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Circadian rhythms and environmental disturbances –

underexplored interactions
Jenni M. Prokkola1,2 and Mikko Nikinmaa1,*

ABSTRACT
Biological rhythms control the life of virtually all organisms, impacting
numerous aspects ranging from subcellular processes to behaviour.
Many studies have shown that changes in abiotic environmental
conditions can disturb or entrain circadian (∼24 h) rhythms. These
expected changes are so large that they could impose risks to the
long-term viability of populations. Climate change is a major global
stressor affecting the fitness of animals, partially because it
challenges the adaptive associations between endogenous clocks
and temperature – consequently, one can posit that a large-scale
natural experiment on the plasticity of rhythm–temperature
interactions is underway. Further risks are posed by chemical
pollution and the depletion of oxygen levels in aquatic
environments. Here, we focused our attention on fish, which are at
heightened risk of being affected by human influence and are
adapted to diverse environments showing predictable changes in
light conditions, oxygen saturation and temperature. The examined
literature to date suggests an abundance of mechanisms that can
lead to interactions between responses to hypoxia, pollutants or
pathogens and regulation of endogenous rhythms, but also reveals
gaps in our understanding of the plasticity of endogenous rhythms in
fish and in how these interactions may be disturbed by human
influence and affect natural populations. Here, we summarize
research on the molecular mechanisms behind environment–clock
interactions as they relate to oxygen variability, temperature and
responses to pollutants, and propose ways to address these
interactions more conclusively in future studies.

KEY WORDS: Photoperiod, Climate change, Xenobiotic, PAS
protein, Stress, Clock gene

Introduction: why experimental work on environmental
effects in fish needs to consider rhythmicity
The light–dark cycle governs many functions of organisms. For
example, because animals may be preyed upon during the daytime,
some have evolved nocturnal behaviour with associated
physiological traits (DeCoursey, 2014; Metcalfe et al., 1999).
During the evolutionary history of species at high latitudes, light
rhythms have also served as predictable signals of seasonal patterns
in environmental temperature – for example, shortening day length
in autumn signals that temperatures are about to drop, and the
reverse occurs in the spring (Hut and Beersma, 2011). However,
climate change affects the photoperiod–temperature relationship
and has potential negative consequences for the fitness of organisms
(Stevenson et al., 2015). In addition, oxygen deficiency and many

chemicals can disturb rhythms that have been adaptive for
organisms. This is of significant concern as human actions cause
increased chemical and nutrient loads. It is thus evident that timing
mechanisms in organisms need to evolve or be plastic in order to
continue serving their purpose of improving fitness (Bradshaw and
Holzapfel, 2010). However, although human-induced disturbances
in the environment may have long-term effects on populations of
wild animals through changes in rhythmic regulation, few studies
have investigated this. Our aim with this Commentary is to
summarize recent literature on the mechanisms of cross-talk
between circadian rhythms (see Glossary) and responses to
variability in oxygen level and temperature, and to xenobiotics,
and to point out several of the knowledge gaps still remaining.

Day–night rhythms in the environment
The 24 h rhythm of sunlight and darkness has been a predictable
feature throughout the evolutionary history of life on Earth, and
virtually all life forms have adapted to this rhythm (Beale et al.,
2016). However, the length of the light period varies markedly at high
latitudes, with long day length in the summer and short days in the
winter. In polar areas, there is constant darkness inwinter and constant
light in summer. Changes in photoperiod predict environmental
conditions, with decreasing temperatures corresponding to the
shortening of day length, and increasing temperatures and day
length also coinciding. Thus, responding to changes in environmental
light is an important feature of the generation of rhythms in fish. There
are two main mechanisms responsible for light sensing in fish – one
visual and the other non-visual (see Box 1).

In shallow aquatic environments, a major 24 h rhythm exists not
only for light and temperature but also for oxygen availability.
Oxygen-producing photosynthesis during the day increases, and
respiration by all organisms decreases (especially at night), the
oxygen tension (Dejours, 1975). Therefore, the amplitude of the
rhythm increases with eutrophication (see Glossary). Light and
other predictable daily rhythms entrain circadian clocks, which in
turn regulate numerous molecular pathways. In the next section, we
outline the cellular mechanisms of regulation by circadian clocks.

