dZ2
q1,j+d

.

The convergence follows from independence and the continuous mapping theorem,
if, ∀j ∈ {1, . . . , 2d}, the following two-dimensional vector converges:(

T γ−1 ∑T
t=1

(
(fj (yt ))

2 − E
[
(fj (yt ))

2
])

T
γ
2 −1 ∑T

t=1 fj (yt )

)
D−−−→

T →∞

(
C2,jZq2,j

C1,jZq1,j

)
. (20)

Using Equation (6) for the asymptotic variance, we observe first that

T γ−1
T∑

t=1

(
(fj (yt ))

2 − E

[
(fj (yt ))

2
])

converges to a nontrivial limit only if maxi∈I q2,i (2Hi − 2) = q2,j (2Hj − 2). Simi-
larly,

T
γ
2 −1

T∑
t=1

fj (yt )

converges to a nontrivial limit only if maxi∈I q2,i (2Hi −2) = q1,j (4Hj −4). Finally,
if both of these conditions are satisfied, the convergence in Equation (20) follows
from [3, Theorem 4].
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