An outline of circadian clocks in fish
An endogenous circadian clock exists in organisms ranging from
prokaryotes to humans, and among vertebrates the mechanism has
been described most comprehensively in mammals (Mohawk et al.,
2012; Rutter et al., 2002). This clock serves to synchronize
functions, such as behaviour and metabolism, with environmental
conditions, thus increasing fitness (Yerushalmi and Green, 2009).
The principles for the generation of circadian rhythm in vertebrates,
based largely on the mammalian literature, are given in Fig. 1 (for
further reviews, see Beale et al. 2016; Buhr and Takahashi, 2013;
Lowrey and Takahashi, 2004; Riede et al., 2017; Takahashi, 2017).

The basic circadian rhythm is initially generated by rhythmic
positive and negative transcriptional feedback loops. The positive
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loop that activates gene expression has as its gene products the
transcription factors ‘circadian locomotor cycles kaput’ (CLOCK)
and ‘aryl hydrocarbon receptor nuclear translocator-like protein 1’
(ARNTL, aka BMAL/MOP3; homologue of CYCLE in the fruit fly
Drosophila; McIntosh et al., 2010) (Fig. 1). These transcription
factors bind to E-box elements in the promoter regions of thousands
of genes in a ∼24 h rhythm (Koike et al., 2012; Yoshitane et al.,
2014). Although multiple genes are expressed with circadian
rhythm, the DNA binding of CLOCK and ARNTL to the E-box
elements of the negative loop genes encoding the proteins period
(PER) and cryptochrome (CRY) and inducing their transcription is
decisive for the generation of the circadian rhythm. CLOCK also has
chromatin-modifying properties that are enhanced by ARNTL (Doi
et al., 2006). PER and CRY decrease the activity of CLOCK and
ARNTL, thereby repressing their own expression (Mohawk et al.,
2012), which constitutes the negative feedback loop. The mechanism
by which PER and CRY inhibit the activity of the CLOCK–ARNTL
dimer involves many proteins from the Mi-2–nucleosome

remodelling and deacetylase transcriptional co-repressor complex;
a detailed model of proteins involved in the feedback loops in
mammals has been presented by Takahashi (2017).

Although the basic generation of circadian rhythms involves the
rhythmic transcription of genes in the positive- and negative-
feedback loops, fine-tuning of the rhythms occurs by many post-
transcriptional and epigenetic mechanisms (Alvarez-Saavedra et al.,
2011; Beckwith and Yanovsky, 2014; Feng and Lazar, 2012; Lee
et al., 2001; Ripperger andMerrow, 2011), including the function of
both microRNAs (see Glossary) and long non-coding RNAs (Coon
et al., 2012; Liu and Wang, 2012; Pegoraro and Tauber, 2008;
Shende et al., 2014; Wu et al., 2018). Because one function of
circadian rhythms is to integrate metabolism with environmental
conditions, the rhythms are closely associated with metabolism
(Bailey et al., 2014; Feng and Lazar, 2012; Rey and Reddy, 2013;
Rutter et al., 2002) and nutrition (Johnston, 2014). In particular,
cytosolic redox cycles (see Glossary) (Bailey et al., 2014; Rutter
et al., 2001), which are affected by metabolism, are important
components of circadian clocks. Note that circadian rhythms can
persist even without rhythmic transcription in mammalian red blood
cells and primitive eukaryotic cells (O’Neill and Reddy, 2011;
O’Neill et al., 2011) – and, in these cases, the generation of rhythm
depends on a redox cycle. However, the importance of similarly
generated rhythms in multicellular systems with nuclei remains
poorly understood.

The dependence of clock function on metabolism is one of the
factors that causes interactions between environmental changes and
circadian rhythms. Another significant factor is that the major
regulatory transcription factors behind the circadian clock, CLOCK
and ARNTL, belong to the PER-ARNT-SIM (PAS, see Glossary)
group of transcription factors, which regulate many transcriptional
responses to changes in the environment (Gu et al., 2000). Cross-
dimerization can occur between clock proteins and other
transcription factors with PAS domains (Hogenesch et al., 1998).
For instance, a PAS-domain transcription factor, hypoxia-inducible
factor 1 (HIF-1), can bind to the E-box elements in the promoter
region of per1 (where CLOCK normally binds) in zebrafish, thus
modifying per transcription (Egg et al., 2013); although this has so
far only been studied in one fish species, it could be a general
phenomenon. Another PAS-domain transcription factor, aryl
hydrocarbon receptor, is a major component of detoxification
pathways in fish (Hahn, 2002) and has been shown to interact with
circadian clock proteins in mammalian tissues (e.g. Claudel et al.,

Glossary
Circadian
Approximately 24 h (‘about a day’ in Latin).
Entrainment
Adjustment of circadian rhythms to rhythmic endogenous (internal, such
as metabolic status) or exogenous (external, such as ambient
temperature) signals.
Environmental response
The physiological or molecular responsemounted by an organism facing
changes in temperature, oxygen availability, light or other abiotic
conditions in its surrounding environment.
Eutrophication
An increase in primary production caused by nutrient input and/or
increased temperature in aquatic environments, leading to both an
increase in the amplitude of variation in the dissolved oxygen level
because of increased photosynthesis during the light period and
increased respiration at night, and an overall reduction in the level of
dissolved oxygen due to the decomposition of organic matter.
Hypoxia
Decreased availability of oxygen in air/water. Especially in water-breathing
animals, the oxygen saturation considered hypoxic is very species specific.
In an active salmonid, an oxygen level below 50% of air saturation can be
considered hypoxia, whereas in a tolerant cyprinid, hypoxia responses
start to appear only when air saturation drops below 10%.
microRNA
A short (∼20–30 nucleotide) non-coding RNA molecule that usually
regulates mRNA abundance but can also affect the efficiency of
translation of mRNA into protein in cells.
PAS protein
A protein having in its sequence one or several so-called PER-ARNT-SIM
(PAS) repeats (i.e. PAS domains), which are approximately 70 amino
acids long.
Redox cycle
Oscillation in the cellular reduction–oxidation environment, caused by
the accumulation of reactive oxygen and nitrogen species (ROS and
RNS) and by their removal by antioxidants.
Temperature compensation
Asignificant reduction in the variability of period length of circadian rhythms
over a range of temperatures. Without temperature compensation,
increasing temperature would shorten period length and the opposite
would occur with decreasing temperature.
Xenobiotic
A chemical compound introduced into the environment by humans, or a
compound found within an organism but originating from outside it.
Zeitgeber
A signal that can set (entrain) the phase of circadian clocks in organisms.

Box 1. How is light information perceived by fish?
Light is the best-known environmental regulator of circadian rhythms. In
contrast to mammals, in which light perception through the eyes is
necessary for circadian clock entrainment, circadian clocks of isolated
peripheral tissues from fish can be directly entrained by light (Whitmore
et al., 2000). This property, also observed in isolated cell lines, is a
valuable feature for understanding the mechanisms behind light sensing
(Foulkes et al., 2016). Two main mechanisms are responsible for light
sensing in fish: visual photoreception through the retinohypothalamic
tract from the retina to the brain and non-visual photoreception in deep
brain and peripheral tissues (Fernandes et al., 2013). The extra-retinal
photoreceptors can receive information on light angle, irradiance or
polarization. They usually belong to a class of G-protein-coupled
receptors called opsins, and have thus far been described in lizards,
amphibians and birds in addition to fish (Peirson et al., 2009). Non-visual
photoreception could be important for interpreting time-of-day, and it is
probably an evolutionarily ancient mechanism (Peirson et al., 2009).
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2007; Tischkau et al., 2011) and with HIF-1 in mammalian and fish
cells (e.g. Fleming et al., 2009; Nie et al., 2001).
Although the basic principles of circadian clock function are

likely to be the same in mammals and fish, as the main players are
largely conserved in eukaryotes (Dunlap, 1998), the clocks in fish
might be more versatile than those in mammals. This is because:
(1) fish have minimally had one genome-wide gene duplication
more than mammals; fish seem to have more clock genes than
mammals and thus subfunctionalization of gene duplicates
(paralogues) could have occurred (Toloza-Villalobos et al., 2015;
Wang, 2008a,b, 2009; Vatine et al., 2011); (2) as fish are ectotherms
and adapted to a huge variety of temperature rhythms, their clocks
must acclimatize to varying temperatures (Lahiri et al., 2005); and
(3) in addition to the retinal photoreceptors, which generally
mediate light information in vertebrates, in fish the pineal gland and
peripheral tissues are also sensitive to light (Box 1) (Foulkes et al.,
2016; Vatine et al., 2011).

Endocrine control of circadian rhythms influences
experimental results
Many functions have circadian rhythms – 10–20% of the expressed
genome can have circadian regulation (Reddy et al., 2006).
Consequently, many physiological parameters of animals vary
depending on the sampling time. The endocrine system is
responsible for mediating much of this variation (Challet, 2015),
which is also reflected in responses to environmental disturbances
(Zhao and Fent, 2016). As the rhythmicity of endocrine function in
fish has recently been reviewed (Cowan et al., 2017), we will not
cover the topic in detail here. Thus, although cortisol, thyroid
hormones, reproductive hormones and hormones of the
gastrointestinal tract show rhythmicity (Cowan et al., 2017), they
are not discussed further. Endocrine rhythms can vary markedly
between individuals, as demonstrated by the time-dependent
variation of blood growth hormone level in specimens of the

grass carp Ctenopharyngodon idellus (Zhang et al., 1994). Grass
carps were catheterized via the dorsal aorta, enabling serial blood
sampling, and individual peak excretion time of the hormone
assessed. By this means, it was shown that individual variability,
often taken to be only undesirable ‘noise’, can be a significant
contributor to the ability of fish to tolerate environmental changes.
However, even when serial blood samples were obtained, no
rhythmicity was observed in the growth hormone concentration in
rainbow trout (Gomez et al., 1996). This finding suggests that there
are species-specific differences in the pattern of growth hormone
excretion in fish. Notably, these growth hormone studies did not
focus on studying whether season could affect rhythmicity. This is
significant as seasonal (reproductive phase-, light- and temperature-
dependent) effects have been observed in the secretion of, or
responses to, many hormones (Cowan et al., 2017).

Melatonin is known as the ‘time-keeper hormone’ in vertebrates
as it regulates rhythms such as the sleep–wake cycle. It is
synthesized from serotonin by the enzyme arylalkylamine N-
acetyltransferase (AANAT) in the pineal gland (Falcón et al., 2010,
2011). In fish, AANAT2 in particular is responsible for the
oscillating pattern of melatonin synthesis that peaks in the dark
(Falcón et al., 2011). Indeed, light-rhythm-dependent changes in
melatonin level have been found in the plasma, gut or pineal gland
of many teleost species in vivo and in vitro (Choi et al., 2016; Huang
et al., 2010; Kezuka et al., 1988; Pal et al., 2016; Strand et al., 2008).
The circadian clock establishes rhythms of melatonin production,
but melatonin rhythms are highly species dependent – species with
different life histories and activity rhythms can differ in the
regulation of melatonin synthesis and in its effects on behaviour
(Iigo et al., 2007; López-Olmeda et al., 2006). Melatonin can
participate in integrating circadian clocks and metabolism (Barnea
et al., 2012) as it can function as an antioxidant and as redox balance
affects circadian clock function and its coupling to metabolism
(Bailey et al., 2014). In fish, nutritional variations, circadian
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Fig. 1. The regulatory feedback loops of circadian rhythms. In fish, multiple paralogues of each circadian clock protein may exist owing to whole-genome
duplications. Constitutively expressed CLOCK dimerizes with ARNTL (aka BMAL) in the nucleus and binds to E-box elements in the promoter regions of
per, cry and other clock-controlled genes. PER and CRY proteins dimerize in the cytoplasm, and the dimer translocates to the nucleus. The accumulation of
PER–CRY dimers is partly controlled by ubiquitination and degradation of the proteins. In the nucleus, PER and CRY inhibit the activity of the CLOCK–ARNTL
dimer, eventually allowing the transcriptional cycle to restart. ARNTL expression is also affected by another transcriptional loop, including genes encoding
the proteins RAR-related orphan receptor A (RORA) and nuclear receptor subfamily 1 group D member 1 (NR1D1) (not shown). Modified from McIntosh
et al. (2010).
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rhythms and changes in melatonin levels have been implicated in
variations in the levels of oxygen free radicals (Choi et al., 2016; Pal
et al., 2016). The finding that melatonin (and many hormones of the
gastrointestinal tract) affects redox balance indicates that there can
be pronounced interaction between endocrine functions, their
rhythmicity and pollutants that cause oxidative stress.

Climate change and biological rhythms
Circadian rhythms
Studies on circadian/daily rhythms and temperature change in fish
have predominantly looked either at variations of activity when both
day length and temperature change (Reebs, 2002) or at the molecular
effects of temperature cycles on circadian rhythm (Lahiri et al., 2005).
However, the effects of a change of temperature on rhythmicity at
fixed photoperiods have been little studied. Furthermore, studies on
the temperature–clock relationship in fish have concentrated on the
(sub)tropical zebrafish, which has experienced relatively constant day
length during evolution. Consequently, little is known regarding
whether temperature affects circadian responses differently in species,
other than zebrafish, that have evolved in environments with large
seasonal variations of day length.
A decrease in temperature can decrease or abolish rhythmicity of

organisms (Murayama et al., 2017; Rensing and Ruoff, 2002;
Vallone et al., 2007). Accordingly, it has recently been shown that
the daily variation of transcription in a polar salmonid, the Arctic
char (Salvelinus alpinus), is much reduced after a 1 month
acclimation to 8°C in comparison with acclimation to 15°C
(Fig. 2) (Prokkola et al., 2018).
The finding that rhythmicity decreases with decreasing

temperature when the day length decreases agrees with changes
observed in the activity of Arctic char in polar areas (Hawley et al.,
2017) – the activity rhythm disappeared at cold temperatures during
the polar night. However, it also disappeared in the polar day,
despite the increasing water temperature, indicating that the light–
temperature relationship is complex. Based on these results, changes
in the light–temperature relationship might have pronounced, but
poorly predictable, effects on the rhythmicity of transcription and
functions that are dependent on the integration of light cues and
rhythmic gene expression.
The relationship between circadian rhythms and temperature is

made even more complex by the fact that rhythms are often
‘temperature compensated’ (Pittendrigh and Caldarola, 1973).
Because of the general temperature compensation (see Glossary),
for example, the fish heart functions appropriately both in winter-
and summer-acclimated fish (Badr et al., 2016). It is currently not
known how changes in the day length–temperature relationship are
reflected in temperature compensation.
Finally, the effects of temperature on rhythmicity have often been

addressed at the level of behaviour, or other integrative functions
that involve many proteins. However, changes in transcription and
in protein production, and the rhythms of these processes, often
show poor correlation (Rey and Reddy, 2013). Further, even the
effects of constant temperature on the relationship between
transcription and translation are not clear (Lewis et al., 2016).
Therefore, relating temperature effects on single genes to integrative
rhythmic phenomena is difficult, but should be pursued further.
There is also marked individual variability in the rhythmic
responses, as fish from the same batch can be nocturnal, diurnal
or aphasic (Reebs, 2002). The reasons for this variability are poorly
known (i.e. whether they are caused by genetic variations in a
population or by phenotypic plasticity of a genotype), as are the
effects of temperature on it.

Circannual rhythms
Climate change affects the relationship between day length and
temperature by causing temperatures to increase at a given latitude
and by increasing the frequency of extreme weather events (IPCC,
2013). Based solely on the effects of temperature on the physiology
of ectotherms, an increase of temperature should increase the fitness
of animals (Bradshaw and Holzapfel, 2010), if there are no resource
limitations. At a given latitude, photoperiod remains unchanged
even when the temperature is affected. Consequently, assuming that
temperature responses can be regulated by seasonal rhythms,
endogenous clocks must be able to adjust to the changes in the
light–temperature relationship, or otherwise the responses take place
in inappropriate light/temperature conditions and can cause fitness
costs through, for example, breeding at an unsuitable time of season
with respect to food abundance (Bradshaw and Holzapfel, 2010).
This also applies to fish; although they live in water, where light
penetration is poor, most species live in the photic zone. A good
example of a seasonal light–temperature relationship is the
regulation of growth hormone and antifreeze protein production in
the flounder (e.g. Fletcher et al., 2001). Antifreeze proteins allow
many ectothermic animals to survive at sub-zero temperatures. In
flounder, the transcription of the gene encoding anti-freeze protein
is mainly regulated by day length. However, as the produced mRNA
is only translated to the protein at low temperatures, alterations in the
day length–temperature relationship will affect the production of
antifreeze protein.

From the research conducted on temperature responses and
circadian rhythms in fishes to date, the conclusion is that well-
understood features are far outnumbered by more poorly understood
relationships. In particular, the knowledge gaps relating to the
mechanisms and the generality of temperature compensation in
species adapted to seasonally variable environments should be
addressed urgently.

Variability in oxygen level requires adaptations in biological
clock function
The amplitude of circadian cycles is generally reduced by hypoxia
(see Glossary) (Mortola, 2007). Hypoxia can also reverse circadian
rhythms in the spontaneous activity of fish (Svendsen et al.,
2014). While many interactions between hypoxia and circadian
rhythms remain to be clarified, one mechanism is quite clear.
Both hypoxia and circadian responses depend critically on
transcriptional regulation by the respective PAS-domain
transcription factors (McIntosh et al., 2010). The transcriptional
regulators interact; recent studies on mouse have shown that
manipulations of HIF1α affect circadian transcriptional rhythms,
and manipulations of ARNTL affect anaerobic glycolysis
(Peek et al., 2017). Likewise, oxygen rhythms reset clocks in
cultured mouse cells in a HIF1α-dependent manner (Adamovich
et al., 2017). In zebrafish, the hypoxia response is decreased if the
rhythms of fish are disturbed in comparison with fish with intact
rhythms (Egg et al., 2014). Because of the competitive binding of
HIF1α to the same sequence in the promoter region of Per genes to
that bound by CLOCK, the circadian rhythm of Per transcription
is dampened in hypoxic conditions (Egg et al., 2013; Pelster and
Egg, 2015). Probable HIF–CLOCK–PER interactions have been
demonstrated in mouse (Chilov et al., 2001), and several forms of
cancer appear to involve aberrant interactions between hypoxia
and rhythmic gene expression (Mazzoccoli et al., 2014; Yu et al.,
2015). Consequently, it is evident that there is a close relationship
between hypoxia responses and the circadian clock, regardless of
the species.
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Toxic chemicals and their effects upon circadian rhythms
The interactions between chemical toxicity and circadian rhythm are
generally caused either by the enzymes of detoxification pathways
showing rhythmic activity or xenobiotics (see Glossary) disturbing
the generation of rhythms (Claudel et al., 2007; Lim et al., 2006). A
schematic diagram of the disturbances is given in Fig. 3.
The most obvious example of xenobiotics disturbing circadian

rhythms involves the most-studied biotransformation pathway in
fish – the aryl hydrocarbon receptor-dependent detoxification pathway
(Schlenk et al., 2008), in which the transcription factor AhR is the
major initiator. AhR belongs to the same family of PAS proteins as
CLOCK and ARNTL (BMAL) (Fig. 4) (McIntosh et al., 2010) and

influences the production of an enzyme, cytochrome P450 1A
(CYP1A), which oxidizes xenobiotics in biotransformation.

CYP1A activity shows daily variation in the liver of the three-
spine stickleback under control conditions (Fig. 5), either as a result
of direct interaction between AhR and circadian clock pathways or
owing to other metabolic interactions (Prokkola et al., 2015).

Daily variation and changes in detoxification efficiency could
also be driven by reactive oxygen species (ROS), which can change
the redox balance of cells and be influenced by chemicals (Bailey
et al., 2014). Based on studies in mammals, it can be hypothesized
that nutritional status and toxicants obtained in food can be linked to
disturbances in the circadian clock function through redox cycles
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(Claudel et al., 2007; Rutter et al., 2002). Moreover, there is
evidence that peripheral clocks (i.e. circadian clocks in tissues
outside the central pacemaker), for which nutritional/metabolic

status is a very important zeitgeber (see Glossary), affect xenobiotic
metabolism (DeBruyne et al., 2014). While most of the studies on
daily rhythms in chemical effects and toxicity are drug studies in
humans and other mammals (Kitoh et al., 2005; Ohmori and
Fujimura, 2005), it is probable that circadian variations in the
toxicities of pollutants in aquatic ecosystems also occur.

Several authors have demonstrated daily variation in the effects of
xenobiotics on fish. Endocrine-disrupting chemicals perturb the
oscillation patterns of the transcription of putatively rhythm-
generating genes in mangrove killifish (Rhee et al., 2014).
Environmental progestins (synthetic progestogen drugs) alter the
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transcription of rhythm-generating genes in zebrafish (Zhao et al.,
2015) and wastewater treatment plant effluent can reduce circadian
oscillation in the activity of male mosquitofish (Melvin et al., 2016).
In addition, the anti-inflammatory drug diclofenac disturbs the
temporal patterns of transcription of rhythm-generating genes and, for
example, lactate dehydrogenase activity, in three-spined stickleback
(Lubiana et al., 2016; Prokkola et al., 2015). Hence, ecotoxicological
research can provide valuable insight on the importance of circadian
rhythms across tissues in fish. Importantly, the same applies to
studying diseases and the function of immune systems.

Immunoresponses can be regulated by the circadian clock
Both humoral and cellular immune systems show circadian rhythms
(Scheiermann et al., 2013). While these rhythms have been
especially well studied in humans, they are also found in fish
(Esteban et al., 2006; Lazado et al., 2016; Preussner and Heyd,
2016). There appears to be a close interaction between circadian
rhythms in hormonal function and immunological effects
(Scheiermann et al., 2013). A good example is that circadian
rhythms of immune function in fish have been explained by changes
in circulating melatonin concentration – that is, with pineal gland
function (Esteban et al., 2006). Moreover, endocrine-disrupting
agents could be behind immunological disturbances, as shown for
environmental corticosteroid analogues in zebrafish (Zhao et al.,
2016).
Because of the interactions between rhythms and immune

function in fish and other organisms, the intensity of infections
and disease symptoms varies partly as a result of endogenous
rhythms in addition to other sources of variation originating from
the host, the pathogen and the environment (including the effects of
xenobiotics). The highest investment in immune defence should
occur during the time when exposure to pathogens is the greatest.
This is expected to coincidewith the season of highest activity or the
time of highest food intake and social contact, which depends
mainly on social, feeding and breeding behaviour. Therefore,
knowledge on the ecology and habitat of studied species helps
towards predicting how different environmental changes and
contaminants could affect the immunological balance, and
thereby the fitness, of an organism.

Concluding remarks: addressing temporal variation should
be a must in future studies of environmental responses
Circadian rhythms and their disturbances are an integral part of
environmental responses (see Glossary). Despite this, the majority
of environmental studies have not taken the rhythmic circadian and
seasonal variation into account. Often, only a single time point has
been studied in each experiment, although it is clear that a single
time point cannot describe any circadian rhythm of the response.
This practice can lead to a situation where variation that can be
dramatic and important for the investigated physiological or
behavioural response is ignored. Although multiple sampling time
points across several daily cycles are therefore recommended, even
three time points can indicate whether important variation is ignored
if the study setup is limited to a single time point, as shown in Healy
and Schulte (2012), Lewis et al. (2016), Lubiana et al. (2016) and
Prokkola et al. (2015, 2018).
As a minimum, it is imperative that a control group is always

sampled at the same time point as experimental groups. (A control
group is naturally always used in experimental studies, but the
importance of its time of sampling has not been emphasized.)
Furthermore, comparing results of studies with different light–dark
rhythms and temperatures should be done while acknowledging that

both can affect the rhythmicity of responses. Notably, seasonal
comparisons can also be confounded by daily variation if a single
time point is investigated between seasons without accounting for
daily variation.

To control for the effects of feeding in measured variables,
randomized feeding regimes are useful, as feeding affects, for
example, the rhythmic expression of microRNAs, which can
regulate many circadian patterns (Wu et al., 2018). However, the
entrainment effect (see Glossary) of rhythmic feeding may be
limited to clocks in peripheral tissues, as shown in mammals
(reviewed in Schibler and Sassone-Corsi, 2002; Potter et al., 2016).
Furthermore, as nutritional status affects peripheral rhythms, the
standard use of, for example, fish starved for 24 h might give results
different from those that would be observed with fed fish.

For species adapted to shallow aquatic environments, fluctuating
temperatures and oxygen levels are more a rule than an exception in
the natural habitat. Additionally, manipulation of entrainment cues
(e.g. photoperiod or temperature rhythm) can reveal the negative
effects/costs of not being able to entrain responses to the
environment. Thus, changing the zeitgebers to disturb
endogenous clocks will affect the processes that are coupled to
circadian rhythms. For example, photoperiods are often
manipulated in aquaculture to maintain individuals at the desired
life stage and growth rate (Davie et al., 2007; Kråkenes et al., 1991),
which demonstrates that, by manipulating this single zeitgeber, the
physiological state of the whole organism can be drastically altered.

Thus, over the decades to come, we will begin to see how the
increasing unpredictability in seasonal weather patterns affects
wildlife. Considering the close relationships of rhythms,
metabolism and environmental responses in fish, it would be no
surprise if subtle changes in multiple abiotic conditions had
cascading effects on life-history traits, with notable effects on
populations. Finally, because circadian rhythms are expected to
have high adaptive value (Yerushalmi and Green, 2009), future
studies must continue to clarify how disturbances in clock function
affect the fitness of organisms.
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